
Helsinki University of Technology

Faculty of Electronics, Communications and Automation

Department of Communications and Networking

Juuso Aleksi Lehtinen

Mobile Peer-to-Peer over

Session Initiation Protocol

Licentiate’s Thesis submitted in partial fulfillment of the requirements for the
degree of Licentiate of Science in Technology.

August 4, 2008

Juuso Lehtinen

Supervisor: Professor Raimo Kantola

i

Helsinki University

of Technology

 Abstract of the

Licentiate’s Thesis
Author: Juuso Aleksi Lehtinen

Name of the Thesis: Mobile Peer-to-Peer over Session Initiation Protocol

Date: August 4, 2008 Number of pages: ix + 75

Faculty: Faculty of Electronics,

Communications and Automation

Professorship: S-38

Department: Department of Communications

and Networking

Supervisor: Professor Raimo Kantola

This work continues on my Master’s Thesis work done between July 2005 and January 2006.

In my Master’s Thesis, we presented how a mobile peer-to-peer file-sharing application can

be implemented using the Session Initiation Protocol (SIP) as the underlying signaling

protocol.

The main objective of this thesis is to evaluate what kind of special requirements mobile

environment poses for peer-to-peer application design, and present how peer-to-peer

based services can be efficiently realized in next-generation mobile networks by using SIP

with some enhancements as the peer-to-peer signaling protocol.

This thesis is divided into two parts. In the first part, we present different peer-to-peer

architectures and search algorithms, and evaluate their suitability for mobile use. We also

review some mobile peer-to-peer middleware and file-sharing applications. Then, in the

second part, we present our hybrid mobile peer-to-peer architecture consisting of a

Symbian based mobile client and a SIP Application Server based super-peer.

Key findings of this thesis are that the mobile peer-to-peer application based on SIP

signaling and hybrid peer-to-peer architecture is suitable for mobile use as it minimizes

overhead in mobile nodes and allows mobile operator to have control on its users in multi-

operator environment. Also, the performance of the application satisfies user requirements.

Keywords: mobile peer-to-peer, session initiation protocol, peer-to-peer over session

initiation protocol signaling

ii

Teknillinen

Korkeakoulu

 Lisensiaattityön

Tiivistelmä
Tekijä: Juuso Aleksi Lehtinen

Työn nimi: Istunnon aloitusprotokollaan pohjautuvat mobiilivertaisverkot

Päivämäärä: 4.8.2008 Sivuja: ix + 75

Tiedekunta: Elektroniikan, tietoliikenteen ja

automaation tiedekunta

Professuuri: S-38

Laitos: Tietoliikenne- ja

tietoverkkotekniikan laitos

Työn valvoja: Professori Raimo Kantola

Tämä työ on jatkoa diplomityölleni, joka tehtiin Heinäkuu 2005 – Tammikuu 2006 välisenä

aikana. Diplomityössäni esitimme kuinka mobiilivertaisverkkosovellus voidaan toteuttaa

käyttäen Session Initiation Protocol (SIP) protokollaa allaolevana signalointiprotokollana.

Tämän työn päätavoite on selvittää, mitä erikoisvaatimuksia mobiiliympäristö

vertaisverkkosovelluksen suunnittelulle asettaa sekä kuinka vertaisverkkopalveluita voidaan

tehokkaasti toteuttaa seuraavan sukupolven mobiiliverkoissa käyttämällä laajennettua SIP

protokollaa sovelluksen merkinantoprotokollana.

Tämä työ on jaettu kahteen osaan. Ensimmäisessa osassa käsittelemme eri

vertaisverkkoarkkitehtuureja ja hakualgoritmeja, sekä arvioimme näiden sopivuutta

mobiilikäyttöön. Käymme myös läpi joitain mobiilivertaisverkkotiedostojako-ohjelmia sekä

middleware-alustoja. Työn toisessa osassa esittelemme oman mobiilivertaisverkko-

arkkitehtuurimme, joka koostuu Symbian mobiilisovelluksesta sekä SIP sovelluspalvelin

super-peer solmusta.

Tutkimuksen päälöydökset ovat seuraavat: SIP protokollaa käyttävä hybridi-vertaisverkko-

sovellus toimii hyvin matkapuhelinympäristössä, koska se minimoi puhelimeen kohdistuvan

rasituksen ja tekee mahdolliseksi matkapuhelinoperaattorin hallita sovelluksen käyttäjiä

myöskin monioperaattoriympäristössä. Tämän lisäksi ohjelmiston suorituskyky täyttää

käytäjien sille asettamat vaatimukset.

Avainsanat: mobiilivertaisverkot, session initiation protocol, istunnon aloitusprotokollaan

pohjautuvat mobiilivertaisverkot

iii

“Every accomplishment starts with the decision to try.”

Unknown source

iv

Acknowledgements

Most of the research described in this thesis has been done as part of a larger

mobile peer-to-peer research project in Helsinki University of Technology

Networking Laboratory during time between June 2005 and January 2007.

I would like to thank my supervisor and the first examiner for the thesis,

Professor Raimo Kantola, for providing invaluable support and guidance during

my post-graduate studies and research. I would also like to thank Professor Jukka

Manner for being the second examiner for the thesis.

I would also like to thank my past colleagues and co-authors, Nicklas Beijar and

Tuomo Hyyryläinen, from Networking Laboratory, as well as research

collaborators and co-authors, Marcin Matuszewski and Miguel A. Garcia-Martin,

from Nokia Research Center.

Finally, I would like to thank my family and my friends for the support and

encouragement they have provided me during the ups and downs of my studies.

August 4, 2008

Juuso Lehtinen

v

Contents

Acknowledgements ... iv

Abbreviations .. viii

Chapter 1 – Introduction ... 1

1.1 Motivation ... 2

1.2 Objectives and Scope .. 4

1.3 Own Contribution .. 5

1.4 Structure .. 6

Chapter 2 – Peer-to-Peer Architectures and Algorithms .. 7

2.1 Architectures ... 9

2.1.1 Client-Server Architecture .. 10

2.1.2 Centralized Architecture ... 11

2.1.3 Decentralized Architecture ... 12

2.1.4 Semi-Centralized Architecture .. 13

2.1.5 Structured Architectures .. 15

2.2 Search Algorithms ... 15

2.2.1 Centralized Search .. 16

2.2.2 Flooding Search ... 16

vi

2.2.3 Random Walks .. 19

2.2.4 Structured Search ... 20

2.2.5 Comparison of Search Algorithms .. 21

2.3 Conclusions .. 23

Chapter 3 – Mobile Peer-to-Peer .. 24

3.1 Requirements of Mobile Environment .. 25

3.1.1 Technical Constraints .. 25

3.1.2 Special Issues .. 26

3.1.3 User Requirements ... 28

3.2 Building a Mobile Peer-to-Peer Architecture .. 29

3.2.1 Proprietary vs. Standard Protocol .. 30

3.3 Mobile Peer-to-Peer Applications and Middleware.................................... 31

3.3.1 File-sharing Applications ... 31

3.3.2 Middleware ... 36

3.4 Conclusions .. 39

Chapter 4 – Mobile Peer-to-Peer over SIP .. 41

4.1 Mobile Peer-to-Peer in IMS ... 41

4.2 Session Initiation Protocol ... 42

4.2.1 Resource Location ... 43

4.2.2 SIP Requests and Responses ... 44

4.2.3 SIP over P2P (P2P-SIP) ... 46

4.3 Mobile Peer-to-Peer using SIP ... 47

4.3.1 Client Architecture .. 48

4.3.2 Super-Node Architecture .. 49

4.3.3 SIP P2P Application Server Architecture ... 50

vii

4.3.4 SIP Signaling .. 52

4.3.5 System Performance ... 59

4.3.6 Securing Mobile Peer-to-Peer .. 62

4.4 Conclusions .. 63

Chapter 5 – Conclusions .. 64

5.1 Objectives Revisited .. 64

5.2 Results ... 65

5.3 Further Discussion ... 65

5.4 Future Research Possibilities ... 66

References ... 68

viii

Abbreviations

3G Third Generation

3GPP Third Generation Partnership Project

AOR Address of Record

AS Application Server

AuC Authentication Center

BFS Breadth-First Search

CPU Central Processing Unit

CSCF Call Session Control Function

DC Direct Connect

DHT Distributed Hash Table

EVDO Evolution Data-Only

GUI Graphical User Interface

HSPA High-Speed Packet Access

HTTP Hypertext Transfer Protocol

ID Identifier

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IM Instant Messaging

IMS IP Multimedia Subsystem

IP Internet Protocol

IRTF Internet Research Task Force

ITU International Telecommunication Union

ix

ITU-T ITU Telecommunication Standardization Sector

JXTA Juxtapose

MIME Multipurpose Internet Mail Extensions

MMS Multimedia Message Service

MP2P Mobile Peer-to-Peer

MSRP Message Session Relay Protocol

NAT Network Address Translation

P2P Peer-to-Peer

PC Personal Computer

P-CSCF Proxy Call Session Control Function

PDP Packet Data Protocol

PKI Public Key Infrastructure

RFC Request for Comments

S/MIME Secure / Multipurpose Internet Mail Extensions

S-CSCF Serving Call Session Control Function

SDP Session Description Protocol

SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions

SIP Session Initiation Protocol

SIPPING Session Initiation Proposal Investigation

SMTP Simple Mail Transfer Protocol

STP Spanning Tree Protocol

TLS Transport Layer Security

TTL Time-to-live

UA User Agent

UAC User Agent Client

UAS User Agent Server

UE User Equipment

URI Universal Resource Identifier

USIM Universal Subscriber Identity Module

VOD Video on Demand

VOIP Voice over Internet Protocol

XML Extensible Markup Language

Chapter 1 – Introduction

1

Chapter 1 – Introduction

A lot has changed in the world of Internet communications during this decade. A

major shift has happened in the traffic patterns of the Internet: Ten years ago,

majority of the Internet traffic flows were between personal computers and

high-performance web servers, however, today, majority of the Internet traffic is

between personal computers in homes, schools, and offices – peer-to-peer

networks have established themselves as Internet’s major traffic generators [1].

According to recent studies, the share of peer-to-peer traffic is 49% - 83% of all

Internet traffic, depending on geographical region [2].

At first, peer-to-peer networks were used only for file-sharing, e.g., Napster [3],

Gnutella [3] [4], BitTorrent [5], but as time has passed, many kinds of

applications have been built using the peer-to-peer paradigm, e.g., the popular

Voice over IP (VOIP) application, Skype [6], or the recently launched Video on

Demand (VOD) application, Joost [7]. Growth of peer-to-peer phenomenon has

not only created new protocols but also older protocols, traditionally utilized in

the client-server paradigm, are now being transformed into peer-to-peer

protocols, e.g., Peer-to-Peer Session Initiation Protocol (P2P-SIP) [8].

While peer-to-peer communications has revolutionized the Internet traffic

patterns during the past years, there has been a revolution of its own among the

mobile phones; mobile phones have gotten close to personal computers in their

features and performance. Mobile phones of today have more memory, faster

processors, larger screens, and higher network bandwidth than ever before.

Chapter 1 – Introduction

2

Many of the phones sold today are user programmable, meaning that the user

can install 3
rd

 party applications of his choice into the phone without consulting

with the phone manufacturer.

With the modern mobile phones, people are consuming more media on the go

than ever before. The modern mobile phones are as much of personal media

players as they are telephones. In addition to being media players, they also

function as media recorders, having capabilities similar to standalone audio or

video recorders.

1.1 Motivation

The media that people are consuming and producing on their mobile handsets

can be currently shared in limited ways; using a cellular service like multimedia

message service (MMS), using the Bluetooth connectivity between nearby

phones, or using media sharing sites available in the public Internet, or Searching

for interesting content in the mobile domain is currently very limited: Popular

content can be searched from Internet sites such as YouTube, but less popular

content that is still valuable for the user, e.g., content created by user’s friends

or family, is not searchable in any way.

Also, using a mobile web browser for sharing and acquiring media might not be

the best tool for the job in the bandwidth limited mobile environment. Sure, if

you have one picture to share, it is rather easy to upload it to an image sharing

site – but if you have tens or hundreds of pictures that you would like to share

with your friends, it is not that convenient to upload all those pictures over a

relatively slow radio link – not knowing if any of your friends will ever access any

of those pictures. Instead it would be handy if you could share the pictures on

demand, as they are requested by your friends.

As we have seen in the fixed Internet, peer-to-peer networks enable easy and

efficient way of searching and sharing various types of content. It is a logical step

Chapter 1 – Introduction

3

to bring peer-to-peer communications into the mobile arena, to help people

share and search all the mobile content.

When comparing services based on peer-to-peer architecture to those based on

the traditional client-server architecture we can observe some of the technical

advantages of peer-to-peer architectures. In peer-to-peer architectures, the

shared content is available when needed, no uploading to a central server

required, and thus only the content that is requested is actually transferred.

Users do not have to upload hundreds of pictures to a centralized server, not

knowing if anyone will ever access those pictures – thus saving that precious

bandwidth. Peer-to-peer architectures also handle the flash crowd phenomenon

well when compared to client-server architecture based services, as peer-to-peer

architectures naturally distribute the load on several participants of the network

[9].

Even though hundreds of different peer-to-peer applications have been deployed

in the fixed internet, utilizing tens of peer-to-peer protocols, there have not been

many peer-to-peer applications or protocols available in the mobile domain.

Some projects have implemented popular peer-to-peer protocols on mobile

platforms, e.g., SymTorrent [10], Symella [11], and Mobile eDonkey [12], but

none of these projects have really considered the special needs and constraints

of mobile domain. Also, most of this work has focused on one service, i.e., on

peer-to-peer file-sharing.

Next-generation mobile networks, like Third Generation Partnership Project’s

(3GPP) IP Multimedia Subsystem (IMS), are largely built onto well known internet

protocols, such as Session Initiation Protocol (SIP). These protocols enable users

to establish voice and video calls, use presence service, and many other

advanced services. These protocols cannot be used for peer-to-peer networking

as they are, but with minor modifications, a protocol like SIP, can be engineered

to function as the signaling protocol of a peer-to-peer network.

