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Abstract 
 

The problem with the Grid is that it does not 
currently extend completely to devices, because these 
devices are not viewed as having sufficient capability 
to be both clients and services. We design, implement 
and evaluate Mobile OGSI.NET, which extends an 
implementation of grid computing, OGSI.NET, to 
mobile devices.    Mobile OGSI.NET addresses the 
mobile devices' resource limitations and intermittent 
network connectivity, factors which differentiate them 
from traditional computers.  Because Mobile 
OGSI.NET uniquely supports the hosting of Grid 
Services on the device, Mobile OGSI.NET is an 
important step toward making the mobile device a 
first-class entity in Grids based on OGSI or the Web 
Services Resource Framework (WSRF).  

 

1. Introduction 
 

Mobile electronic devices such as Personal 
Digital Assistants (PDAs), Smart Phones, and wearable 
computers, are increasingly common.  Individuals will 
frequently own a collection of these mobile devices.  
Yet, these devices are often resource limited:  
processing power is low, battery life is finite, and 
storage space is constrained.  These restrictions slow 
application execution, and hinder operability. 

Arguably, applications executing on devices must 
be made aware of concurrently-executing applications 
in order to optimally use the limited resources.  
Previous related work suggests several approaches to 
address this problem.  We categorize these approaches 
as mobile collaborative computing tools; single-device 
resource management; and multi-device grid computing 
resource management. 

Mobile collaborative computing tools ease 
development of collaborative applications.  For 
example, iMobile [1] defines enterprise services for 
secure mobile device access.  The YCab toolkit [3] 
allows ad-hoc mobile device collaboration.  Quickstep 
[2] provides synchronous collaboration abilities for 
mobile devices.  Yet, mobile collaborative computing 
often restricts the mobile device to a portal. The mobile 
device then depends upon external computers, such as 
traditional desktops and servers.  

Several systems attempt to scale the mobile 
experience in response to the fluctuation of resources 
on a single device.  Odyssey [4] implements a viceroy 
gateway as an intermediary between the critical 
resources and wardens acting on behalf of user 
applications.  In particular, Odyssey varies application 
fidelity in response to changes in network bandwidth 
availability.  Flinn and Satyanarayanan also extended 
Odyssey to respond to changes in battery power [5].  
Similarly, the DQM [6] varies the quality of a toy 
application in response to processor availability.  These 
single device approaches do not leverage the additional 
resources of other available computers.  As a result, 
these approaches must degrade the user experience. 

Grid computing offers an attractive alternative for 
resource-demanding applications. The paradigm of 
Grid Computing as applied to resource limited devices 
is that somehow the devices can collectively deliver the 
quality of service needed by the end-user. Currently, 
grid computing predominately serves computationally 
intensive scientific and enterprise applications and 
operates on cluster computers or supercomputers [7].  
The widely-used Globus Toolkit version 2.x (GT2) [8] 
provides mechanisms for constructing a grid 
infrastructure.  Legion [9] offers a similar platform for 
grid computing.  However, both of these systems used 
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proprietary communication interfaces.  Proprietary 
interfaces limit interoperability and extensibility, 
especially to new platforms such as personal mobile 
devices. 

The architects of Globus, wishing to define grid 
computing in term of web services [10][11], developed 
the Open Grid Services Architecture (OGSA) [12].  
The Open Grid Services Infrastructure (OGSI) [13], a 
normative specification, quickly followed.  Collectively 
these define grid services, extensions to the SOAP 
communications protocol for grid computing.  This 
provides true platform-independent grid computing. 

Currently, OGSI implementations exist for several 
platforms, or runtimes.  Sandholm et al. implement 
OGSI for the Java Virtual Machine runtime [14].  
Humphrey et al. implement OGSI for the Microsoft 
.NET Framework runtime [15].  However, very few 
mobile devices can support either of these runtimes.  
Rather, many mobile devices run Windows CE with the 
.NET Compact Framework, a substantially stripped-
down version of the .NET Framework.  In addition, 
neither of these implementations considers the addition 
of mobile device constraints, such as limited resources 
and intermittent network connectivity. 

