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This work continues on my Master’s Thesis work done between July 2005 and January 2006. 

In my Master’s Thesis, we presented how a mobile peer-to-peer file-sharing application can 

be implemented using the Session Initiation Protocol (SIP) as the underlying signaling 

protocol. 

The main objective of this thesis is to evaluate what kind of special requirements mobile 

environment poses for peer-to-peer application design, and present how peer-to-peer 

based services can be efficiently realized in next-generation mobile networks by using SIP 

with some enhancements as the peer-to-peer signaling protocol.  

This thesis is divided into two parts. In the first part, we present different peer-to-peer 

architectures and search algorithms, and evaluate their suitability for mobile use. We also 

review some mobile peer-to-peer middleware and file-sharing applications. Then, in the 

second part, we present our hybrid mobile peer-to-peer architecture consisting of a 

Symbian based mobile client and a SIP Application Server based super-peer. 

Key findings of this thesis are that the mobile peer-to-peer application based on SIP 

signaling and hybrid peer-to-peer architecture is suitable for mobile use as it minimizes 

overhead in mobile nodes and allows mobile operator to have control on its users in multi-

operator environment. Also, the performance of the application satisfies user requirements. 
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initiation protocol signaling 

 



ii 

 

Teknillinen 

Korkeakoulu 

 Lisensiaattityön 

Tiivistelmä 
Tekijä: Juuso Aleksi Lehtinen 
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Tämä työ on jatkoa diplomityölleni, joka tehtiin Heinäkuu 2005 – Tammikuu 2006 välisenä 

aikana. Diplomityössäni esitimme kuinka mobiilivertaisverkkosovellus voidaan toteuttaa 

käyttäen Session Initiation Protocol (SIP) protokollaa allaolevana signalointiprotokollana. 

Tämän työn päätavoite on selvittää, mitä erikoisvaatimuksia mobiiliympäristö 

vertaisverkkosovelluksen suunnittelulle asettaa sekä kuinka vertaisverkkopalveluita voidaan 

tehokkaasti toteuttaa seuraavan sukupolven mobiiliverkoissa käyttämällä laajennettua SIP 

protokollaa sovelluksen merkinantoprotokollana. 

Tämä työ on jaettu kahteen osaan. Ensimmäisessa osassa käsittelemme eri 

vertaisverkkoarkkitehtuureja ja hakualgoritmeja, sekä arvioimme näiden sopivuutta 

mobiilikäyttöön. Käymme myös läpi joitain mobiilivertaisverkkotiedostojako-ohjelmia sekä 

middleware-alustoja. Työn toisessa osassa esittelemme oman mobiilivertaisverkko-

arkkitehtuurimme, joka koostuu Symbian mobiilisovelluksesta sekä SIP sovelluspalvelin  

super-peer solmusta. 

Tutkimuksen päälöydökset ovat seuraavat: SIP protokollaa käyttävä hybridi-vertaisverkko- 

sovellus toimii hyvin matkapuhelinympäristössä, koska se minimoi puhelimeen kohdistuvan 

rasituksen ja tekee mahdolliseksi matkapuhelinoperaattorin hallita sovelluksen käyttäjiä 

myöskin monioperaattoriympäristössä. Tämän lisäksi ohjelmiston suorituskyky täyttää 

käytäjien sille asettamat vaatimukset.  

Avainsanat: mobiilivertaisverkot, session initiation protocol, istunnon aloitusprotokollaan 

pohjautuvat mobiilivertaisverkot 
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Chapter 1 – Introduction 

A lot has changed in the world of Internet communications during this decade. A 

major shift has happened in the traffic patterns of the Internet: Ten years ago, 

majority of the Internet traffic flows were between personal computers and 

high-performance web servers, however, today, majority of the Internet traffic is 

between personal computers in homes, schools, and offices – peer-to-peer 

networks have established themselves as Internet’s major traffic generators [1]. 

According to recent studies, the share of peer-to-peer traffic is 49% - 83% of all 

Internet traffic, depending on geographical region [2]. 

At first, peer-to-peer networks were used only for file-sharing, e.g., Napster [3], 

Gnutella [3] [4], BitTorrent [5], but as time has passed, many kinds of 

applications have been built using the peer-to-peer paradigm, e.g., the popular 

Voice over IP (VOIP) application, Skype [6], or the recently launched Video on 

Demand (VOD) application, Joost [7]. Growth of peer-to-peer phenomenon has 

not only created new protocols but also older protocols, traditionally utilized in 

the client-server paradigm, are now being transformed into peer-to-peer 

protocols, e.g., Peer-to-Peer Session Initiation Protocol (P2P-SIP) [8]. 

While peer-to-peer communications has revolutionized the Internet traffic 

patterns during the past years, there has been a revolution of its own among the 

mobile phones; mobile phones have gotten close to personal computers in their 

features and performance. Mobile phones of today have more memory, faster 

processors, larger screens, and higher network bandwidth than ever before. 
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Many of the phones sold today are user programmable, meaning that the user 

can install 3
rd

 party applications of his choice into the phone without consulting 

with the phone manufacturer. 

With the modern mobile phones, people are consuming more media on the go 

than ever before. The modern mobile phones are as much of personal media 

players as they are telephones. In addition to being media players, they also 

function as media recorders, having capabilities similar to standalone audio or 

video recorders.  

1.1 Motivation 

The media that people are consuming and producing on their mobile handsets 

can be currently shared in limited ways; using a cellular service like multimedia 

message service (MMS), using the Bluetooth connectivity between nearby 

phones, or using media sharing sites available in the public Internet, or Searching 

for interesting content in the mobile domain is currently very limited: Popular 

content can be searched from Internet sites such as YouTube, but less popular 

content that is still valuable for the user, e.g., content created by user’s friends 

or family, is not searchable in any way. 

Also, using a mobile web browser for sharing and acquiring media might not be 

the best tool for the job in the bandwidth limited mobile environment. Sure, if 

you have one picture to share, it is rather easy to upload it to an image sharing 

site – but if you have tens or hundreds of pictures that you would like to share 

with your friends, it is not that convenient to upload all those pictures over a 

relatively slow radio link – not knowing if any of your friends will ever access any 

of those pictures. Instead it would be handy if you could share the pictures on 

demand, as they are requested by your friends. 

As we have seen in the fixed Internet, peer-to-peer networks enable easy and 

efficient way of searching and sharing various types of content. It is a logical step 
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to bring peer-to-peer communications into the mobile arena, to help people 

share and search all the mobile content. 

When comparing services based on peer-to-peer architecture to those based on 

the traditional client-server architecture we can observe some of the technical 

advantages of peer-to-peer architectures. In peer-to-peer architectures, the 

shared content is available when needed, no uploading to a central server 

required, and thus only the content that is requested is actually transferred. 

Users do not have to upload hundreds of pictures to a centralized server, not 

knowing if anyone will ever access those pictures – thus saving that precious 

bandwidth. Peer-to-peer architectures also handle the flash crowd phenomenon 

well when compared to client-server architecture based services, as peer-to-peer 

architectures naturally distribute the load on several participants of the network 

[9]. 

Even though hundreds of different peer-to-peer applications have been deployed 

in the fixed internet, utilizing tens of peer-to-peer protocols, there have not been 

many peer-to-peer applications or protocols available in the mobile domain. 

Some projects have implemented popular peer-to-peer protocols on mobile 

platforms, e.g., SymTorrent [10], Symella [11], and Mobile eDonkey [12], but 

none of these projects have really considered the special needs and constraints 

of mobile domain. Also, most of this work has focused on one service, i.e., on 

peer-to-peer file-sharing. 

Next-generation mobile networks, like Third Generation Partnership Project’s 

(3GPP) IP Multimedia Subsystem (IMS), are largely built onto well known internet 

protocols, such as Session Initiation Protocol (SIP). These protocols enable users 

to establish voice and video calls, use presence service, and many other 

advanced services. These protocols cannot be used for peer-to-peer networking 

as they are, but with minor modifications, a protocol like SIP, can be engineered 

to function as the signaling protocol of a peer-to-peer network. 
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As these protocols are supported by the networks and the terminals natively, it is 

easier to provide managed peer-to-peer services on IMS protocols than to build 

the peer-to-peer service framework and the protocols from scratch. IMS protocol 

suite has protocols ready for the essential peer-to-peer tasks, such as, session 

initiation, authentication, and accounting. 

1.2 Objectives and Scope 

This work continues on my Master’s Thesis work done between July 2005 and 

January 2006. In my Master’s Thesis [13], we presented how a mobile peer-to-

peer file-sharing application can be implemented using the Session Initiation 

Protocol (SIP) as the underlying signaling protocol. In addition to presenting the 

implementation, we evaluated the feasibility of the concept by measuring the 

signaling efficiency and transmission bandwidth available in 3G networks. 

The main objective of this thesis is to present how peer-to-peer based services 

can be efficiently realized in next-generation SIP/IMS networks by reusing their 

existing protocols as much as possible, and to present some enhancements to 

these protocols. We also evaluate what kind of special requirements mobile 

environment poses for peer-to-peer applications and consider those 

requirements in our application design.  

Longer term objective for the research is to develop a peer-to-peer framework 

over which different kinds of mobile services can be deployed without providing 

a centralized service architecture in the network. This framework should provide 

service discovery and service connection services for various overlying 

applications. 