Chapter 1 – Introduction

4

As these protocols are supported by the networks and the terminals natively, it is

easier to provide managed peer-to-peer services on IMS protocols than to build

the peer-to-peer service framework and the protocols from scratch. IMS protocol

suite has protocols ready for the essential peer-to-peer tasks, such as, session

initiation, authentication, and accounting.

1.2 Objectives and Scope

This work continues on my Master’s Thesis work done between July 2005 and

January 2006. In my Master’s Thesis [13], we presented how a mobile peer-to-

peer file-sharing application can be implemented using the Session Initiation

Protocol (SIP) as the underlying signaling protocol. In addition to presenting the

implementation, we evaluated the feasibility of the concept by measuring the

signaling efficiency and transmission bandwidth available in 3G networks.

The main objective of this thesis is to present how peer-to-peer based services

can be efficiently realized in next-generation SIP/IMS networks by reusing their

existing protocols as much as possible, and to present some enhancements to

these protocols. We also evaluate what kind of special requirements mobile

environment poses for peer-to-peer applications and consider those

requirements in our application design.

Longer term objective for the research is to develop a peer-to-peer framework

over which different kinds of mobile services can be deployed without providing

a centralized service architecture in the network. This framework should provide

service discovery and service connection services for various overlying

applications.

Compared to other mobile peer-to-peer research, we present a unique way of

integrating a peer-to-peer network model on top of IMS networks, where SIP is

reused as the peer-to-peer signaling protocol, i.e., for uploading resource info

from a mobile client to a super-peer, for searching resources in peer-to-peer

network, and for initiating resource connection, e.g., file transfer between

Chapter 1 – Introduction

5

mobile peers. We also consider special requirements of mobile environment in

our application design.

1.3 Own Contribution

During the research, we authored a journal article, four conference articles, and

two post-graduate seminar articles. This thesis presents a coherent picture of the

research presented in these articles. This thesis presents our work as it has

evolved over time and compares this work to other similar solutions. In addition,

this thesis presents a freshened literature review that includes material

published after the writing of our articles.

Here we present the contribution of the present author in these publications:

Publication [14]: This paper is independent work of the present author.

Publication [15]: This paper is independent work of the present author.

Publication [16]: This paper is joint work of the authors; the performance

measurements and their analysis is independent work of the present author.

Publication [17]: The mobile peer-to-peer client architecture and the

implementation part of the paper is joint work of the present author and Tuomo

Hyyryläinen.

Publication [18]: The mobile peer-to-peer client architecture and the

implementation part of the paper is joint work of the present author and Tuomo

Hyyryläinen.

Publication [19]: Ideas behind the signaling schemes presented in this paper are

joint work of the authors; the performance measurements and their analysis is

independent work of the present author.

Publication [20]: The related work section is independent work of the present

author.

Chapter 1 – Introduction

6

1.4 Structure

The structure of this thesis is the following. In Chapter 2, we review common

peer-to-peer architectures and different search algorithms used in peer-to-peer

networks. In Chapter 3, we discuss special requirements of mobile environment

for peer-to-peer applications, and discuss how these requirements affect the

choice of peer-to-peer architecture and search algorithm. We also present

current state-of-the-art in mobile peer-to-peer application and middleware

research. In Chapter 4, we present our mobile peer-to-peer architecture and the

key findings of our research on the subject. Finally, in Chapter 5, we provide

conclusions and discuss future research possibilities.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

7

Chapter 2 – Peer-to-Peer Architectures and Algorithms

The peer-to-peer paradigm became popular with the file-sharing application

Napster. Napster was released in 1999, and it was mainly targeted for sharing

music files, even though it allowed sharing of other kinds of files too. Napster

was built on a centralized peer-to-peer architecture where a cluster of

centralized servers hosted information about the shared files. Allegedly, largely

due to the centralized architecture, Napster was shut down due to legal troubles

in 2002. Later Napster was reopened as a music store – however, the new

Napster was not anymore based on the peer-to-peer paradigm but on the

traditional client-server architecture. [21]

Closing of Napster was not the death of peer-to-peer file-sharing. Even before

Napster was closed, many other peer-to-peer file-sharing networks appeared,

such as Gnutella and Kazaa. Today, Gnutella and Kazaa are in lesser use as

BitTorrent has taken their place as the most popular peer-to-peer file-sharing

protocol.

The peer-to-peer paradigm has not only been used for file-sharing applications,

but also for other applications, such as instant messengers, internet telephony,

and video on demand application. Skype is probably the most popular Voice over

IP (VOIP) application deployed at large in the Internet, and it is based on semi-

centralized peer-to-peer architecture. Joost, a recent video on demand

Chapter 2 – Peer-to-Peer Architectures and Algorithms

8

application, built by the founders of Skype, is also partly based on peer-to-peer

paradigm.

The fundamental difference between peer-to-peer and client-server

architectures is that in client-server architecture all clients rely on one,

centralized, server. All resources are located on this server and the clients

request these resources from the server as they need them. The whole network

is dependent on the availability of this server – if the server fails, all resources

become inaccessible for the clients.

Another problem of the client-server architecture is that all resources must be

uploaded to the centralized server so that they are available for the other clients.

For example, in case of an image sharing service, the user has to upload all of his

images to the centralized server even when he does not know if anyone is going

to access those images later. On the other hand, in peer-to-peer architectures

the resources are scattered around the network as the peers are hosting the

resources themselves. Thus, resources are not uploaded anywhere until they are

requested by another peer.

As peer-to-peer communications has gained popularity among the academics,

there have been numerous conferences and workshops organized around peer-

to-peer and mobile peer-to-peer technologies. Some of the major forums for

presenting peer-to-peer research results are:

 IEEE International Conference on Peer-to-Peer Computing [22],

 International workshop on Peer-to-Peer Systems [23],

 IEEE International Workshop on Mobile Peer-to-Peer Computing,

organized annually in conjunction with the IEEE International Conference

on Pervasive Computing and Communications [24],

 International Workshop on Hot Topics in Peer-to-Peer Systems, organized

annually in conjunction with the IEEE International Parallel & Distributed

Processing Symposium [25],

Chapter 2 – Peer-to-Peer Architectures and Algorithms

9

 Peer-to-peer oriented workshops, organized in conjunction with the IEEE

Consumer Communications and Networking Conference [26], and

 Internet Research Task Force’s (IRTF) Peer-to-Peer Research Group

(p2prg) [27].

2.1 Architectures

Before we start the review of different peer-to-peer architectures we need a

definition for peer-to-peer networking. A good definition is given by Schollmeier

[28]:

“A distributed network architecture may be called a Peer-to-Peer (P-to-P,

P2P, …) network, if the participants share a part of their own hardware

resources (processing power, storage capacity, network link capacity,

printers, …). These shared resources are necessary to provide the service

and content offered by the network (e.g. file-sharing or shared

workspaces for collaboration). They are accessible by other peers directly,

without passing intermediary entities. The participants of such a network

are thus resource (service and content) providers as well as resource

(service and content) requesters (servent-concept).”

The main takeaway from this quote is that the participants of a peer-to-peer

network can exchange information directly with each other without passing the

information via some centralized entity, and that all the resources in the network

are provided by the peers themselves. The peers work simultaneously as Servers

and Clients, thus the name, Servent.

Depending how the peer-to-peer network topology is organized, the peer-to-

peer architectures can be divided into structured and unstructured architectures.

Unstructured peer-to-peer architectures can be further divided into centralized,

decentralized, and semi-centralized architectures. The main difference between

unstructured and structured architectures is that in structured architectures

Chapter 2 – Peer-to-Peer Architectures and Algorithms

10

peers form a defined structure, or a topology, that has to be kept up as nodes

join and leave the network. In unstructured peer-to-peer networks, the network

is constructed more freely. Milojicic et al. give an extensive introduction to peer-

to-peer architectures in [29].

Functionality of all peer-to-peer architectures can be divided into two parts, into

the resource search part, and into the part of connecting to the resource. The

peer-to-peer architecture defines the logical links between the network peers.

These links are used by the peer-to-peer search algorithm for resource location.

The second part of peer-to-peer, connecting to resource, is not dependent on

the peer-to-peer architecture but happens directly between the peers using

direct network layer connectivity without facilitating intermediate nodes.

In this section, we discuss how search works in different peer-to-peer

architectures, as the actual connecting to the resource is trivial and nothing

special to peer-to-peer. We discuss the traditional client-server architecture and

the major peer-to-peer architectures; centralized, decentralized, semi-

centralized, and structured peer-to-peer architectures.

2.1.1 Client-Server Architecture

Client-Server architecture is not a peer-to-peer network architecture but it is

presented here for reference.

Client-server architecture is the most dominant architecture in the traditional

Internet. It is the architecture used between web-servers and browsers, email

servers and email clients, etc. In the client-server architecture, a powerful server

or a cluster of servers provides a service to many dumb clients. This service can

be anything from storing files or databases to remote procedure calls for off-

loading complex calculations from clients to the server. In the client-server

architecture, each client communicates only with the server, being totally

unaware of the other clients served by the same server. Figure 2.1 shows the

basic client-server architecture.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

11

FIGURE 2.1: CLIENT-SERVER ARCHITECTURE

In the client-server architecture, clients send queries to the server, the server

processes these queries, and generates appropriate answers – being it an answer

to a complex mathematical query, or simply sending a static web-page back to

the querying client.

2.1.2 Centralized Architecture

A centralized peer-to-peer architecture resembles the client-server architecture.

However, in this architecture clients communicate directly with each other in

addition to communicating with a centralized server or a cluster of servers.

In the centralized peer-to-peer architecture, the server works as a centralized

index, holding information about the resources or services the clients are

hosting. In this architecture, the clients provide information about the resources

they are sharing to the server as they join the network. The server will then reply

to queries coming from the other clients asking for some resource they need.

These replies contain addressing information of the client that has the requested

resource. This part of centralized peer-to-peer can be seen being identical to the

client-server architecture. Here, the information about resources, i.e., the meta-

information, is transferred between peers via the centralized index.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

12

However, after a peer receives reply to its query from the server, it contacts

directly the peer providing the needed resource. In this part, the server is no

longer part of the communications as the nodes communicate in a peer-to-peer

manner. Figure 2.2 shows the basic centralized peer-to-peer architecture.

FIGURE 2.2: CENTRALIZED PEER-TO-PEER ARCHITECTURE

There is nothing special concerning the search in the centralized peer-to-peer

architecture when comparing it to the client-server architecture. Search is a

simple one-hop-query from a client to the server. Only difference lies in the

location of the content being searched; whereas in client-server architecture the

server hosts both the meta-information about the content and the actual

content, in the centralized peer-to-peer architecture the server hosts only the

meta-information while the actual content is hosted in the peer nodes.

2.1.3 Decentralized Architecture

In the decentralized peer-to-peer architecture, there is no centralized index. In

the decentralized architecture, all peers are equal – peers are connected to each

other in an arbitrary fashion, resembling a mesh. Each peer has an index of the

resources it is hosting.

In the decentralized architecture, search is routed from peer to peer through

multiple hops. Search can be done in numerous ways, the simplest algorithm

being flooding search which sends the query message all over the network.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

13

The resource connection, e.g., the file download, is established directly between

the endpoint peers so that there are no other nodes in the download path. The

basic architecture for decentralized peer-to-peer is presented in Figure 2.3.

FIGURE 2.3: DECENTRALIZED PEER-TO-PEER ARCHITECTURE

In decentralized peer-to-peer networks, it may be difficult to find the first node

to connect to as peers dynamically join and leave the network. In fact, some

decentralized peer-to-peer networks might have a bit of centralization, a

bootstrapping server, which hosts a list of potential peers in the network to help

joiners to find the first peer.

2.1.4 Semi-Centralized Architecture

Semi centralized architecture is a combination of the centralized and

decentralized peer-to-peer architectures, thus it is often called a hybrid

architecture. In the semi-centralized architecture, there are two kinds of nodes:

edge-nodes and super-nodes. The super-nodes are connected to each other in a

similar fashion to nodes in the decentralized peer-to-peer architecture. The

edge-nodes are connected to the super-nodes in the centralized peer-to-peer

fashion. Figure 2.4 presents the semi-centralized peer-to-peer architecture.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

14

FIGURE 2.4: SEMI-CENTRALIZED PEER-TO-PEER ARCHITECTURE

In the semi-centralized architecture, the super-nodes function as index servers

for the edge-nodes. When an edge-node joins the network, it connects to a

super-node and uploads the list of its resources to the super-node. When an

edge node searches for a resource, it first sends a query to its super-node as a

one-hop query. The super-node will then transmit the query further to other

super-nodes using a similar algorithm that is used in decentralized peer-to-peer

networks. The query does not have to be flooded to edge-nodes because the

super-nodes, as the index servers, have total knowledge of the resources

available in their edge-nodes. After the reply comes back to the querying edge

node, it connects directly to the other edge node hosting the queried resource.

It is important to notice that search is partitioned into two separate layers in the

semi-centralized architecture; to the search between the edge-node and the

local super-node and to the search between the super-nodes. Whereas, the

search between the edge-node and the local super-node is performed in a

similar manner to the centralized peer-to-peer architecture, the search between

super-nodes is similar to search in the decentralized peer-to-peer architecture.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

15

2.1.5 Structured Architectures

Structured peer-to-peer architectures are also known as Distributed Hash Table

(DHT) architectures. These architectures have strict structures, e.g., a ring or a

hyper-cube. These structures are constantly being updated, so they stay intact as

nodes join and leave the network.

In the DHT architecture, every node is given a unique ID or a hash value based on

its attributes, e.g., its IP-address. The node ID dictates which part of the hash

space the node is responsible for.

When a new resource is added to the network, a hash is calculated for this

resource. Then, a link to the resource is stored into the node responsible for the

respective part of the hash space. The node stores a link to the resource location,

not the resource itself. This way the resource index of the network is distributed

deterministically around the network in the Distributed Hash Table.

Figure 2.5 presents the architecture of a popular DHT, Chord. In the figure, the

dotted lines indicate which nodes host which keys. Black lines represent the

fingers of node N8, i.e., the logical connections to other nodes in the network

FIGURE 2.5: CHORD ARCHITECTURE [30]

2.2 Search Algorithms

A common theme among different peer-to-peer architectures is that the actual

resource connection (e.g., file download, streaming video, or telephone call)

Chapter 2 – Peer-to-Peer Architectures and Algorithms

16

happens directly between the network peers. What makes peer-to-peer

architectures different from each other is the type of search, i.e., how query

messages are passed in the network during a search.

