
Mobile OGSI.NET: Grid Computing on Mobile Devices*

* This work was supported in part by the National Science Foundation under grants ACI-0203960 (Next Generation Software
program), the National Partnership for Advanced Computational Infrastructure (NPACI), and Microsoft Research.

David C. Chu
EECS Department

University of California, Berkeley
Berkeley, CA 94720-1776

davidchu@eecs.berkeley.edu

Marty Humphrey
Department of Computer Science

University of Virginia
Charlottesville, VA 22904
humphrey@cs.virginia.edu

Abstract

The problem with the Grid is that it does not
currently extend completely to devices, because these
devices are not viewed as having sufficient capability
to be both clients and services. We design, implement
and evaluate Mobile OGSI.NET, which extends an
implementation of grid computing, OGSI.NET, to
mobile devices. Mobile OGSI.NET addresses the
mobile devices' resource limitations and intermittent
network connectivity, factors which differentiate them
from traditional computers. Because Mobile
OGSI.NET uniquely supports the hosting of Grid
Services on the device, Mobile OGSI.NET is an
important step toward making the mobile device a
first-class entity in Grids based on OGSI or the Web
Services Resource Framework (WSRF).

1. Introduction

Mobile electronic devices such as Personal
Digital Assistants (PDAs), Smart Phones, and wearable
computers, are increasingly common. Individuals will
frequently own a collection of these mobile devices.
Yet, these devices are often resource limited:
processing power is low, battery life is finite, and
storage space is constrained. These restrictions slow
application execution, and hinder operability.

Arguably, applications executing on devices must
be made aware of concurrently-executing applications
in order to optimally use the limited resources.
Previous related work suggests several approaches to
address this problem. We categorize these approaches
as mobile collaborative computing tools; single-device
resource management; and multi-device grid computing
resource management.

Mobile collaborative computing tools ease
development of collaborative applications. For
example, iMobile [1] defines enterprise services for
secure mobile device access. The YCab toolkit [3]
allows ad-hoc mobile device collaboration. Quickstep
[2] provides synchronous collaboration abilities for
mobile devices. Yet, mobile collaborative computing
often restricts the mobile device to a portal. The mobile
device then depends upon external computers, such as
traditional desktops and servers.

Several systems attempt to scale the mobile
experience in response to the fluctuation of resources
on a single device. Odyssey [4] implements a viceroy
gateway as an intermediary between the critical
resources and wardens acting on behalf of user
applications. In particular, Odyssey varies application
fidelity in response to changes in network bandwidth
availability. Flinn and Satyanarayanan also extended
Odyssey to respond to changes in battery power [5].
Similarly, the DQM [6] varies the quality of a toy
application in response to processor availability. These
single device approaches do not leverage the additional
resources of other available computers. As a result,
these approaches must degrade the user experience.

Grid computing offers an attractive alternative for
resource-demanding applications. The paradigm of
Grid Computing as applied to resource limited devices
is that somehow the devices can collectively deliver the
quality of service needed by the end-user. Currently,
grid computing predominately serves computationally
intensive scientific and enterprise applications and
operates on cluster computers or supercomputers [7].
The widely-used Globus Toolkit version 2.x (GT2) [8]
provides mechanisms for constructing a grid
infrastructure. Legion [9] offers a similar platform for
grid computing. However, both of these systems used

Appears in the Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(associated with Supercomputing 2005), November 8, 2004. Pittsburgh, PA.

proprietary communication interfaces. Proprietary
interfaces limit interoperability and extensibility,
especially to new platforms such as personal mobile
devices.

The architects of Globus, wishing to define grid
computing in term of web services [10][11], developed
the Open Grid Services Architecture (OGSA) [12].
The Open Grid Services Infrastructure (OGSI) [13], a
normative specification, quickly followed. Collectively
these define grid services, extensions to the SOAP
communications protocol for grid computing. This
provides true platform-independent grid computing.

Currently, OGSI implementations exist for several
platforms, or runtimes. Sandholm et al. implement
OGSI for the Java Virtual Machine runtime [14].
Humphrey et al. implement OGSI for the Microsoft
.NET Framework runtime [15]. However, very few
mobile devices can support either of these runtimes.
Rather, many mobile devices run Windows CE with the
.NET Compact Framework, a substantially stripped-
down version of the .NET Framework. In addition,
neither of these implementations considers the addition
of mobile device constraints, such as limited resources
and intermittent network connectivity.