Compared to other mobile peer-to-peer research, we present a unique way of 

integrating a peer-to-peer network model on top of IMS networks, where SIP is 

reused as the peer-to-peer signaling protocol, i.e., for uploading resource info 

from a mobile client to a super-peer, for searching resources in peer-to-peer 

network, and for initiating resource connection, e.g., file transfer between 
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mobile peers. We also consider special requirements of mobile environment in 

our application design. 

1.3 Own Contribution 

During the research, we authored a journal article, four conference articles, and 

two post-graduate seminar articles. This thesis presents a coherent picture of the 

research presented in these articles. This thesis presents our work as it has 

evolved over time and compares this work to other similar solutions. In addition, 

this thesis presents a freshened literature review that includes material 

published after the writing of our articles.  

Here we present the contribution of the present author in these publications: 

Publication [14]: This paper is independent work of the present author. 

Publication [15]: This paper is independent work of the present author.  

Publication [16]: This paper is joint work of the authors; the performance 

measurements and their analysis is independent work of the present author. 

Publication [17]: The mobile peer-to-peer client architecture and the 

implementation part of the paper is joint work of the present author and Tuomo 

Hyyryläinen.  

Publication [18]: The mobile peer-to-peer client architecture and the 

implementation part of the paper is joint work of the present author and Tuomo 

Hyyryläinen.  

Publication [19]: Ideas behind the signaling schemes presented in this paper are 

joint work of the authors; the performance measurements and their analysis is 

independent work of the present author. 

Publication [20]: The related work section is independent work of the present 

author. 
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1.4 Structure 

The structure of this thesis is the following. In Chapter 2, we review common 

peer-to-peer architectures and different search algorithms used in peer-to-peer 

networks. In Chapter 3, we discuss special requirements of mobile environment 

for peer-to-peer applications, and discuss how these requirements affect the 

choice of peer-to-peer architecture and search algorithm. We also present 

current state-of-the-art in mobile peer-to-peer application and middleware 

research. In Chapter 4, we present our mobile peer-to-peer architecture and the 

key findings of our research on the subject. Finally, in Chapter 5, we provide 

conclusions and discuss future research possibilities. 
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Chapter 2 – Peer-to-Peer Architectures and Algorithms 

The peer-to-peer paradigm became popular with the file-sharing application 

Napster. Napster was released in 1999, and it was mainly targeted for sharing 

music files, even though it allowed sharing of other kinds of files too. Napster 

was built on a centralized peer-to-peer architecture where a cluster of 

centralized servers hosted information about the shared files. Allegedly, largely 

due to the centralized architecture, Napster was shut down due to legal troubles 

in 2002. Later Napster was reopened as a music store – however, the new 

Napster was not anymore based on the peer-to-peer paradigm but on the 

traditional client-server architecture. [21] 

Closing of Napster was not the death of peer-to-peer file-sharing. Even before 

Napster was closed, many other peer-to-peer file-sharing networks appeared, 

such as Gnutella and Kazaa. Today, Gnutella and Kazaa are in lesser use as 

BitTorrent has taken their place as the most popular peer-to-peer file-sharing 

protocol. 

The peer-to-peer paradigm has not only been used for file-sharing applications, 

but also for other applications, such as instant messengers, internet telephony, 

and video on demand application. Skype is probably the most popular Voice over 

IP (VOIP) application deployed at large in the Internet, and it is based on semi-

centralized peer-to-peer architecture. Joost, a recent video on demand 
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application, built by the founders of Skype, is also partly based on peer-to-peer 

paradigm. 

The fundamental difference between peer-to-peer and client-server 

architectures is that in client-server architecture all clients rely on one, 

centralized, server. All resources are located on this server and the clients 

request these resources from the server as they need them. The whole network 

is dependent on the availability of this server – if the server fails, all resources 

become inaccessible for the clients. 

Another problem of the client-server architecture is that all resources must be 

uploaded to the centralized server so that they are available for the other clients. 

For example, in case of an image sharing service, the user has to upload all of his 

images to the centralized server even when he does not know if anyone is going 

to access those images later. On the other hand, in peer-to-peer architectures 

the resources are scattered around the network as the peers are hosting the 

resources themselves. Thus, resources are not uploaded anywhere until they are 

requested by another peer.  

As peer-to-peer communications has gained popularity among the academics, 

there have been numerous conferences and workshops organized around peer-

to-peer and mobile peer-to-peer technologies. Some of the major forums for 

presenting peer-to-peer research results are:  

 IEEE International Conference on Peer-to-Peer Computing [22], 

 International workshop on Peer-to-Peer Systems [23], 

 IEEE International Workshop on Mobile Peer-to-Peer Computing, 

organized annually in conjunction with the IEEE International Conference 

on Pervasive Computing and Communications [24], 

 International Workshop on Hot Topics in Peer-to-Peer Systems, organized 

annually in conjunction with the IEEE International Parallel & Distributed 

Processing Symposium [25], 
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 Peer-to-peer oriented workshops, organized in conjunction with the IEEE 

Consumer Communications and Networking Conference [26], and 

 Internet Research Task Force’s (IRTF) Peer-to-Peer Research Group 

(p2prg) [27]. 

2.1 Architectures 

Before we start the review of different peer-to-peer architectures we need a 

definition for peer-to-peer networking. A good definition is given by Schollmeier 

[28]: 

“A distributed network architecture may be called a Peer-to-Peer (P-to-P, 

P2P, … ) network, if the participants share a part of their own hardware 

resources (processing power, storage capacity, network link capacity, 

printers, … ). These shared resources are necessary to provide the service 

and content offered by the network (e.g. file-sharing or shared 

workspaces for collaboration). They are accessible by other peers directly, 

without passing intermediary entities. The participants of such a network 

are thus resource (service and content) providers as well as resource 

(service and content) requesters (servent-concept).” 

The main takeaway from this quote is that the participants of a peer-to-peer 

network can exchange information directly with each other without passing the 

information via some centralized entity, and that all the resources in the network 

are provided by the peers themselves. The peers work simultaneously as Servers 

and Clients, thus the name, Servent. 

Depending how the peer-to-peer network topology is organized, the peer-to-

peer architectures can be divided into structured and unstructured architectures. 

Unstructured peer-to-peer architectures can be further divided into centralized, 

decentralized, and semi-centralized architectures. The main difference between 

unstructured and structured architectures is that in structured architectures 
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peers form a defined structure, or a topology, that has to be kept up as nodes 

join and leave the network. In unstructured peer-to-peer networks, the network 

is constructed more freely. Milojicic et al. give an extensive introduction to peer-

to-peer architectures in [29]. 

Functionality of all peer-to-peer architectures can be divided into two parts, into 

the resource search part, and into the part of connecting to the resource. The 

peer-to-peer architecture defines the logical links between the network peers. 

These links are used by the peer-to-peer search algorithm for resource location. 

The second part of peer-to-peer, connecting to resource, is not dependent on 

the peer-to-peer architecture but happens directly between the peers using 

direct network layer connectivity without facilitating intermediate nodes. 

In this section, we discuss how search works in different peer-to-peer 

architectures, as the actual connecting to the resource is trivial and nothing 

special to peer-to-peer. We discuss the traditional client-server architecture and 

the major peer-to-peer architectures; centralized, decentralized, semi-

centralized, and structured peer-to-peer architectures. 

2.1.1 Client-Server Architecture 

Client-Server architecture is not a peer-to-peer network architecture but it is 

presented here for reference.  

Client-server architecture is the most dominant architecture in the traditional 

Internet. It is the architecture used between web-servers and browsers, email 

servers and email clients, etc. In the client-server architecture, a powerful server 

or a cluster of servers provides a service to many dumb clients. This service can 

be anything from storing files or databases to remote procedure calls for off-

loading complex calculations from clients to the server. In the client-server 

architecture, each client communicates only with the server, being totally 

unaware of the other clients served by the same server. Figure 2.1 shows the 

basic client-server architecture. 
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FIGURE 2.1: CLIENT-SERVER ARCHITECTURE 

In the client-server architecture, clients send queries to the server, the server 

processes these queries, and generates appropriate answers – being it an answer 

to a complex mathematical query, or simply sending a static web-page back to 

the querying client. 

2.1.2 Centralized Architecture 

A centralized peer-to-peer architecture resembles the client-server architecture. 

However, in this architecture clients communicate directly with each other in 

addition to communicating with a centralized server or a cluster of servers.  

In the centralized peer-to-peer architecture, the server works as a centralized 

index, holding information about the resources or services the clients are 

hosting. In this architecture, the clients provide information about the resources 

they are sharing to the server as they join the network. The server will then reply 

to queries coming from the other clients asking for some resource they need. 

These replies contain addressing information of the client that has the requested 

resource. This part of centralized peer-to-peer can be seen being identical to the 

client-server architecture. Here, the information about resources, i.e., the meta-

information, is transferred between peers via the centralized index. 
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However, after a peer receives reply to its query from the server, it contacts 

directly the peer providing the needed resource. In this part, the server is no 

longer part of the communications as the nodes communicate in a peer-to-peer 

manner. Figure 2.2 shows the basic centralized peer-to-peer architecture.  

 

FIGURE 2.2: CENTRALIZED PEER-TO-PEER ARCHITECTURE 

There is nothing special concerning the search in the centralized peer-to-peer 

architecture when comparing it to the client-server architecture. Search is a 

simple one-hop-query from a client to the server. Only difference lies in the 

location of the content being searched; whereas in client-server architecture the 

server hosts both the meta-information about the content and the actual 

content, in the centralized peer-to-peer architecture the server hosts only the 

meta-information while the actual content is hosted in the peer nodes. 