Risson and Moors [31] provide an excellent survey of different peer-to-peer

architectures and search methods in them. Vanthournout, Deconinck, and

Belmans [32] compare resource discovery algorithms in 25 popular protocols.

Next, we review some search algorithms used in peer-to-peer networks. The

search algorithms covered are: centralized search, flooding search, modified BFS,

iterative deepening, random walks, and structured search. Last, we present short

comparison of centralized, flooding, and structured search algorithms.

2.2.1 Centralized Search

The most trivial search method is centralized search. Centralized search is used in

the centralized peer-to-peer architecture where a central server holds an index

of all resources available in the network. Network peers publish information

about the resources they are offering to the central index by directly uploading

their resource lists to the server. Other peers can connect to the server and

request resources from it. The centralized server then performs search against its

index and provides the requesting peer addressing information about the peers

having the requested resource.

Because the index is in one place, search in the centralized architecture is fast

and comprehensive. All files available in the peer network, i.e., all files published

to the centralized index, are checked during the search.

2.2.2 Flooding Search

In a decentralized peer-to-peer network, there is no centralized index of network

resources. Instead, every node holds an index of its own resources. To search the

network, you have to search the nodes. Depending on how many nodes you

Chapter 2 – Peer-to-Peer Architectures and Algorithms

17

search dictates the actual coverage of your search and the probability of finding

the resource you are looking for.

FIGURE 2.6: FLOODING SEARCH [33]

In flooding search – also known as Breadth-First Search (BFS) – a peer requesting

a resource sends the request to all its directly connected peers. These peers

check their local indexes for matching resources and further send the request

towards all the peers they are connected to, except the peer where they got the

request in the first hand.

The way the BFS queries propagate in the network is similar to Ethernet

broadcast frames. However, where Ethernet networks should not have any loops

– thanks to Spanning Tree Protocol (STP) – decentralized peer-to-peer networks

often have them. Because of this, every node forwarding the search query has

soft state information about the recent searches. If a search query that has been

recently forwarded is received again, it is not forwarded again.

The search queries are also given a time-to-live (TTL) or a hop-count which

determines how many times an individual search query can be forwarded. By

manipulating the TTL we can affect how widely the search is propagated in the

network. By using a large TTL, the search coverage is very good but similarly

every search is seen by a large number of peers and thus processing load of all

these nodes is increased. It should be noted that the search does not terminate

when the search target is found but only when the search TTL reaches zero.

Figure 2.6 presents flooding search with TTL value of three.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

18

Scalability issues of BFS search are discussed in the measurement study made by

Backx et al. [34], where a Gnutella file-sharing network’s peer’s background

bandwidth consumption was measured to be more than 600 kilobytes per

minute compared to less than a few kilobytes per minute in architectures where

different kind of search algorithms were used (centralized and semi-centralized

architectures). However, as Kalogeraki, Gunopulos, and Zeinalipour-Yazti [29]

note, flooding search can be quite efficient in limited communities such as in

company networks, where the maximum search load is limited by the limited

size of the network.

Modified BFS

Kalogeraki, Gunopulos, and Zeinalipour-Yazti [35] present modified BFS which

behaves similarly to regular BFS but instead of flooding the search query to every

neighbor, each node forwarding the search message floods the query to its

neighbors with a certain probability p, thus limiting the amount of messages in

the network. This algorithm reduces the number of messages compared to the

original flooding search but does it on the cost of search coverage. Depending on

the selection of p it may also cause a large strain on the network when large

values of search TTL are used.

Iterative Deepening

Yang and Garcia-Molina [36] present an improvement to regular flooding search

called Iterative deepening search. In iterative deepening search, the search TTL is

progressively increased so that flooding covers a larger radius on every step. The

search can be controlled so that the TTL is increased until a preset number of hits

are found, or when a specified TTL-limit is encountered. Lv et al. [37] present a

similar search method called Expanding Ring Search. Chang and Liu [38] present

a Controlled Flooding Search algorithm for wireless ad-hoc networks where

sequences of TTL values are intelligently selected to minimize the cost of

searches in terms of power consumption.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

19

2.2.3 Random Walks

Random walk is a search algorithm where each node along the search path

forwards the query to a single randomly chosen neighbor. The search starts by

the originating node sending out k query messages to its randomly chosen

neighbors. Each of these query messages is called a walker. Each walker follows

its own path so that intermediate nodes forward it to a random neighbor at

every step. However, the intermediate nodes do not replicate the walker but

send it only to one node forwards. Figure 2.7 presents the random walk search

algorithm.

FIGURE 2.7: LONG RANDOM WALK [33]

Lv et al. [37] present two methods for terminating the search in random walks. A

TTL based method and checking method. In the TTL based method, the walker

terminates when its TTL reaches zero, just as in the BFS algorithm. In the

checking method, the walker periodically checks with the original search source

if the search criterion is fulfilled. The checking method also uses TTL as secondary

terminating criteria, but usually with much larger values of TTL, mainly for

preventing loops.

The advantage that random walks give compared to flooding algorithms is the

reduction in messages sent in the network. In the worst case it produces k x TTL

messages. This is a huge improvement compared to BFS. However, the major

problem of random walks is the search success rate in the network.

Modified Random Walk

Gkantsidis, Mihail, and Saberi [33] present modified random walk with local

flooding. In this algorithm, the walker is being forwarded as in the regular

Chapter 2 – Peer-to-Peer Architectures and Algorithms

20

random walk. But in addition to forwarding the walker to a random neighbor,

each intermediate node also floods the search to all its neighbors with a small

TTL. According to authors, the modified random walk with local flooding reduces

the search time compared to regular random walks. Random walk with local

flooding is presented in Figure 2.8.

FIGURE 2.8: SHORT RANDOM WALK WITH LOCAL FLOODING [33]

2.2.4 Structured Search

In DHT architectures search is deterministic. A query is routed between nodes so

that on every step the query gets nearer to the node responsible for the

particular part of the hash space where the pointer to the requested resource

lies.

The DHT search is based on the idea that every resource has a unique hash or

resource identifier (ID) calculated from its properties, and that every node in the

network is responsible for a certain part of the hash space. This way, information

about resources is distributed among the network nodes.

When searching for a resource, the requestor calculates the hash for the

resource, e.g., from the resource name. Then, it sends the query towards a

neighbor node whose ID number is closest to the resource ID. This way, the

request is forwarded hop by hop nearer the node whose ID is nearest to the

resource ID in the whole network. The final node then replies the requestor if it

has the pointer to the resource. It is completely possible that the final node does

not have information about the resource, but in this case the asked resource is

not available anywhere in the network.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

21

A major benefit of DHT search is that the request is not sent to unneeded nodes

along the search process but it is forwarded a finite number of hops, always

nearer to its final destination. Thus, the search load for intermediate nodes is

also smaller than in decentralized peer-to-peer architectures where some variant

of flooding search is used.

On the other hand, a major drawback of DHT search is that the exact resource ID

has to be known for the search. Because DHTs are based on calculating a hash of

some resource property and deriving the resource ID for routing from that, it is

not possible to perform wildcard searches or other searches with partial

information. Also if multi-criteria search is to be supported, there must be an

own ID space for each possible search criteria, e.g., own resource IDs derived

from the resource name, resource creator, resource size, etc.

There has been some work trying to tackle the problem of the exact match

nature of the DHT search. For example, Joung, Yang, and Fang [39] present a DHT

search architecture where each resource is associated with variable number of

keywords or tags. The search query can then contain variable number of these

keywords but does not have to contain all the keywords of a resource. This way,

resources can be searched with partial information – by knowing only subset of

resource keywords – in DHT too. However, the exact match nature of the DHT

search stays in the keyword based search architectures too, as the individual

search keywords have to be complete and have to match to the keywords

associated with the searched resource.

2.2.5 Comparison of Search Algorithms

Only three of the presented search algorithms can be considered comprehensive

in their search coverage, i.e., they find the searched resource if it exists in the

network. These are the centralized, flooding, and DHT search algorithms.

Comparison of the key properties of these algorithms is presented in Table 2.1.

Chapter 2 – Peer-to-Peer Architectures and Algorithms

22

TABLE 2.1: COMPARISON OF SEARCH ALGORITHMS (ADAPTED FROM [30])

System Per node

state

Communication

overhead

Wildcard

search

Centralized 𝑂(𝑁) 𝑂(1) Yes

Flooding Search 𝑂(1) ≥ 𝑂(𝑁2) Yes

DHT Search 𝑂(log𝑁) 𝑂(log𝑁) No

In the centralized search, all state information is held in a single server. The

disadvantage of this is that the single server thus becomes a potential bottleneck

and is a potential single point of failure. The advantage of the centralized search

is that the comprehensive search in the centralized architecture takes only one

message exchange – the message from the client to the server and back.

In the flooding search, state information in scattered around the network – every

node knows only about its own resources. Thus, if a node fails, only information

about that node’s resources is lost. To find a resource with flooding search

potentially all the nodes in the network have to be searched; thus, the

communication overhead of the flooding search is proportional to the square of

the number of the nodes in the network.

Finally, in the DHT search, state information is distributed among all the nodes in

the network so that every node is responsible for a part of the resource space.

Thus, if a node fails, other nodes have to take shared responsibility of the failed

node’s resource space. On the other hand, because of the DHT structure, the

search is routed towards the target on every hop; leading the communication

overhead of the DHT search being proportional to the logarithm of the number

of the nodes in the network.

Because of the DHT query routing, the DHT search is much more efficient than

the flooding search in terms of communication overhead. And its upside

compared to the centralized search is that it still allows the resource index to be

distributed around the network, avoiding a single bottleneck or a potential point

Chapter 2 – Peer-to-Peer Architectures and Algorithms

23

of failure. However, it must be noted that DHT can be compared with centralized

and flooding search in terms of full network coverage only when exact match

searches are considered. The DHT search does not support wildcards searches,

and thus cannot be used with partial search information.

2.3 Conclusions

A major difference between all peer-to-peer architectures and the client-server

architecture is that in peer-to-peer architectures resources are hosted in edge-

nodes and not in a centralized server. Availability of popular resources in peer-

to-peer networks is very good when compared to a single centralized server, as

peers that have downloaded a popular resource from a peer-to-peer network

will also be sharing that resource to other peers. In contrast, if the resource is

hosted by a centralized server, a failure of the server brings resource availability

to zero.

Compared to the client-server architecture, peer-to-peer architectures are

scalable; one does not need to expand server capacity as the user count

increases – each user brings capacity with it to the network (bandwidth,

processing power, and other resources). Thus, peer-to-peer architectures also

handle flash crowds very well; i.e., situations where a certain resource becomes

suddenly hugely popular and is requested by many network participants. It is

also cheap to provide peer-to-peer because there is no need for centralized

resources.

On the other hand, in peer-to-peer architectures, a resource is available as long

as a node hosting this resource is online. When all the peers that have a

particular resource are offline, the resource is not available for other peers. This

is a very relevant risk in networks where nodes join and part the network often,

and for resources that are not hugely popular, and thus not distributed widely in

the network.

Chapter 3 – Mobile Peer-to-Peer

24

Chapter 3 – Mobile Peer-to-Peer

As mobile handsets have gotten more processing power, as faster wireless

communication technologies have evolved, and as mobile data plans have gotten

cheaper, have many traditional networked applications, such as, email clients

and web browsers found their way into the mobile world. In addition to these

traditional applications, a small set of peer-to-peer applications have been

developed for mobile devices.

These peer-to-peer applications are often ports of peer-to-peer applications

used in fixed networks. However, mobile devices have some inherent differences

from traditional PCs, and their limitations should be taken into account in peer-

to-peer application design.

In this chapter, we discuss the requirements and constraints of mobile

environment that have to be taken into account when developing a peer-to-peer

system for a mobile platform, and consider suitable architectures for mobile

peer-to-peer use. Last, we present some mobile peer-to-peer middleware and

application programs.

Chapter 3 – Mobile Peer-to-Peer

25

3.1 Requirements of Mobile Environment

Mobile environment has some technical constraints and special requirements

that do not exist in the fixed networks. In this section, we discuss those technical

constraints and requirements along with mobile user requirements.

3.1.1 Technical Constraints

The first constraint of mobile environment is the limited network bandwidth

available for the mobile device. Although advances in wireless technologies have

enabled broadband mobile connections, we still have to take the limited

bandwidth into account when designing networked mobile applications. In terms

of peer-to-peer this means minimizing non-relevant traffic, e.g., the traffic

needed for keeping up the peer-to-peer topology and forwarding of unneeded

search traffic.

Also, the modern wireless technologies often provide asymmetric bandwidth,

meaning there is more capacity available from the mobile network to the

handset than the other way around. This is especially a bad design choice when

considering peer-to-peer applications where the content is being distributed

from the mobile nodes.

The second constraint is the limited computational power in mobile devices. This

includes both, the CPU power and the available program memory. Thus the peer-

to-peer application should not have computationally intensive algorithms or use

large data structures.

The third constraint is the limited battery capacity of the mobile device. The

power consumption is directly tied to the use of the radio resources, CPU cycles,

and memory access. By limiting bandwidth use and computationally intensive

algorithms in the application the battery can be conserved. Also, selecting the

most power efficient radio technology – when there is more than one available –

is directly linked to the power consumption.

Chapter 3 – Mobile Peer-to-Peer

26

As we consider these technical constraints in the design of mobile peer-to-peer

application, we should select a mobile peer-to-peer architecture that creates a

minimal signaling load on the mobile peer, uses no complex algorithms or data

structures, and has efficient protocol coding. According to these constraints, we

can disregard decentralized peer-to-peer network architectures as they have a

high signaling load on all nodes due to the decentralized nature of the search.

Structured architectures have fewer problems with search traffic, but they

require extensive signaling for topology management to keep the network

structure intact as peers join and leave the network.

Centralized and hybrid peer-to-peer architectures, however, meet the

constraints. They place most of the overhead to super-nodes which can be

located in the fixed network. Mobile nodes only need to worry about keeping up

a connection to a single super-node.