Several efforts combine grid computing and 
mobile devices.  Gonzalez-Castano incorporates 
mobile devices into Condor as client front-ends for job 
submission and job querying to traditional 
supercomputer grids [16].  Phan et al. suggest a proxy-
based cluster architecture for introducing mobile 
devices into traditional grids [17], though provides no 
implementation for evaluation.  Clarke and Humphrey 
investigate the challenges of integrating mobile devices 
into the Legion grid computing system [18]. While 
addressing some of the particular concerns of mobile 
devices, none of these efforts embraces the community-
adopted OGSI specification. 

In this paper, we describe Mobile OGSI.NET, 
created to promote resource sharing and collaboration 
that improves the user experience.  Mobile OGSI.NET 
extends an implementation of grid computing, 
OGSI.NET [15], to mobile devices.  By adhering to the 
OGSI specification, Mobile OGSI.NET interoperates 
with existing OGSI implementations, such as GTK and 
OGSI.NET.  Mobile OGSI.NET also addresses the 
mobile devices' resource limitations and intermittent 
network connectivity, factors which differentiate them 
from traditional computers. Because the Web Services 
Resource Framework (WSRF) is a re-factoring of 
OGSI, we believe that many of the results achieved 
during the implementation of Mobile OGSI.NET will 
be important to WSRF-based Grids as well. 

The outline of this paper is as follows. Section 2 
gives the goals and requirements of Mobile 
OGSI.NET. Section 3 presents the software 
architecture. Section 4 contains a description of the 
implementation and optimization.  Section 5 contains 
an evaluation of Mobile OGSI.NET in a particular 
context that we believe is representative of future 
device usage in Grids. Section 6 is the conclusion. 
 

2. Mobile OGSI.NET: Goals and 
Requirements  
 
Before describing the architecture of Mobile 

OGSI.NET, we outline the four design goals and 
provide justification for the goals.  First and foremost, 
we wished to construct a platform that provides the 
better potential for collaboration among mobile 
devices.  That is, we wish to facilitate a collection of 
applications---on a single device or on multiple 
devices---being able to work together on a particular 
problem. This is one version of the Grid problem. We 
believe that a common set of protocols and software 
can facilitate this, particularly as a substrate by which  

Second, we aim to support this style of 
collaboration among mobile devices with traditional, 
non-mobile workstation computers and server 
computers. While peripheral to the main goal of mobile 
to mobile collaboration, mobile to desktop/server 
collaboration opens further possibilities of maximizing 
resource utilization and improving user experience.  
Mobile devices offer convenience and contextual 
relevance while desktops and servers offer 
comparatively limitless resources and networking. 

Third, the collaboration architecture should 
operate on many device platforms.  Mobile devices 
present widely varying hardware interfaces.  To enable 
practical mobile device collaboration, we must 
implement Mobile OGSI.NET upon a widely used 
operating system.  If we select an operating system 
without critical-mass deployment, most mobile devices 
would be incapable of running Mobile OGSI.NET. 

Fourth, the collaboration architecture must 
address the particular characteristics of mobile devices.  
Mobile devices experience intermittent networking and 
resource constraints.  Due to mobility, networking 
quality and availability fluctuate as the user travels with 
the device.  Naïve schemes which rely on the 
availability of particular network functions will fail 
under such conditions. Resource constraints constantly 
hinder the user experience.  Familiar resources include 
processing power, battery life and storage capacity.  
However, we broaden traditional notions of resources 
to include any hardware capability needed to perform 



the user's desired task.  This may include display 
screens for visual applications, or display screens and 
speakers for multimedia applications.  For example, if 
the user may wish to check stock prices while 
simultaneously viewing a streaming video.  In this 
scenario, even if the user possesses multiple display 
screens (for example a PDA screen and wristwatch 
screen), she is limited to sequential viewing.  Mobile 
OGSI.NET should optimize resource usage on behalf 
of the user. 