Several efforts combine grid computing and
mobile devices. Gonzalez-Castano incorporates
mobile devices into Condor as client front-ends for job
submission and job querying to traditional
supercomputer grids [16]. Phan et al. suggest a proxy-
based cluster architecture for introducing mobile
devices into traditional grids [17], though provides no
implementation for evaluation. Clarke and Humphrey
investigate the challenges of integrating mobile devices
into the Legion grid computing system [18]. While
addressing some of the particular concerns of mobile
devices, none of these efforts embraces the community-
adopted OGSI specification.

In this paper, we describe Mobile OGSI.NET,
created to promote resource sharing and collaboration
that improves the user experience. Mobile OGSI.NET
extends an implementation of grid computing,
OGSI.NET [15], to mobile devices. By adhering to the
OGSI specification, Mobile OGSI.NET interoperates
with existing OGSI implementations, such as GTK and
OGSI.NET. Mobile OGSI.NET also addresses the
mobile devices' resource limitations and intermittent
network connectivity, factors which differentiate them
from traditional computers. Because the Web Services
Resource Framework (WSRF) is a re-factoring of
OGSI, we believe that many of the results achieved
during the implementation of Mobile OGSI.NET will
be important to WSRF-based Grids as well.

The outline of this paper is as follows. Section 2
gives the goals and requirements of Mobile
OGSI.NET. Section 3 presents the software
architecture. Section 4 contains a description of the
implementation and optimization. Section 5 contains
an evaluation of Mobile OGSI.NET in a particular
context that we believe is representative of future
device usage in Grids. Section 6 is the conclusion.

2. Mobile OGSI.NET: Goals and
Requirements

Before describing the architecture of Mobile

OGSI.NET, we outline the four design goals and
provide justification for the goals. First and foremost,
we wished to construct a platform that provides the
better potential for collaboration among mobile
devices. That is, we wish to facilitate a collection of
applications---on a single device or on multiple
devices---being able to work together on a particular
problem. This is one version of the Grid problem. We
believe that a common set of protocols and software
can facilitate this, particularly as a substrate by which

Second, we aim to support this style of
collaboration among mobile devices with traditional,
non-mobile workstation computers and server
computers. While peripheral to the main goal of mobile
to mobile collaboration, mobile to desktop/server
collaboration opens further possibilities of maximizing
resource utilization and improving user experience.
Mobile devices offer convenience and contextual
relevance while desktops and servers offer
comparatively limitless resources and networking.

Third, the collaboration architecture should
operate on many device platforms. Mobile devices
present widely varying hardware interfaces. To enable
practical mobile device collaboration, we must
implement Mobile OGSI.NET upon a widely used
operating system. If we select an operating system
without critical-mass deployment, most mobile devices
would be incapable of running Mobile OGSI.NET.

Fourth, the collaboration architecture must
address the particular characteristics of mobile devices.
Mobile devices experience intermittent networking and
resource constraints. Due to mobility, networking
quality and availability fluctuate as the user travels with
the device. Naïve schemes which rely on the
availability of particular network functions will fail
under such conditions. Resource constraints constantly
hinder the user experience. Familiar resources include
processing power, battery life and storage capacity.
However, we broaden traditional notions of resources
to include any hardware capability needed to perform

the user's desired task. This may include display
screens for visual applications, or display screens and
speakers for multimedia applications. For example, if
the user may wish to check stock prices while
simultaneously viewing a streaming video. In this
scenario, even if the user possesses multiple display
screens (for example a PDA screen and wristwatch
screen), she is limited to sequential viewing. Mobile
OGSI.NET should optimize resource usage on behalf
of the user.

After identifying the design goals, we translated
these goals into requirements. First, collaboration
inherently involves agreement on a set of protocols and
behaviors. The Open Grid Services Infrastructure
(OGSI) Specification [13] for grid computing emerged
as the preferred mechanism. While traditional servers
have few similarities with mobile devices,
implementing the server-based OGSI specification on
resource-limited devices offers several advantages.
First, we were already familiar with OGSI through our
project's implementation on .NET, OGSI.NET.
Second, conformance with the OGSI Specification
allows Mobile OGSI.NET to interoperate with
desktops and servers running the OGSI-based Globus
Toolkit or OGSI.NET2. Neither the Globus Toolkit
nor OGSI.NET runs on mobile devices. The
alternative to the OGSI Specification was adopting a
custom communication protocol. This choice would
not allow immediate interoperability with desktops and
servers, without further custom desktop and server
software.

Second, we chose to implement Mobile
OGSI.NET on the Microsoft PocketPC 2003 operating
system. PocketPC 2003 is the latest edition of the
PocketPC family operating systems. The other
dominant mobile device operating systems are Palm
OS and Linux. By some projections, the Pocket PC
operating systems will compromise 40% of market in
2007. Note that this includes devices ranging from
embedded devices to cell phones to ultra-small laptops.