3.1.2 Special Issues

In addition to the technical constraints, there are some special needs in the

mobile environment that do not manifest themselves in fixed networks.

The first issue is high churn. This means that mobile devices often stay

disconnected for a long time, i.e., their connectivity is intermittent. The frequent

joins and leaves should affect other nodes minimally – there should not be

signaling overhead for other nodes as one node joins or leaves the peer-to-peer

network. The effects of high churn should be constrained to a few nodes,

preferably to those with good connectivity in the fixed network, e.g., the super-

nodes.

The second issue is radio selection in a multi-radio device. Mobile devices are

nowadays equipped with several radios that support packet data

communications. In addition to their long-range cellular radios (e.g., GSM and 3G

WCDMA), they often have short-range radios (e.g., Bluetooth), and medium-

range radios (e.g., IEEE 802.11). The mobile device should be able to select the

Chapter 3 – Mobile Peer-to-Peer

27

best radio according to the situation, i.e., use a long-range radio when the device

is on the move, and use a short or medium-range, high-bandwidth radio when it

is in stationary.

The third issue is operator control. The mobile operators have traditionally

provided services in their walled-gardens, i.e., the services have been tied to the

operator and have been only usable to customers of that specific operator.

Thus, operators have had tight control on the service use. Conversely, peer-to-

peer applications are based on openness and free communications between

multiple peers over operator boundaries. To enable mobile peer-to-peer

communications, the mobile nodes have to be able to communicate with each

other over operator boundaries but at the same time each mobile operator

should be able to exercise some control on its users.

Considering these issues we can disregard decentralized and structured peer-to-

peer architectures as they are not suitable for high churn environments. In both

of these architectures, effects of joins and leaves are propagated to several

neighboring nodes – depending on the degree of connectivity between the

nodes. In structured peer-to-peer architectures the resource index also has to be

redistributed every time a new node joins or leaves the network. Structured and

centralized peer-to-peer architectures also do not enable operator control, as

they do not have centralized points of control.

Centralized and hybrid peer-to-peer architectures are suitable for high churn

environments. The effects of mobile devices joining and leaving the peer-to-peer

network are constrained to the super-node. They also allow the operator to

control the network by hosting the super-node service. Whereas the centralized

architecture is suitable for a single operator environment, the hybrid

architecture is better for multi-operator environment where each operator

needs to have some control on its users by running its own super-node.

Operators can use a special architecture, such as that presented by Xie et al. [40]

Chapter 3 – Mobile Peer-to-Peer

28

to enable cooperative traffic control between peer-to-peer applications and the

network provider.

The multi-radio connectivity is not directly related to peer-to-peer application

design, as it is a feature that is needed by all networked applications in the

mobile device. In [14], we present a model for autonomous radio interface

selection on mobile handsets.

3.1.3 User Requirements

What users want from the mobile peer-to-peer applications is pretty much the

same what they want from the peer-to-peer applications in fixed networks. From

application perspective, users want to find content efficiently; they do not

always know the exact name of the piece of content they are looking for, so

ability to search content with partial information, e.g., with wildcards, is

essential.

On the other hand, users want to have the service at affordable price. Compared

to fixed broadband connections that are virtually always based on flat-rate

charging, the mobile Internet connections have been mostly based on usage and

data-transfer charges. The usage based charging model is not suitable for peer-

to-peer use, as it is difficult for an ordinary user to estimate the amount of data

he has transferred, and thus the price of the application use. However, many

cellular operators are starting to provide affordable flat-rate pricing also for

mobile users.

Considering the user requirements, the only issue affecting the architecture

choice is the ability to perform wildcard searches. All non-structured peer-to-

peer architectures support wildcard searches. Thus, user requirements only rule

out structured peer-to-peer architectures as they do not support wildcard

searches.

Chapter 3 – Mobile Peer-to-Peer

29

3.2 Building a Mobile Peer-to-Peer Architecture

To summarize the most important points in mobile peer-to-peer application

design, the architecture should:

1. Minimize the traffic in mobile nodes to conserve bandwidth and

processing load, and thus also the battery on the mobile device,

2. minimize adverse effects of high churn on mobile nodes,

3. make wildcard search available for users, and

4. allow the operator to have control on the service.

When selecting the mobile peer-to-peer architecture we have to rule out the

structured architecture due to its inability to provide wildcard search and its bad

performance in high churn environments. We also cannot consider the

decentralized peer-to-peer architecture as high churn constantly breaks the

topology, and as the forwarding of search messages is performed by the mobile

peers.

As we saw in the previous chapter, the search methods of decentralized peer-to-

peer networks place strain on every node. We want to conserve the limited

resources of the mobile device so that the device does not have to process

searches sent by other peers in the network.

This leaves us with two good choices for the mobile peer-to-peer architecture;

the hybrid and the centralized peer-to-peer architecture. The centralized peer-

to-peer architecture is suitable for a small, single operator environment, whereas

the hybrid architecture provides more scalability, allows different operators to

have control on their own users in multi-operator environments, and allows

peer-to-peer communication between customers of different operators. The

hybrid architecture also allows using lightweight search algorithm between the

mobile node and the super-node, whereas a more complex search, e.g., flooding

search, can be used between the super-nodes.

Chapter 3 – Mobile Peer-to-Peer

30

Bakos et al. [41] present similar results on mobile peer-to-peer network

architecture selection. They present a simulation study of different mobile peer-

to-peer topologies, where they conclude that semi-random mesh (i.e.,

decentralized peer-to-peer) is the best topology for a network of similar devices,

e.g., when all the nodes are mobile phones. Whereas, connected stars (i.e.,

centralized peer-to-peer) topology is good for a network which consists of

devices with different capabilities, e.g., mobile phones and fixed network nodes.

3.2.1 Proprietary vs. Standard Protocol

Traditionally, the peer-to-peer file-sharing protocols have not been standardized

by any standardization body. The creation of peer-to-peer protocols has been

tied to the creation of different peer-to-peer applications. Once these

applications have become popular, other developers have developed

applications supporting the same peer-to-peer protocol. These protocols have

thus become de-facto standards, e.g., BitTorrent and FastTrack protocols.

The advantage of using these de-facto protocols is that they already have a large

user base and they are tested by time. The disadvantage of using these protocols

is that when there is no official standardization body overseeing the protocol

development, the protocol may have multiple non-interoperable versions in

development. Different clients may use different protocol versions, and nothing

guarantees that the different versions interoperate with each other.

There are not many standardized peer-to-peer protocols. One that we can

consider standardized is JXTA [42] which we discuss later in this chapter. Even

though there are not many standardized peer-to-peer protocols, nothing

prevents extending existing standard protocols for peer-to-peer use. Take, for

example, the Session Initiation Protocol (SIP). SIP is not designed to be a peer-to-

peer resource sharing protocol but a signaling protocol for internet multimedia

communications. However, with minor extensions, SIP can be used for peer-to-

Chapter 3 – Mobile Peer-to-Peer

31

peer resource advertisement, resource location, and connecting to these

resources. We discuss these SIP extensions in the next chapter.

There are some advantages in using standardized protocols for peer-to-peer

communications. For example, having a standardized protocol helps network

administrators identifying peer-to-peer traffic, and possibly imposing some

restrictions on that traffic. Also sometimes, using a standardized protocol allows

peer-to-peer applications to be integrated more closely with the existing

network. For example, the SIP protocol is the signaling protocol for future mobile

phone networks. Building a peer-to-peer application on top of SIP allows the

application to be integrated closely to the network and enables the mobile

operator to implement supporting functionality more easily, e.g., charging and

accounting of peer-to-peer application usage.

3.3 Mobile Peer-to-Peer Applications and Middleware

In this section, we review the recent academic research on mobile peer-to-peer

applications and middleware. As our mobile peer-to-peer application is currently

providing only peer-to-peer file-sharing support, we limit our focus on mobile

peer-to-peer file-sharing applications and generic mobile peer-to-peer

middleware platforms.

3.3.1 File-sharing Applications

In this section, we discuss some mobile peer-to-peer file-sharing applications.

Some of these applications are based on well known peer-to-peer protocols,

whereas others have totally original architectures.

Network Memory among Mobile Devices

Sambasivan and Ozturk [43] present a mobile peer-to-peer application that

allows mobile peers to share contents of their memory, e.g., pictures, between

each other. They present an application that is based on Symbian platform. The

Chapter 3 – Mobile Peer-to-Peer

32

application uses short-range Bluetooth communications, and does not rely on

any centralization, thus being based on decentralized peer-to-peer architecture.

In this application, the mobile nodes discover each other dynamically based on

proximity and form an ad-hoc network. As Bluetooth is a short-range radio, the

authors note that one of their assumptions is that the devices have to be

accessible in the Bluetooth range until the resource transfer between the devices

is complete. This prevents the use of the application in dynamic scenarios where

people come and go frequently. On the other hand, in static scenarios, such as in

a class-room environment, the application works just fine.

Mobile Proxy

Raivio [44] presents a hierarchical mobile peer-to-peer architecture based on a

concept of mobile proxy. In this architecture, each mobile device connects to a

predefined mobile proxy. The mobile proxy is part of the fixed peer-to-peer

network and it acts as cache for mobile clients, caching the data mobile devices

are uploading so that subsequent uploads can be done straight from the cache,

and not over the limited air interface of the mobile device.

In this architecture, the mobile proxy functions as a kind of super-node; the

mobile node sends its query first to the mobile proxy which then checks its own

index of local mobiles for the queried resource, and after that, floods the query

further to the peer-to-peer network. The architecture also allows nearby mobile

nodes to communicate directly with each other without the help of the proxy.

SymTorrent

Kelényi, Ekler, and Pszota [10] have developed a full-featured BitTorrent client

for the Symbian platform, called SymTorrent. SymTorrent enables mobile users

to connect to BitTorrent trackers and transfer files with other nodes connected

to the same tracker.

Chapter 3 – Mobile Peer-to-Peer

33

SymTorrent is based on the popular peer-to-peer file-sharing protocol called

BitTorrent. BitTorrent differs from most of the traditional peer-to-peer protocols

as it does not provide integrated search but depends on people finding the

torrent files by other means, e.g., from web sites. Torrent files have a pointer to

a tracker server – which is a kind of super-node – that knows which nodes are

sharing the piece of content associated with the torrent file. The BitTorrent

protocol itself handles only the distributed file-transfer. Thus, there is no single

global BitTorrent network, but several mini-networks around each tracker.

Architecturally these mini-networks can be seen as centralized peer-to-peer

networks where the trackers mediate file-transfers between the edge-nodes.

Mobile eDonkey

Oberender et al. [12] describe a mobile peer-to-peer file-sharing architecture

based on the eDonkey protocol. The original eDonkey protocol has been

modified to make it more suitable for mobile use. In this architecture, there is an

index server that keeps track of the popularity of the shared files in the network

and exports this popularity data to the cache peer. The cache peer then stores

these popular files in its cache, and the crawling peer supports the index server

by linking it to other index servers in the Internet. The resulting architecture is

something between centralized and hybrid peer-to-peer.

The benefit of this architecture is that the cache peer allows storing of popular

files, residing initially in mobile devices, in the fixed network. Thanks to the cache

peer, popular files do not have to be transferred multiple times over the air

interface when they are requested by another mobile node.

Symella

Kelényi, Forstner, and Forstner [11] have developed a Gnutella file-sharing client

for the Symbian platform. Symella is a Gnutella 0.6 client that works on Symbian

smart phones. Symella was released in late 2005, and to our knowledge, it was

Chapter 3 – Mobile Peer-to-Peer

34

the first publicly available mobile peer-to-peer application. The software enables

a mobile user to search and download content in a Gnutella network, but it does

not enable users to share anything.

As Symella is based on the Gnutella 0.6 protocol, its architecture is hybrid. The

hybrid architecture is good for mobile environment, because as leaf nodes the

communication overhead in mobile nodes is small. Most of the search traffic is

handled by super-nodes located in the fixed network.

Mobile Gnutella

Hu, Thai, and Seneviratne [45] argue that the usual peer-to-peer file-sharing

networks, such as Gnutella
1
, are not suitable for the mobile environment due to

their bandwidth consuming broadcast nature. Instead, a modified architecture

for Gnutella network is proposed where a mobile agent in the fixed network

works on behalf of the mobile device. The mobile agent is part of the Gnutella

network, where it acts as a normal Gnutella peer, and has vital information like

the file-list of the mobile device. The mobile device and the agent communicate

using a light-weight protocol.

In this architecture, the mobile agent handles most of the signaling traffic, such

as searches, and directs only download requests to the mobile device. The

mobile device can then perform the actual file transfer directly with the other

end node, or alternatively the mobile agent can perform the file-transfer on

behalf of the mobile device.

Network-Aware MP2P File-sharing

Huang, Hsu, and Hsu [46] discuss how wired peer-to-peer file-sharing

applications rely on stable connections and how these assumptions are not

suitable for mobile peer-to-peer networks where mobiles roam between

1
 Gnutella versions before 0.6 were based on decentralized peer-to-peer architecture, and thus

the search messages were flooded among all network participants.

Chapter 3 – Mobile Peer-to-Peer

35

networks, where network paths between two peers may change rapidly, and

where churn is a major concern.

Authors present a system architecture where a mobile peer-to-peer file-sharing

network is divided into multiple network-aware clusters. These clusters are

formed of nodes located near each other in IP-address topology (e.g., in the

same subnet) to improve the performance of the peer-to-peer network. In each

cluster, there is a super-node which handles queries from other peers inside the

cluster. The super-node holds an index of files available in the cluster, and in

case it does not find the queried file in its index, it forwards the query to nearby

clusters. The inter-cluster queries are flooded between clusters and they are

equipped with a TTL field, so that the query expires after a certain number of

forwards.

The authors also describe a mobility aware file discovery control (MADFC)

scheme which uses the publish-subscribe method for placing long-lived file

queries into the super-node. The super-node will then continuously look up for

the queried resource as new nodes are joining and parting the mobile peer-to-

peer network.

When a mobile peer later joins the network and publishes its list of files to the

super-node, the super-node first checks the file list against any registered

queries that some other peer has active. If there is a match, the super-node

informs the peer who placed the query. According to authors, this query mode

reduces the amount of query messages sent in the network.