After identifying the design goals, we translated 
these goals into requirements.  First, collaboration 
inherently involves agreement on a set of protocols and 
behaviors.  The Open Grid Services Infrastructure 
(OGSI) Specification [13] for grid computing emerged 
as the preferred mechanism.   While traditional servers 
have few similarities with mobile devices, 
implementing the server-based OGSI specification on 
resource-limited devices offers several advantages.  
First, we were already familiar with OGSI through our 
project's implementation on .NET, OGSI.NET.   
Second, conformance with the OGSI Specification 
allows Mobile OGSI.NET to interoperate with 
desktops and servers running the OGSI-based Globus 
Toolkit or OGSI.NET2.  Neither the Globus Toolkit 
nor OGSI.NET runs on mobile devices.  The 
alternative to the OGSI Specification was adopting a 
custom communication protocol.  This choice would 
not allow immediate interoperability with desktops and 
servers, without further custom desktop and server 
software. 

Second, we chose to implement Mobile 
OGSI.NET on the Microsoft PocketPC 2003 operating 
system.  PocketPC 2003 is the latest edition of the 
PocketPC family operating systems.  The other 
dominant mobile device operating systems are Palm 
OS and Linux.  By some projections, the Pocket PC 
operating systems will compromise 40% of market in 
2007.  Note that this includes devices ranging from 
embedded devices to cell phones to ultra-small laptops. 

In addition, we chose to implement Mobile 
OGSI.NET on top of the .NET Compact Framework 
[19].  This runtime acts as an intermediary software 
layer between the application and the operating system.  
This layer primarily offers a convenient GUI.  Mobile 
OGSI.NET itself does not need a GUI.  However, we 
chose the .NET Compact Framework because we 
wished to take advantage of several useful utility 
libraries and applications developed on the .NET 
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Compact Framework.  Figure 1 illustrates the 
relationship between the various hardware and software 
layers described thus far. 

 

Figure 1: Mobile OGSI.NET and its relation to 
other device hardware/software layers.  Mobile 
OGSI.NET bridges multiple devices. 

Third, specifically to accommodate computing 
platforms that are quickly shut off, we require process 
migration and distributed execution capabilities.   
Mobile OGSI.NET should migrate processes away 
from resource depleted devices.  Distributed execution 
allows the user's job to run among several devices, with 
each device handling some part of the job.  These 
provide the building blocks for improving resource 
utilization. Our specific short-term goal is to have the 
resource owner engage this process migration 
mechanism directly; our longer-term goal is to silently 
migrate processes as we notice, for example, that 
battery reserve is becoming dangerously low. 
 

3. Mobile OGSI.NET Architecture  
 

The Mobile OGSI.NET architecture consists of 
three main layers: Monash University Mobile Web 
Server [20], the Grid Services Module, and the Grid 
Services.  Each layer handles a separate concern. The 
Mobile Web Server handles endpoint to endpoint 
message reception and transmission.  The Grid 
Services Module handles Grid Services message 
parsing and multiplexes messages to the appropriate 
Grid Service.  The Grid Service handles application 
logic and processing.  Figure 2 illustrates this system 
architecture.   

 
3.1 Mobile Web Server  

 
The Mobile Web Server, an HTTP server 

developed at Monash University, handles endpoint 
message composition for sends and reconstruction for 
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receives.  The Mobile Web Server functions both for 
traditional HTTP requests for web content and 
advanced SOAP requests for Web Services.  The 
Mobile Web Server acts as a demultiplexer of 
incoming messages for the appropriate processing 
module, such as the HTTP Module and SOAP Module. 
This makes the Mobile Web Server particularly 
attractive as a foundation from which to develop Grid 
Services; minimally, we add a new Grid Services 
Module. 

