
Received September 13, 2019, accepted October 19, 2019, date of publication October 31, 2019,
date of current version November 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950800

Mobile Peer-to-Peer Assisted Coded Streaming

PATRIK J. BRAUN 1,3, ÁDÁM BUDAI 1, JÁNOS LEVENDOVSZKY2, MÁRTON SIPOS 1,
PÉTER EKLER 1, AND FRANK H. P. FITZEK 3,4
1Department of Automation and Applied Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
2Department of Networked Systems and Services, Budapest University of Technology and Economics, 1111 Budapest, Hungary
3Deutsche Telekom Chair of Communication Networks, Technische Universität Dresden, 01069 Dresden, Germany
4Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany

Corresponding author: Patrik J. Braun (patrik.braun@aut.bme.hu)

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) as a part of Germany’s

Excellence Strategy - EXC 2050/1 through Cluster of Excellence—Centre for Tactile Internet with Human-in-the-Loop (CeTI) of

Technische Universität Dresden under Project 390696704, in part by the National Research, Development and Innovation Fund of Hungary

through the FIEK_16 funding scheme, under Project FIEK_16-1-2016-0007, in part by the BME-Artificial Intelligence FIKP of EMMI

under Grant BME FIKP-MI/SC, and in part by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences.

ABSTRACT Current video streaming services use a conventional, client-server network topology that puts a

heavy load on content servers. Previous work has shown that Peer-to-Peer (P2P) assisted streaming solutions

can potentially reduce this load. However, implementing P2P-assisted streaming poses several challenges in

modern networks. Users tend to stream videos on the go, using their mobile devices. This mobility makes

the network difficult to orchestrate. Furthermore, peers have to contribute their storage to the network, which

is challenging, since mobile devices have limited resources compared to desktop machines. In this paper,

we introduce an analytical framework for mobile P2P-assisted streaming to estimate the server load that we

define as theminimum required server upload rate. Using our framework, we evaluate four caching strategies:

infinite cache as a baseline, first in first out (FIFO), random, and Random Linear Network Coded (RLNC)

cache. We verify our analytical results with empirical data that was obtained by carrying out extensive

measurements on our working P2P system. Our results show that when employing FIFO, random, and RLNC

caching strategies, the server load converges to that of the infinite cache as the cache size increases. With

a limit of 5 P2P connections per peer, we show that using the random caching, peers can store 40% fewer

packets and still achieve the same benefit as with FIFO caching. When using the RLNC caching, it is enough

to store 50% fewer packets to achieve the same benefit.

INDEX TERMS Caching, analysis, network coding, peer-to-peer, system implementation, video streaming.

I. INTRODUCTION

Peer-to-Peer (P2P) assisted streaming systems are comprised

of a single server and multiple peers. The server is always

available, possesses all source packets, and shares them

with the peers. A peer downloads packets from the server

and shares them with other peers. In this paper, we focus

on mobile environments, where peers have limited storage

capacity, and the network setup is continuously changing.

Therefore, peers have minimum information about the net-

work (i.e., they only know the participants in the network and

not what packets they have).

Mobile P2P-assisted streaming has a high potential as

video streaming accounted for 60% of the mobile Inter-

net traffic in 2018 [1]. Content providers use extensive

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingjun Dai .

server parks, content delivery networks, and other smart

caching techniques at Internet Service Providers (ISPs)

to serve this huge amount of data [2]. Large Video on

Demand (VoD) vendors like BBC iPlayer [3] and Conviva [4]

report that peer-assistance has the potential to reduce this

server traffic to just 12%.

In addition to the advantages of mobile P2P-assisted

streaming, it also poses two significant challenges.

1) Caching on a mobile device is difficult, as it has limited

storage capacity compared to a desktop computer. 2) The

mobility of the peers makes the network highly dynamic

as users watch videos while traveling. Therefore, the set

of nearby available peers is continuously changing, which

makes connection planning challenging and centralized con-

nection orchestration unfeasible.

These challenges, characteristic of the mobile envi-

ronment, make it difficult for the content providers to

159332 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0002-1752-5394
https://orcid.org/0000-0003-0454-5158
https://orcid.org/0000-0003-4671-938X
https://orcid.org/0000-0002-2396-3606
https://orcid.org/0000-0001-8469-9573
https://orcid.org/0000-0003-2602-1937

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

FIGURE 1. WebPeer protocol running on more than 100 tablets.

approximate the required server upload rate of a given

P2P-assisted service. In order for content providers to adopt

P2P-assisted streaming solutions, a mathematical model is

needed to predict the behavior (mainly the required server

upload rate) of the designed system.

In this paper, we build on our previous work [5] and

further extend it by introducing an analytical framework

for mobile P2P-assisted streaming. Our proposed frame-

work aims to estimate the server load that we define as

the minimum required server upload rate. We consider four

different caching strategies, including infinite caching as a

baseline, FIFO caching, random caching, and Random Lin-

ear Network Coding (RLNC) encoded caching. Furthermore,

we investigate various input parameters such as network size,

cache size, and whether network coding is applied for our

analysis.

We also introduce two protocols for mobile P2P-assisted

streaming and Peer-to-Peer-Assisted Streaming Network

(PasNet), a system that implements those protocols [5]–[7].

We have demonstrated PasNet’s practical potential by run-

ning it on more than 100 tablets1 as shown in FIGURE 1.

PasNet was also presented at several trade shows, including

CES’17.We validate the accuracy of our model by comparing

its mean square error (MSE) to measurement results that we

obtained by running extensive measurements on PasNet .

The significance of our contributions with respect to

previous works can be summarized in four main aspects:

1) We propose an RLNC coded caching and incorporate it

into a P2P protocol. 2) We propose an analytical framework

to estimate the server load for mobile P2P-assisted stream-

ing. To the best of our knowledge, this is the first model

that incorporates RLNC coded caching and approximates

the server load in a mobile P2P-assisted streaming scenario.

3) We validate our framework with real-life measurement

results. Most papers in this field present either analytical or

practical results, but typically not both. 4) Our results show

that random caching outperforms FIFO caching in terms

of server load, while RLNC encoded caching reaches the

theoretical optimal (achievable with infinite caching), while

only caching 20% of the original content.

1Video about running PasNet on more than 100 tablets:
https://www.youtube.com/watch?v=LuGJwkqUyFI

The structure of this paper can be summarized as follows:

• Section II summarizes the related work in the field.

• Section III presents the problem definition of the paper.

• Section IV proposes an analytical framework for esti-

mating the server load.

• Section V presents our four caching strategies, including

uncoded and RLNC encoded strategies.

• Section VI introduces two protocols for mobile

P2P-assisted streaming: WebPeer protocol uses random

caching, while CodedWebPeer employs RLNC encoded

caching. Section VI also introduces PasNet , our stream-

ing system built on these protocols. To obtain repeatable

measurements for this paper, we set up a testbed for Pas-

Net using Docker containers and a controlled network

environment.

• Section VII evaluates our analytical framework by com-

paring its results with measurement results from our

testbed.

• Section VIII summarizes our findings and possible fur-

ther research in the field.

II. RELATED WORK

P2P-based content distribution is a widely researched field.

Proprietary P2P-based software data distribution is also

employed in current systems: as part of Windows Update,

in delivering Linux distributions through BitTorrent as well

as by several other companies such as Peer5 [8]. Work by

Chen et al. [9] constitutes a significant contribution to under-

standing user behavior in video streaming applications. They

examined PPLive, one of the most popular VoD systems

in China. Measurements done on a statistically significant

group of users suggest that the genre of the video is a key

factor when determining how far a user watches the content.

Chen et al. proposed modeling the time after which users

leave the system using a skew-normal distribution and basing

its parameter on the genre of the video.We have followed this

proposal and incorporated it into our model.