The authors also describe a resource provider selection algorithm where a

mobile node can select its file-transfer peers according to network performance

metrics, such as bandwidth and round-trip time information. The super-node

helps the mobile node in the peer selection by providing a list of candidate

resource providers with their mobility information.

Chapter 3 – Mobile Peer-to-Peer

36

3.3.2 Middleware

Mobile peer-to-peer middleware provides peer-to-peer communication services

for overlying applications. By facilitating these middleware services, the

application programmers do not have to bother with implementation details of

peer-to-peer protocols.

JXTA/JXME

Juxtapose (JXTA) [47] is an open source peer-to-peer platform originally

developed by Sun Microsystems in 2001. A good introduction of JXTA and

evaluation of its suitability for mobile use is given by Maibaum and Mundt [42].

In [48], Blundo and Cristofaro describe a Bluetooth based JXME (JXTA for Java

Micro Edition) infrastructure.

JXTA creates a virtual network over IP or non-IP network, hiding the underlying

protocols from the applications sitting on top of JXTA. JXTA provides several

peer-to-peer communication services and protocols for its users [49]:

 Peer Resolver Protocol (PRP) allows a peer to send a search query to

another peer.

 Peer Discovery Protocol (PDP) allows a peer to discover other

advertisements (peer, group, service, and pipe).

 Endpoint Router Protocol (ERP) allows a peer to query for routing

information to route messages through the network.

 Pipe Binding Protocol (PBP) allows a peer to bind a pipe endpoint to a

physical peer.

 Rendezvous Protocol (RVP) is the mechanism by which services are

bootstrapped within the network.

 Peer Information Protocol (PIP) allows a peer to query for current status

of another peer.

JXTA has two categories of peers; super-nodes and edge nodes. Super-nodes are

either rendezvous or relay nodes. Rendezvous nodes are used for enabling

Chapter 3 – Mobile Peer-to-Peer

37

communication between edge-nodes in different networks. They setup a DHT

network with other rendezvous nodes for inter-network query routing. Relay

nodes allow edge-nodes to communicate through firewalls or NATs, and thus be

part of the JXTA network. Ordinary edge nodes, or JXTA peers, are organized in

peer groups around the super-nodes.

Light weight version of JXTA, called JXME (JXTA for J2ME) has been ported for

Java enabled mobile devices. There are two version of JXME available; proxied

version for slower J2ME devices, and proxyless version for more powerful mobile

devices. The proxied version needs a JXTA Relay to communicate with other JXTA

nodes, whereas the proxyless version is similar to a regular JXTA edge node as it

does not need the relay.

P2P Services

Keller et al. [50] present a two-layer mobile peer-to-peer service platform that

consist of a Core peer-to-peer services layer and an application specific services

layer. Universal core peer-to-peer services layer provides basic peer-to-peer

services that can be then utilized by application specific application layer

components.

FIGURE 3.1: HIERARCHIAL DHT

Chapter 3 – Mobile Peer-to-Peer

38

The architecture is based on a hybrid peer-to-peer architecture where more

capable nodes function as super-nodes. The super-nodes are connected to other

super-nodes in a DHT (see Figure 3.1), whereas the leaf nodes are connected to

super-nodes but not to the DHT itself. The authors note that the problem of their

architecture is that DHT natively supports only exact match queries, and that this

is inappropriate for many applications.

PnPAP

Harjula et al. [51] propose an application framework called the Plug-and-Play

Application Platform (PnPAP). PnPAP allows mobile applications dynamically

selecting among many underlying peer-to-peer and session management

protocols. The PnPAP sits between application layer and P2P protocol layer (see

Figure 3.2). In addition to conventional peer-to-peer protocols, such as, Direct

Connect (DC) and JXTA, the PnPAP application framework also allows using

Session Initiation Protocol (SIP) as the underlying communication protocol.

FIGURE 3.2: PLUG-AND-PLAY APPLICATION FRAMEWORK [52]

In another paper, Howie et al. [52] describe how SIP is used by the PnPAP.

Authors describe how SIP is used to find resources, initiate downloads, and find

new protocol images on other PnPAP nodes. The SIP communication architecture

uses SIP REGISTER message to query for available resources from PnPAP SIP

registrar. The authors suggest using instant messaging capabilities of SIP, along

with MIME encoding, to convey binary images over SIP between PnPAP peers

Chapter 3 – Mobile Peer-to-Peer

39

(see Figure 3.3). However, this is rather inefficient and a hostile way of conveying

large binary files, as the SIP message overhead is quite large, and as SIP messages

are often software forwarded in the SIP network, thus placing considerable load

to SIP proxies.

FIGURE 3.3: PNPAP DOWNLOAD USING INSTANT MESSAGING

Mobile Chedar

Kotilainen et al. [53] present Mobile Chedar peer-to-peer middleware for mobile

devices based on the Chedar peer-to-peer middleware [54]. Mobile Chedar uses

Bluetooth to connect to other peers. Mobile peers in the Mobile Chedar network

can also communicate with nodes in a fixed Chedar network by using Chedar

gateway peers. The Mobile Chedar can be used to locate unused resources, such

as CPU time and storage space in the network.

3.4 Conclusions

In the first part of this chapter, we discussed the special requirements that

mobile environment and its users pose on peer-to-peer architecture selection.

We concluded that hybrid or centralized architectures are good choices for

mobile peer-to-peer applications as they minimize the communication and

processing overhead in the mobile peer – whereas peer-to-peer solutions based

on decentralized and structured architectures are less suitable for mobile use as

Chapter 3 – Mobile Peer-to-Peer

40

they require mobile devices to be full members of the peer-to-peer network thus

placing considerable load on them.

In the second part, we reviewed different mobile peer-to-peer file-sharing

applications and mobile peer-to-peer middleware. Most of the applications

presented here are based on a hybrid peer-to-peer architecture or some kind of

application gateway architecture which abstracts away the complex peer-to-peer

network.

Chapter 4 – Mobile Peer-to-Peer over SIP

41

Chapter 4 – Mobile Peer-to-Peer over SIP

Next-generation mobile networks, like the Third Generation Partnership Project’s

(3GPP) IP Multimedia Subsystem (IMS), are largely built onto well known internet

protocols, such as the Session Initiation Protocol (SIP). These protocols are well

understood and documented, and they are tested in large scale deployments.

To enable mobile peer-to-peer communications in next-generation mobile

networks, we have designed a mobile peer-to-peer platform that works on top of

SIP. Using SIP instead of a proprietary peer-to-peer protocol ensures that the

peer-to-peer platform can be easily adapted to tomorrow’s SIP-aware mobile

networks.

We begin this chapter with a short overview of IMS and SIP. Then, we present

our mobile peer-to-peer application architecture, and discuss its design choices

and suitability for mobile use.

4.1 Mobile Peer-to-Peer in IMS

The IP Multimedia Subsystem (IMS) was designed to be the IP-based core of the

future packet switched 3G networks. It is a collaborative effort of the Internet

Engineering Task Force (IETF) and the Third Generation Partnership Project

(3GPP) to bring the cellular networks to a new era of communications.

Chapter 4 – Mobile Peer-to-Peer over SIP

42

The idea behind IMS is to provide internet services anywhere and anytime for

the mobile users and to create a common platform for various multimedia

services. IMS enables rich communications between mobile terminals over

various access network technologies, be it 3G, 4G, or 802.11.

As IMS is built on well defined standard protocols like SIP, it provides a good

basis for building a mobile peer-to-peer platform. SIP has properties that are

useful for peer-to-peer applications, and with minor modifications it is suitable

for peer-to-peer application signaling.

4.2 Session Initiation Protocol

Session Initiation Protocol [55] is a protocol for creating, modifying, and

terminating multimedia sessions between two or more participants.

SIP was drafted by the IETF Multiparty Multimedia Session Control (MMUSIC)

working group in 1997 as the result of merging two different signaling protocol

proposals: the Session Invitation Protocol (SIP) by Mark Handley and Eve

Schooler, and the Simple Conference Invitation Protocol (SCIP) by Henning

Schulzrinne. In 1999, the SIP working group was established, and later Session

Initiation Proposal Investigation (SIPPING) and SIP for Instant Messaging and

Presence Leveraging Extensions (SIMPLE) working groups were set up for

investigating further applications of SIP and defining instant messaging

extensions for it. [56]

SIP is an end-to-end signaling protocol; SIP messages are routed via SIP proxies

from the originator to the target user. SIP entities have a peer-to-peer

relationship between each other, thus any entity can send the initial request and

any entity is capable receiving requests. During a single transaction, the entities

are in a client-server relationship, where the request sender functions as the

client, and the party who sends the reply, as the server.

Chapter 4 – Mobile Peer-to-Peer over SIP

43

SIP is a text based signaling protocol; it is based on the Hypertext Transfer

Protocol (HTTP) and the Simple Mail Transfer Protocol (SMTP). SIP uses the same

request-response transaction model and status codes as HTTP, and same text

encoding rules and header styles as SMTP.

SIP is specified in RFC 3261 [55]. This Request for Comments (RFC) document

specifies the protocol and necessary components of the SIP signaling framework.

The SIP architecture provides means for resource location and location

independent routing of signaling messages. SIP only provides signaling for

negotiating session characteristics; the protocol provides no means to transfer

actual communication data between the session participants; thus other

protocols have to be used in addition to SIP to create meaningful services.

RFC 3261 specifies five aspects of multimedia session establishing, and

terminating that SIP provides:

1. User location - where to route signaling?

2. User availability - is the requested user available?

3. User capabilities - what are the media capabilities of the callee?

4. Session setup - establishment of the session parameters.

5. Session management - transferring, modifying, terminating the session

and invoking services.

4.2.1 Resource Location

When a SIP enabled User Agent (UA) starts up, it has to register to the Registrar

of its home domain. The registration is performed by sending a REGISTER request

to the registrar. This request includes user’s current address and the user’s

Address of Record (AOR).

The registrar will update UA’s current location to the Location service, which

creates a mapping between the AOR and the terminal address, and sends a 200

OK reply back to the UA to inform that the registration succeeded.

Chapter 4 – Mobile Peer-to-Peer over SIP

44

When the user wants to contact another user, all he needs to know is the AOR of

the other party. The SIP infrastructure provides message routing that enables the

originating user to send the SIP message to the known AOR of the other user.

First, the originating user sends an INVITE request to a preconfigured outbound

SIP proxy in his home domain, or alternatively to an inbound SIP proxy in foreign

user’s domain – the UA sending the request functions as the User Agent Client

(UAC) for this particular signaling exchange.

If the message was forwarded to the outbound proxy in the home domain, the

proxy will resolve the address of the correct inbound proxy in the foreign domain

and send the message there. The proxy in the foreign domain will contact the

location service of that domain to get information about the current location of

the session target.

The proxy then uses this location information to route the message to the UA

who is the final recipient. The final recipient will send the reply via the same

proxies as the request came from. In addition to message routing, these proxies

may also be used to implement charging and application layer firewalling

functions. The UA which receives the request and sends the response to the

requestor functions as the User Agent Server (UAS) for this particular signaling

exchange.

After the communicating partners have located each other via proxies, they may

start sending SIP messages directly between each other if the intermediate

proxies have not requested to stay on the signaling path.

4.2.2 SIP Requests and Responses

SIP messages are sent in a request-response style. There is one final reply per

one request. However, there can be several provisional replies before the final

one. The INVITE request is an exception, it is a three-way message, meaning

there is a request-reply-confirm (INVITE – 200 OK – ACK) pattern. Different SIP

requests are presented in Table 4.1.

Chapter 4 – Mobile Peer-to-Peer over SIP

45

TABLE 4.1: SIP REQUESTS

Request Action

REGISTER Pushes user’s current Contact URI to the location service in his home

domain.

INVITE Establishes session between UAs. Is different from other requests

because it is a three-way request.

BYE Terminates the session established with an INVITE request.

CANCEL Cancels pending requests. Request can be only cancelled if it has not

been fully processed yet.

OPTIONS Queries UA or proxy about the SIP capabilities it supports.

INFO Conveys call control information during an existing session.

MESSAGE Transfers user readable messages between terminals.

SUBSCRIBE and

NOTIFY

Used for subscribing to and notifying of events related to the SIP system.

PUBLISH Publishes event state information from UAC’s Event Publication Agent

(EPA) to Event State Compositor (ESC).

UPDATE Modifies the state of a pending session.

PRACK Provides reliable provisional responses.

REFER Refers another UA to access a resource specified by Uniform Resource

Identifier (URI) in the REFER request.

The SIP replies are identified by the reply codes. The reply codes are divided into

six response classes, shown in Table 4.2.

TABLE 4.2: SIP RESPONSE CODE CLASSES

Class Description Action

1xx Provisional Indicate the status of the session prior to completion. Are also

called provisional replies.

2xx Success Request has succeeded. Retransmission of messages is stopped. For

an INVITE, send ACK.

3xx Redirection The UAS or an intermediate proxy has returned possible locations

for the AOR we are trying to reach.

4xx Client error The request has failed due to an error in the UAC.

5xx Server failure The request has failed due to an error in the UAS.

6xx Global failure The request has failed. It cannot be fulfilled by any server.

Chapter 4 – Mobile Peer-to-Peer over SIP

46

4.2.3 SIP over P2P (P2P-SIP)

Regular SIP relies on Proxy, Registrar, and Location services that are located in

fixed addresses. However, sometimes it is useful if communication can be

initiated without first setting up the complex SIP server infrastructure. Peer-to-

Peer Session Initiation Protocol (P2P-SIP) [8] will work in settings where there is

no fixed SIP infrastructure available. In P2P-SIP, session establishment and

management is collectively handled by the members of the P2P-SIP network, and

thus there is no need for dedicated Proxy, Registrar, and Location services.

P2P-SIP is being developed in IETF’s P2PSIP working group. Between July 2007

and December 2007, eighteen different P2P-SIP related internet-drafts have

been published. As peer-to-peer SIP is very much under development, the final

architecture is still unknown. However, good high-level introduction to P2P-SIP is

given by Singh and Schulzrinne [57].

P2P-SIP overlay consists of P2P-SIP peers and P2P-SIP clients. The peers run

collectively a distributed database algorithm which is used to store information

about the mappings between AORs and Contact URIs to provide the location

function. It is likely that a DHT will be used to implement this distributed

database. This overlay provides the same functionality that SIP Proxies,

Registrars, and Location services offer in regular SIP.