The alternative HTTP servers to the Mobile Web 
Server are the Microsoft PocketPC 2003 Web Server 
and several commercial web servers.  We chose the 
Mobile Web Server because the Mobile Web Server is 
open source, already contains an example SOAP 
module, and supports module add-ons.  None of the 
alternatives provided these features. 

 
3.2 Grid Services Module 
 

We developed the Grid Services Module to 
handle the core processing necessary for Grid Services.  
The Grid Services Module parses the HTTP request 
content as a SOAP message, and then redirects the 
message to the appropriate Grid Service.  Just as the 
Mobile Web Server demultiplexes messages to the 
appropriate module, the Grid Services Module 
demultiplexes messages to the appropriate Grid 
Service.  The service request address keys the 
demultiplexing procedure. 

To achieve the Grid Service transient and stateful 
properties, we support dynamic service instantiation 
and service querying, in addition to standard to 
standard web service operations.  The OGSI 
Specification provides a detailed factory interface 
description.  We implement factories simply as Grid 
Services which subscribe to this interface.  For 
example, a CounterFactoryService provides the 
createService port which creates CounterService 

instances.  We allow factories to share a central registry 
in order to maintain a consistent view of a server's 
services.  A configuration file, gridservice.web, 
specifies the initial Grid Services available upon host 
initialization. 

We currently do not implement a method to 
perform dynamic service discovery.  Traditional web 
service discovery techniques, such as WSDL retrieval, 
still apply.  However, clearly users can not discover 
dynamic services with this technique without a priori 
knowledge of currently instantiated services.  We plan 
to address this need by implementing a host services 
query feature. 
 
3.3 Grid Services  

 
Grid Services contain application logic and are 

simply .NET Compact Framework Dynamic Link 
Libraries (DLLs).  Application developers may 
independently build application specific DLLs for use 
as Grid Services.  Following the SOAP module, we 
allow the application developer to specify which 
methods are web service methods with the 
[WebService] attribute.  For example, the 
CounterService code listing in Figure 2 illustrates how 
regular methods are decorated with attributes.  This 
method mimics traditional web services development; 
the experienced web services application developer 
should find this programming model comfortable.  
Figure 2 lists the Grid Services implemented in Mobile 
OGSI.NET that are discussed in the rest of this paper.  

 

 

Figure 2: Grid Services web method declaration 
using attributes 
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Figure 2. Mobile OGSI.NET Architecture 

public class CounterService : BaseService { 
   int counter; 
   public CounterService() { 
 counter = 0; 
   } 
   
   [WebMethod] 
   public int add(int value) { 
    counter += value; 
 return counter; 
 // This method is decorated with the 
 // [WebMethod] attribute and is accessible 
 // from Mobile OGSI.NET 
   } 
   public void nonWebServiceMethod() { 
 // This method lacks attribute decorations 
 // and hence is not accessible from 
 // Mobile OGSI.NET 
   } 
}  



Table 1: Grid Services currently implemented.  
These demonstrate the breadth of possible services. 

Grid Service 
Type 

Description Web Methods 

Hello World 
Service 

Archetypal, stateless web 
service; does not actually 
use any Mobile 
OGSI.NET features 

SayHelloTo() 

Counter 
Service 

Archetypal Grid Service; 
keeps basic state, an 
integer counter. 

addValue() 

Counter Factory 
Service 

Creates Counter Service 
services. 

createService() 

Mobile Counter 
Service 

Mobile Grid Service; can 
migrate between hosts. 

addValue() 

Prime Service Distributed Grid Service; 
takes advantage of other 
available devices. 