2.1.3 Decentralized Architecture 

In the decentralized peer-to-peer architecture, there is no centralized index. In 

the decentralized architecture, all peers are equal – peers are connected to each 

other in an arbitrary fashion, resembling a mesh. Each peer has an index of the 

resources it is hosting. 

In the decentralized architecture, search is routed from peer to peer through 

multiple hops. Search can be done in numerous ways, the simplest algorithm 

being flooding search which sends the query message all over the network. 
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The resource connection, e.g., the file download, is established directly between 

the endpoint peers so that there are no other nodes in the download path. The 

basic architecture for decentralized peer-to-peer is presented in Figure 2.3. 

 

FIGURE 2.3: DECENTRALIZED PEER-TO-PEER ARCHITECTURE 

In decentralized peer-to-peer networks, it may be difficult to find the first node 

to connect to as peers dynamically join and leave the network. In fact, some 

decentralized peer-to-peer networks might have a bit of centralization, a 

bootstrapping server, which hosts a list of potential peers in the network to help 

joiners to find the first peer. 

2.1.4 Semi-Centralized Architecture 

Semi centralized architecture is a combination of the centralized and 

decentralized peer-to-peer architectures, thus it is often called a hybrid 

architecture. In the semi-centralized architecture, there are two kinds of nodes: 

edge-nodes and super-nodes. The super-nodes are connected to each other in a 

similar fashion to nodes in the decentralized peer-to-peer architecture. The 

edge-nodes are connected to the super-nodes in the centralized peer-to-peer 

fashion. Figure 2.4 presents the semi-centralized peer-to-peer architecture. 
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FIGURE 2.4: SEMI-CENTRALIZED PEER-TO-PEER ARCHITECTURE 

In the semi-centralized architecture, the super-nodes function as index servers 

for the edge-nodes. When an edge-node joins the network, it connects to a 

super-node and uploads the list of its resources to the super-node. When an 

edge node searches for a resource, it first sends a query to its super-node as a 

one-hop query. The super-node will then transmit the query further to other 

super-nodes using a similar algorithm that is used in decentralized peer-to-peer 

networks. The query does not have to be flooded to edge-nodes because the 

super-nodes, as the index servers, have total knowledge of the resources 

available in their edge-nodes. After the reply comes back to the querying edge 

node, it connects directly to the other edge node hosting the queried resource. 

It is important to notice that search is partitioned into two separate layers in the 

semi-centralized architecture; to the search between the edge-node and the 

local super-node and to the search between the super-nodes. Whereas, the 

search between the edge-node and the local super-node is performed in a 

similar manner to the centralized peer-to-peer architecture, the search between 

super-nodes is similar to search in the decentralized peer-to-peer architecture. 
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2.1.5 Structured Architectures 

Structured peer-to-peer architectures are also known as Distributed Hash Table 

(DHT) architectures. These architectures have strict structures, e.g., a ring or a 

hyper-cube. These structures are constantly being updated, so they stay intact as 

nodes join and leave the network. 

In the DHT architecture, every node is given a unique ID or a hash value based on 

its attributes, e.g., its IP-address. The node ID dictates which part of the hash 

space the node is responsible for.  

When a new resource is added to the network, a hash is calculated for this 

resource. Then, a link to the resource is stored into the node responsible for the 

respective part of the hash space. The node stores a link to the resource location, 

not the resource itself. This way the resource index of the network is distributed 

deterministically around the network in the Distributed Hash Table. 

Figure 2.5 presents the architecture of a popular DHT, Chord. In the figure, the 

dotted lines indicate which nodes host which keys. Black lines represent the 

fingers of node N8, i.e., the logical connections to other nodes in the network 

 

FIGURE 2.5: CHORD ARCHITECTURE  [30] 

2.2 Search Algorithms 

A common theme among different peer-to-peer architectures is that the actual 

resource connection (e.g., file download, streaming video, or telephone call) 
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happens directly between the network peers. What makes peer-to-peer 

architectures different from each other is the type of search, i.e., how query 

messages are passed in the network during a search. 

Risson and Moors [31] provide an excellent survey of different peer-to-peer 

architectures and search methods in them. Vanthournout, Deconinck, and 

Belmans [32] compare resource discovery algorithms in 25 popular protocols. 

Next, we review some search algorithms used in peer-to-peer networks. The 

search algorithms covered are: centralized search, flooding search, modified BFS, 

iterative deepening, random walks, and structured search. Last, we present short 

comparison of centralized, flooding, and structured search algorithms. 

2.2.1 Centralized Search 

The most trivial search method is centralized search. Centralized search is used in 

the centralized peer-to-peer architecture where a central server holds an index 

of all resources available in the network. Network peers publish information 

about the resources they are offering to the central index by directly uploading 

their resource lists to the server. Other peers can connect to the server and 

request resources from it. The centralized server then performs search against its 

index and provides the requesting peer addressing information about the peers 

having the requested resource. 

Because the index is in one place, search in the centralized architecture is fast 

and comprehensive. All files available in the peer network, i.e., all files published 

to the centralized index, are checked during the search. 

2.2.2 Flooding Search 

In a decentralized peer-to-peer network, there is no centralized index of network 

resources. Instead, every node holds an index of its own resources. To search the 

network, you have to search the nodes. Depending on how many nodes you 
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search dictates the actual coverage of your search and the probability of finding 

the resource you are looking for. 

 

FIGURE 2.6: FLOODING SEARCH  [33] 

In flooding search – also known as Breadth-First Search (BFS) – a peer requesting 

a resource sends the request to all its directly connected peers. These peers 

check their local indexes for matching resources and further send the request 

towards all the peers they are connected to, except the peer where they got the 

request in the first hand. 

The way the BFS queries propagate in the network is similar to Ethernet 

broadcast frames. However, where Ethernet networks should not have any loops 

– thanks to Spanning Tree Protocol (STP) – decentralized peer-to-peer networks 

often have them. Because of this, every node forwarding the search query has 

soft state information about the recent searches. If a search query that has been 

recently forwarded is received again, it is not forwarded again.  

The search queries are also given a time-to-live (TTL) or a hop-count which 

determines how many times an individual search query can be forwarded. By 

manipulating the TTL we can affect how widely the search is propagated in the 

network. By using a large TTL, the search coverage is very good but similarly 

every search is seen by a large number of peers and thus processing load of all 

these nodes is increased. It should be noted that the search does not terminate 

when the search target is found but only when the search TTL reaches zero. 

Figure 2.6 presents flooding search with TTL value of three. 
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Scalability issues of BFS search are discussed in the measurement study made by 

Backx et al. [34], where a Gnutella file-sharing network’s peer’s background 

bandwidth consumption was measured to be more than 600 kilobytes per 

minute compared to less than a few kilobytes per minute in architectures where 

different kind of search algorithms were used (centralized and semi-centralized 

architectures). However, as Kalogeraki, Gunopulos, and Zeinalipour-Yazti [29] 

note, flooding search can be quite efficient in limited communities such as in 

company networks, where the maximum search load is limited by the limited 

size of the network. 

Modified BFS 

Kalogeraki, Gunopulos, and Zeinalipour-Yazti [35] present modified BFS which 

behaves similarly to regular BFS but instead of flooding the search query to every 

neighbor, each node forwarding the search message floods the query to its 

neighbors with a certain probability p, thus limiting the amount of messages in 

the network. This algorithm reduces the number of messages compared to the 

original flooding search but does it on the cost of search coverage. Depending on 

the selection of p it may also cause a large strain on the network when large 

values of search TTL are used. 

Iterative Deepening 

Yang and Garcia-Molina [36] present an improvement to regular flooding search 

called Iterative deepening search. In iterative deepening search, the search TTL is 

progressively increased so that flooding covers a larger radius on every step. The 

search can be controlled so that the TTL is increased until a preset number of hits 

are found, or when a specified TTL-limit is encountered. Lv et al. [37] present a 

similar search method called Expanding Ring Search. Chang and Liu [38] present 

a Controlled Flooding Search algorithm for wireless ad-hoc networks where 

sequences of TTL values are intelligently selected to minimize the cost of 

searches in terms of power consumption. 
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2.2.3 Random Walks 

Random walk is a search algorithm where each node along the search path 

forwards the query to a single randomly chosen neighbor. The search starts by 

the originating node sending out k query messages to its randomly chosen 

neighbors. Each of these query messages is called a walker. Each walker follows 

its own path so that intermediate nodes forward it to a random neighbor at 

every step. However, the intermediate nodes do not replicate the walker but 

send it only to one node forwards. Figure 2.7 presents the random walk search 

algorithm. 

 

FIGURE 2.7: LONG RANDOM WALK  [33] 

Lv et al. [37] present two methods for terminating the search in random walks. A 

TTL based method and checking method. In the TTL based method, the walker 

terminates when its TTL reaches zero, just as in the BFS algorithm. In the 

checking method, the walker periodically checks with the original search source 

if the search criterion is fulfilled. The checking method also uses TTL as secondary 

terminating criteria, but usually with much larger values of TTL, mainly for 

preventing loops. 

The advantage that random walks give compared to flooding algorithms is the 

reduction in messages sent in the network. In the worst case it produces k x TTL 

messages. This is a huge improvement compared to BFS. However, the major 

problem of random walks is the search success rate in the network. 

Modified Random Walk 

Gkantsidis, Mihail, and Saberi [33] present modified random walk with local 

flooding. In this algorithm, the walker is being forwarded as in the regular 
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random walk. But in addition to forwarding the walker to a random neighbor, 

each intermediate node also floods the search to all its neighbors with a small 

TTL. According to authors, the modified random walk with local flooding reduces 

the search time compared to regular random walks. Random walk with local 

flooding is presented in Figure 2.8. 