The main difference between a conventional and

P2P-assisted streaming service is that peers in a P2P-assisted

service need to cache data. For example, in the PPLive sys-

tem, each peer needs to dedicate approximately 1GB of stor-

age [10]. In a resource-limited environment, like smartphones

or browser-based applications, it is not always possible to

reserve this amount of storage for video streaming. Therefore,

a smart caching mechanism is required. Wu and Lui pre-

sented mathematical models and formulated an optimization

framework to understand the impact of movies’ popularities

on servers’ workload [11]. They proposed a passive and

active video replication strategy, where data is passively

deleted when the peers’ storage is full, while popular content

is actively pushed into the storage. They showed that the

algorithm is effective even in dynamic environments and

movies with different playback rates. Shehab et al. presented

a P2P video delivery system, where they used the free

downlink bandwidth at the peers to prefetch recommended

VOLUME 7, 2019 159333

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

videos according to their interests [12]. They showed through

empirical results that their solution could reduce the number

of requests to the media server while improving the initial

playout latency. Huang et al. modeled a mesh-based P2P

VoD system [13]. They focused on the problem of how peers

should serve requested packets. They proposed Playback-

Quality-Aware scheduling that prioritizes the request based

on the effects on playback quality at the peer’s connections.

They showed through simulations that their solution improves

the playback quality, but it heavily relies on the honesty of the

peers in reporting some key information, such as the urgent

property of a given video chunk. In our work, we avoid this

issue by proposing a solution where peers are not required to

report this key information.

Fujita investigated P2P-assisted delivery networks with

multiple trees as the underlying topology of the overlay net-

work [14]. He focused on 2-hop content delivery solutions

where the video stream is divided into α stripes, and there

are n peers in the network. He showed that if the peers

have uniform upload capacity, then n/α upload capacity is

sufficient on the server-side to deliver the content to all peers.

Karamushuk et al. showed that P2P-assisted VoD stream-

ing can achieve a reduction of 88% in server traffic [3],

based on measurement data collected using the BBC iPlayer.

Mavromoustakis et al. investigated P2P streaming in amobile

environment [15] with the focus on modeling the node move-

ment with Fractional Brownian Motion (FBM) and a Ran-

dom Waypoint Mobility (RWM) model. Their peers used

a common look-up table to request specific video streams

from other peers. They showed through simulations that

FBM gives better overall network performance. In this work,

we focus on mobile environments, where it is not possible to

maintain a peer connection for an extended period as the set of

available peers continuously changes. Furthermore, we also

incorporate RLNC to the protocol.

It has been previously shown that coding, particularly Ran-

dom Linear Network Coding (RLNC) improves the cache

hit rate [16] and thereby the overall system performance

in Content-Centric Networking (CCN). Furthermore, RLNC

has already proved its advantages in other P2P environ-

ments [17], [18], even in a limited resource environment,

on mobile devices [19].

Our work differs from previous works by focusing on

mobile P2P-assisted coded streaming, where the set of avail-

able peers is continuously changing, and peers only have

minimal information about other peers. Thus, preplanned

connection management is not possible. Furthermore,

we employ RLNC on the peers’ cache. We introduce

an analytical framework to investigate the server load

regarding employed caching mechanism at the peers.

We validate our calculation with extensive measurement

results.

III. PROBLEM STATEMENT

We focus on mobile P2P-assisted streaming. FIGURE 2

shows an overview of such a system.

FIGURE 2. System model overview.

We present a discrete-time model. The system contains Nk
peers at time k . Peers can continuously join and leave the

network, and there is a server that never leaves the network.

There is exactly one source file (e.g., a video file), that

consists of L number of packets. The server has all L packets.

The peers aim to gather all L packets in a streaming way

(i.e., downloading them in sequential order).

A. PEER LIFE CYCLE

The lifecycle of a peer can be characterized as follows:

1) Joining the network: Peers join the network randomly,

following a Poisson process.

2) Participating in the network: A newly joined peer does

not have any of the L packets. Throughout its life, a peer

aims to gather all packets in a streaming way. To do

so, it creates connections to other peers and exchanges

packets with them. Furthermore, it may also download

packets from the server. Peers consume the content

(i.e., watch the video) at a constant speed without skip-

ping data (i.e., they do not pause or seek in the video).

3) Leaving the network: Peers do not leave the network

because of poor quality of service, but they may get

bored with the content and leave early. Furthermore,

peers may stay in the network after they consumed

the content (e.g., the user keeps their browser open

after watching a video). Therefore, we also model

the peers leaving with a random process. According

to Chen et al. [9], the duration a peer spends in the

network depends on the type of the consumed content

and usually follows a skew-normal distribution [20].

We employ this solution to model the peer leaving

process.

B. PEER CONNECTIONS

Peers have an up-to-date list of peers in the network. The list

only indicates the existence of a peer and no other information

is provided (i.e., there is no record about which packets a peer

may have). A peer at time k may have connections to a subset

of the available Nk −1 peers. The active connections of peer i

at time slot k are denoted by vector c(i)(k) and bounded by C :

c(i)(k) ∈ {0, 1}Nt , i = 1, . . . ,Nk w(c(i)(k)) ≤ C, (1)

where w(c(i)(k)) gives the active connection count that peer

i has to other peers. Peers do not store any historical infor-

mation about their previous connections, and we assume

159334 VOLUME 7, 2019

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

connection creation and termination to be instantaneous.

A peer always has a connection to the server (independent

from the C number of peer connections). Connections are

created over a perfect channel, so there is no packet loss

in the network. Selecting the peers to connect to depends

on the employed connection management that we detail in

Section IV.

C. DOWNLOAD SCHEDULING

Peers have a download bandwidth πb (measured in packets)

that is equal among all peers. At every time slot k , peers can

download up-to πb number of packets. A peer can download

a packet from its connections or the server. Peers aim to

minimize the requests to the server: They try to download πb

number of packets from the network. If their P2P connection

can only provide q < πb number of unique packets, they

download the rest πb−q packets from the server.

To force the sequential fashion of the packet download,

we assume a w-sized download window (measured in pack-

ets) at the peers. Peers are constrained to schedule only those

packets for download that are in their download window.

If w = 1, peers download the packets in sequential order,

while if w > 1, peers have a chance to download some

packets in parallel to improve their throughput. We define

W (i)(k) as the set of packets in the window at peer i at time

slot k:

L = {1, . . . ,L}

L
(i)
down(k) = {l∈L | packet l was downloaded by time slot k}

π (i)
p (k) = max(L

(i)
down(k))

W
(i)(k) = {l ∈ L | π (i)

p (k) < l ≤ π (i)
p (k) + w}, (2)

where L is the set of all packets and π
(i)
p (k) is highest id of all

downloaded packet at peer i at time k . We also refer to π
(i)
p (k)

as the packet-based download progress for peer i at time k .

A peer may download any of the packets in its window

in an arbitrary order. The choice depends on the employed

download scheduling strategy that we detail in Section IV.

D. PEER CACHE

In a P2P system, peers need to store some data to be able

to contribute to the network. However, we focus on mobile

environments in this paper, where peers only have limited

resources. Therefore, we introduce an A-sized cache (mea-

sured in packets) to limit the amount of data stored at

the peers. A peer can offer any packet from its cache for

download.

We aim to minimize the network overhead at the peers.

Therefore, peers only download packets that they need. After

a packet download, the peer can choose to cache that packet,

based on the employed caching strategy. If the packet was not

cached at the time of its download, there is no further chance

to cache it later. We call this mechanism single-try cache.

We detail possible single-try caching strategies in Section V.

TABLE 1. Table of notations.

The possible packets in the cache and in the window at peer

i have a distinct set of packets without overlap. We define

A(i)(k) as the set of packets that can be included in the cache

(at most A) at peer i at time slot k:

A
(i)(k) ⊂ L

(i)
down(k), w(A(i)(k)) ≤ A, (3)

where w(A(i)(k)) is the number of elements in set A(i)(k).

E. PROBLEM DEFINITION

This paper aims to minimize the server load that we define

as the required minimum server upload rate. We define the

server load at time slot k:

r(k) =
downloaded packets from the server at time k

all downloaded packets at time k
. (4)

Using r(k), we calculate the average server load r :

r = lim
T→∞

T
∑

t=1

1

T
r(k) (5)

The notation of this paper is summarized in TABLE 1.

IV. ANALYSIS FRAMEWORK

In this section, we present an analytical framework to esti-

mate the average server load r of P2P-assisted streaming

services. Based on our previous work [5], we distinguish four

key parameters that influence the behavior of a P2P-assisted

streaming system:

• peer joining and leaving process,

• packet caching strategy,

• connection management,

• download scheduling.

We compose our framework in a modular way so that it can

take all four parameters into account. In this paper, we con-

centrate on different caching strategies, considering the other

three parameters as input. As peer-joining and -leaving pro-

cess, we assume the one that is described in Section III-A.