Search() 

Prime Worker 
Service 

Works on behalf of a 
Prime Service 

IsPrime() 

Prime Worker 
Factory Service 

Creates Prime Worker 
Service services on behalf 
of Prime Service. 

createService() 

Group Service Manages group dynamics 
among a collection of 
devices. 

addMember() 
removeMember() 
getMembers() 

 
4. Mobile OGSI.NET Implementation 
 
4.1 Mobile Web Server  

 
We made several optimizations and 

improvements to the Mobile Web Server.  First, we 
extended the Mobile Web Server's demultiplexing 
capabilities.  The Mobile Web Server originally only 
allowed keying on file extension type.  This limited 
capability restricted the naming of dynamic Grid 
Services.  We added service path-based routing logic 
so that any request address with the /OGSA/Services 
prefix is processed as a Grid Service request.  The 
OGSI.NET hosting environment's ISAPI filter 
performs a similar function.  Second, the Mobile Web 
Server often failed to correctly reconstruct HTTP 
messages consisting of multiple segmented TCP 
packets.  We fixed this shortcoming.  Lastly, the 
Mobile Web Server's current architecture supports only 
one request processing at a time whereas traditional 
web servers may support thousands of simultaneous 
requests.  This blocking model forces us to treat 
localhost requests as a special case, and prevents 
multiple request handling.  While at this time we have 
not modified the Mobile Web Server to support 

simultaneous requests, we look forward to modifying 
the Mobile Web Server to a thread pool model. 
 
4.2 Grid Services Module  

 
Our first Grid Services Module, based on the 

SOAP Module, lacked several important features.  
First, the original Grid Services Module lacked support 
for SOAP headers.  We implemented support for 
SOAP headers.  This allows the Grid Services Module 
to support the GXA family of protocols such as WS-
Security and WS-Addressing [24].  Currently the Grid 
Services Module uses the WS-Addressing "To" address 
as the demultiplexing key for the appropriate Grid 
Service.  This allows routable service requests and 
responses.  Similarly, we envision support for WS-
Security message authentication and encryption. 

Second, the original Grid Services Module did 
not support complex parameter and return types for 
web service methods.  For example, a 
MyContactsService service may have an 
AddContact() method.  The application developer 
prefers to pass a single Contact object rather than a 
semantically unorganized list of ContactName, 
ContactPhone ContactAddressStreet, 
ContactAddressCity, etc.  We extended parameter 
types to permit complex types.  We leave the less 
frequently used complex return types for future work. 
 
4.3 Mobile Grid Services  

 
Battery power severely constrains individual 

devices.  Therefore, individual devices tend to lack 
reliability.  Battery power exhaustion or intentional 
power management (automatic/manual device power 
off) increases the failure likelihood.  To address this 
problem, Mobile OGSI.NET allows services to migrate 
from host to host.  Specifically, we implemented basic 
Grid Service state saving and loading.  A Grid Service 
may save its state which another Grid Service of the 
same type can then load and continue running.  For 
example, MyCounterService291 of type 
CounterService may save its state via 
SaveCounterState().  Then, another 
MyCounterService18 also of type CounterService 
loads the state object via LoadCounterState() and 
continues running as if resuming from the previous 
save point. 

The basic migration procedure demands several 
improvements.  First, we can provide an OGSI base 
service and interface.  These might export 
SaveInstance() and LoadInstance() methods with Grid 
Service extensibility elements.  This allows service 



agnostic migration.  For example, if a host detects it is 
about to fail, it may migrate all of its services to other 
hosts by using this generic interface. 

Second, currently the user initiates both save and 
load calls.  We plan to remove user involvement from 
the migration process via a GroupManagerService, 
which either periodically or on an event basis, 
examines host and service metadata.  This examination 
may reveal that certain Grid Services should migrate.  
For example, upon detecting less than 20% battery 
power remaining on HostA, the GroupManagerService 
initiates calls to migrate ServiceX on HostA to HostB.  
Subsequently clients, after finding ServiceX absent 
from HostA, query the GroupManagerService and 
discover ServiceX moved to HostB.  In OGSI 
specification terms, the GroupManagerService is the 
handle resolver and the address to HostA or HostB is 
the Grid Service Reference. 