In addition, we chose to implement Mobile
OGSI.NET on top of the .NET Compact Framework
[19]. This runtime acts as an intermediary software
layer between the application and the operating system.
This layer primarily offers a convenient GUI. Mobile
OGSI.NET itself does not need a GUI. However, we
chose the .NET Compact Framework because we
wished to take advantage of several useful utility
libraries and applications developed on the .NET

2 In certain instances, GT and OGSI.NET use message
parameters unspecified in OGSI Specification. We
developed Mobile OGSI.NET to conform to these de facto
specification elements as well.

Compact Framework. Figure 1 illustrates the
relationship between the various hardware and software
layers described thus far.

Figure 1: Mobile OGSI.NET and its relation to
other device hardware/software layers. Mobile
OGSI.NET bridges multiple devices.

Third, specifically to accommodate computing
platforms that are quickly shut off, we require process
migration and distributed execution capabilities.
Mobile OGSI.NET should migrate processes away
from resource depleted devices. Distributed execution
allows the user's job to run among several devices, with
each device handling some part of the job. These
provide the building blocks for improving resource
utilization. Our specific short-term goal is to have the
resource owner engage this process migration
mechanism directly; our longer-term goal is to silently
migrate processes as we notice, for example, that
battery reserve is becoming dangerously low.

3. Mobile OGSI.NET Architecture

The Mobile OGSI.NET architecture consists of
three main layers: Monash University Mobile Web
Server [20], the Grid Services Module, and the Grid
Services. Each layer handles a separate concern. The
Mobile Web Server handles endpoint to endpoint
message reception and transmission. The Grid
Services Module handles Grid Services message
parsing and multiplexes messages to the appropriate
Grid Service. The Grid Service handles application
logic and processing. Figure 2 illustrates this system
architecture.

3.1 Mobile Web Server

The Mobile Web Server, an HTTP server

developed at Monash University, handles endpoint
message composition for sends and reconstruction for

DeviceY hardware

PocketPC operating system

.NET Compact Framework

DeviceX hardware

PocketPC operating system

.NET Compact Framework

Mobile OGSI.NET

App1

App1

App1
App3

receives. The Mobile Web Server functions both for
traditional HTTP requests for web content and
advanced SOAP requests for Web Services. The
Mobile Web Server acts as a demultiplexer of
incoming messages for the appropriate processing
module, such as the HTTP Module and SOAP Module.
This makes the Mobile Web Server particularly
attractive as a foundation from which to develop Grid
Services; minimally, we add a new Grid Services
Module.

The alternative HTTP servers to the Mobile Web
Server are the Microsoft PocketPC 2003 Web Server
and several commercial web servers. We chose the
Mobile Web Server because the Mobile Web Server is
open source, already contains an example SOAP
module, and supports module add-ons. None of the
alternatives provided these features.

3.2 Grid Services Module

We developed the Grid Services Module to
handle the core processing necessary for Grid Services.
The Grid Services Module parses the HTTP request
content as a SOAP message, and then redirects the
message to the appropriate Grid Service. Just as the
Mobile Web Server demultiplexes messages to the
appropriate module, the Grid Services Module
demultiplexes messages to the appropriate Grid
Service. The service request address keys the
demultiplexing procedure.

To achieve the Grid Service transient and stateful
properties, we support dynamic service instantiation
and service querying, in addition to standard to
standard web service operations. The OGSI
Specification provides a detailed factory interface
description. We implement factories simply as Grid
Services which subscribe to this interface. For
example, a CounterFactoryService provides the
createService port which creates CounterService

instances. We allow factories to share a central registry
in order to maintain a consistent view of a server's
services. A configuration file, gridservice.web,
specifies the initial Grid Services available upon host
initialization.

We currently do not implement a method to
perform dynamic service discovery. Traditional web
service discovery techniques, such as WSDL retrieval,
still apply. However, clearly users can not discover
dynamic services with this technique without a priori
knowledge of currently instantiated services. We plan
to address this need by implementing a host services
query feature.

3.3 Grid Services

Grid Services contain application logic and are

simply .NET Compact Framework Dynamic Link
Libraries (DLLs). Application developers may
independently build application specific DLLs for use
as Grid Services. Following the SOAP module, we
allow the application developer to specify which
methods are web service methods with the
[WebService] attribute. For example, the
CounterService code listing in Figure 2 illustrates how
regular methods are decorated with attributes. This
method mimics traditional web services development;
the experienced web services application developer
should find this programming model comfortable.
Figure 2 lists the Grid Services implemented in Mobile
OGSI.NET that are discussed in the rest of this paper.