VOLUME 7, 2019 159335

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

FIGURE 3. Analysis overview.

Investigating different connection management and down-

load scheduling remains as future work. In this paper, we use

empirical results to model them in Section VII. FIGURE 3

gives an overview of our analysis.

In Section III, we presented a discrete-time model. To cal-

culate the average server load r for such a system, we would

need to evaluate the system at every time slot k . To simplify

our calculations, we assume a most likely peer configuration,

and we carry out our analysis on this most likely configu-

ration. We define this most likely configuration by using a

peerage probability density function (p.d.f.) for a fixed num-

ber of peers N . We use our measurement results to validate

this assumption in Section VII. Our model has the following

four parts:

1) We calculate the peer density as a function of their

packet-based progress. With this method, we obtain the

ratio of peers (compared to all peers in the network) that

have the same packet-based download progress.

2) We calculate the cache miss ratio, assuming the peer

has a single P2P connection.

3) We estimate the cachemiss ratio if the peer hasmultiple

P2P connections.

4) We use the obtained results to calculate the server load.

A. CALCULATING PACKET-BASED PEER DENSITY

One of the most important aspects of P2P systems is the peers

joining and leaving. For streaming, this characteristic mostly

depends on the content (i.e., how popular or interesting is the

content). Using the Poisson-based peer joining and a skew

normal-based leaving process, we calculate the ratio of peers

with the same packet-based download progress in relation to

all peers (i.e., the number of peers out of N peers that have

the same packet-based download progress).We call the vector

that contains this ratio for all possible progress as packet-

based peer density.

To obtain the packet-based peer density ̺l for packet l,

first we calculate the peer age p.d.f. falive(t) that gives the peer

density based on peer age (the time a peer spends in the net-

work). Second, we use a transform function9(t) to transform

from peerage to peer progress to obtain the peer density based

on a download progress scale. Finally, we discretize this into

packets-based download progress by partitioning the progress

into intervals (e.g., if a peer has progress between 0.1 and 0.2,

its packet-based download progress is 2).

1) CALCULATING PEER AGE P.D.F.

Let λ be the intensity of the Poisson process that describes

peer joining behavior. Furthermore, let peers leave after a ran-

domly chosen time generated by a skew-normal distribution.

The proportion of peers in an arbitrary time interval (1t) can

be calculated in the following way: If the inter-arrival time is

short between peers (the value of λ is high), an interval can

be constructed in such a way that the survival probability of

peers in this interval is approximately equal and the number

of peers is significantly larger than 1. We can calculate the

mean number of peers in the 1t interval as n01t , where

n0 = λ is the mean density of peers for the Poisson joining

process. The probability that a peer survives for at least t time

equals 1 − Fskew(t), where Fskew(t) is the c.d.f. of the skew

normal distribution. In the 1t interval, the number of peers

at t follows a binomial distribution. Therefore, the expected

number of peers in this small interval is n01t(1 − Fskew(t)).

The peer age p.d.f. falive(t) represents the ratio of peers in the

small 1t interval compared to the whole system and can be

expressed as follows:

falive(t)1t =
n01t(1 − Fskew(t))

∫ ∞

0 n0(1 − Fskew(t))dt

=
1t(1 − Fskew(t))

∫ ∞

0 (1 − Fskew(t))dt
, t ≥ 0. (6)

2) CREATING THE TRANSFORM FUNCTION

A transformation function 9 : πt → πδ can be constructed,

where πt, πδ ∈ [0, 1] and πt is the duration elapsed since the

peer joined the network and πδ is the download progress of

the peer. We consider this function as an input to our model,

since the steepness of 9 represents download speed and

its characteristic reflects the properties of the implemented

download scheduler (e.g., if peers maintain a constant down-

load speed, its steepness is constant). 9 has two constraints:

(i) it should be strictly monotonically increasing until peers

finish downloading and (ii) 0 ≤ d9
dπt
L1L ≤ πb. The former

means that a peer can only increase its progress, not decrease

it, while the latter limits the download speed not to exceed the

available bandwidth at peers. Furthermore, in our analysis,

we assume that peers download faster than consuming a given

content. Therefore 9(πt) ≥ πt. If we assume that there is no

content buffering on the peers side, we can estimate 9 the

following way:

9(πt) = πt, (7)

otherwise:

9(πt) = min(πt + B, 1), (8)

where B is size of the buffer.

159336 VOLUME 7, 2019

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

3) CALCULATING PACKET-BASED PEER DENSITY

We can obtain progress-based density, fprg(n) by using the

inverse 9 function:

fprg(n) = falive(9
−1(n)). (9)

Packet-based peer density is given by the following equation:

̺l =

∫ l+1
L+1

l
L+1

fprg(n)dt, l = 0, . . . ,L − 1. (10)

The packet-based peer density for the peers who have finished

downloading is:

̺L =

∫ ∞

nready

fprg(n)dn, (11)

where nready = min{9−1(n) = 1.0} is the time when a peer

completed downloading the movie.

B. CHARACTERIZING SINGLE CONNECTION DOWNLOAD

To simplify our analysis, we further assume that the indi-

vidual connections of a peer are independent. We wish to

calculate the cache miss ratio of peer i with π
(i)
p if it only has

a single P2P connection. Two factors influence this: 1) Peers

have limited cache size A and drop packets according to their

caching strategy. 2) Packets are downloaded in an ordered,

streaming manner, meaning that a peer can only download

a packet from its download window of size w. We use the

notation E(δnm) for the expected number of packets obtained

by peer i with π
(i)
p = n from a peer j with π

(j)
p = m, assuming

that they are connected. In Section V, we express E(δnm) with

regards to different caching strategies.

We express the cache miss ratio for peer i with π
(i)
p = n as

follows:

s(n) =

L
∑

m=0,m6=n

(1 −
E(δnm)

min{w,L − n}
)̺nwp(n,m), (12)

where wp(n,m) is the probability that a peer i with π
(i)
p =

n has an active connection to a peer with packet-based

download progress m. Connection management has a sig-

nificant influence on wp(n,m), the investigation of different

approaches is not part of this paper and remains as future

work. During the numerical evaluation of our analysis in

Section VII, we estimate wp(n,m) with measurement-based

results.

C. CHARACTERIZING MULTIPLE

CONNECTION DOWNLOAD

Since we consider the establishment of connections as inde-

pendent events, the cache miss ratio for peer i with π
(i)
p = n

can be calculated as follows:

S(n) =

N
∑

j=0

(1 − (1 − s(n))j)wc(j), (13)

where wc(j) is the probability that a peer has j connections.

Like in the case of wp(n,m), wc(j) is also influenced by

the used connection management method. Therefore we also

estimate wc(j) with measurement-based results during the

numerical evaluation of our analysis.

D. ESTIMATING SERVER LOAD

The average server load that the server must provide to a peer

can be estimated in the following way:

r =
1

L

L
∑

n=0

(S(n))̺n. (14)

r gives the ratio between the necessary server upload rate and

the average download rate per peer. The following formula

can be used to obtain the minimum required server upload

bandwidth:

Ur = rNdπb, (15)

where Nd is the number of peers that are actively

downloading:

Nd = N

L−1
∑

n=0

̺n. (16)

E. QUALITY OF EXPERIENCE (QOE) ESTIMATION

Our framework also has the potential to be extended with the

purpose of investigating the Quality of Experience (QoE) at

the peers. It can estimate the probability that a peer does not

receive a requested packet in time, leading to interruptions

in the video stream and thus poor QoE. This is achieved by

calculating the probability that the server cannot respond to a

request due to being overloaded. Since peers only download

from the server if they cannot collect a packet from the net-

work, any time the server is overloaded, the QoE is affected.

Let us assume that the server can serve Cs number of packets

(Cs peers parallel with one packet request). Furthermore,

let y ∈ {0, 1}N binary vector represent a given download

configuration:

yi =

{

1 if peer i downloads from the server

0 if peer i downloads from the network.
(17)

Then, the probability of the number of requests exceeding

Cs server capacity is the following:

P(w(y)>Cs) =
∑

y:w(y)>Cs

N
∏

i=1

S(π (i)
p)yi (1−S(π (i)

p))1−yi , (18)

where w(y) is the number of 1-s in vector y.

This method is a good indicator of the expected QoE.