Third, we can compare Grid Services migration to 
process checkpointing.  In the example above, the 
checkpoint consists solely of the current counter value.  
This simple scalar value is trivial to encode and 
transmit.  However, a Grid Service may be involved 
with open files, socket connections and other localhost 
resources.  This complex, host and platform-specific 
state has been notoriously difficult to capture and use 
in traditional checkpointing.  If the need arises, we plan 
to employ checkpointing and migration processes used 
in grid computing frameworks [21]. 
 
4.4 Distributed Grid Services  

 
Traditionally, multiple applications fight for 

scarce resources on a single device.  Mobile 
OGSI.NET harnesses the network of devices to permit 
distributed application execution.  We allow a Grid 
Service to distribute its work among multiple hosts via 
the Grid Services protocol. PrimeService is our 
prototype distributed Grid Service example.  
PrimeService.Search() finds all primes in a user 
specified range.  This problem decomposes into 
primality testing each integer in the specified range.  
Our goal is to distribute this task among multiple 
devices. 

We follow a manager/worker model for 
distributing this service.  First, when a client request 
arrives, PrimeService, the manager, obtains a 
listing of the other available devices.  In the current 
implementation, these peers are known a priori.  
Second, having established peer devices, the 
PrimeService creates PrimeWorkerService 
services on the peers via calls to 
PrimeWorkerFactoryService on the peers.  

These newly created workers are solely for the use of 
the manager.  Third, the PrimeService gives a 
portion of work i.e. primality testing a particular 
integer range, to each PrimeWorkerService.  As 
workers report results, the manager gives each worker 
another piece of the job until all integers have been 
handed out.  Finally, the manager reports the summary 
result to the client when all integers in the range have 
been tested. 

The manager/worker model both decreases job 
completion time and more fairly distributes resource 
consumption, which are keys in a resource-limited 
environment.  However, distributed applications 
introduce several challenges for the application 
developer.  First, managers must distribute job pieces 
to multiple workers asynchronously.  This contrasts 
from traditional, comfortable synchronous 
programming.  Second, distributed programs must 
gracefully handle complex failure modes.  Failures may 
occur both because of network connectivity or process 
failure.  These factors considerably increase 
programming complexity.  We do not investigate these 
problems in depth in Mobile OGSI.NET.  Currently, 
application developers must implement all 
asynchronous logic and handle all failure modes.  

Workers must have appropriate services available 
i.e. PrimeWorkerFactoryService in order to 
assist PrimeService.  More generally, service logic 
should be transported and deployed to the devices that 
require the service.  The current Mobile OGSI.NET 
implementation assumes 
PrimeWorkerFactoryService availability at 
any reported peer; all Grid Services we expect to use 
(generally factories) are deployed along with Mobile 
OGSI.NET.  If we relax this assumption, we then 
require mobile code.  We do not investigate mobile 
code in depth in Mobile OGSI.NET.   
 
4.5 Group Management  

 
The mobile service and distributed service 

features we have discussed involve group creation and 
management.  Mobile OGSI.NET provides 
GroupService, a Grid Service for creating and 
managing groups.  GroupService differs from other 
services in that it is not dynamic.  A client can rely on 
the existence of GroupService at the same path, 
/OGSA/Services/GroupService, for any device running 
Mobile OGSI.NET.  GroupService allows new services 
to join, old services to leave, and queries about who is 
in the group.  This suffices to provide possible 
migration targets for mobile services, and a list of 
candidate workers for manager services.  Additionally, 



we design the GroupService interface to allow 
Bluetooth [23] to initiate group membership actions. 

The current basic implementation of 
GroupService does not optimally perform group 
creation and management, nor does it handle the many 
failure scenarios possible in groups.  For example, 
membership change may not be detected 
simultaneously by all members.  We consider this in 
future research.  
 