Figure 2: Grid Services web method declaration
using attributes

Grid Service
request message
.
.
.

Grid Service
response message
.
.
.

Mobile Web Server

SOAP Module HTTP Module Grid Services Module

MyCounterFactoryService
[CounterFactoryService]

SomePrimeService
[PrimeService]

CounterService21
[CounterService] CounterService17

[CounterService]
CounterService93
[CounterService]

Figure 2. Mobile OGSI.NET Architecture

public class CounterService : BaseService {
 int counter;
 public CounterService() {
 counter = 0;
 }

 [WebMethod]
 public int add(int value) {
 counter += value;
 return counter;
 // This method is decorated with the
 // [WebMethod] attribute and is accessible
 // from Mobile OGSI.NET
 }
 public void nonWebServiceMethod() {
 // This method lacks attribute decorations
 // and hence is not accessible from
 // Mobile OGSI.NET
 }
}

Table 1: Grid Services currently implemented.
These demonstrate the breadth of possible services.

Grid Service
Type

Description Web Methods

Hello World
Service

Archetypal, stateless web
service; does not actually
use any Mobile
OGSI.NET features

SayHelloTo()

Counter
Service

Archetypal Grid Service;
keeps basic state, an
integer counter.

addValue()

Counter Factory
Service

Creates Counter Service
services.

createService()

Mobile Counter
Service

Mobile Grid Service; can
migrate between hosts.

addValue()

Prime Service Distributed Grid Service;
takes advantage of other
available devices.

Search()

Prime Worker
Service

Works on behalf of a
Prime Service

IsPrime()

Prime Worker
Factory Service

Creates Prime Worker
Service services on behalf
of Prime Service.

createService()

Group Service Manages group dynamics
among a collection of
devices.

addMember()
removeMember()
getMembers()

4. Mobile OGSI.NET Implementation

4.1 Mobile Web Server

We made several optimizations and

improvements to the Mobile Web Server. First, we
extended the Mobile Web Server's demultiplexing
capabilities. The Mobile Web Server originally only
allowed keying on file extension type. This limited
capability restricted the naming of dynamic Grid
Services. We added service path-based routing logic
so that any request address with the /OGSA/Services
prefix is processed as a Grid Service request. The
OGSI.NET hosting environment's ISAPI filter
performs a similar function. Second, the Mobile Web
Server often failed to correctly reconstruct HTTP
messages consisting of multiple segmented TCP
packets. We fixed this shortcoming. Lastly, the
Mobile Web Server's current architecture supports only
one request processing at a time whereas traditional
web servers may support thousands of simultaneous
requests. This blocking model forces us to treat
localhost requests as a special case, and prevents
multiple request handling. While at this time we have
not modified the Mobile Web Server to support

simultaneous requests, we look forward to modifying
the Mobile Web Server to a thread pool model.

4.2 Grid Services Module

Our first Grid Services Module, based on the

SOAP Module, lacked several important features.
First, the original Grid Services Module lacked support
for SOAP headers. We implemented support for
SOAP headers. This allows the Grid Services Module
to support the GXA family of protocols such as WS-
Security and WS-Addressing [24]. Currently the Grid
Services Module uses the WS-Addressing "To" address
as the demultiplexing key for the appropriate Grid
Service. This allows routable service requests and
responses. Similarly, we envision support for WS-
Security message authentication and encryption.

Second, the original Grid Services Module did
not support complex parameter and return types for
web service methods. For example, a
MyContactsService service may have an
AddContact() method. The application developer
prefers to pass a single Contact object rather than a
semantically unorganized list of ContactName,
ContactPhone ContactAddressStreet,
ContactAddressCity, etc. We extended parameter
types to permit complex types. We leave the less
frequently used complex return types for future work.

4.3 Mobile Grid Services

Battery power severely constrains individual

devices. Therefore, individual devices tend to lack
reliability. Battery power exhaustion or intentional
power management (automatic/manual device power
off) increases the failure likelihood. To address this
problem, Mobile OGSI.NET allows services to migrate
from host to host. Specifically, we implemented basic
Grid Service state saving and loading. A Grid Service
may save its state which another Grid Service of the
same type can then load and continue running. For
example, MyCounterService291 of type
CounterService may save its state via
SaveCounterState(). Then, another
MyCounterService18 also of type CounterService
loads the state object via LoadCounterState() and
continues running as if resuming from the previous
save point.