However, it does not incorporate all aspects that lead to

possible stream interruptions. Amore thorough model should

investigate how peers buffer the video and how the server

chooses which request to the server when overloaded. There-

fore, a detailed characterization of the QoE in a mobile

P2P-assisted system is left as future work.

VOLUME 7, 2019 159337

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

V. SINGLE-TRY CACHING STRATEGIES

In a single-try cache, after a packet is downloaded, a peer tries

to cache that packet. If the packet was not cached at the time

of its download, there is no further chance to cache it later.

Therefore, conventional caching, like Least Recently Used

(LRU) [21], cannot be applied to our model.

In this section, we elaborate on four single-try caching

strategies: infinite caching, FIFO caching, random caching,

and RLNC encoded caching.

A. INFINITE CACHING

Wepropose an infinite caching approach to serve as a baseline

in our analysis. The infinite caching is capable of caching all

downloaded packets.

The expected number of packets obtained by peer i with

π
(i)
p = n from a peer j with π

(j)
p = m, m ≥ n is:

E(δnm) = min{w,m− n} (19)

B. FIFO CACHING

A simple caching strategy is to store the last A packets. In this

case, the expected number of packets obtained by peer i with

π
(i)
p = n from a peer j with π

(j)
p = m, m ≥ n is:

w
(n)
start = n

w
(n)
end = min{n+ w,L}

A
(m)
start = max{0,m− A}

A
(m)
end = m

E(δnm) = max{0,min{A
(m)
end − w

(n)
start,w

(n)
end − A

(m)
start}}, (20)

where A
(m)
start and A

(m)
end represented the start end the end of the

cache at peer j and w
(n)
start and w

(n)
end represents the start and the

end of the window of peer i.

Note that this approach may provide a close-to-optimal

solution in a more general P2P-assisted streaming scenario,

where peer i with π
(i)
p = n would be able to find a peer j with

π
(j)
p = m,m > n,m−n < A and stick to that peer throughout

their download. In that scenario, peers would be able to create

a series of peers where each peers downloads packets from the

peer in front of it, while only the first peer would download

from the server, as it was shown by Do et al. [22].

C. RANDOM CACHING

We also propose a random caching strategy that tries to cache

packets uniformly across the downloaded data. We achieve

this by using the following algorithm: In this caching strategy,

peers keep every downloaded packet with the same probabil-

ity. If the peer progress is π
(i)
p ≤ A, the peer i keeps all packets

in its cache. The stored packets on peer i can be represented

with the following vector v ∈ {0, 1}L , where each element is

the probability that peer i has that particular packet:

π (i)
p = A :

vA =
[

1 1 . . . 1 0 0 . . . 0
]

. (21)

Every time peer i exceeds its available cache size, it has

to delete exactly one packet. If the peer progress is π
(i)
p =

A+1, the peer i discards one packet randomly with a uniform

distribution, creating the following vector:

π (i)
p = A+ 1 :

vA+1 =

[

A

π
(i)
p

A

π
(i)
p

. . .
A

π
(i)
p

0 0 . . . 0

]

. (22)

At every step π
(i)
p > A + 1, peer i deletes an old packet

with probability 1

π
(i)
p

and the newly downloaded packet with

probability
π
(i)
p −A

π
(i)
p

:

step π (i)
p ,

v
π
(i)
p

=

[

A

π
(i)
p

A

π
(i)
p

. . .
A

π
(i)
p

0 0 . . . 0

]

step π (i)
p + 1,

v
π
(i)
p +1

=

[

A

π
(i)
p

(1 −
1

π
(i)
p

) . . .
A

π
(i)
p

(1 −
1

π
(i)
p

)

1(1 −
π
(i)
p − A

π
(i)
p

) 0 . . . 0

]

=

[

A

π
(i)
p + 1

. . .
A

π
(i)
p + 1

A

π
(i)
p + 1

0 . . . 0

]

.

(23)

Using this algorithm, peer i will store packet l with

max(A

π
(i)
p

, 1) probability, where l <= π
(i)
p .

The probability that peer i with π
(i)
p = n obtains q number

of packets from a peer j with π
(j)
p = m, π

(j)
p > π

(i)
p (assuming

that they are connected) is given as:

Pnm(q) =

(

min{w,m−n}
q

)(

max{n,m−w}
A−q

)

(

m
A

) . (24)

Thus, the expected number of packets obtained by peer i

with π
(i)
p = n from a peer j with π

(j)
p = m is:

E(δnm) =

min{A,w,m−n}
∑

q=0

Pnm(q)q. (25)

D. RLNC CACHING

As an alternative for packet-level caching and data handling,

we apply network coding on the data. First, we group the

original L packets into g-sized groups, so-called genera-

tions. There are altogether G = ⌈L/g⌉ generations. Then,

we use Random Linear Network Coding (RLNC) on these

generations: each generation goes to an RLNC coder that

creates encoded packets, by creating linear combinations of

those packets with a randomly chosen coefficient. An RLNC

coder has a rank that is a measure of the number of linearly

independent packets it contains. Each coder starts empty, with

rank 0. RLNC coders also support recoding, i.e., creating new

159338 VOLUME 7, 2019

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

linear combinations from already collected packets, without

the need of having a full rank coder.

As peers work on a generation-level instead of a packet-

level, the RLNC caching strategy works the following way:

to keep our calculation simple, we still assume a uniformly

distributed cache, but we reduce its variance with the follow-

ing modification: packets are deleted in such a way, that each

generation at peer i contains at least ⌊A/π
(i)
g ⌋ packets, where

π
(i)
g is the generation-based progress of peer i. Peer deletes

packets x from a generation by creating g−x recoded packets

and keeping those recoded packets. This technique ensures

that after deletion, each peer has a unique set of encoded

packets. Then, the otherA−⌊A/π
(i)
g ⌋ packets are selected uni-

formly at random to keep with the method presented above,

in such a way that each generation contains at most ⌈A/π
(i)
g ⌉

packets. Intuitively, this strategy helps peers to find packets in

the network with higher probability, thus lowering cache miss

ratio compared to random caching strategy. Furthermore,

since peers store encoded data, they also request packets

from a given generation, instead of requesting individual

packets. Peer i can request any generation from its window.

The generation-based window has altogether w′ =
⌊

w
g

⌋

generations. The following generations are in the window of

peer i: [π
(i)
g + 1, π

(i)
g + 1 + w′], where π

(i)
g = ⌊π

(i)
p /g⌋ is

generation-based progress of peer i.

Because of the modification presented above, our analysis

should be updated to work on a generation-based instead of a

packet-based scale.We use ‘‘′’’ tomark the updated notations:

First ̺′, the generation-based peer density should be

calculated:

̺′
l =

∫ l+1
G+1

l
G+1

fprg(n) dn, l = 0, . . . ,G− 1

̺′
G =

∫ ∞

nready

fprg(n) dn, (26)

where nready = min{9−1(n) = 1.0} is the time when a peer

completed downloading the movie.

Second, all generations in the cache of peer j, π
(j)
g = m′

contain gm
′

min = min
{⌊

A
m′

⌋

, g
}

packets, and some of them

gm
′

min + 1 packets. Therefore, peer j can serve at least gm
′

min

packets per generation to peer i, and gm
′

min + 1 packets per

generation with some probability, assuming π
(j)
g > π

(i)
g .

Using this, we express P′
n′m′ , the probability that a peer jwith

π
(j)
g = m′ can serve a packet from q number of generations

with rank= gn
′

min+1 to a peer iwith π
(i)
g = n′ in the following

way:

P′
n′m′ (q) =

(

min{w′,m′−n′}
q

)(

max{n′,m′−w′}
Am−q

)

(

m′

Am

)
, (27)

where Am = A mod m′ and has an expected value of:

E(P′
n′m′) =

min{Am,w′,m′−n′}
∑

q=0

P′
n′m′ (q)q. (28)

Third, using the new E(P′
n′m′), the expected number of

packets that a peer j with π
(j)
g = m′ can provide to peer i

with π
(i)
g = n′ can be obtained:

E
′(δn′m′) =















min

{

A

n′
,w

}

if g ≥ w

min{w′,m′ − n′}gm
′

min+

E(P′
n′m′) otherwise.