In addition to P2P-SIP peers, there may be less capable nodes, called P2P-SIP

clients, connected to P2P-SIP peers, and not to the DHT itself. However, the role

of the P2P-SIP client is still under debate and it is not clear if it will be included in

the final architecture [58]. Matuszewski and Kokkonen [59] present a mobile

P2P-SIP architecture where mobile devices function as P2P-SIP clients; thus,

limiting the mobile device’s communication overhead to that between the

mobile client and a P2P-SIP peer – this way avoiding the DHT communication

overhead in the mobile device.

Chapter 4 – Mobile Peer-to-Peer over SIP

47

P2P-SIP vs. P2P over SIP

In the next section, we present our peer-to-peer application that uses SIP as the

signaling protocol. Compared to P2P-SIP, we are enabling peer-to-peer

networking over SIP – not SIP over peer-to-peer networks as in P2P-SIP.

In our architecture, we still rely on SIP Proxies and Registrars in the fixed network

providing the SIP message routing. However, our architecture does not care how

the underlying message routing is implemented – if it is relying on fixed SIP

infrastructure or peer-to-peer SIP. Our application merely uses SIP for message

routing.

It may not make much sense to use P2P-SIP with our application as our hybrid

architecture already relies on some fixed nodes, i.e., super-nodes, in the network

anyway. However, P2P-SIP would be useful when used with a decentralized peer-

to-peer application which could then work without any fixed infrastructure.

In [60], Harjula et al. present how their Plug-and-Play Application Platform

(PnPAP) peer-to-peer middleware can be used over the top of P2P-SIP so that SIP

messages are routed between PnPAP participants over P2P-SIP DHT. This version

of PnPAP uses the resource sharing framework utilizing the SUBSCRIBE and

NOTIFY scheme that we have specified in [61].

In their paper, the authors concluded that if PnPAP mobile nodes functioned as

P2P-SIP clients and not as full members of the P2P-SIP DHT, the performance

penalty of using P2P-SIP was minimal and the fault tolerance was improved

compared to the traditional client-server SIP. On the other hand, if PnPAP nodes

functioned as P2P-SIP peers, and thus as members of P2P-SIP DHT, the

performance was found to be poor.

4.3 Mobile Peer-to-Peer using SIP

We have created a hybrid mobile peer-to-peer file-sharing platform which

consists of a mobile client for Symbian based Nokia Series 60 smart phones and a

Chapter 4 – Mobile Peer-to-Peer over SIP

48

SIP Application Server (SIP AS) functioning as a super-peer. The software uses SIP

as its underlying signaling protocol to allow its use in any SIP aware network.

Usage of SIP enables peer-to-peer signaling to be routed using SIP URIs as node

identifiers. Use of SIP identifiers enables seamless mobility as the changes in

node IP-address, and thus in access net connectivity, are abstracted away using

the underlying SIP infrastructure.

Hybrid peer-to-peer was chosen as the underlying paradigm to minimize

overhead in the mobile device and to allow operators to have control on the

peer-to-peer service users by controlling the super-nodes.

The basic architecture of our Mobile Peer-to-Peer application is presented in

[18], [17], whereas more detailed architecture and performance analysis is

presented in [16]. Detailed mobile client software architecture is presented by

Hyyryläinen in [62].

4.3.1 Client Architecture

The client was designed to be modular and easy to use. The idea is that the client

provides a simple search dialog where the user can input information about the

content he is looking for. The user can initiate the search by specifying the name,

type, size, or hash of the file he wants to find. Searches using multiple

parameters are also possible.

The basic client functionality is divided into four modules. These are the

Registrar, Finder, Transfer, and Graphical User Interface (GUI) modules. The GUI

module interfaces with the user, the finder module takes care of the query

processing, and the transfer module handles peer-to-peer file transfers and

updates on the client’s file list to the super-node. The registrar module

communicates with the super-peer which peer-to-peer services are running in

the mobile device. Client’s high-level software architecture and communication

relationships are illustrated in Figure 4.1.

Chapter 4 – Mobile Peer-to-Peer over SIP

49

FIGURE 4.1: MP2P APPLICATION ARCHITECTURE

4.3.2 Super-Node Architecture

The super-node maintains information about the shared files on mobile clients.

This information includes file names, file hashes, file sizes, and other meta-

information.

The super-node interacts with the clients during searches and file list updates.

File searches are initiated by a client sending a search request to a super-node.

The super-node answers with a reply that contains information about the

matching files and the peers having those files.

We initially proposed super-node implementation as a Jiplet [63] attached to a

SIP server. However, Jiplet based super-node was never implemented. The first

super-node was implemented concurrently with the mobile peer-to-peer client

as a standalone Python script.

Chapter 4 – Mobile Peer-to-Peer over SIP

50

Morales Reyes [64] describes the second super-node implementation. This

super-node was implemented in C++ and it uses a MySQL database for storing

the peer-to-peer index.

4.3.3 SIP P2P Application Server Architecture

In [17], we describe an architecture where the super-node is implemented as a

SIP application server (SIP AS) to provide full integration with IMS networks. This

application server, called the Peer-to-Peer Application Server (P2P AS), interfaces

with the Serving Call Session Control Function (S-CSCF) and other P2P ASs using

SIP. Mobile devices connect to P2P AS via Proxy-CSCF (P-CSCF) and Serving-CSCF

(S-CSCF), as shown in Figure 4.2.

FIGURE 4.2: ELEMENTS IN P2P SIP OVER IMS

Each operator can have one or more P2P ASs which are connected to each other

in the decentralized peer-to-peer fashion. This architecture is not limited to IMS

networks, but allows connections to other peer-to-peer networks using SIP or

some other peer-to-peer protocol.

In [19] we present a refined architecture of a multi-service overlay network that

we call SIP P2P over IMS. In this architecture, there is one or more SIP P2P ASs

per operator. ASs create an overlay of their own with each other. They behave as

front end towards the mobile devices, make resources of the network available

Chapter 4 – Mobile Peer-to-Peer over SIP

51

to other super-nodes, help user equipment to get search results, and maintain a

peer-to-peer overlay network for resource sharing. Different overlay network

algorithms can be used depending what the provided service will be, e.g.,

unstructured flooding-algorithm for file-sharing service, or structured DHT for

locating chat contacts with full email addresses. General architecture is

presented in Figure 4.3.

FIGURE 4.3: SIP P2P OVER IMS ARCHITECTURE

Users can publish the availability of one or more resources in their devices,

perform searches, initiate file downloads, join audio or video streaming sources,

conferences, or chat rooms.

File transfer is done using the Message Session Relay Protocol (MSRP), and

Network Address Translation (NAT) and firewall traversal is accomplished by help

of MSRP relays.

In [17], we discuss how charging functions can be implemented with the help of

AS. Charging can be implemented with normal IMS charging mechanisms where

S-CSCF and P2P AS analyze the peer-to-peer SIP signaling and take part in the

Chapter 4 – Mobile Peer-to-Peer over SIP

52

charging process. Operators can implement any charging scheme for the usage

of SIP P2P services, including subscription based charging. P2P AS collects

application-level usage records which can be used as basis for charging as well.

One model would allow free searches and charge only for actual media

consumption, like file downloads or video streaming.

In [16], we discuss some further enhancements to the application server

architecture; such as P2P AS functioning as a cache for popular content, as a

gateway to an external peer-to-peer network, or as a peer-to-peer manager

which optimizes the use of network resources.

4.3.4 SIP Signaling

When a User Equipment (UE) joins a network, it publishes information about its

shared resources to a P2P AS. When the UE performs search it sends a search

request to the P2P AS. The P2P AS provides search results that contain a list of

available resources and SIP URIs where these resources are available, e.g.,

content cache, streaming server, chat group manager, or other UE where the

resource is stored. To fetch a resource, the UE initiates appropriate SIP session

towards such endpoint to fetch the resource. This final SIP session is between

the resource holder and the requester and it does not involve the P2P AS.

Initial Signaling Scheme

Our initial architecture used two standard SIP methods to implement all of its

functionality: INVITE and MESSAGE. The use of these message types was largely

dictated by the limitations of the SIP stack we used for the initial client

implementation. Signaling flow utilized in the initial architecture is presented in

Figure 4.4.

Chapter 4 – Mobile Peer-to-Peer over SIP

53

FIGURE 4.4: INITIAL SIGNALING

In our initial signaling scheme, nodes upload information about the files they are

sharing to a P2P AS in MESSAGE requests, whereas search requests are conveyed

in bodies of INVITE messages. The P2P AS sends search replies in the following

606 Not Acceptable replies. An error message was selected for the search reply

as it terminates the establishment of an unwanted session. However, a generic

request-reply type of signaling message, such as HTTP GET - 200 OK, would have

better suited for the situation; however, SIP is missing such a generic request-

reply type of a signaling message.

UE-A

Alice@nyc.fi

Proxy + Registrar

@nyc.fi

P2P AS

P2PAS1@nyc.fi

UE-B

Bob@nyc.fi

File Transfer

Register

200 OK

Invite

ACK

606 Not

Acceptable

Message

Message

200 OK

200 OK

Invite

606 Not

Acceptable

Invite

ACK

Invite

200 OK

200 OK

200 OK

ACK

ACK

200 OK

BYE

BYE

Content download

Content

Search

File List

Update

Registration

Chapter 4 – Mobile Peer-to-Peer over SIP

54

The actual content download is initiated by sending an INVITE request to the

peer that has the file of interest. The Session Description Protocol (SDP) in the

message body specifies the hash of the file to be downloaded.

The file list updates and search requests encode their bodies in Extensible

Markup Language (XML); thus, they can be extended easily in the future. In [16]

we present a messaging flow for registering to service, updating file list,

performing content search, and performing a file transfer.

Refined Signaling Scheme

We do not discuss the initial signaling scheme further but present the refined

signaling scheme introduced in [19]. Further information, such as detailed

message formats are given in [61].

Resource Publication

The first thing the UE does when it starts up the peer-to-peer application is the

resource publication to the P2P AS. The resource publication signaling flow is

presented in Figure 4.5.

FIGURE 4.5: RESOURCE PUBLICATION

Chapter 4 – Mobile Peer-to-Peer over SIP

55

At first, the UE does a regular IMS registration: After the UE is powered on (1)

and attached to a packet-switched network (2), it establishes a Packet Data

Protocol (PDP) context (3), and registers to IMS (4).

When the peer-to-peer application is launched, the UE publishes availability of its

shared resources to the P2P AS. SIP PUBLISH method is used with resource

publication event package [65] to publish resource information to the P2P AS

(20-21). The P2P AS replies with 200 OK including a SIP-ETag header that contains

the entity-tag allocated to the published resource (22-23).

Next, the P2P AS may need to publish or update resource information in the P2P

AS overlay network depending on the actual overlay architecture (24). In case a

flooding algorithm is used for inter-P2P AS searches, nothing is done in this

phase. In case of DHT algorithm, like Chord, is used, the resource metadata has

to be stored into the appropriate node in the overlay.

If the shared resource is later modified in the UE (25), the UE refreshes previous

publication by sending a new PUBLISH request where SIP-If-Match header is used

to match entity-tag of the resource (26-27). The P2P AS replies with 200 OK that

contains a new entity-tag related to the modified resource (28-29) and publishes

modified information forwards in the P2P AS overlay (30).

Search

To find resources in the peer-to-peer network, the UE performs search query to

the P2P AS. The search signaling flow is presented in Figure 4.6.

Chapter 4 – Mobile Peer-to-Peer over SIP

56

FIGURE 4.6: RESOURCE SEARCH

When a user initiates search in the peer-to-peer application (40), the UE sends a

SUBSCRIBE request for the resource event package. This request is sent to the

P2P AS (41-42) where it creates a soft-state subscription – meaning that the

subscription will last for some time (determined by the Expires header field). The

SUBSCRIBE request contains a Search filter [66] that specifies the search

parameters.

The P2P AS answers with a 200 OK message, this message does not have any

search results but it signals to the client that the search query has been

successfully received at the P2P AS (43-44).

Chapter 4 – Mobile Peer-to-Peer over SIP

57

Next, the P2P AS looks up its own database and forwards the query further to

other P2P ASs in the overlay (45).

Then P2P AS sends a NOTIFY request to the UE. This request usually contains a

first collection of search results. In case the P2P AS did not have matching results

in its local database and its waiting for search results from the overlay, it will

send an empty NOTIFY request. The empty NOTIFY request is sent due to

protocol reasons, as an immediate NOTIFY is required after a successful

SUBSCRIBE as mandated by RFC3265 [67] (46-47). The UE answers with 200 OK

(48-49).

After the P2P AS receives the first set of results from the overlay (50) it will send

results to the UE in a NOTIFY request (51-52), and the UE will acknowledge this

with 200 OK (53-54).

Later, when the P2P AS receives more results for the search, it sends further

NOTIFY requests to the UE. When the last batch of results arrives from the

overlay or when the search state expires in the P2P AS (55), the P2P AS sends the

last NOTIFY request to the UE and sets the Subscription-State header value to

terminated to indicate that the search state exists no more in the P2P AS.

The search method used in our architecture is good for mobile use as it is

incremental. The user does not have to wait for initial search results even if the

search in overlay is taking some time. However, the use of incremental search

creates some communication overhead as more SIP messages are passed

between the P2P AS and the UE.

Resource Connection

Finally, to acquire the interesting resource or connect to the resource, the UE has

to establish a session to the resource holder. The signaling flow for connecting to

the resource in another UE is shown in Figure 4.7

Chapter 4 – Mobile Peer-to-Peer over SIP

58

FIGURE 4.7: RESOURCE CONNECTION

When the user has found the resource he wants to connect to, he selects the

resource from the search results to initiate the resource connection (80). Then,

the UE-A sends an INVITE request to the SIP URI specified in the search results

(81-83). This INVITE contains an SDP offer indicating a file transfer operation and

some metadata indicating the resource to be retrieved.

If the UE-B does not, for some reason, have resources to fulfill the request (84) it

will send 182 Queued message to the UE-A to inform that the request is queued

and will be answered later (85-87). Later, when the UE-B is ready to process the

request, it answers with 200 OK containing the SDP answer (89-91), which the

UE-A replies with ACK (92-94).