The basic migration procedure demands several
improvements. First, we can provide an OGSI base
service and interface. These might export
SaveInstance() and LoadInstance() methods with Grid
Service extensibility elements. This allows service

agnostic migration. For example, if a host detects it is
about to fail, it may migrate all of its services to other
hosts by using this generic interface.

Second, currently the user initiates both save and
load calls. We plan to remove user involvement from
the migration process via a GroupManagerService,
which either periodically or on an event basis,
examines host and service metadata. This examination
may reveal that certain Grid Services should migrate.
For example, upon detecting less than 20% battery
power remaining on HostA, the GroupManagerService
initiates calls to migrate ServiceX on HostA to HostB.
Subsequently clients, after finding ServiceX absent
from HostA, query the GroupManagerService and
discover ServiceX moved to HostB. In OGSI
specification terms, the GroupManagerService is the
handle resolver and the address to HostA or HostB is
the Grid Service Reference.

Third, we can compare Grid Services migration to
process checkpointing. In the example above, the
checkpoint consists solely of the current counter value.
This simple scalar value is trivial to encode and
transmit. However, a Grid Service may be involved
with open files, socket connections and other localhost
resources. This complex, host and platform-specific
state has been notoriously difficult to capture and use
in traditional checkpointing. If the need arises, we plan
to employ checkpointing and migration processes used
in grid computing frameworks [21].

4.4 Distributed Grid Services

Traditionally, multiple applications fight for

scarce resources on a single device. Mobile
OGSI.NET harnesses the network of devices to permit
distributed application execution. We allow a Grid
Service to distribute its work among multiple hosts via
the Grid Services protocol. PrimeService is our
prototype distributed Grid Service example.
PrimeService.Search() finds all primes in a user
specified range. This problem decomposes into
primality testing each integer in the specified range.
Our goal is to distribute this task among multiple
devices.

We follow a manager/worker model for
distributing this service. First, when a client request
arrives, PrimeService, the manager, obtains a
listing of the other available devices. In the current
implementation, these peers are known a priori.
Second, having established peer devices, the
PrimeService creates PrimeWorkerService
services on the peers via calls to
PrimeWorkerFactoryService on the peers.

These newly created workers are solely for the use of
the manager. Third, the PrimeService gives a
portion of work i.e. primality testing a particular
integer range, to each PrimeWorkerService. As
workers report results, the manager gives each worker
another piece of the job until all integers have been
handed out. Finally, the manager reports the summary
result to the client when all integers in the range have
been tested.

The manager/worker model both decreases job
completion time and more fairly distributes resource
consumption, which are keys in a resource-limited
environment. However, distributed applications
introduce several challenges for the application
developer. First, managers must distribute job pieces
to multiple workers asynchronously. This contrasts
from traditional, comfortable synchronous
programming. Second, distributed programs must
gracefully handle complex failure modes. Failures may
occur both because of network connectivity or process
failure. These factors considerably increase
programming complexity. We do not investigate these
problems in depth in Mobile OGSI.NET. Currently,
application developers must implement all
asynchronous logic and handle all failure modes.

Workers must have appropriate services available
i.e. PrimeWorkerFactoryService in order to
assist PrimeService. More generally, service logic
should be transported and deployed to the devices that
require the service. The current Mobile OGSI.NET
implementation assumes
PrimeWorkerFactoryService availability at
any reported peer; all Grid Services we expect to use
(generally factories) are deployed along with Mobile
OGSI.NET. If we relax this assumption, we then
require mobile code. We do not investigate mobile
code in depth in Mobile OGSI.NET.

4.5 Group Management

The mobile service and distributed service

features we have discussed involve group creation and
management. Mobile OGSI.NET provides
GroupService, a Grid Service for creating and
managing groups. GroupService differs from other
services in that it is not dynamic. A client can rely on
the existence of GroupService at the same path,
/OGSA/Services/GroupService, for any device running
Mobile OGSI.NET. GroupService allows new services
to join, old services to leave, and queries about who is
in the group. This suffices to provide possible
migration targets for mobile services, and a list of
candidate workers for manager services. Additionally,

we design the GroupService interface to allow
Bluetooth [23] to initiate group membership actions.

The current basic implementation of
GroupService does not optimally perform group
creation and management, nor does it handle the many
failure scenarios possible in groups. For example,
membership change may not be detected
simultaneously by all members. We consider this in
future research.