 

FIGURE 2.8: SHORT RANDOM WALK WITH LOCAL FLOODING  [33] 

2.2.4 Structured Search 

In DHT architectures search is deterministic. A query is routed between nodes so 

that on every step the query gets nearer to the node responsible for the 

particular part of the hash space where the pointer to the requested resource 

lies.  

The DHT search is based on the idea that every resource has a unique hash or 

resource identifier (ID) calculated from its properties, and that every node in the 

network is responsible for a certain part of the hash space. This way, information 

about resources is distributed among the network nodes. 

When searching for a resource, the requestor calculates the hash for the 

resource, e.g., from the resource name. Then, it sends the query towards a 

neighbor node whose ID number is closest to the resource ID. This way, the 

request is forwarded hop by hop nearer the node whose ID is nearest to the 

resource ID in the whole network. The final node then replies the requestor if it 

has the pointer to the resource. It is completely possible that the final node does 

not have information about the resource, but in this case the asked resource is 

not available anywhere in the network.  
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A major benefit of DHT search is that the request is not sent to unneeded nodes 

along the search process but it is forwarded a finite number of hops, always 

nearer to its final destination. Thus, the search load for intermediate nodes is 

also smaller than in decentralized peer-to-peer architectures where some variant 

of flooding search is used. 

On the other hand, a major drawback of DHT search is that the exact resource ID 

has to be known for the search. Because DHTs are based on calculating a hash of 

some resource property and deriving the resource ID for routing from that, it is 

not possible to perform wildcard searches or other searches with partial 

information. Also if multi-criteria search is to be supported, there must be an 

own ID space for each possible search criteria, e.g., own resource IDs derived 

from the resource name, resource creator, resource size, etc. 

There has been some work trying to tackle the problem of the exact match 

nature of the DHT search. For example, Joung, Yang, and Fang [39] present a DHT 

search architecture where each resource is associated with variable number of 

keywords or tags. The search query can then contain variable number of these 

keywords but does not have to contain all the keywords of a resource. This way, 

resources can be searched with partial information – by knowing only subset of 

resource keywords – in DHT too. However, the exact match nature of the DHT 

search stays in the keyword based search architectures too, as the individual 

search keywords have to be complete and have to match to the keywords 

associated with the searched resource. 

2.2.5 Comparison of Search Algorithms 

Only three of the presented search algorithms can be considered comprehensive 

in their search coverage, i.e., they find the searched resource if it exists in the 

network. These are the centralized, flooding, and DHT search algorithms. 

Comparison of the key properties of these algorithms is presented in Table 2.1. 
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TABLE 2.1: COMPARISON OF SEARCH ALGORITHMS (ADAPTED FROM [30]) 

System Per node 

state 

Communication 

overhead 

Wildcard 

search 

Centralized 𝑂(𝑁) 𝑂(1) Yes 

Flooding Search 𝑂(1) ≥ 𝑂(𝑁2) Yes 

DHT Search 𝑂(log𝑁) 𝑂(log𝑁) No 

 

In the centralized search, all state information is held in a single server. The 

disadvantage of this is that the single server thus becomes a potential bottleneck 

and is a potential single point of failure. The advantage of the centralized search 

is that the comprehensive search in the centralized architecture takes only one 

message exchange – the message from the client to the server and back.  

In the flooding search, state information in scattered around the network – every 

node knows only about its own resources. Thus, if a node fails, only information 

about that node’s resources is lost. To find a resource with flooding search 

potentially all the nodes in the network have to be searched; thus, the 

communication overhead of the flooding search is proportional to the square of 

the number of the nodes in the network.  

Finally, in the DHT search, state information is distributed among all the nodes in 

the network so that every node is responsible for a part of the resource space. 

Thus, if a node fails, other nodes have to take shared responsibility of the failed 

node’s resource space. On the other hand, because of the DHT structure, the 

search is routed towards the target on every hop; leading the communication 

overhead of the DHT search being proportional to the logarithm of the number 

of the nodes in the network.  

Because of the DHT query routing, the DHT search is much more efficient than 

the flooding search in terms of communication overhead. And its upside 

compared to the centralized search is that it still allows the resource index to be 

distributed around the network, avoiding a single bottleneck or a potential point 
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of failure. However, it must be noted that DHT can be compared with centralized 

and flooding search in terms of full network coverage only when exact match 

searches are considered. The DHT search does not support wildcards searches, 

and thus cannot be used with partial search information.  

2.3 Conclusions 

A major difference between all peer-to-peer architectures and the client-server 

architecture is that in peer-to-peer architectures resources are hosted in edge-

nodes and not in a centralized server. Availability of popular resources in peer-

to-peer networks is very good when compared to a single centralized server, as 

peers that have downloaded a popular resource from a peer-to-peer network 

will also be sharing that resource to other peers. In contrast, if the resource is 

hosted by a centralized server, a failure of the server brings resource availability 

to zero. 

Compared to the client-server architecture, peer-to-peer architectures are 

scalable; one does not need to expand server capacity as the user count 

increases – each user brings capacity with it to the network (bandwidth, 

processing power, and other resources). Thus, peer-to-peer architectures also 

handle flash crowds very well; i.e., situations where a certain resource becomes 

suddenly hugely popular and is requested by many network participants. It is 

also cheap to provide peer-to-peer because there is no need for centralized 

resources. 

On the other hand, in peer-to-peer architectures, a resource is available as long 

as a node hosting this resource is online. When all the peers that have a 

particular resource are offline, the resource is not available for other peers. This 

is a very relevant risk in networks where nodes join and part the network often, 

and for resources that are not hugely popular, and thus not distributed widely in 

the network. 
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Chapter 3 – Mobile Peer-to-Peer 

As mobile handsets have gotten more processing power, as faster wireless 

communication technologies have evolved, and as mobile data plans have gotten 

cheaper, have many traditional networked applications, such as, email clients 

and web browsers found their way into the mobile world. In addition to these 

traditional applications, a small set of peer-to-peer applications have been 

developed for mobile devices. 

These peer-to-peer applications are often ports of peer-to-peer applications 

used in fixed networks. However, mobile devices have some inherent differences 

from traditional PCs, and their limitations should be taken into account in peer-

to-peer application design. 

In this chapter, we discuss the requirements and constraints of mobile 

environment that have to be taken into account when developing a peer-to-peer 

system for a mobile platform, and consider suitable architectures for mobile 

peer-to-peer use. Last, we present some mobile peer-to-peer middleware and 

application programs.  
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3.1 Requirements of Mobile Environment 

Mobile environment has some technical constraints and special requirements 

that do not exist in the fixed networks. In this section, we discuss those technical 

constraints and requirements along with mobile user requirements. 

3.1.1 Technical Constraints 

The first constraint of mobile environment is the limited network bandwidth 

available for the mobile device. Although advances in wireless technologies have 

enabled broadband mobile connections, we still have to take the limited 

bandwidth into account when designing networked mobile applications. In terms 

of peer-to-peer this means minimizing non-relevant traffic, e.g., the traffic 

needed for keeping up the peer-to-peer topology and forwarding of unneeded 

search traffic.   

Also, the modern wireless technologies often provide asymmetric bandwidth, 

meaning there is more capacity available from the mobile network to the 

handset than the other way around. This is especially a bad design choice when 

considering peer-to-peer applications where the content is being distributed 

from the mobile nodes. 

The second constraint is the limited computational power in mobile devices. This 

includes both, the CPU power and the available program memory. Thus the peer-

to-peer application should not have computationally intensive algorithms or use 

large data structures. 

The third constraint is the limited battery capacity of the mobile device. The 

power consumption is directly tied to the use of the radio resources, CPU cycles, 

and memory access. By limiting bandwidth use and computationally intensive 

algorithms in the application the battery can be conserved. Also, selecting the 

most power efficient radio technology – when there is more than one available – 

is directly linked to the power consumption. 



Chapter 3 – Mobile Peer-to-Peer 

26 

 

As we consider these technical constraints in the design of mobile peer-to-peer 

application, we should select a mobile peer-to-peer architecture that creates a 

minimal signaling load on the mobile peer, uses no complex algorithms or data 

structures, and has efficient protocol coding. According to these constraints, we 

can disregard decentralized peer-to-peer network architectures as they have a 

high signaling load on all nodes due to the decentralized nature of the search. 

Structured architectures have fewer problems with search traffic, but they 

require extensive signaling for topology management to keep the network 

structure intact as peers join and leave the network.  

Centralized and hybrid peer-to-peer architectures, however, meet the 

constraints. They place most of the overhead to super-nodes which can be 

located in the fixed network. Mobile nodes only need to worry about keeping up 

a connection to a single super-node. 

3.1.2 Special Issues 

In addition to the technical constraints, there are some special needs in the 

mobile environment that do not manifest themselves in fixed networks. 

The first issue is high churn. This means that mobile devices often stay 

disconnected for a long time, i.e., their connectivity is intermittent. The frequent 

joins and leaves should affect other nodes minimally – there should not be 

signaling overhead for other nodes as one node joins or leaves the peer-to-peer 

network. The effects of high churn should be constrained to a few nodes, 

preferably to those with good connectivity in the fixed network, e.g., the super-

nodes. 