(29)

Building on the new P′
n′m′ (q) and E

′(δn′m′), we can

express s′(n′), the proportion of data that has to come from

the server in case of a peer with a single connection:

s′(n′) =

G
∑

m′=0
m′ 6=n′

(

1 −
E

′(δn′m′)

min {w,L − n′g}

)

̺′
n′w

′
p(n

′,m′), (30)

where w′
p(n

′,m′) gives the probability of a peer i with π
(i)
g =

n′ has a connection to a peer with generation-based download

progress m′. Like in the case of wp(n,m), we estimate the

w′
p(n

′,m′) with measurement-based results during the numer-

ical evaluation of our analysis in Section VII.

Since peers store unique recoded packets in their RLNC

caching, if two peers can serve x number of packets, then

it is highly likely that 2x useful packets can be gathered.

This is in contrast to the random caching, where the available

packets have a high probability of overlapping, so only ≤ 2x

packets are useful (at this point we assume, that the finite field

used for network coding is large enough for the probability of

generating linearly dependent packets to be negligible [23]).

Using this, S′(n′) can be expressed:

S′(n′) =

N
∑

m′=0

(1 − min{(1 − s′(n′))m′, 1})w′
c(m

′). (31)

wherew′
c(j) gives the probability that peer iwith π

(i)
g = n′ has

j connections. Like in the case of wc(n
′,m′), we estimate the

w′
c(j) with measurement-based results during the numerical

evaluation.

Finally, we can apply S′(n′) to obtain U ′
r :

r ′ =
1

G

G
∑

n′=0

(S′(n′)̺′
n′)

U ′
r = r ′N ′

dπb

N ′
d = N

G−1
∑

n′=0

̺′
n′ , (32)

The formula shows that by increasing the generation size g,

the expected number of packets that a peer can serve E′(δn′m′)

also increases, thereby decreasing the required server upload

rate U ′
r .

One should also note, that if

⌊

A

π
(i)
g

⌋

≥ w, i.e. each cached

generation contains more packets than the size of the down-

load window, then a peer with π
(i)
g will be able to serve all

VOLUME 7, 2019 159339

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

FIGURE 4. System overview.

requested packets for a given download window. Further-

more, if g = 1 the U ′
r in the case of RLNC encoded caching

equals to Ur with random caching. However, increasing g

increases the computational overhead and decoding delay,

which should be kept low.

VI. TECHNICAL DESCRIPTION OF THE P2P

PROTOCOLS AND OUR SYSTEM

We have designed a system, Peer-to-Peer-Assisted Streaming

Network (PasNet) to validate our model’s accuracy. Pas-

Net supports two protocols for P2P-assisted browser-based

streaming: 1) WebPeer implements the random caching for

uncoded data distribution that is presented in Section V-C.

2) CodedWebPeer implements RLNC caching for RLNC

encoded data distribution that is presented in Section V-D.

We chose a web environment for our system to run on mul-

tiple platforms, including mobile phones. PasNet and both

protocols are designed to fulfill the requirements of a mobile

P2P-assisted streaming system, as presented in Section III

and IV. Building onPasNet , we have created a testbed tomea-

sure key network characteristics such as server download and

upload rate and the streaming progress of peers. FIGURE 4

shows an overview of PasNet .

A. THE WEBPEER AND CODEDWEBPEER PROTOCOLS

Both WebPeer and CodedWebPeer are BitTorrent-like [24]

communication protocols, designed specifically for mobile

P2P-assisted streaming over Web Real-Time Communica-

tion (WebRTC). TheWebPeer protocol defines the following

messages:

1) Availability vector : Similarly to BitTorrent’s bitfield,

it represents the packets in a peer’s cache.

2) Have: Signals if a new packet is available in the peer’s

cache.

3) Lost: Signals if a packet was deleted from the peer’s

cache.

4) Request: Peer requests a given packet from its connec-

tion.

5) Cancel: Cancels a request.

6) Data: Contains the requested data packet.

All messages contain a packet ID. Once a connection

has been made between two peers, they exchange their

availability vector. Later, they only use have and lost mes-

sages to indicate the changes of their availability vectors.

CodedWebPeer uses the same messages as WebPeer with

some modifications. The protocol handles generation indices

rather than packet indices. Therefore, each havemessage con-

tains a generation index and the rank of the given coder. The

lost message is not supported, since sending a have message

with the decreased rank serves this purpose. Request and

cancel messages contain a value beside the generation index

that specifies the number of requested or canceled packets

from a given generation.

B. OUR SYSTEM: PASNET

PasNet consists of a server and several peers. Peers use

WebRTC to create P2P connections and either WebPeer or

CodedWebPeer to exchange data. The purpose of the server

is twofold: (i) it serves as a content distributor and (ii) acts

as a signaling service for WebRTC. The signaling service

is an intermediary when creating P2P connections and also

maintains a list of online peers. To make the system as dis-

tributed as possible with minimal central control, the server

does not keep track of the amount of data stored on individual

peers and does not provide any system–level information,

besides listing online peers. The system has been developed

in Typescript and compiled to Javascript. Peers run in the

browser, while on the server-side, Node.js is used. To per-

form network coding calculations in an efficient manner,

we employed KODO [25], an open-source C++ library that

supports different finite fields, including GF (2), GF
(

28
)

and

GF
(

216
)

. We used Emscripten2 to compile the C++ source

to a single JavaScript file.

1) CONNECTION MANAGEMENT

Peers are limited to C active connections. Each connection

is bidirectional, behaving in the same way, regardless of the

initiator. Peers accept all incoming connection. Peers aim to

keep their active connection count betweenC−1 andC using

Algorithm 1.

If a peer has less than C connections, it tries to establish

a new one. It chooses a new partner randomly with an equal

chance from the list of available peers. If a peer has more than

C − 1 connections, it closes one of the slowest connection,

until it has C − 1 connections. New connections take a

few seconds to establish and must not be terminated during

this time to give them a chance to speed up. These rules

ensure that connections are continuously rotated (without

thrashing), creating the possibility of finding peers with the

highest upload rates. After a peer has finished downloading,

it may stay in the network for some time to finish watch-

ing the content. During this phase, it does not initiate new

connections or close existing ones but accepts new incoming

connections.

2Emscripten: https://emscripten.org/

159340 VOLUME 7, 2019

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

Algorithm 1 Connection Management Cycle of Peer i

function ConnectionLifeCycle()

while true do

while activeConnectionCount < C do

CREATENEWCONNECTION()

end while

while activeConnectionCount > C − 1 do

REMOVEACONNECTION()

end while

end while

end function

function REMOVEACONNECTION()

SORTBYDOWNLOADSPEEDASC(activeConnections)

for each connection ∈ activeConnections do

if connection.isNew == False then

TERMINATE(connection)

return

end if

end for

end function

2) DOWNLOAD SCHEDULING

As described in Section III, peers maintain a w-sized window

to schedule packets downloads from. The overall aim of the

download scheduler is to maximize download speed while

keeping the number of packets that are requested from the

server to a minimum. It only schedules a packet to be down-

loaded from the server if none of the connected peers have it.

Furthermore, it distributes request across the connected peers

based on their offered rate. The number of packets scheduled

for download from a peer is linearly proportional to its offered

rate. It has been previously shown in [26] that this kind of

connection parallelization helps improve throughput while

avoiding congestion.

3) RLNC LINEARLY DEPENDENT PACKET DETECTION

In the case of network coding, peers only know the rank of

RLNC coders at their connected peers, but not whether they

contain any useful packets or not. E.g., peer i and peer j both

have 5 out of 10 packets in encoder n′, they don’t know if

those five packets are linearly independent or not until they

download them. Our current implementation only supports

linearly dependent packet detection, not avoidance. A peer

can determine if their partner has useful packets in a given

generation only after it has received a packet from that given

generation. Peers only send recoded packets, so if a peer

receives a linearly dependent packet, it is highly likely that

the following packets from the same generation will also be

linearly dependent3. If peer i receives two linearly dependent

packets from generation n′ from peer j while rank(n′) at j is

constant, peer iwill freeze that generation and will not request

3RLNC may also generate linearly dependent packets by unfortunately
chosen coefficients. The probability of this happening decreases for larger
the finite fields.

any further packets from j. If rank(n′) increases at j, peer iwill

unfreeze the generation and try to request further packets.