5. Evaluation

We tested Mobile OGSI.NET on a collection of

PocketPCs consisting of one HP iPAQ and two
Compaq iPAQs. The HP iPAQ ran the PocketPC 2003
operating system with 400MHz Intel XScale processor,
128 MB RAM and 48 MB ROM. The two Compaq
iPAQ 3670s ran the PocketPC 2000 operating system
with 206MHz Strong Arm processor, 64 MB RAM and
16 MB ROM3. The HP outperformed the Compaq by a
factor anywhere from 1.7 to 3.5, depending upon the
operation. The Mobile OGSI.NET server (Mobile
Web Server and Grid Services Module) amounted to
147 KB. The sample Grid Services described in Table
1 occupied an additional 40 KB. In total, the
deployment occupied 187 KB. This insidiously small
footprint assumes the .NET Compact Framework, at
4400 KB, already resides on the device. This holds
true for most newer PocketPCs, such as the HP, but
does not hold for older PocketPCs, such as the
Compaqs.

We conducted the large majority of tests by
averaging over three samples. Variance was generally
small enough to justify only three samples. This does
not include the first test run which we always discard.
The first run often executes twice to three times as
slowly as subsequent runs, likely due to the just-in-time
compilation of .NET Framework applications. We
disabled automatic user non-interaction standby and
screen dimming.

5.1 Standard Services Performance

We compare the performance of Mobile

OGSI.NET on PocketPCs to OGSI.NET on a
traditional desktop. Mobile OGSI.NET implements a
far smaller subset of the OGSI Specification than
OGSI.NET. We choose to test the basic
CounterService and CounterFactoryService services.
Figure 3 shows the Mobile OGSI.NET performance on

3 The XScale and Strong Arm processor speeds are
comparable since the XScale adopts the Arm instruction set.

the three different platforms, the HP iPAQ, the
Compaq iPAQ and a desktop machine. All clients were
running on a wireless PocketPC.

0 1000 2000 3000 4000 5000

C
ou

nt
er

F
ac

to
ry

S
er

vi
ce

cr
ea

te
In

st
an

ce
()

C
ou

nt
er

S
er

vi
ce

 a
dd

V
al

ue
()

S
er

vi
ce

 r
eq

u
es

t
ty

p
e

Latency (milliseconds)

OGSI.NET, AMD Athalon @ 2.4
GHz (subjective estimated)

Mobile OGSI.NET, HP iPAQ @
400 MHz

Mobile OGSI.NET, Compaq
iPAQ @ 204 MHz

Figure 3: Latency for basic services,
CounterService and CounterFactoryService.

Mobile OGSI.NET latency compares favorably to

OGSI.NET latency. This may appear surprising at
first, given the large processing power disparity.
However, for these basic operations, network latency
dominates actual processing time. Additionally, all
response times (sub 4 seconds) allow reasonably
interactive user experiences.

5.2 Distributed Services Performance

We measure the performance gain in response to

increased hardware resources. In these tests, we
investigate two scenarios types. In the first scenario
type, the single HP iPAQ runs a traditional, non-
distributed prime searching application. This case
allows us to benchmark any performance gains or
losses.

In the second scenario type, the single PocketPC
emulator searches for primes by distributing work to a
collection of iPAQs. We always use at least the one
HP iPAQ and zero, one or two Compaq iPAQs. Note
that the emulator does no actual work besides initiating
service requests and collecting results.

The prime search occurs starting from 100,000
includes as many as the next 400,000 integers. This
relatively tame search space provides enough
distinction to evaluate performance behavior. Figure 4
graphs the behavior of the four scenarios.

0

100000

200000

300000

400000

500000

600000

0 100000 200000 300000 400000 500000

Integers tested starting from 100,000

L
at

en
cy

 in
 m

ill
is

ec
o

n
d

s NON-DISTRIBUTED (SINGLE
DEVICE) PRIMES

DISTRIBUTED 1 DEVICE PRIMES

DISTRIBUTED 2 DEVICE PRIMES

DISTRIBUTED 3 DEVICE PRIMES

Figure 4: Latency with various numbers of
hardware resources.

Response time does indeed improve with multiple
devices. Yet we also observe several interesting
phenomena. First, the distributed prime search does
not scale well with increasing search space. For
example, at a search space of 400,000, the distributed
one device prime search performs 50% slower than the
non-distributed search. Ideally, we would observe only
a small constant overhead for
PrimeWorkerService creation. Similarly, the
distributed three device prime search performs only
48% faster than the non-distributed version. Ideally,
we would observe a three fold4 increase in
performance. However, the prime search service must
transmit every prime found with increasingly larger
search space requests. This enormous quantity of data
(logarithmic in the size of the search space) segments
packets and causes increased network latency.

Second, for small jobs (under 100,000 search
space), the local non-distributed search far outperforms
any distributed service. Also, for very small jobs
(under 10,000), fewer devices perform better than more
devices. The PrimeWorkerService creation overhead
explain these results.