The second issue is radio selection in a multi-radio device. Mobile devices are 

nowadays equipped with several radios that support packet data 

communications. In addition to their long-range cellular radios (e.g., GSM and 3G 

WCDMA), they often have short-range radios (e.g., Bluetooth), and medium-

range radios (e.g., IEEE 802.11). The mobile device should be able to select the 
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best radio according to the situation, i.e., use a long-range radio when the device 

is on the move, and use a short or medium-range, high-bandwidth radio when it 

is in stationary.  

The third issue is operator control. The mobile operators have traditionally 

provided services in their walled-gardens, i.e., the services have been tied to the 

operator and have been only usable to customers of that specific operator.  

Thus, operators have had tight control on the service use. Conversely, peer-to-

peer applications are based on openness and free communications between 

multiple peers over operator boundaries. To enable mobile peer-to-peer 

communications, the mobile nodes have to be able to communicate with each 

other over operator boundaries but at the same time each mobile operator 

should be able to exercise some control on its users.  

Considering these issues we can disregard decentralized and structured peer-to-

peer architectures as they are not suitable for high churn environments. In both 

of these architectures, effects of joins and leaves are propagated to several 

neighboring nodes – depending on the degree of connectivity between the 

nodes. In structured peer-to-peer architectures the resource index also has to be 

redistributed every time a new node joins or leaves the network. Structured and 

centralized peer-to-peer architectures also do not enable operator control, as 

they do not have centralized points of control.  

Centralized and hybrid peer-to-peer architectures are suitable for high churn 

environments. The effects of mobile devices joining and leaving the peer-to-peer 

network are constrained to the super-node. They also allow the operator to 

control the network by hosting the super-node service. Whereas the centralized 

architecture is suitable for a single operator environment, the hybrid 

architecture is better for multi-operator environment where each operator 

needs to have some control on its users by running its own super-node. 

Operators can use a special architecture, such as that presented by Xie et al. [40] 
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to enable cooperative traffic control between peer-to-peer applications and the 

network provider. 

The multi-radio connectivity is not directly related to peer-to-peer application 

design, as it is a feature that is needed by all networked applications in the 

mobile device. In [14], we present a model for autonomous radio interface 

selection on mobile handsets. 

3.1.3 User Requirements 

What users want from the mobile peer-to-peer applications is pretty much the 

same what they want from the peer-to-peer applications in fixed networks. From 

application perspective, users want to find content efficiently; they do not 

always know the exact name of the piece of content they are looking for, so 

ability to search content with partial information, e.g., with wildcards, is 

essential. 

On the other hand, users want to have the service at affordable price. Compared 

to fixed broadband connections that are virtually always based on flat-rate 

charging, the mobile Internet connections have been mostly based on usage and 

data-transfer charges. The usage based charging model is not suitable for peer-

to-peer use, as it is difficult for an ordinary user to estimate the amount of data 

he has transferred, and thus the price of the application use. However, many 

cellular operators are starting to provide affordable flat-rate pricing also for 

mobile users. 

Considering the user requirements, the only issue affecting the architecture 

choice is the ability to perform wildcard searches. All non-structured peer-to-

peer architectures support wildcard searches. Thus, user requirements only rule 

out structured peer-to-peer architectures as they do not support wildcard 

searches. 
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3.2 Building a Mobile Peer-to-Peer Architecture 

To summarize the most important points in mobile peer-to-peer application 

design, the architecture should: 

1. Minimize the traffic in mobile nodes to conserve bandwidth and 

processing load, and thus also the battery on the mobile device, 

2. minimize adverse effects of high churn on mobile nodes, 

3. make wildcard search available for users, and 

4. allow the operator to have control on the service. 

When selecting the mobile peer-to-peer architecture we have to rule out the 

structured architecture due to its inability to provide wildcard search and its bad 

performance in high churn environments. We also cannot consider the 

decentralized peer-to-peer architecture as high churn constantly breaks the 

topology, and as the forwarding of search messages is performed by the mobile 

peers. 

As we saw in the previous chapter, the search methods of decentralized peer-to-

peer networks place strain on every node. We want to conserve the limited 

resources of the mobile device so that the device does not have to process 

searches sent by other peers in the network. 

This leaves us with two good choices for the mobile peer-to-peer architecture; 

the hybrid and the centralized peer-to-peer architecture. The centralized peer-

to-peer architecture is suitable for a small, single operator environment, whereas 

the hybrid architecture provides more scalability, allows different operators to 

have control on their own users in multi-operator environments, and allows 

peer-to-peer communication between customers of different operators. The 

hybrid architecture also allows using lightweight search algorithm between the 

mobile node and the super-node, whereas a more complex search, e.g., flooding 

search, can be used between the super-nodes. 
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Bakos et al. [41] present similar results on mobile peer-to-peer network 

architecture selection. They present a simulation study of different mobile peer-

to-peer topologies, where they conclude that semi-random mesh (i.e., 

decentralized peer-to-peer) is the best topology for a network of similar devices, 

e.g., when all the nodes are mobile phones. Whereas, connected stars (i.e., 

centralized peer-to-peer) topology is good for a network which consists of 

devices with different capabilities, e.g., mobile phones and fixed network nodes. 

3.2.1 Proprietary vs. Standard Protocol 

Traditionally, the peer-to-peer file-sharing protocols have not been standardized 

by any standardization body. The creation of peer-to-peer protocols has been 

tied to the creation of different peer-to-peer applications. Once these 

applications have become popular, other developers have developed 

applications supporting the same peer-to-peer protocol. These protocols have 

thus become de-facto standards, e.g., BitTorrent and FastTrack protocols. 

The advantage of using these de-facto protocols is that they already have a large 

user base and they are tested by time. The disadvantage of using these protocols 

is that when there is no official standardization body overseeing the protocol 

development, the protocol may have multiple non-interoperable versions in 

development. Different clients may use different protocol versions, and nothing 

guarantees that the different versions interoperate with each other. 

There are not many standardized peer-to-peer protocols. One that we can 

consider standardized is JXTA [42] which we discuss later in this chapter. Even 

though there are not many standardized peer-to-peer protocols, nothing 

prevents extending existing standard protocols for peer-to-peer use. Take, for 

example, the Session Initiation Protocol (SIP). SIP is not designed to be a peer-to-

peer resource sharing protocol but a signaling protocol for internet multimedia 

communications. However, with minor extensions, SIP can be used for peer-to-
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peer resource advertisement, resource location, and connecting to these 

resources. We discuss these SIP extensions in the next chapter. 

There are some advantages in using standardized protocols for peer-to-peer 

communications. For example, having a standardized protocol helps network 

administrators identifying peer-to-peer traffic, and possibly imposing some 

restrictions on that traffic. Also sometimes, using a standardized protocol allows 

peer-to-peer applications to be integrated more closely with the existing 

network. For example, the SIP protocol is the signaling protocol for future mobile 

phone networks. Building a peer-to-peer application on top of SIP allows the 

application to be integrated closely to the network and enables the mobile 

operator to implement supporting functionality more easily, e.g., charging and 

accounting of peer-to-peer application usage. 

3.3 Mobile Peer-to-Peer Applications and Middleware 

In this section, we review the recent academic research on mobile peer-to-peer 

applications and middleware. As our mobile peer-to-peer application is currently 

providing only peer-to-peer file-sharing support, we limit our focus on mobile 

peer-to-peer file-sharing applications and generic mobile peer-to-peer 

middleware platforms. 

3.3.1 File-sharing Applications 

In this section, we discuss some mobile peer-to-peer file-sharing applications. 

Some of these applications are based on well known peer-to-peer protocols, 

whereas others have totally original architectures. 

Network Memory among Mobile Devices 

Sambasivan and Ozturk [43] present a mobile peer-to-peer application that 

allows mobile peers to share contents of their memory, e.g., pictures, between 

each other. They present an application that is based on Symbian platform. The 
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application uses short-range Bluetooth communications, and does not rely on 

any centralization, thus being based on decentralized peer-to-peer architecture. 

In this application, the mobile nodes discover each other dynamically based on 

proximity and form an ad-hoc network. As Bluetooth is a short-range radio, the 

authors note that one of their assumptions is that the devices have to be 

accessible in the Bluetooth range until the resource transfer between the devices 

is complete. This prevents the use of the application in dynamic scenarios where 

people come and go frequently. On the other hand, in static scenarios, such as in 

a class-room environment, the application works just fine. 

Mobile Proxy 

Raivio [44] presents a hierarchical mobile peer-to-peer architecture based on a 

concept of mobile proxy. In this architecture, each mobile device connects to a 

predefined mobile proxy. The mobile proxy is part of the fixed peer-to-peer 

network and it acts as cache for mobile clients,  caching the data mobile devices 

are uploading so that subsequent uploads can be done straight from the cache, 

and not over the limited air interface of the mobile device.  

In this architecture, the mobile proxy functions as a kind of super-node; the 

mobile node sends its query first to the mobile proxy which then checks its own 

index of local mobiles for the queried resource, and after that, floods the query 

further to the peer-to-peer network. The architecture also allows nearby mobile 

nodes to communicate directly with each other without the help of the proxy. 

SymTorrent 

Kelényi, Ekler, and Pszota [10] have developed a full-featured BitTorrent client 

for the Symbian platform, called SymTorrent. SymTorrent enables mobile users 

to connect to BitTorrent trackers and transfer files with other nodes connected 

to the same tracker.  
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SymTorrent is based on the popular peer-to-peer file-sharing protocol called 

BitTorrent. BitTorrent differs from most of the traditional peer-to-peer protocols 

as it does not provide integrated search but depends on people finding the 

torrent files by other means, e.g., from web sites. Torrent files have a pointer to 

a tracker server – which is a kind of super-node – that knows which nodes are 

sharing the piece of content associated with the torrent file. The BitTorrent 

protocol itself handles only the distributed file-transfer. Thus, there is no single 

global BitTorrent network, but several mini-networks around each tracker. 