5. Evaluation 
 
We tested Mobile OGSI.NET on a collection of 

PocketPCs consisting of one HP iPAQ and two 
Compaq iPAQs.  The HP iPAQ ran the PocketPC 2003 
operating system with 400MHz Intel XScale processor, 
128 MB RAM and 48 MB ROM.  The two Compaq 
iPAQ 3670s ran the PocketPC 2000 operating system 
with 206MHz Strong Arm processor, 64 MB RAM and 
16 MB ROM3.  The HP outperformed the Compaq by a 
factor anywhere from 1.7 to 3.5, depending upon the 
operation.  The Mobile OGSI.NET server (Mobile 
Web Server and Grid Services Module) amounted to 
147 KB.  The sample Grid Services described in Table 
1 occupied an additional 40 KB.  In total, the 
deployment occupied 187 KB.  This insidiously small 
footprint assumes the .NET Compact Framework, at 
4400 KB, already resides on the device.  This holds 
true for most newer PocketPCs, such as the HP, but 
does not hold for older PocketPCs, such as the 
Compaqs. 

We conducted the large majority of tests by 
averaging over three samples.  Variance was generally 
small enough to justify only three samples.  This does 
not include the first test run which we always discard.   
The first run often executes twice to three times as 
slowly as subsequent runs, likely due to the just-in-time 
compilation of .NET Framework applications.  We 
disabled automatic user non-interaction standby and 
screen dimming. 
 
5.1 Standard Services Performance  

 
We compare the performance of Mobile 

OGSI.NET on PocketPCs to OGSI.NET on a 
traditional desktop. Mobile OGSI.NET implements a 
far smaller subset of the OGSI Specification than 
OGSI.NET.  We choose to test the basic 
CounterService and CounterFactoryService services.  
Figure 3 shows the Mobile OGSI.NET performance on 
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comparable since the XScale adopts the Arm instruction set. 

the three different platforms, the HP iPAQ, the 
Compaq iPAQ and a desktop machine. All clients were 
running on a wireless PocketPC. 
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Figure 3: Latency for basic services, 
CounterService and CounterFactoryService. 

 
Mobile OGSI.NET latency compares favorably to 

OGSI.NET latency.  This may appear surprising at 
first, given the large processing power disparity.  
However, for these basic operations, network latency 
dominates actual processing time.  Additionally, all 
response times (sub 4 seconds) allow reasonably 
interactive user experiences. 
 
5.2 Distributed Services Performance  

 
We measure the performance gain in response to 

increased hardware resources.  In these tests, we 
investigate two scenarios types.  In the first scenario 
type, the single HP iPAQ runs a traditional, non-
distributed prime searching application.  This case 
allows us to benchmark any performance gains or 
losses. 

In the second scenario type, the single PocketPC 
emulator searches for primes by distributing work to a 
collection of iPAQs.  We always use at least the one 
HP iPAQ and zero, one or two Compaq iPAQs.  Note 
that the emulator does no actual work besides initiating 
service requests and collecting results. 

The prime search occurs starting from 100,000 
includes as many as the next 400,000 integers.  This 
relatively tame search space provides enough 
distinction to evaluate performance behavior.  Figure 4 
graphs the behavior of the four scenarios. 
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Figure 4: Latency with various numbers of 
hardware resources.  

Response time does indeed improve with multiple 
devices.   Yet we also observe several interesting 
phenomena.  First, the distributed prime search does 
not scale well with increasing search space.  For 
example, at a search space of 400,000, the distributed 
one device prime search performs 50% slower than the 
non-distributed search.  Ideally, we would observe only 
a small constant overhead for 
PrimeWorkerService creation.     Similarly, the 
distributed three device prime search performs only 
48% faster than the non-distributed version.  Ideally, 
we would observe a three fold4 increase in 
performance.  However, the prime search service must 
transmit every prime found with increasingly larger 
search space requests.  This enormous quantity of data 
(logarithmic in the size of the search space) segments 
packets and causes increased network latency. 