Lastly, three distributed devices only slightly
outperform two distributed devices in the largest search
space (12% faster). We expect this performance
disparity to widen as the search space grows.

Next, we investigate the average battery usage per
device in the same four scenarios. Figure 5 shows the
resulting energy drain in the HP iPAQ. The Compaq
iPAQs had battery meter granularities too imprecise for
this comparison. Greater job distribution does indeed
more evenly distribute battery usage than less job
distribution. The non distributed search appears to
jump around the distributed one device search; we

4 Though not quite three fold since the Compaq iPAQs
are not nearly as powerful as the HP iPAQ

attribute this to battery meter calibration imprecision.
Also, while more distributed devices may use less
power per device, the total power usage for the entire
job is greater. This as expected since, as mentioned
previously, the distributed searches spend a good deal
of time just reporting back results.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 100000 200000 300000 400000 500000

Integers tested starting from 100,000

B
at

te
ry

 u
sa

g
e

(%
)

NON-DISTRIBUTED (SINGLE
DEVICE) PRIMES

DISTRIBUTED 1 DEVICE PRIMES

DISTRIBUTED 2 DEVICE PRIMES

DISTRIBUTED 3 DEVICE PRIMES

Figure 5: Battery usage with various numbers of
hardware resources

6. Conclusion

We have designed and implemented Mobile
OGSI.NET, an OGSI Specification-conformant grid
computing hosting environment. To the best of our
knowledge, we are the first to offer OGSI Grid Service
hosting on small devices.

Furthermore, we have developed specific
solutions for the mobile, resource-constrained
environment. Our implementation occupies minimal
footprint yet supports arbitrary application-specific
Grid Services. Mobile Services may migrate during
deployment in response to local or global events.
Distributed Services better utilize available resources
and prolong the lifetime of individual devices.

Mobile OGSI.NET makes initial advances
towards multiple device collaboration. At the same
time, we have bridged two very disparate fields: we
have taken high performance supercomputing designs
and adapted these for personal mobile devices. This
fruitful investigation has yielded a hosting environment
that can interoperate with the spectrum of computing
resources.

However, we see several ways to improve Mobile
OGSI.NET. First, Mobile OGSI.NET does not
currently implement Service Attributes, Grid
Notifications, nor security mechanisms.

Second, we need to loosen the restrictions of the
GroupManagerService; it cannot currently handle the
truly dynamic environment we anticipate mobile

devices operating. This is a non-trivial investigation
that will require a significant study.

Third, Mobile OGSI.NET should port easily to
other mobile and non-mobile embedded devices in the
Windows CE operating system family. This will allow
Mobile OGSI.NET to coordinate not only PocketPCs,
but varied other embedded devices as well. In pursuit
of this goal, we have built a minimal .NET Compact
Framework Windows CE platform.

Fourth, Bluetooth networking [23] integration
may provide Mobile OGSI.NET with very desirable ad
hoc capabilities. Bluetooth's ad hoc properties allow a
user's set of mobile devices to collaborate with minimal
configuration. In addition, mobile devices may use
Bluetooth networking regardless of IP networking loss.
Mobile devices frequently experience IP networking
loss due to mobility and the non-universal coverage of
IP access points. Bluetooth integration may be
particularly challenging because the OGSI
Specification is built upon IP networking.

Fifth, we have yet to investigate resource sharing
among different users. We may approach this from
either a game theoretic formulation or policy
perspective. Both the grid computing and web services
community are working towards developing nascent
policy-based approaches.

Lastly, we will look to apply our experiences with
Mobile OGSI.NET in designing and implementing
Mobile WSRF.NET. As devices become increasingly
capable, we believe that they will both be consumers
and producers of WSRF-compliant grids.

7. References

[1] D. Buszko, W. Lee, and A. Helal. "Decentralized Ad-

Hoc Groupware API and Framework for Mobile
Collaboration." Proceedings of the 2001 International
ACM SIGGROUP Conference on Supporting Group
Work. 2001.

[2] J. Roth and C. Unger. "Using Handheld Devices in
Synchronous Collaborative Scenarios." Personal and
Ubiquitous Computing. Volume 5, Issue 4, December
2001.

[3] Y. Chen, H. Huang, R. Jana, T. Jim, M. Hiltunen, S.
John, S. Jora, R. Muthumanickam and B. Wei.
"iMobile EE – An Enterprise Mobile Service Platform."
Wireless Networks. Volume 9, Issue 4, July 2003.