Architecturally these mini-networks can be seen as centralized peer-to-peer 

networks where the trackers mediate file-transfers between the edge-nodes. 

Mobile eDonkey 

Oberender et al. [12] describe a mobile peer-to-peer file-sharing architecture 

based on the eDonkey protocol. The original eDonkey protocol has been 

modified to make it more suitable for mobile use. In this architecture, there is an 

index server that keeps track of the popularity of the shared files in the network 

and exports this popularity data to the cache peer. The cache peer then stores 

these popular files in its cache, and the crawling peer supports the index server 

by linking it to other index servers in the Internet. The resulting architecture is 

something between centralized and hybrid peer-to-peer. 

The benefit of this architecture is that the cache peer allows storing of popular 

files, residing initially in mobile devices, in the fixed network. Thanks to the cache 

peer, popular files do not have to be transferred multiple times over the air 

interface when they are requested by another mobile node.  

Symella 

Kelényi, Forstner, and Forstner [11] have developed a Gnutella file-sharing client 

for the Symbian platform. Symella is a Gnutella 0.6 client that works on Symbian 

smart phones. Symella was released in late 2005, and to our knowledge, it was 
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the first publicly available mobile peer-to-peer application. The software enables 

a mobile user to search and download content in a Gnutella network, but it does 

not enable users to share anything.  

As Symella is based on the Gnutella 0.6 protocol, its architecture is hybrid. The 

hybrid architecture is good for mobile environment, because as leaf nodes the 

communication overhead in mobile nodes is small. Most of the search traffic is 

handled by super-nodes located in the fixed network. 

Mobile Gnutella 

Hu, Thai, and Seneviratne [45] argue that the usual peer-to-peer file-sharing 

networks, such as Gnutella
1
, are not suitable for the mobile environment due to 

their bandwidth consuming broadcast nature. Instead, a modified architecture 

for Gnutella network is proposed where a mobile agent in the fixed network 

works on behalf of the mobile device. The mobile agent is part of the Gnutella 

network, where it acts as a normal Gnutella peer, and has vital information like 

the file-list of the mobile device. The mobile device and the agent communicate 

using a light-weight protocol.  

In this architecture, the mobile agent handles most of the signaling traffic, such 

as searches, and directs only download requests to the mobile device. The 

mobile device can then perform the actual file transfer directly with the other 

end node, or alternatively the mobile agent can perform the file-transfer on 

behalf of the mobile device. 

Network-Aware MP2P File-sharing 

Huang, Hsu, and Hsu [46] discuss how wired peer-to-peer file-sharing 

applications rely on stable connections and how these assumptions are not 

suitable for mobile peer-to-peer networks where mobiles roam between 

                                                      
1
 Gnutella versions before 0.6 were based on decentralized peer-to-peer architecture, and thus 

the search messages were flooded among all network participants. 
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networks, where network paths between two peers may change rapidly, and 

where churn is a major concern. 

Authors present a system architecture where a mobile peer-to-peer file-sharing 

network is divided into multiple network-aware clusters. These clusters are 

formed of nodes located near each other in IP-address topology (e.g., in the 

same subnet) to improve the performance of the peer-to-peer network. In each 

cluster, there is a super-node which handles queries from other peers inside the 

cluster.  The super-node holds an index of files available in the cluster, and in 

case it does not find the queried file in its index, it forwards the query to nearby 

clusters. The inter-cluster queries are flooded between clusters and they are 

equipped with a TTL field, so that the query expires after a certain number of 

forwards. 

The authors also describe a mobility aware file discovery control (MADFC) 

scheme which uses the publish-subscribe method for placing long-lived file 

queries into the super-node. The super-node will then continuously look up for 

the queried resource as new nodes are joining and parting the mobile peer-to-

peer network.  

When a mobile peer later joins the network and publishes its list of files to the 

super-node, the super-node first checks the file list against any registered 

queries that some other peer has active. If there is a match, the super-node 

informs the peer who placed the query. According to authors, this query mode 

reduces the amount of query messages sent in the network. 

The authors also describe a resource provider selection algorithm where a 

mobile node can select its file-transfer peers according to network performance 

metrics, such as bandwidth and round-trip time information. The super-node 

helps the mobile node in the peer selection by providing a list of candidate 

resource providers with their mobility information. 

  



Chapter 3 – Mobile Peer-to-Peer 

36 

 

3.3.2 Middleware 

Mobile peer-to-peer middleware provides peer-to-peer communication services 

for overlying applications. By facilitating these middleware services, the 

application programmers do not have to bother with implementation details of 

peer-to-peer protocols. 

JXTA/JXME 

Juxtapose (JXTA) [47] is an open source peer-to-peer platform originally 

developed by Sun Microsystems in 2001. A good introduction of JXTA and 

evaluation of its suitability for mobile use is given by Maibaum and Mundt [42]. 

In [48], Blundo and Cristofaro describe a Bluetooth based JXME (JXTA for Java 

Micro Edition) infrastructure. 

JXTA creates a virtual network over IP or non-IP network, hiding the underlying 

protocols from the applications sitting on top of JXTA. JXTA provides several 

peer-to-peer communication services and protocols for its users [49]: 

 Peer Resolver Protocol (PRP) allows a peer to send a search query to 

another peer. 

 Peer Discovery Protocol (PDP) allows a peer to discover other 

advertisements (peer, group, service, and pipe). 

 Endpoint Router Protocol (ERP) allows a peer to query for routing 

information to route messages through the network. 

 Pipe Binding Protocol (PBP) allows a peer to bind a pipe endpoint to a 

physical peer. 

 Rendezvous Protocol (RVP) is the mechanism by which services are 

bootstrapped within the network. 

 Peer Information Protocol (PIP) allows a peer to query for current status 

of another peer. 

JXTA has two categories of peers; super-nodes and edge nodes. Super-nodes are 

either rendezvous or relay nodes. Rendezvous nodes are used for enabling 
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communication between edge-nodes in different networks. They setup a DHT 

network with other rendezvous nodes for inter-network query routing. Relay 

nodes allow edge-nodes to communicate through firewalls or NATs, and thus be 

part of the JXTA network. Ordinary edge nodes, or JXTA peers, are organized in 

peer groups around the super-nodes. 

Light weight version of JXTA, called JXME (JXTA for J2ME) has been ported for 

Java enabled mobile devices. There are two version of JXME available; proxied 

version for slower J2ME devices, and proxyless version for more powerful mobile 

devices. The proxied version needs a JXTA Relay to communicate with other JXTA 

nodes, whereas the proxyless version is similar to a regular JXTA edge node as it 

does not need the relay. 

P2P Services 

Keller et al. [50] present a two-layer mobile peer-to-peer service platform that 

consist of a Core peer-to-peer services layer and an application specific services 

layer. Universal core peer-to-peer services layer provides basic peer-to-peer 

services that can be then utilized by application specific application layer 

components.  

 

FIGURE 3.1: HIERARCHIAL DHT 
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The architecture is based on a hybrid peer-to-peer architecture where more 

capable nodes function as super-nodes. The super-nodes are connected to other 

super-nodes in a DHT (see Figure 3.1), whereas the leaf nodes are connected to 

super-nodes but not to the DHT itself. The authors note that the problem of their 

architecture is that DHT natively supports only exact match queries, and that this 

is inappropriate for many applications. 

PnPAP 

Harjula et al. [51] propose an application framework called the Plug-and-Play 

Application Platform (PnPAP). PnPAP allows mobile applications dynamically 

selecting among many underlying peer-to-peer and session management 

protocols.  The PnPAP sits between application layer and P2P protocol layer (see 

Figure 3.2). In addition to conventional peer-to-peer protocols, such as, Direct 

Connect (DC) and JXTA, the PnPAP application framework also allows using 

Session Initiation Protocol (SIP) as the underlying communication protocol.  

 

FIGURE 3.2: PLUG-AND-PLAY APPLICATION FRAMEWORK  [52] 

In another paper, Howie et al. [52] describe how SIP is used by the PnPAP. 

Authors describe how SIP is used to find resources, initiate downloads, and find 

new protocol images on other PnPAP nodes. The SIP communication architecture 

uses SIP REGISTER message to query for available resources from PnPAP SIP 

registrar. The authors suggest using instant messaging capabilities of SIP, along 

with MIME encoding, to convey binary images over SIP between PnPAP peers 
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(see Figure 3.3). However, this is rather inefficient and a hostile way of conveying 

large binary files, as the SIP message overhead is quite large, and as SIP messages 

are often software forwarded in the SIP network, thus placing considerable load 

to SIP proxies. 

 

FIGURE 3.3: PNPAP DOWNLOAD USING INSTANT MESSAGING 

Mobile Chedar 

Kotilainen et al. [53] present Mobile Chedar peer-to-peer middleware for mobile 

devices based on the Chedar peer-to-peer middleware [54]. Mobile Chedar uses 

Bluetooth to connect to other peers. Mobile peers in the Mobile Chedar network 

can also communicate with nodes in a fixed Chedar network by using Chedar 

gateway peers. The Mobile Chedar can be used to locate unused resources, such 

as CPU time and storage space in the network. 