C. TESTBED

We have created a testbed for measuring the capabilities of

PasNet that emulates peer behavior. Peers join the network

randomly following a Poisson process and leaves the net-

work following a skew-normal distribution, the parameter of

which is influenced mainly by the content type. Our emulated

peers also leave the network according to this. Our testbed

can measure key network characteristics such as the average

online peer count, peer and server download and upload rate,

streaming progress, and connection count per peer. It can also

be used to evaluate the distribution of these metrics based on

the peers’ age, among other things. Furthermore, it also tracks

the data cached on each peer on a per-packet level.

Our testbed can represent two scenarios:

• peers download from both the server and the P2P net-

work using theWebPeer protocol,

• peers download from the server and the P2P network

using the CodedWebPeer protocol.

Since this paper focuses on approximating the server load

in a PasNet-like system, our testbed can measure this param-

eter as well. We collect two types of data for this purpose:

First, peers track cache hit ratio: the ratio of packets that peers

can potentially download from the P2P network (i.e., their

connections posses those packets). We use this to calculate

the cache miss ratio (i.e., the ratio of packets that peer’s con-

nections do not possess). Based on this, we calculate a metric

that we refer to as the achievable server load. Second, peers

also gather information about the ratio of packets downloaded

from the server. We use that to calculate another metric that

we refer to as the effective server load. The effective server

load is always greater or equal to the achievable server load.

We use the achievable server load to validate our model. The

difference between the two metrics may stem from several

sources; we have tried to identify the most important ones.

Errors are unavoidable in the estimations that peers make

based on historical data about the available bandwidth of their

connections. This estimation is used to schedule packets for

download andmay lead to suboptimal results. If a peer leaves,

it takes time to propagate this information in the network

depending on the keep-alive timeout of WebRTC. This delay

may also cause scheduling issues as peers request unavailable

packets. Kernel-level packet queuing or at the bandwidth

shaper of the testbed can cause packet delay, leading to a

race condition. Furthermore, peers use the same channel for

data transfer and the exchange of control messages (like have,

cancel,etc.). Thus, data transfer may use up significant band-

width and cause peers to have outdated information about

their connections.

We run our testbed on a headless Ubuntu server using

Docker4 and FireQOS5 to create a realistic network setup

4Docker url: https://www.docker.com/
5FireQOS url: https://firehol.org/

VOLUME 7, 2019 159341

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

with real bandwidth constraints and packet drops. Each peer

and the server runs in a separate Docker container. Google

Chrome is used to run the peers in headless mode.

VII. EVALUATION RESULTS

In this section, we present a numerical evaluation for our

analysis and compare it to measurements from our testbed.

As presented in Section IV, our formulas use connection

management and download scheduling as an input parameter.

To have a fair comparison between the analytical and the

empirical results and to better reflect a real-life P2P sys-

tem, we derive those input from our measurement results:

wp(n,m), the probability that peer i with π
(i)
p = n has an

active connection to peer j with π
(j)
p = m is specified as

follows:

wp(n,m) =



























































































































+0.00003
n

L
+0.0572 if 0.0 ≤ m ≤ 0.1

−0.00005
n

L
+0.0875 if 0.1 < m ≤ 0.2

−0.00013
n

L
+0.1213 if 0.2 < m ≤ 0.3

−0.00012
n

L
+0.1213 if 0.3 < m ≤ 0.4

−0.00014
n

L
+0.1376 if 0.4 < m ≤ 0.5

−0.00007
n

L
+0.0949 if 0.5 < m ≤ 0.6

−0.00009
n

L
+0.1144 if 0.6 < m ≤ 0.7

−0.00009
n

L
+0.1017 if 0.7 < m ≤ 0.8

−0.00013
n

L
+0.1546 if 0.8 < m ≤ 0.9

+0.00005
n

L
+0.1147 if 0.9 < m ≤ 1.0.

(33)

wc(j), the probability that a peer has j connections is specified

as follows:

wc(j) =















































0.02 if j = 3

0.16 if j = 4

0.48 if j = 5

0.25 if j = 6

0.07 if j = 7

0.02 if j = 8

0, otherwise.

(34)

Furthermore, FIGURE 5 presents a measured transforma-

tion function, 9(t) (showing its 5,25,50,95 percentile).

50 percentile of the peers finished downloading the content

after 120s and some stayed in the network to contribute for an

additional 250s. In our calculations, we use the 50 percentile

of the measured function as 9(t). We obtain the numerical

results in this section by using L = 633 packets, N = 18

peers that could create up to C = 5 P2P connections.

The rest of this section follows the structure of Section IV,

and we evaluate each step separately.

FIGURE 5. Empirical transformation function, 9(t).

FIGURE 6. Peer count probability density function falive(t).

A. PACKET-BASED PEER DENSITY

We used a Poisson process to model peer arrival Peers leave

after a randomly chosen time generated by a skew-normal

distribution, as described in Section IV. To obtain the

packet-based peer density, first we calculate peer age p.d.f.

that is presented in FIGURE 6. Our computed empirical peer

age p.d.f. distribution shows similar trends with 0.149 mean

square error (MSE). The figure shows that most of the peers

stayed in the network for 250s, which is about twice the

duration of downloading the content. After 250s, peers started

leaving the network, and the last one left after about 370s.

Using the calculated peer age p.d.f. and the transformation

function 9(t) from FIGURE 5, we get the packet-based peer

density that we use in our subsequent calculations. Note

that, because of the shape of the peerage p.d.f., there are

more young peers than old peers. This behavior leads to first

packets having a higher probability to be found in the network

than the last packets.

B. SINGLE-CONNECTION DOWNLOAD

In FIGURE 7, we present results for downloading with a

single peer connection with cache sizeA = 0.125 L. We com-

pare the modeled infinite, FIFO, and random caching strate-

gies to WebPeer (random caching implementation)-based

159342 VOLUME 7, 2019

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

FIGURE 7. Comparing measured and analytical results of cache miss ratio
with a single P2P connection s(n). Cache size A = 0.135L, peers N = 18
and packets L = 631.

measurement results. The line depicting the estimation of the

random caching analysis is within the 25 and 75 percentile

and close to the 50 percentile of the WebPeer, and it has MSE

of 0.01216. The figure shows that the cache miss ratio with

random caching is about 0.78 for the first few packets. This

ratio reaches 0.9 when a peer aims to download the second

half of the packets. The slight P2P performance increase at

the beginning of the download stems from the fact that more

peers have downloaded the beginning than the end of the file.

We also compared our random caching analysis to WebPeer

measurement results of cache sizes A ∈ {1, 0.75, 0.5, 0.25}L.

Our solution provides a good approximation for all cases with

≤ 0.045 MSE. FIGURE 7 also shows that FIFO caching

performs poorly, when a peer downloads packets with id

< L − A. The reason is that there are a significant amount of

peers that have already finished downloading the content and

are waiting in the network. These peers keep the lastA packets

in their cache. Once a peer starts downloading packets with

id ≥ L − A, FIFO caching performs as the infinite caching

that gives the best theoretical performance.

C. MULTI-CONNECTION DOWNLOAD

FIGURE 8 presents the ratio S(n) of packets of peer i with

π
(i)
p needs to download from the server if it has multiple P2P

connections.

Random caching shows similar trends to the measured

WebPeer. We also compared them with different cache sizes

A ∈ {1, 0.75, 0.5, 0.25}L. They show high correlation with

≤ 0.089 MSE. As seen in the figure, S(n) for the random

caching has a similar trend to s(n). Using multiple connec-

tions amplifies the effect of the first packets being more likely

to be found in the network than the last packets. Therefore the

young peers who download the beginning of the content are

likely to use less server resources.

FIGURE 8. Comparing measured and analytical results of cache miss ratio
with multiple P2P connections S(n). Cache size A = 0.125L, peers N = 18
and packets L = 633.

FIGURE 9. Achievable server load r compared to empirical WebPeer
achievable server rate with peers N = 18 and packets L = 633.

Using FIFO caching strategy with multiple P2P connec-

tions also improves performance, but the random caching

strategy has a more significant increase. FIFO caching

reaches the performance of infinite caching with a single

connection only when a peer downloads packets with id

< L − A. Using infinite caching with multiple connections,

P2P connections can serve all requested packets. Therefore,

peers do need to download any packets from the server.

D. SERVER UPLOAD RATE WITH RANDOM CACHE

FIGURE 9 compares our empirical r from WebPeer with

our random caching analysis. They show similar trends.