[4] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,
J. Flinn, and K. Walker. "Agile application-aware
adaptation for mobility." ACM SIGOPS Operating
Systems Review , Proceedings of the sixteenth ACM
symposium on Operating systems principles. Volume
31, Issue 5, Octoboer 1997.

[5] J. Flinn, and M. Satyanarayanan. "Energy-aware
adaption for mobile devices." ACM Symposium on

Operating Systems Principles. Proceedings of the
seventeenth ACM symposium on Operating systems
principles. 1999.

[6] S. Brandt, G. Nutt, T. Berk. and M. Humphrey. "Soft
real-time application execution with dynamic quality of
service assurance." Quality of Service, 1998. (IWQoS
98) 1998 Sixth International Workshop. 18-20 May
1998.

[7] M. Baker, R. Buyya, and D. Laforenza. "Grids and Grid
technologies for wide-area distributed computing"
Software - Practice and Experience. 2002.

[8] I. Foster and C. Kesselman. "Globus: A Metacomputing
Infrastructure Toolkit." International Journal of
Supercomputer Applications. Vol. 11, Issue 4, 1997.

[9] A.S. Grimshaw, A.J. Ferrari, F.C. Knabe and M.A.
Humphrey, "Wide-Area Computing: Resource Sharing
on a Large Scale," IEEE Computer, 32(5): 29-37, May
1999.

[10] I. Foster, C. Kesselman, and S. Tuecke. "The Anatomy
of the Grid - Enabling Scalable Virtual Organizations."
International Supercomputer Applications. 2001.

[11] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. "The
Physiology of the Grid." Global Grid Forum. June
2002.

[12] I. Foster, and D. Gannon. "The Open Grid Services
Architecture Platform." Global Grid Forum Drafts.
http://www.ggf.org/ogsa-wg. February 2003.

[13] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maquire, T. Sandholm., D. Snelling,
and P. Vanderbilt. "Open Grid Services Infrastructue
(OGSI) Version 1.0." Global Grid Forum Drafts.
http://www.ggf.org/ogsi-wg. April 2003.

[14] T. Sandholm, S. Tuecke, J Gawor, R. Seed, T. Maguire,
J. Rofrano, S. Sylvester, and M. Williams. "Java OGSI
Hosting Environment Design - A Portable Grid Service
Container Framework." Global Grid Forum Drafts
http://www.gridforum.org/Meetings/ggf7/drafts/OGSI%
20Java%20Hosting%20Environment12.pdf. March
2003.

[15] G. Wasson, N. Beekwilder, M. Morgan, and M.
Humphrey. OGSI.NET: OGSI-compliance on the .NET
Framework. In Proceedings of the 2004 IEEE
International Symposium on Cluster Computing and the
Grid. April 19-22, 2004. Chicago, Illinois.

[16] F. Gonzalez-Castano, J. Vales-Alonso, and M. Livny.
"Condor Grid Computing from Mobile Handheld
Devices." Mobile Computing and Communications
Review. Vol. 6, No. 2. ACM SIGMOBILE Mobile
Computing and Communications Review. Volume 6 ,
Issue 2, April 2002.

[17] T. Phan, L. Huang, and C. Dulan. "Integrating Mobile
Wireless Devices Into the Computational Grid."
Mobicom 2002. 2002.

[18] B. Clarke, M. Humphrey. "Beyond the 'Device as
Portal': Meeting the Requirements of Wireless and
Mobile Devices in the Legion Grid Computing System."
2nd International Workshop on Parallel and
Distributed Computing Issues in Wireless Networks and

Mobile Computing (associated with IPDPS 2002), Ft.
Lauderdale, April 19, 2002.

[19] .NET Compact Framework.
http://msdn.microsoft.com/vstudio/device/compactfx.as
px. Microsoft. 2002.

[20] N. Nicoloudis and D. Pratistha. .NET Compact
Framework Mobile Web Server Architecture. Microsoft
MSDN Library. July 2003.
http://msdn.microsoft.com/library/en-
us/dnnetcomp/html/NETCFMA.asp.

[21] Condor Checkpointing. Condor High Throughput
Computing Project. Visited March 2004.
http://www.cs.wisc.edu/condor/checkpointing.html.

[22] T. Thorn. Programming Languages for Mobile Code.
ACM Computing Surveys, Vol. 29, No. 3. September
1997.

[23] Bluetooth. Visited March 2004.
http://www.bluetooth.com.

[24] D. Ferguson, T. Storey, B. Lovery and J. Shewchuk.
Secure, Reliable, Transacted Web Services:
Architecture and Composition. IBM/Microsoft
Whitepapers. September 2003.