3.4 Conclusions 

In the first part of this chapter, we discussed the special requirements that 

mobile environment and its users pose on peer-to-peer architecture selection. 

We concluded that hybrid or centralized architectures are good choices for 

mobile peer-to-peer applications as they minimize the communication and 

processing overhead in the mobile peer – whereas peer-to-peer solutions based 

on decentralized and structured architectures are less suitable for mobile use as 
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they require mobile devices to be full members of the peer-to-peer network thus 

placing considerable load on them. 

In the second part, we reviewed different mobile peer-to-peer file-sharing 

applications and mobile peer-to-peer middleware. Most of the applications 

presented here are based on a hybrid peer-to-peer architecture or some kind of 

application gateway architecture which abstracts away the complex peer-to-peer 

network. 
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Chapter 4 – Mobile Peer-to-Peer over SIP 

Next-generation mobile networks, like the Third Generation Partnership Project’s 

(3GPP) IP Multimedia Subsystem (IMS), are largely built onto well known internet 

protocols, such as the Session Initiation Protocol (SIP). These protocols are well 

understood and documented, and they are tested in large scale deployments. 

To enable mobile peer-to-peer communications in next-generation mobile 

networks, we have designed a mobile peer-to-peer platform that works on top of 

SIP. Using SIP instead of a proprietary peer-to-peer protocol ensures that the 

peer-to-peer platform can be easily adapted to tomorrow’s SIP-aware mobile 

networks. 

We begin this chapter with a short overview of IMS and SIP. Then, we present 

our mobile peer-to-peer application architecture, and discuss its design choices 

and suitability for mobile use.  

4.1 Mobile Peer-to-Peer in IMS 

The IP Multimedia Subsystem (IMS) was designed to be the IP-based core of the 

future packet switched 3G networks. It is a collaborative effort of the Internet 

Engineering Task Force (IETF) and the Third Generation Partnership Project 

(3GPP) to bring the cellular networks to a new era of communications.  
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The idea behind IMS is to provide internet services anywhere and anytime for 

the mobile users and to create a common platform for various multimedia 

services. IMS enables rich communications between mobile terminals over 

various access network technologies, be it 3G, 4G, or 802.11.  

As IMS is built on well defined standard protocols like SIP, it provides a good 

basis for building a mobile peer-to-peer platform. SIP has properties that are 

useful for peer-to-peer applications, and with minor modifications it is suitable 

for peer-to-peer application signaling. 

4.2 Session Initiation Protocol 

Session Initiation Protocol [55] is a protocol for creating, modifying, and 

terminating multimedia sessions between two or more participants. 

SIP was drafted by the IETF Multiparty Multimedia Session Control (MMUSIC) 

working group in 1997 as the result of merging two different signaling protocol 

proposals: the Session Invitation Protocol (SIP) by Mark Handley and Eve 

Schooler, and the Simple Conference Invitation Protocol (SCIP) by Henning 

Schulzrinne. In 1999, the SIP working group was established, and later Session 

Initiation Proposal Investigation (SIPPING) and SIP for Instant Messaging and 

Presence Leveraging Extensions (SIMPLE) working groups were set up for 

investigating further applications of SIP and defining instant messaging 

extensions for it. [56] 

SIP is an end-to-end signaling protocol; SIP messages are routed via SIP proxies 

from the originator to the target user. SIP entities have a peer-to-peer 

relationship between each other, thus any entity can send the initial request and 

any entity is capable receiving requests. During a single transaction, the entities 

are in a client-server relationship, where the request sender functions as the 

client, and the party who sends the reply, as the server. 
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SIP is a text based signaling protocol; it is based on the Hypertext Transfer 

Protocol (HTTP) and the Simple Mail Transfer Protocol (SMTP). SIP uses the same 

request-response transaction model and status codes as HTTP, and same text 

encoding rules and header styles as SMTP. 

SIP is specified in RFC 3261 [55]. This Request for Comments (RFC) document 

specifies the protocol and necessary components of the SIP signaling framework. 

The SIP architecture provides means for resource location and location 

independent routing of signaling messages. SIP only provides signaling for 

negotiating session characteristics; the protocol provides no means to transfer 

actual communication data between the session participants; thus other 

protocols have to be used in addition to SIP to create meaningful services.  

RFC 3261 specifies five aspects of multimedia session establishing, and 

terminating that SIP provides: 

1. User location - where to route signaling? 

2. User availability - is the requested user available? 

3. User capabilities - what are the media capabilities of the callee? 

4. Session setup - establishment of the session parameters. 

5. Session management - transferring, modifying, terminating the session 

and invoking services. 

4.2.1 Resource Location 

When a SIP enabled User Agent (UA) starts up, it has to register to the Registrar 

of its home domain. The registration is performed by sending a REGISTER request 

to the registrar. This request includes user’s current address and the user’s 

Address of Record (AOR). 

The registrar will update UA’s current location to the Location service, which 

creates a mapping between the AOR and the terminal address, and sends a 200 

OK reply back to the UA to inform that the registration succeeded. 
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When the user wants to contact another user, all he needs to know is the AOR of 

the other party. The SIP infrastructure provides message routing that enables the 

originating user to send the SIP message to the known AOR of the other user. 

First, the originating user sends an INVITE request to a preconfigured outbound 

SIP proxy in his home domain, or alternatively to an inbound SIP proxy in foreign 

user’s domain – the UA sending the request functions as the User Agent Client 

(UAC) for this particular signaling exchange. 

If the message was forwarded to the outbound proxy in the home domain, the 

proxy will resolve the address of the correct inbound proxy in the foreign domain 

and send the message there. The proxy in the foreign domain will contact the 

location service of that domain to get information about the current location of 

the session target. 

The proxy then uses this location information to route the message to the UA 

who is the final recipient. The final recipient will send the reply via the same 

proxies as the request came from. In addition to message routing, these proxies 

may also be used to implement charging and application layer firewalling 

functions. The UA which receives the request and sends the response to the 

requestor functions as the User Agent Server (UAS) for this particular signaling 

exchange. 

After the communicating partners have located each other via proxies, they may 

start sending SIP messages directly between each other if the intermediate 

proxies have not requested to stay on the signaling path. 

4.2.2 SIP Requests and Responses 

SIP messages are sent in a request-response style. There is one final reply per 

one request. However, there can be several provisional replies before the final 

one. The INVITE request is an exception, it is a three-way message, meaning 

there is a request-reply-confirm (INVITE – 200 OK – ACK) pattern. Different SIP 

requests are presented in Table 4.1.  
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TABLE 4.1: SIP REQUESTS 

Request Action 

REGISTER Pushes user’s current Contact URI to the location service in his home 

domain. 

INVITE Establishes session between UAs. Is different from other requests 

because it is a three-way request. 

BYE Terminates the session established with an INVITE request. 

CANCEL Cancels pending requests. Request can be only cancelled if it has not 

been fully processed yet. 

OPTIONS Queries UA or proxy about the SIP capabilities it supports. 

INFO Conveys call control information during an existing session. 

MESSAGE Transfers user readable messages between terminals. 

SUBSCRIBE and 

NOTIFY 

Used for subscribing to and notifying of events related to the SIP system. 

PUBLISH Publishes event state information from UAC’s Event Publication Agent 

(EPA) to Event State Compositor (ESC). 

UPDATE Modifies the state of a pending session. 

PRACK Provides reliable provisional responses. 

REFER Refers another UA to access a resource specified by Uniform Resource 

Identifier (URI) in the REFER request. 

 

The SIP replies are identified by the reply codes. The reply codes are divided into 

six response classes, shown in Table 4.2. 

TABLE 4.2: SIP RESPONSE CODE CLASSES 

Class Description Action 

1xx Provisional Indicate the status of the session prior to completion. Are also 

called provisional replies. 

2xx Success Request has succeeded. Retransmission of messages is stopped. For 

an INVITE, send ACK. 

3xx Redirection The UAS or an intermediate proxy has returned possible locations 

for the AOR we are trying to reach. 

4xx Client error The request has failed due to an error in the UAC. 

5xx Server failure The request has failed due to an error in the UAS. 

6xx Global failure The request has failed. It cannot be fulfilled by any server. 
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4.2.3 SIP over P2P (P2P-SIP) 

Regular SIP relies on Proxy, Registrar, and Location services that are located in 

fixed addresses. However, sometimes it is useful if communication can be 

initiated without first setting up the complex SIP server infrastructure. Peer-to-

Peer Session Initiation Protocol (P2P-SIP) [8] will work in settings where there is 

no fixed SIP infrastructure available. In P2P-SIP, session establishment and 

management is collectively handled by the members of the P2P-SIP network, and 

thus there is no need for dedicated Proxy, Registrar, and Location services. 

P2P-SIP is being developed in IETF’s P2PSIP working group. Between July 2007 

and December 2007, eighteen different P2P-SIP related internet-drafts have 

been published. As peer-to-peer SIP is very much under development, the final 

architecture is still unknown. However, good high-level introduction to P2P-SIP is 

given by Singh and Schulzrinne [57]. 

P2P-SIP overlay consists of P2P-SIP peers and P2P-SIP clients. The peers run 

collectively a distributed database algorithm which is used to store information 

about the mappings between AORs and Contact URIs to provide the location 

function. It is likely that a DHT will be used to implement this distributed 

database. This overlay provides the same functionality that SIP Proxies, 

Registrars, and Location services offer in regular SIP.  