As the cache size shrinks, the error of our analysis increases

slightly, never exceeding 0.05 (out of a maximum of 1.0),

corresponding to an error between the analysis of r and

measured WebPeer’s r of less than 5%. Furthermore, results

show that if peers cache only 0.125L packets, the server

needs to contribute half of the data. In contrast to that,

VOLUME 7, 2019 159343

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

FIGURE 10. Achievable server load r ′ compared to empirical
CodedWebPeer achievable server load with peers N = 18, generation size
g = 8 and packets L = 633.

FIGURE 11. Comparing server load for all four caching strategies with
peers N = 18, generation size g = 8 and packets L = 633.

havingA ≥ 0.75L, the server load approaches 0. This is much

earlier than random or FIFO caching.

E. APPLYING RANDOM LINEAR NETWORK CODING

We also calculated the server load r ′ with RLNC caching.

FIGURE 10 compares our empirical CodedWebPeer results

r ′ with our RLNC caching analysis. The figure shows that

applying network coding improves network performance sig-

nificantly as peers need to download fewer packets from the

server. Using cache size A = 0.125L, only 40% of the data

comes from the server, in contrast to 50% without network

coding. Furthermore, having A ≥ 0.3L, the server load

already approaches 0.

F. SERVER LOAD

FIGURE 11 compares the analytical result for all four

caching strategies. FIFO caching performs the worst as

A ≥ 0.7L is required for it to reach≤ 0.05 server load. In con-

trast to this, random caching reaches it with A ≥ 0.5L, while

RLNC caching with A ≥ 0.25L. Using the infinite caching,

peers never need to download a packet from the server.

FIGURE 12. Calculated achievable server load r and r ′ compared to
empirical effective server load with peers N = 18, generation size g = 8
and packets L = 633.

G. EFFECTIVE SERVER LOAD

As described in Section VI-C, our testbed can measure effec-

tive and achievable server load. In our analysis, we used

the achievable server load to give a theoretical lower bound.

We now compare r and r ′ to the measured effective server

load in FIGURE 12.

The figure shows that PasNet behaves sub-optimally

compared to the estimated achievable server load, because

of the previously (Sec. VI-C) described technical chal-

lenges. By further optimizing the implementation of PasNet ,

the effective server load can be decreased. FIGURE 12 also

presents that the random caching and the RLNC caching

differ significantly at small cache sizes. This is an impor-

tant result since, in practice, only a few percents of a

full-length movie can be cached on mobile devices. Further-

more, by applying network coding, the effective server load

of PasNet goes to r , the estimated achievable server load of

the random caching strategy.

H. COMPARISON TO RELATED WORK

Comparing this to related research: Fijuta could reach n/α

server upload capacity in a 2-hop network [14], where n is

the number of peers, and α is the number of stripes that the

video stream is divided to. This work differs from ours by

the underlying network topology.While in our solution, peers

can connect to any other peer, Fijuta focuses on multiple trees

as the underlying topology of the overlay network. Further-

more, by analyzing large VoD vendors like BBC iPlayer [3]

and Conviva [4], it has been shown that P2P-assisted

VoD streaming has the potential to reduce the server load

to 12%.

As 11 shows, depending on the cache size at the peers,

with our solution the average server load approaches zero for

large enough cache sizes. Using RLNC, the cache size can be

significantly reduced compared to random solutions, while

the server load stays close to zero.

159344 VOLUME 7, 2019

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

VIII. CONCLUSION AND FUTURE WORK

For content providers to adopt P2P-assisted streaming solu-

tions, a mathematical model is needed to predict the behavior

(e.g., average server load) of the designed system. In this

paper, we have presented an analytical framework for estimat-

ing the server load of mobile P2P-assisted streaming services.

We have investigated four caching strategies: infinite, FIFO,

random, and RLNC encoded caching. Using PasNet , our

previously presented P2P system, we carried out extensive

measurements to understand the behavior of a P2P system

and to validate the accuracy of the framework at multiple

steps of our calculations. Our results demonstrated that the

average server load tends to zero with all caching methods

as the cache size increases. By having only 5 P2P con-

nections per peer and using the random caching, peers can

store 40% fewer packets to achieve the same performance as

with FIFO caching. Compared to the random caching, RLNC

caching needs 50% fewer packets to achieve close-to-zero

average server load. Furthermore, caching half of the packets,

RLNC reaches zero server load, when the network is capa-

ble of serving all newcoming peers without the help of the

server.

In its present state, our proposed framework can be used

for extensive performance analysis. Our solution can be fur-

ther extended to more closely match real-world scenarios

by providing a detailed model of connection management

and packet scheduling. Furthermore, we plan to investigate

the QoE at the peers. We also intend to investigate different

incentive mechanisms [27], [28] and incorporate them into

our system to encourage peers to contribute their resources to

the network.

Our work shows the potential of coded P2P-assisted

streaming systems, which have high applicability in VoD and

live streaming [29].

REFERENCES

[1] Ericsson. (Nov. 2018). Ericsson Mobility Report. [Online]. Available:

https://www.ericsson.com/assets/local/mobility-report/documents/

2018/ericsson-mobility-report-november-2018

[2] (Oct. 2018). The Global Internet Phenomena Report Sandive. [Online].

Available: https://www.sandvine.com/hubfs/downloads/phenomena/2018-

phenomena-report

[3] D. Karamshuk, N. Sastry, A. Secker, and J. Chandaria, ‘‘ISP-friendly peer-

assisted on-demand streaming of long duration content in BBC iPlayer,’’

in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr./May 2015,

pp. 289–297.

[4] A. Balachandran, V. Sekar, A. Akella, and S. Seshan, ‘‘Analyzing the

potential benefits of CDN augmentation strategies for Internet video

workloads,’’ in Proc. Conf. Internet Meas. Conf., New York, NY, USA,

Oct. 2013, pp. 43–56, doi: 10.1145/2504730.2504743.

[5] P. J. Braun, M. Sipos, P. Ekler, and F. H. P. Fitzek, ‘‘On the perfor-

mance boost for peer to peer WebRTC-based video streaming with net-

work coding,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017,

pp. 1–6.

[6] P. J. Braun, P. Ekler, and F. Fitzek, ‘‘Network coding enhanced browser

based peer-to-peer streaming,’’ in Proc. IEEE Int. Conf. Syst. Man, Cybern.

(SMC), Budapest, Hungary, Oct. 2016, pp. 002104–002109.

[7] P. J. Braun, P. Ekler, and F. H. P. Fitzek, ‘‘Demonstration of a P2P

assisted video streaming with WebRTC and network coding,’’ in Proc.

14th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), Jan. 2017,

pp. 576–577.

[8] (2019). Peer. [Online]. Available: https://www.peer5.com

[9] Y. Chen, B. Zhang, Y. Liu, and W. Zhu, ‘‘Measurement and model-

ing of video watching time in a large-scale Internet video-on-demand

system,’’ IEEE Trans. Multimedia, vol. 15, no. 8, pp. 2087–2098,

Dec. 2013.

[10] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang, ‘‘Challenges,

design and analysis of a large-scale P2P-vod system,’’ ACM SIGCOMM

Comput. Commun. Rev., vol. 38, no. 4, pp. 375–388, Oct. 2008, doi:

10.1145/1402946.1403001.

[11] W. Wu and J. C. S. Lui, ‘‘Exploring the optimal replication strategy in

P2P-VoD systems: Characterization and evaluation,’’ IEEE Trans. Parallel

Distrib. Syst., vol. 23, no. 8, pp. 1492–1503, Aug. 2012.

[12] A. Shehab, M. Elhoseny, M. A. El Aziz, and A. E. Hassanien, ‘‘Efficient

schemes for playout latency reduction in P2P-VoD systems,’’ in Advances

in Soft Computing and Machine Learning in Image Processing. Cham,

Switzerland: Springer, Oct. 2018, pp. 477–495.

[13] G. Huang, L. Kong, K. Wu, and Z. Chen, ‘‘A service scheduling

policy for improving playback quality of mesh-based P2P VoD sys-

tems,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process. With Appl.

IEEE Int. Conf. Ubiquitous Comput. Commun. (ISPA/IUCC), Dec. 2017,

pp. 1311–1318.

[14] S. Fujita, ‘‘Cloud-assisted peer-to-peer video streaming with mini-

mum latency,’’ IEICE Trans. Inf. Syst., vol. 102, no. 2, pp. 239–246,

Feb. 2019.