The actual connection to the resource happens using some other protocol, such

as MSRP for file transfer (95).

When the media session ends, either of the UEs sends a BYE request (96-98) that

is answered by a 200 OK reply by the other UE (99-101).

Chapter 4 – Mobile Peer-to-Peer over SIP

59

4.3.5 System Performance

In [14] and [16], we present measurements results for our initial signaling

architecture. Message sizes were measured and they are presented in Table 4.3.

TABLE 4.3: SIP MESSAGE SIZES

Action Request Size (bytes) Reply Size (bytes)

Register REGISTER 370 200 OK 300

Search INVITE 430–480 606 Not Acceptable 370–1380

 ACK 320

File list update MESSAGE 450–1380 200 OK 250

Download INVITE 540 200 OK 290

 ACK 390

De-register REGISTER 380 200 OK 250

In [19], we present publication and search delay calculations for our enhanced

signaling architecture. These are presented in Table 4.4.

TABLE 4.4: PUBLICATION AND SEARCH DELAY FOR ENHANCED ARCHITECTURE

Action Request / Reply Delay

Publication PUBLISH 240 ms

 200 OK 150 ms

 Sum 390 ms

Search SUBSCRIBE 260 ms

 Search in P2P AS 10 - 2000 ms
2

 NOTIFY
3
 340 ms

 Sum 610-2600 ms

As we can see, messages are quite large in size as SIP is a text-based protocol and

as it has many mandatory protocol fields. However, as the measurement results

2
 Search delay in P2P AS varies largely depending on the size of the P2P network. In case some

matches are found in the serving P2P AS, the first NOTIFY can be returned almost instantly;

whereas, if the search has to propagate to a distant P2P AS, the delay can be much longer.
3
 NOTIFY size varies greatly depending how many results are found. E.g., the NOTIFY used in

these calculations contains information about one file found from two different peers.

Chapter 4 – Mobile Peer-to-Peer over SIP

60

show, the actual delay of transmitting any of these messages is less than one

second.

In [16] we present measurements on MP2P application memory use. The

memory use of the application varied between 200 and 350 kilobytes, whereas

the SIP stack and SIP profile manager consumed additional 170 kilobytes of

memory.

In [13] we present measurements on transfer speeds between mobile devices in

a 3G network. We achieved speed of 100kbit/s with the limiting factor being the

bandwidth from the mobile device towards the network. Compared to peer-to-

peer transfer speeds over Bluetooth in [43], where the best measured

performance for transmitting a 10 kilobyte image was 3.5 seconds, resulting in

the average transfer speed just below 23kbit/s, we can note that the 3G transfer

speeds were over four times faster than those of Bluetooth. In addition, we are

not limited to the proximity of Bluetooth connectivity with 3G. With more

advanced radio technologies, such as High-Speed Packet Access (HSPA) and

Evolution Data-Only (EVDO), the transfer speeds should be an order of

magnitude higher.

Acceptable Performance

In [20] we present an analysis of a questionnaire survey, where 98 potential

peer-to-peer application users were asked about their peer-to-peer usage habits.

Among other questions, the potential users were asked about acceptable search

delays and acceptable image download delays when using a mobile peer-to-peer

application. These results are shown in Table 4.5 and Table 4.6 respectively.

Chapter 4 – Mobile Peer-to-Peer over SIP

61

TABLE 4.5: ACCEPTABLE SEARCH DELAYS

Search delay (sec) Percentage of

respondents accepting

2 100

30 74

60 45

>60 24

TABLE 4.6: ACCEPTABLE IMAGE FILE DOWNLOAD DELAYS

Image file download

delay (sec)

Percentage of

respondents accepting

2 100

30 86

60 56

120 28

>120 8

From the results we can see that 100% of the potential users are satisfied with

search delays less than two seconds and 74% with delays less than thirty

seconds. When comparing these results to the measured signaling delays, we can

see that the signaling delays in our application are no problem as they are always

below the two second threshold.

In cases where search takes more than two seconds to complete, due to delays

in the P2P AS overlay, the incremental search functionality provides results as

they become available, thus enhancing the user experience.

When questioned about acceptable image file download delays, all users were

happy with a sub two-second delay, whereas 86% were happy with a sub thirty-

second delay, and 56% were happy with sub one-minute delay. If available

bandwidth is roughly 100kbit/s, which is a typical 3G upstream bandwidth, we

cannot presume that an image file can be downloaded in a sub two-second

Chapter 4 – Mobile Peer-to-Peer over SIP

62

timescale as only about 25kB can be transmitted in that time, and that does not

even include signaling delays. However, in 30 seconds we are able to download

750kB of data, which should be enough for image transfer in mobile context.

As a concluding note, the signaling delays are not an issue at all. When

downloading larger than 100kB objects, the file transfer delay starts to dominate

over the signaling delay – thus being the limiting capability for all networked

mobile applications, not just for peer-to-peer applications.

4.3.6 Securing Mobile Peer-to-Peer

According to [68], the security problems of P2P systems include: authentication,

encryption, privacy and confidentiality, and ability to deal with malicious nodes.

A bit different categorization is used by Daswani et al. [69], who organize the

security issues of P2P data-sharing into four areas: availability, file authenticity,

anonymity, and access control.

In a P2P file-sharing environment we can divide security issues by functionality

into two main categories – into security issues of search and into security issues

of content transfer. Whereas content searches are done using a fairly static

super-peer, the actual content is transferred from peer to peer, where the other

peer can be any random, never-seen-before node.

In [15], we discuss search and download security issues, as well as availability

and anonymity issues of mobile peer-to-peer networks. In this paper, we discuss

how securing both peer-to-peer signaling and content downloads is important to

prevent unwanted entities from gaining private information from the peer-to-

peer traffic.

We found out that if searches are done in centralized or hybrid peer-to-peer

architectures where a node sends queries to a single super-peer, securing this

connection is rather easy as the mobile node can have a shared secret with the

super-peer that is used for authenticating and signaling encryption between the

Chapter 4 – Mobile Peer-to-Peer over SIP

63

mobile node and the super-node. One candidate for such shared secret is the

secret key K, which is shared between the mobile node Universal Subscriber

Identity Module (USIM) and the network Authentication Center (AuC).

However, because downloads are done between random peers, it is much more

difficult to secure this inter-peer connection as it is not feasible to have shared

secrets between all possible peers in the network. Thus, authentication between

the peers has to be based on Public Key Infrastructure (PKI) or on a centralized

authentication server.

In the paper, we also propose using Secure / Multipurpose Internet Mail

Extensions (S/MIME) and Transport Layer Security (TLS) in our SIP based peer-to-

peer architecture to secure the signaling and download connections.

4.4 Conclusions

In this chapter, we presented our SIP based mobile peer-to-peer architecture.

Our application architecture is based on the hybrid peer-to-peer architecture

where network operators are running super-nodes in their networks as SIP P2P

Application Servers. Our application architecture satisfies all requirements for a

mobile peer-to-peer application stated in Section 3.2:

1. It minimizes the traffic in mobile nodes to conserve bandwidth and

processing load, and thus also the battery on mobile device,

2. it minimizes adverse effects of high churn on mobile device,

3. it enables users to perform wildcard searches, and

4. it lets mobile operator to have control on the service.

As our architecture uses text based SIP for signaling, the signaling is not the most

efficient. However, as the measurement results show, the delays of transmitting

the signaling messages were less than one second in all cases, which, according

to our user study, satisfies 100% of users. Only the initial joining to the network

and publishing the list of resources to the P2P AS potentially takes more time.

Chapter 5 – Conclusions

64

Chapter 5 – Conclusions

Finally, in this chapter, we provide conclusions on our mobile peer-to-peer

research. We begin this chapter by reviewing the research objectives. Then, we

present the key findings of the thesis. Last, we give ideas for some future

research topics on the subject.

5.1 Objectives Revisited

The main objective of this thesis is to present how peer-to-peer based services

can be efficiently realized in next-generation SIP/IMS networks by reusing their

existing protocols as much as possible, and to present some enhancements to

these protocols. We also evaluate what kind of special requirements the mobile

environment poses for peer-to-peer applications and consider those

requirements in our application design.

Longer term objective for the research is to develop a peer-to-peer framework

over which different kinds of mobile services can be deployed without providing

centralized service architecture in the network. This framework should provide

service discovery and service connection services for various overlying

applications.

Chapter 5 – Conclusions

65

5.2 Results

Compared to other mobile peer-to-peer research, where the research has often

focused on the peer-to-peer protocols used in the fixed Internet, and on

modification of these protocols to be used in the mobile environment, we

present a unique way of integrating a peer-to-peer network model on top of IMS

networks. We have considered the special requirements of the mobile

environment in our research, and built the application architecture considering

how to meet those requirements best.

In our architecture, SIP is reused as the peer-to-peer signaling protocol, i.e., for

uploading resource info from a mobile client to a super-peer, for searching

resources in the peer-to-peer network, and for initiating resource connections,

e.g., file transfers between mobile peers.

We present a SIP based hybrid peer-to-peer application architecture where the

SIP Application Server (SIP AS) functions as a peer-to-peer super-peer. We show

that the hybrid peer-to-peer architecture is the best fit for mobile peer-to-peer

network as it minimizes overhead in mobile nodes and as it allows the mobile

operator to have control on its users – even in multi-operator environment.

Indeed, other mobile peer-to-peer research projects presented in this paper are

also mostly based on hybrid or centralized peer-to-peer architectures, due to

these architectures’ low overhead in the mobile nodes.

Finally, we present measurement results on the application performance and

compare these results to user requirements acquired from the user survey.

Comparing these two, we see that our application satisfies the user requirements

for the application performance.

5.3 Further Discussion

We presented a SIP enabled peer-to-peer service framework that can be used as

the basis for a multitude of peer-to-peer services. Our framework is not limited

Chapter 5 – Conclusions

66

to one type of peer-to-peer service but it provides generic tools for resource

advertisement, resource discovery, and resource connection.

Use of mobile peer-to-peer services can provide mobile operators cost savings as

the service infrastructure is distributed among the end-nodes. The operator

might have to run a super-node, but the infrastructure costs of running a simple

super-node, compared to running the whole service based on the traditional

client-server model, are minimal.

One potential issue in low-bandwidth environments is that the SIP is not the

most efficient protocol as it is text based and as it has many mandatory protocol

fields. If messaging overhead of SIP is considered as too large, use of binary SIP

or SigComp should be considered.

5.4 Future Research Possibilities

As people are sharing personal and private information in peer-to-peer systems

they might want to control who has access to this information; this is also shown

in the results of our mobile peer-to-peer survey [20]. Traditional centralized

access control and group management techniques cannot be directly applied to

inherently distributed peer-to-peer networks. Some interesting questions

regarding group management are: who is controlling the group, is there one

controller or is control distributed among many peers, who is authenticating

peers that want to join the group, etc.

An interesting aspect, especially from mobile point-of-view, is caching in peer-to-

peer networks. If a mobile device is hosting a resource that becomes immensely

popular it might have problems serving it to large crowds. Usually peer-to-peer

networks tackle this problem so that all peers who get the resource are also

sharing it. However, due to intermittent nature of mobile connections, it might

be useful to cache this popular material in nodes that are located in the fixed

network and that have fast connections. Cache servers might also improve

general scalability of mobile peer-to-peer networks.

Chapter 5 – Conclusions

67

Last, continuing on the research we did in [20], it would be interesting to

perform user tests with real mobile peer-to-peer applications to see how users

use peer-to-peer applications in the mobile environment, and how this differs

from the usage of peer-to-peer applications in the fixed network.

68

References

1. Cho, Kenjiro, Fukuda, Kentsuke, Esaki, Hiroshi and Kato, Akira. The Impact and

Implications of the Growth in Residential User-to-User Traffic. Proceedings of the

2006 conference on Applications, technologies, architectures, and protocols for

computer communications. 2006, pp. 207 - 218.

2. ipoque. Internet Study 2007. [Online] [Cited: February 11, 2008.]

http://www.ipoque.com/media/internet_studies/internet_study_2007.

3. Howe, Anthony J. Napster and Gnutella: a Comparison of two Popular Peer-to-

Peer Protocols. s.l. : University of Victoria, February 28, 2002.

4. Ripeanu, Matei. Peer-to-Peer Architecture Case Study: Gnutella Network. First

International Conference on Peer-to-Peer Computing (P2P'01). 2001.

5. Cohen, Bram. Incentives Build Robustness in BitTorrent. Workshop on Economics

of Peer-to-Peer Systems (P2PEcon'03). 2003.

6. Baset, Salman A. and Schulzrinne, Henning. An Analysis of the Skype Peer-to-

Peer Internel Telephony Protocol. IEEE Infocom 2006. 2006.

7. Joost. Joost - The new way of watching free, full-screen, high-quality TV on the

internet. [Online] [Cited: August 29, 2007.] http://joost.com/.

8. P2PSIP. P2PSIP. [Online] [Cited: August 29, 2007.] http://www.p2psip.org/.

69

9. Rubenstein, Dan and Sahu, Sambit. Can Unstructured P2P Protocols Survive

Flash Crowds. IEEE/ACM Transactions on Networking. June 2005, Vol. 13, 3, pp. 501-

512.

10. SymTorrent. Budapest University of Technology and Economics, Department of

Automation and Applied Informatics. [Online] [Cited: November 7, 2007.]

http://symtorrent.aut.bme.hu/.

11. Symella. Budapest University of Technology and Economics, Department of

Automation and Applied Informatics. [Online] [Cited: November 10, 2007.]

http://symella.aut.bme.hu/.

12. Oberender, Jens O., Andersen, Frank-Uwe, de Meer, Hermann, Dedinski, Ivan,

Hoßfeld, Tobias, Kappler, Cornelia, Mäder, Andreas and Tutschku, Kurt. Enabling

Mobile Peer-to-Peer Networking. Wireless Systems and Mobility in Next Generation

Internet, Lecture Notes in Computer Science. 2005, Vol. 3427, pp. 219 - 234.

13. Lehtinen, Juuso. Design and Implementation of Mobile Peer-to-Peer Application.

Department of Electrical and Communications Engineering, Helsinki University of

Technology. 2006. MSc Thesis.