Second, for small jobs (under 100,000 search 
space), the local non-distributed search far outperforms 
any distributed service.  Also, for very small jobs 
(under 10,000), fewer devices perform better than more 
devices.  The PrimeWorkerService creation overhead 
explain these results. 

Lastly, three distributed devices only slightly 
outperform two distributed devices in the largest search 
space (12% faster).  We expect this performance 
disparity to widen as the search space grows. 

Next, we investigate the average battery usage per 
device in the same four scenarios.  Figure 5 shows the 
resulting energy drain in the HP iPAQ.  The Compaq 
iPAQs had battery meter granularities too imprecise for 
this comparison.  Greater job distribution does indeed 
more evenly distribute battery usage than less job 
distribution.  The non distributed search appears to 
jump around the distributed one device search; we 

                                                           
4 Though not quite three fold since the Compaq iPAQs 
are not nearly as powerful as the HP iPAQ 

attribute this to battery meter calibration imprecision.  
Also, while more distributed devices may use less 
power per device, the total power usage for the entire 
job is greater.  This as expected since, as mentioned 
previously, the distributed searches spend a good deal 
of time just reporting back results. 
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Figure 5: Battery usage with various numbers of 
hardware resources 

6. Conclusion 
 

We have designed and implemented Mobile 
OGSI.NET, an OGSI Specification-conformant grid 
computing hosting environment.  To the best of our 
knowledge, we are the first to offer OGSI Grid Service 
hosting on small devices. 

Furthermore, we have developed specific 
solutions for the mobile, resource-constrained 
environment.  Our implementation occupies minimal 
footprint yet supports arbitrary application-specific 
Grid Services.  Mobile Services may migrate during 
deployment in response to local or global events.  
Distributed Services better utilize available resources 
and prolong the lifetime of individual devices. 

Mobile OGSI.NET makes initial advances 
towards multiple device collaboration.  At the same 
time, we have bridged two very disparate fields: we 
have taken high performance supercomputing designs 
and adapted these for personal mobile devices.  This 
fruitful investigation has yielded a hosting environment 
that can interoperate with the spectrum of computing 
resources. 

However, we see several ways to improve Mobile 
OGSI.NET. First, Mobile OGSI.NET does not 
currently implement Service Attributes, Grid 
Notifications, nor security mechanisms. 

Second, we need to loosen the restrictions of the 
GroupManagerService; it cannot currently handle the 
truly dynamic environment we anticipate mobile 



devices operating. This is a non-trivial investigation 
that will require a significant study. 

Third, Mobile OGSI.NET should port easily to 
other mobile and non-mobile embedded devices in the 
Windows CE operating system family.  This will allow 
Mobile OGSI.NET to coordinate not only PocketPCs, 
but varied other embedded devices as well.  In pursuit 
of this goal, we have built a minimal .NET Compact 
Framework Windows CE platform. 

Fourth, Bluetooth networking [23] integration 
may provide Mobile OGSI.NET with very desirable ad 
hoc capabilities.  Bluetooth's ad hoc properties allow a 
user's set of mobile devices to collaborate with minimal 
configuration.  In addition, mobile devices may use 
Bluetooth networking regardless of IP networking loss.  
Mobile devices frequently experience IP networking 
loss due to mobility and the non-universal coverage of 
IP access points.  Bluetooth integration may be 
particularly challenging because the OGSI 
Specification is built upon IP networking. 

Fifth, we have yet to investigate resource sharing 
among different users.  We may approach this from 
either a game theoretic formulation or policy 
perspective.  Both the grid computing and web services 
community are working towards developing nascent 
policy-based approaches. 

Lastly, we will look to apply our experiences with 
Mobile OGSI.NET in designing and implementing 
Mobile WSRF.NET. As devices become increasingly 
capable, we believe that they will both be consumers 
and producers of WSRF-compliant grids. 
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