[15] C. X. Mavromoustakis, G. Mastorakis, E. Pallis, C. Mysirlidis,

T. Dagiuklas, I. Politis, C. Dobre, and K. Papanikolaou, ‘‘On the

perceived quality evaluation of opportunistic Mobile P2P Scalable Video

streaming,’’ in Proc. Int. Wireless Commun. Mobile Comput. Conf.

(IWCMC), Aug. 2015, pp. 1515–1519.

[16] Y. Liu and S.-Z. Yu, ‘‘Efficient content delivery and caching scheme

using network coding in CCN,’’ in Proc. Int. Conf. Comput. Netw.

Commun. Technol. (CNCT). Paris, France: Atlantis Press, Nov. 2017,

pp. 1–6. [Online]. Available: http://www.atlantis-press.com/php/paper-

details.php?id=25870802

[17] P. J. Braun, M. Sipos, P. Ekler, and H. Charaf, ‘‘Increasing data distribution

in BitTorrent networks by using network coding techniques,’’ in Proc. Eur.

Wireless 21th Eur. Wireless Conf., May 2015, pp. 1–6.

[18] J. Miller, C. Gkantsidis, and P. Rodriguez, ‘‘Comprehensive view of a live

network coding P2P system,’’ in Proc. IMC, Oct. 2006, pp. 177–188.

[Online]. Available: https://www.microsoft.com/en-us/research/publi-

cation/comprehensive-view-of-a-live-network-coding-p2p-system/

[19] P. Ekler, T. Lukovszki, and J. K. Nurminen, ‘‘Extending mobile BitTorrent

environment with network coding,’’ in Proc. IEEE Consum. Commun.

Netw. Conf. (CCNC), Jan. 2011, pp. 529–530.

[20] A. Azzalini, ‘‘A class of distributions which includes the normal ones,’’

Scand. J. Statist., vol. 12, no. 2, pp. 171–178, 1985.

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, ‘‘Web caching and

Zipf-like distributions: Evidence and implications,’’ in Proc. 18th Annu.

Joint Conf. IEEE Comput. Commun. Societies Future Now (INFOCOM),

vol. 1, Mar. 1999, pp. 126–134.

[22] T. T. Do, K. A. Hua, and M. A. Tantaoui, ‘‘P2VoD: Providing fault tolerant

video-on-demand streaming in peer-to-peer environment,’’ in Proc. IEEE

Int. Conf. Commun., vol. 3, Jun. 2004, pp. 1467–1472.

[23] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and M. Médard, ‘‘On code

parameters and coding vector representation for practical RLNC,’’ in Proc.

IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1–5.

[24] B. Cohen. (Aug. 2016). The BitTorrent Protocol Specification. [Online].

Available: http://www.bittorrent.org/beps/bep_0003.html

[25] M. V. Pedersen, J. Heide, and F. H. P. Fitzek, ‘‘Kodo: An open and research

oriented network coding library,’’ in Networking Workshops, V. Casares-

Giner, P. Manzoni, and A. Pont, Eds., Berlin, Germany: Springer, 2011,

pp. 145–152.

[26] T. J. Hacker, B. D. Athey, and B. Noble, ‘‘The end-to-end performance

effects of parallel TCP sockets on a lossy wide-area network,’’ in Proc.

16th Int. Parallel Distrib. Process. Symp., Apr. 2002, p. 10.

[27] G. Huang, Y. Gao, L. Kong, and K. Wu, ‘‘An incentive scheme based

on bitrate adaptation for cloud-assisted P2P video-on-demand streaming

systems,’’ in Proc. IEEE 3rd Int. Conf. Cloud Comput. Big Data Anal.

(ICCCBDA), Apr. 2018, pp. 404–408.

[28] S.-H. Lin, R. Pal, B.-C. Wang, and L. Golubchik, ‘‘On market-driven

hybrid-P2P video streaming,’’ IEEE Trans. Multimedia, vol. 19, no. 5,

pp. 984–998, May 2017.

[29] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry, ‘‘Survey

on peer-assisted content delivery networks,’’ Comput. Netw., vol. 116,

pp. 79–95, Apr. 2017.

VOLUME 7, 2019 159345

http://dx.doi.org/10.1145/2504730.2504743
http://dx.doi.org/10.1145/1402946.1403001

P. J. Braun et al.: Mobile Peer-to-Peer Assisted Coded Streaming

PATRIK J. BRAUN received the joint B.Sc. degree

from the Budapest University of Technology and

Economics (BME), Hungary, and Karlsruhe Insti-

tute of Technology, Germany, in 2013, the M.Sc.

degree from BME, in 2015, where he is currently

pursuing the Ph.D. degree with the Department of

Automation and Applied Informatics. He was a

Guest Researcher as part of his Ph.D. degree with

the Dresden University of Technology, Germany,

during the summer of 2015, 2016, and 2017.

He was a Fulbright Visiting Researcher with the Massachusetts Institute of

Technology (MIT), from 2017 to 2018. His current research interests include

networks, communication theory, and distributed caching.

ÁDÁM BUDAI received the M.Sc. degree in

computer science from the Budapest University

of Technology and Economics (BME), Hungary,

in 2017, where he is currently pursuing the

Ph.D. degree with the Department of Automa-

tion and Applied Informatics. During his B.Sc.,

he was a Guest Researcher with the Chalmers

University of Technology, Sweden, involved in

the theory of plasma dynamics in tokamaks.

His current research interests include medical

image processing and reinforcement learning.

JÁNOS LEVENDOVSZKY received the Ph.D.

degree from the Budapest University of Technol-

ogy and Economics (BME) and the D.Sc. degree

from the Hungarian Academy of Sciences. He is

currently a full-time Professor with BME and also

a Vice-Rector of science and innovation. His cur-

rent research interests include adaptive signal pro-

cessing, networking, artificial intelligence, and

algebraic coding theory.

MÁRTON SIPOS received the B.Sc. and M.Sc.

degrees in software engineering from the Budapest

University of Technology and Economics (BME),

in 2010 and 2012, respectively, and the joint

Ph.D. degree from BME and Aalborg University,

in 2018. His current research interest includes the

development of erasure codes for distributed stor-

age solutions. He has also been involved in the

development and implementation of distributed

storage clouds and mobile peer-to-peer storage

solutions.

PÉTER EKLER received the Ph.D. degree from

the Budapest University of Technology and

Economics (BME), in 2011. He is currently

an Associate Professor with the Department

of Automation and Applied Informatics, BME.

He has been involved in mobile Peer-to-Peer (P2P)

and social networks for six years. He is the Creator

of the first BitTorrent client for mainstreammobile

phones based on Java ME platform. He was the

coauthor of several mobile related scientific arti-

cles and book chapters. His current research interests include mobile-based

social networks, P2P solutions, data analysis, and power law distributions in

large networks. He has participated in several data warehouse and business

intelligence related projects. He teaches mobile software development for

several mobile platforms.

FRANK H. P. FITZEK received the Diploma

(Dipl.-Ing.) degree in electrical engineering

from the University of Technology-Rheinisch-

Westfälische Technische Hochschule (RWTH),

Aachen, Germany, in 1997, the Ph.D. (Dr.-Ing.)

degree in electrical engineering from Technical

University Berlin, Germany, in 2002, and the

Honorary degree (Doctor Honoris Causa) from the

Budapest University of Technology and Economy,

in 2015. He was an Adjunct Professor with the

University of Ferrara, Italy, in 2002. In 2003, he joined Aalborg University as

an Associate Professor, where he became a Professor. He co-founded several

start-up companies, starting with Acticom GmbH, Berlin, in 1999. He is

currently a Professor and also the Head of the Deutsche Telekom Chair of

Communication Networks, Technical University Dresden, Germany, where

he coordinates the 5G Laboratory, Germany. His current research interests

include wireless and mobile 5G communication networks, mobile phone

programming, network coding, cross layer, and energy efficient protocol

design and cooperative networking. He was a recipient of the NOKIA

Champion Award several times in a row, from 2007 to 2011. In 2008,

he received the Nokia Achievement Award for his work on cooperative

networks. In 2011, he received the SAPERE AUDE Research Grant from

the Danish Government. In 2012, he received the Vodafone Innovation

prize.

159346 VOLUME 7, 2019