14. Lehtinen, Juuso. Towards Intelligent Multi-Access: Autonomic Network

Interface Selection in Mobile Environment. S-38.4030 Postgraduate Course on

Networking Technology. 2006.

15. Lehtinen, Juuso. Secure and Mobile Peer-to-Peer File Sharing. Publications in

Telecommunications Software and Multimedia. TML-C21, 2006, Mobile

Communities - Seminar on Internetworking.

16. Matuszewski, Marcin, Beijar, Nicklas, Lehtinen, Juuso and Hyyryläinen, Tuomo.

Content Sharing in Mobile P2P Networks: Myth or Reality? International Journal of

Mobile Network Design and Innovation. 2006, Vol. 1, 3-4, pp. 197-207.

17. Beijar, Nicklas, Matuszewski, Marcin, Lehtinen, Juuso and Hyyryläinen, Tuomo.

Mobile Peer-to-Peer Content Sharing Services in IMS. The International Conference

on Telecommunication Systems, Modeling and Analysis 2005, ICTSM 2005. 2005.

70

18. Matuszewski, Marcin, Beijar, Nicklas, Lehtinen, Juuso and Hyyryläinen, Tuomo.

Mobile Peer-to-Peer Content Sharing Application. 3rd IEEE Consumer

Communications and Networking Conference (CCNC 2006). 2006, Vol. 2, pp. 1324-

1325.

19. Matuszewski, Marcin, Garcia-Martin, Miguel A., Beijar, Nicklas and Lehtinen,

Juuso. Resource Sharing and Discovery on Top of IMS. 4th IEEE Consumer

Communications and Networking Conference (CCNC 2007). January 2007, pp. 484-

490.

20. Matuszewski, Marcin, Beijar, Nicklas, Lehtinen, Juuso and Hyyryläinen, Tuomo.

Understanding Attitudes Towards Mobile Peer-to-Peer Content Sharing Services.

IEEE International Conference on Portable Information Devices. 2007, pp. 1-5.

21. Giesler, Markus. Consumer Gift Systems. Journal of Consumer Research. 2006,

Vol. 33, pp. 283-290.

22. IEEE International Conference on Peer-to-Peer Computing. P2P. [Online] [Cited:

October 30, 2007.] http://www.ida.liu.se/conferences/p2p/portal/.

23. International workshop on Peer-To-Peer Systems. IPTPS. [Online] [Cited:

October 30, 2007.] http://www.iptps.org/.

24. IEEE International Conference on Pervasive Computing and Communications.

PerCom. [Online] [Cited: October 30, 2007.] http://www.percom.org/.

25. IEEE International Parallel and Distributed Processing Symposium. IPDPS.

[Online] [Cited: October 30, 2007.] http://www.ipdps.org/.

26. IEEE Consumer Communications & Networking Conference. CCNC. [Online]

[Cited: October 30, 2007.] http://www.ieee-ccnc.org/.

27. Peer-to-Peer Research Group. Internet Research Task Force. [Online] [Cited:

November 1, 2007.] http://www.irtf.org/charter?gtype=rg&group=p2prg.

71

28. Schollmeier, Rüdiger. A Definition of Peer-to-Peer Networking for the

Classification of Peer-to-Peer Architectures and Applications. First International

Conference on Peer-to-Peer Computing (P2P’01). 2002.

29. Milojicic, Dejan S., Kalogeraki, Vana, Lukose, Rajan, Nagaraja, Kiran, Pruyne,

Jim, Richard, Bruno, Rollins, Sami and Xu, Zhichen. Peer-to-Peer Computing. s.l. :

HP Laboratories, Palo Alto, 2002.

30. Steinmetz, Ralf and Wehrle, Klaus, [ed.]. Lecture Notes in Computer Science:

Peer-to-Peer Systems and Applications. s.l. : Springer Berlin / Heidelberg, 2005. Vol.

3485/2005. ISBN: 978-3-540-29192-3.

31. Risson, John and Moors, Tim. Survey of research towards robust peer-to-peer

networks: search methods. Computer Networks: The International Journal of

Computer and Telecommunications Networking. 2006, Vol. 50, 17, pp. 3485 - 3521.

32. Vanthournout, Koen, Deconinck, Geert and Belmans, Ronnie. A taxonomy for

resource discovery. Personal and Ubiquitous Computing. 2005, Vol. 9, 2, pp. 81 - 89.

33. Gkantsidis, Christos, Mihail, Milena and Saberi, Amin. Hybrid search schemes

for unstructured peer-to-peer networks. Proceedings of the 24th Annual Joint

Conference of the IEEE Computer and Communications Societies. 2005, Vol. 3, pp.

1526 - 1537.

34. Backx, Peter, Wauters, Tim, Dhoedt, Bart and Demeester, Piet. A comparison

of peer-to-peer architectures. Eurescom Summit 2002. 2002.

35. Kalogeraki, Vana, Gunopulos, Dimitrios and Zeinalipour-Yazti, D. A local search

mechanism for peer-to-peer networks. Proceedings of the eleventh international

conference on Information and knowledge management. 2002, pp. 300 - 307.

36. Yang, Beverly and Garcia-Molina, Hector. Efficient Search in Peer-to-Peer

Networks. International Conference on Distributed Computing Systems. 2002.

37. Lv, Qin, Cao, Pei, Cohen, Edith, Li, Kai and Shenker, Scott. Search and

Replication in Unstructured Peer-to-Peer Networks. Proceedings of the 16th

international conference on Supercomputing. 2002, pp. 84 - 95.

72

38. Chang, Nicholas B. and Liu, Mingyan. Controlled Flooding Search in a Large

Network. IEEE/ACM Transactions on Networking. April 2007, Vol. 15, 2, pp. 436-449.

39. Joung, Yuh-Jzer, Fang, Chien-Tse, and Yang, Li-Wei. Keyword Search in DHT-

Based Peer-to-Peer Networks. IEEE Journal on Selected Areas in Communications.

January 2007, Vol. 25, 1, pp. 46-61.

40. Xie, Haiyong, Krishnamurthy, Arvind, Silberschatz, Avi and Yang, Richard Yang.

P4P: Explicit Communications for Cooperative Control Between P2P and Network

Providers. 2007.

41. Bakos, Balázs, Csúcs, Gergely, Farkas, Lóránt and Nurminen, Jukka K. Peer-to-

peer protocol evaluation in topologies resembling wireless networks. An

experiment with Gnutella query engine. The 11th IEEE International Conference on

Networks (ICON2003). 2003, pp. 673-680.

42. Maibaum, Nico and Mundt, Thomas. JXTA: A Technology Facilitating Mobile

Peer-To-Peer Networks. Proceedings of the International Workshop on Mobility and

Wireless Acces (MOBIWAC). 2002.

43. Sambasivan, Veena and Ozturk, Yusuf. Network Memory Among Mobile

Devices. IEEE International Conference on Pervasive Services. 2007, pp. 153-156.

44. Raivio, Yrjö. A Peer-to-Peer Overlay Architecture for Mobile Networks.

T110.7190 Research Seminar on Telecom Software. 2005.

45. Hu, Tim Hsin-ting, Thai, Binh and A., Seneviratne. Supporting mobile devices in

Gnutella file sharing network with mobile agents. Eighth IEEE International

Symposium on Computers and Communication (ISCC'03). 2003, pp. 1035-1040.

46. Huang, Chung-Ming, Hsu, Tz-Heng and Hsu, Ming-Fa. Network-aware P2P file

sharing over the wireless mobile networks. IEEE Journal on Selected Areas in

Communications. January 2007, Vol. 25, 1, pp. 204-210.

47. Sun microsystems. JXTA Technology - Overview. [Online] [Cited: February 16,

2008.] http://www.sun.com/software/jxta/.

73

48. Blundo, Carlo and De Cristofaro, Emiliano. A Bluetooth-Based JXME

Infrastructure. 9th International Symposium on Distributed Objects, Middleware,

and Applications. 2007.

49. WhatIsJxta. JXTA Wiki. [Online] [Cited: February 17, 2008.]

http://wiki.java.net/bin/view/Jxta/WhatIsJxta.

50. Kellerer, Wolfgang, Despotovic, Zoran, Michel, Maximilian, Hofstatter, Quirin

and Zols, Stefan. Towards a Mobile Peer-to-Peer Service Platform. Proceedings of

the 2007 International Symposium on Applications and the Internet Workshops.

2007.

51. Harjula, Erkki, Ylianttila, Mika, Ala-Kurikka, Jussi, Riekki, Jukka and Sauvola,

Jaakko. Plug-and-play application platform: towards mobile peer-to-peer.

Proceedings of the 3rd international conference on Mobile and ubiquitous

multimedia. 2004, pp. 63 - 69.

52. Howie, Douglas, Harjula, Erkki, Ala-Kurikka, Jussi and Ylianttila, Mika.

Harnessing SIP for autonomous mobile peer-to-peer networking. IEEE Global

Telecommunications Conference (GLOBECOM '05). 2005.

53. Kotilainen, N., Weber, M., Vapa, M. and Vuori, J. Mobile Chedar - a peer-to-

peer middleware for mobile devices. Third IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom 2005). 2005, pp. 86-

90.

54. Auvinen, A., Vapa, M., Weber, M., Kotilainen, N. and Vuori, J. Chedar: peer-to-

peer middleware. 20th International Parallel and Distributed Processing Symposium

(IPDPS 2006). 2006.

55. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,

R., Handley, M. and Schooler, E. RFC 3261 - SIP: Session Initiation Protocol. s.l. :

IETF, June 2002. RFC3261.

56. Johnston, Alan B. SIP: Understanding the Session Initiation Protocol. 2nd Edition.

s.l. : Artech House Publishers, 2003.

74

57. Singh, Kundan and Schulzrinne, Henning. Peer-to-peer internet telephony using

SIP. International Workshop on Network and Operating System Support for Digital

Audio and Video. 2005, pp. 63 - 68.

58. Bryan, D., Matthews, P., Shim, E., Willis, D. Concepts and Terminology for Peer

to Peer SIP. draft-ietf-p2psip-concepts-01. November 15, 2007.

59. Matuszewski, Marcin and Kokkonen, Esko. Mobile P2PSIP - Peer-to-Peer SIP

Communication in Mobile Communities. 5th IEEE Consumer Communications and

Networking Conference, 2008. CCNC 2008. January 2008, pp. 1159-1165.

60. Harjula, Erkki, Ala-Kurikka, Jussi, Howie, Douglas and Ylianttila, Mika. Analysis

of Peer-to-Peer SIP in a Distributed Mobile Middleware System. Global

Telecommunications Conference (GLOBECOM 2006). 2006.

61. Garcia-Martin, Miguel A., Matuszewski, Marcin, Beijar, Nicklas and Lehtinen,

Juuso. Sharing Files with the Session Initiation Protocol (SIP). draft-garcia-sipping-

file-sharing-framework-01. [Internet-Draft]. November 16, 2007.

62. Hyyryläinen, Tuomo. Mobile P2P Client Implementation on Symbian.

Department of Electrical and Communications Engineering - Networking Laboratory,

Helsinki University of Technology. 2006. Special Assignment.

63. CafeSip.org. Jiplet Container - a container for SIP applications. [Online] [Cited:

February 16, 2008.] http://www.cafesip.org/projects/jiplet/index.html.

64. Morales Reyes, Victor Hugo. Design and implementation of a distributed file

directory for mobile peer-to-peer. Department of Electrical and Communications

Engineering, Helsinki University of Technology. 2007.

65. Garcia-Martin, Miguel A. and Matuszewski, Marcin. A Session Initiation

Protocol (SIP) Event Package and Data Format for Describing Files. draft-garcia-

sipping-file-event-package-00. [Internet-Draft]. June 8, 2007.

66. Khartabil, H., Leppanen, E., Lonnfors, M., Costa-Requena, J. An Extensible

Markup Language (XML)-Based Format for Event Notification Filtering. RFC 4661.

September 2006.

75

67. Roach, A. B. Session Initiation Protocol (SIP)-Specific Event Notification. RFC

3265. June 2002.

68. Singh, Kundan and Schulzrinne, Henning. Peer-to-Peer Internet Telephony

using SIP. Proceedings of the international workshop on Network and operating

systems support for digital audio and video. 2005, pp. 63-68.

69. Daswani, Neil, Garcia-Molina, Hector and Yang, Beverly. Open Problems in

Data-sharing Peer-to-peer Systems. ICDT 2003. 2003.

	Acknowledgements
	Abbreviations
	– Introduction
	Motivation
	Objectives and Scope
	Own Contribution
	Structure

	– Peer-to-Peer Architectures and Algorithms
	Architectures
	Client-Server Architecture
	Centralized Architecture
	Decentralized Architecture
	Semi-Centralized Architecture
	Structured Architectures

	Search Algorithms
	Centralized Search
	Flooding Search
	Modified BFS
	Iterative Deepening

	Random Walks
	Modified Random Walk

	Structured Search
	Comparison of Search Algorithms

	Conclusions

	– Mobile Peer-to-Peer
	Requirements of Mobile Environment
	Technical Constraints
	Special Issues
	User Requirements

	Building a Mobile Peer-to-Peer Architecture
	Proprietary vs. Standard Protocol

	Mobile Peer-to-Peer Applications and Middleware
	File-sharing Applications
	Network Memory among Mobile Devices
	Mobile Proxy
	SymTorrent
	Mobile eDonkey
	Symella
	Mobile Gnutella
	Network-Aware MP2P File-sharing

	Middleware
	JXTA/JXME
	P2P Services
	PnPAP
	Mobile Chedar

	Conclusions

	– Mobile Peer-to-Peer over SIP
	Mobile Peer-to-Peer in IMS
	Session Initiation Protocol
	Resource Location
	SIP Requests and Responses
	SIP over P2P (P2P-SIP)
	P2P-SIP vs. P2P over SIP

	Mobile Peer-to-Peer using SIP
	Client Architecture
	Super-Node Architecture
	SIP P2P Application Server Architecture
	SIP Signaling
	Initial Signaling Scheme
	Refined Signaling Scheme
	Resource Publication
	Search
	Resource Connection

	System Performance
	Acceptable Performance

	Securing Mobile Peer-to-Peer

	Conclusions

	– Conclusions
	Objectives Revisited
	Results
	Further Discussion
	Future Research Possibilities

	References