In addition to P2P-SIP peers, there may be less capable nodes, called P2P-SIP 

clients, connected to P2P-SIP peers, and not to the DHT itself. However, the role 

of the P2P-SIP client is still under debate and it is not clear if it will be included in 

the final architecture [58]. Matuszewski and Kokkonen [59] present a mobile 

P2P-SIP architecture where mobile devices function as P2P-SIP clients; thus, 

limiting the mobile device’s communication overhead to that between the 

mobile client and a P2P-SIP peer – this way avoiding the DHT communication 

overhead in the mobile device. 
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P2P-SIP vs. P2P over SIP 

In the next section, we present our peer-to-peer application that uses SIP as the 

signaling protocol. Compared to P2P-SIP, we are enabling peer-to-peer 

networking over SIP – not SIP over peer-to-peer networks as in P2P-SIP. 

In our architecture, we still rely on SIP Proxies and Registrars in the fixed network 

providing the SIP message routing. However, our architecture does not care how 

the underlying message routing is implemented – if it is relying on fixed SIP 

infrastructure or peer-to-peer SIP. Our application merely uses SIP for message 

routing.  

It may not make much sense to use P2P-SIP with our application as our hybrid 

architecture already relies on some fixed nodes, i.e., super-nodes, in the network 

anyway. However, P2P-SIP would be useful when used with a decentralized peer-

to-peer application which could then work without any fixed infrastructure. 

In [60], Harjula et al. present how their Plug-and-Play Application Platform 

(PnPAP) peer-to-peer middleware can be used over the top of P2P-SIP so that SIP 

messages are routed between PnPAP participants over P2P-SIP DHT. This version 

of PnPAP uses the resource sharing framework utilizing the SUBSCRIBE and 

NOTIFY scheme that we have specified in [61]. 

In their paper, the authors concluded that if PnPAP mobile nodes functioned as 

P2P-SIP clients and not as full members of the P2P-SIP DHT, the performance 

penalty of using P2P-SIP was minimal and the fault tolerance was improved 

compared to the traditional client-server SIP. On the other hand, if PnPAP nodes 

functioned as P2P-SIP peers, and thus as members of P2P-SIP DHT, the 

performance was found to be poor. 

4.3 Mobile Peer-to-Peer using SIP 

We have created a hybrid mobile peer-to-peer file-sharing platform which 

consists of a mobile client for Symbian based Nokia Series 60 smart phones and a 
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SIP Application Server (SIP AS) functioning as a super-peer. The software uses SIP 

as its underlying signaling protocol to allow its use in any SIP aware network. 

Usage of SIP enables peer-to-peer signaling to be routed using SIP URIs as node 

identifiers. Use of SIP identifiers enables seamless mobility as the changes in 

node IP-address, and thus in access net connectivity, are abstracted away using 

the underlying SIP infrastructure. 

Hybrid peer-to-peer was chosen as the underlying paradigm to minimize 

overhead in the mobile device and to allow operators to have control on the 

peer-to-peer service users by controlling the super-nodes. 

The basic architecture of our Mobile Peer-to-Peer application is presented in 

[18], [17], whereas more detailed architecture and performance analysis is 

presented in [16]. Detailed mobile client software architecture is presented by 

Hyyryläinen in [62]. 

4.3.1 Client Architecture 

The client was designed to be modular and easy to use. The idea is that the client 

provides a simple search dialog where the user can input information about the 

content he is looking for. The user can initiate the search by specifying the name, 

type, size, or hash of the file he wants to find. Searches using multiple 

parameters are also possible. 

The basic client functionality is divided into four modules. These are the 

Registrar, Finder, Transfer, and Graphical User Interface (GUI) modules. The GUI 

module interfaces with the user, the finder module takes care of the query 

processing, and the transfer module handles peer-to-peer file transfers and 

updates on the client’s file list to the super-node. The registrar module 

communicates with the super-peer which peer-to-peer services are running in 

the mobile device. Client’s high-level software architecture and communication 

relationships are illustrated in Figure 4.1.  
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FIGURE 4.1: MP2P APPLICATION ARCHITECTURE 

4.3.2 Super-Node Architecture 

The super-node maintains information about the shared files on mobile clients. 

This information includes file names, file hashes, file sizes, and other meta-

information. 

The super-node interacts with the clients during searches and file list updates. 

File searches are initiated by a client sending a search request to a super-node. 

The super-node answers with a reply that contains information about the 

matching files and the peers having those files. 

We initially proposed super-node implementation as a Jiplet [63] attached to a 

SIP server. However, Jiplet based super-node was never implemented. The first 

super-node was implemented concurrently with the mobile peer-to-peer client 

as a standalone Python script. 
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Morales Reyes [64] describes the second super-node implementation. This 

super-node was implemented in C++ and it uses a MySQL database for storing 

the peer-to-peer index.  

4.3.3 SIP P2P Application Server Architecture 

In [17], we describe an architecture where the super-node is implemented as a 

SIP application server (SIP AS) to provide full integration with IMS networks. This 

application server, called the Peer-to-Peer Application Server (P2P AS), interfaces 

with the Serving Call Session Control Function (S-CSCF) and other P2P ASs using 

SIP. Mobile devices connect to P2P AS via Proxy-CSCF (P-CSCF) and Serving-CSCF 

(S-CSCF), as shown in Figure 4.2. 

 

FIGURE 4.2: ELEMENTS IN P2P SIP OVER IMS 

Each operator can have one or more P2P ASs which are connected to each other 

in the decentralized peer-to-peer fashion. This architecture is not limited to IMS 

networks, but allows connections to other peer-to-peer networks using SIP or 

some other peer-to-peer protocol. 

In [19] we present a refined architecture of a multi-service overlay network that 

we call SIP P2P over IMS. In this architecture, there is one or more SIP P2P ASs 

per operator. ASs create an overlay of their own with each other. They behave as 

front end towards the mobile devices, make resources of the network available 
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to other super-nodes, help user equipment to get search results, and maintain a 

peer-to-peer overlay network for resource sharing. Different overlay network 

algorithms can be used depending what the provided service will be, e.g., 

unstructured flooding-algorithm for file-sharing service, or structured DHT for 

locating chat contacts with full email addresses. General architecture is 

presented in Figure 4.3. 

 

FIGURE 4.3: SIP P2P OVER IMS ARCHITECTURE 

Users can publish the availability of one or more resources in their devices, 

perform searches, initiate file downloads, join audio or video streaming sources, 

conferences, or chat rooms. 

File transfer is done using the Message Session Relay Protocol (MSRP), and 

Network Address Translation (NAT) and firewall traversal is accomplished by help 

of MSRP relays. 

In [17], we discuss how charging functions can be implemented with the help of 

AS. Charging can be implemented with normal IMS charging mechanisms where 

S-CSCF and P2P AS analyze the peer-to-peer SIP signaling and take part in the 
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charging process. Operators can implement any charging scheme for the usage 

of SIP P2P services, including subscription based charging. P2P AS collects 

application-level usage records which can be used as basis for charging as well. 

One model would allow free searches and charge only for actual media 

consumption, like file downloads or video streaming. 

In [16], we discuss some further enhancements to the application server 

architecture; such as P2P AS functioning as a cache for popular content, as a 

gateway to an external peer-to-peer network, or as a peer-to-peer manager 

which optimizes the use of network resources. 

4.3.4 SIP Signaling 

When a User Equipment (UE) joins a network, it publishes information about its 

shared resources to a P2P AS. When the UE performs search it sends a search 

request to the P2P AS. The P2P AS provides search results that contain a list of 

available resources and SIP URIs where these resources are available, e.g., 

content cache, streaming server, chat group manager, or other UE where the 

resource is stored. To fetch a resource, the UE initiates appropriate SIP session 

towards such endpoint to fetch the resource. This final SIP session is between 

the resource holder and the requester and it does not involve the P2P AS. 

Initial Signaling Scheme 

Our initial architecture used two standard SIP methods to implement all of its 

functionality: INVITE and MESSAGE. The use of these message types was largely 

dictated by the limitations of the SIP stack we used for the initial client 

implementation. Signaling flow utilized in the initial architecture is presented in 

Figure 4.4. 
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FIGURE 4.4: INITIAL SIGNALING 

In our initial signaling scheme, nodes upload information about the files they are 

sharing to a P2P AS in MESSAGE requests, whereas search requests are conveyed 

in bodies of INVITE messages. The P2P AS sends search replies in the following 

606 Not Acceptable replies.  An error message was selected for the search reply 

as it terminates the establishment of an unwanted session. However, a generic 

request-reply type of signaling message, such as HTTP GET - 200 OK, would have 

better suited for the situation; however, SIP is missing such a generic request-

reply type of a signaling message. 
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The actual content download is initiated by sending an INVITE request to the 

peer that has the file of interest. The Session Description Protocol (SDP) in the 

message body specifies the hash of the file to be downloaded.  

The file list updates and search requests encode their bodies in Extensible 

Markup Language (XML); thus, they can be extended easily in the future.  In [16] 

we present a messaging flow for registering to service, updating file list, 

performing content search, and performing a file transfer. 

Refined Signaling Scheme 

We do not discuss the initial signaling scheme further but present the refined 

signaling scheme introduced in [19]. Further information, such as detailed 

message formats are given in [61].  

Resource Publication 

The first thing the UE does when it starts up the peer-to-peer application is the 

resource publication to the P2P AS. The resource publication signaling flow is 

presented in Figure 4.5.  

 

FIGURE 4.5: RESOURCE PUBLICATION 
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At first, the UE does a regular IMS registration: After the UE is powered on (1) 

and attached to a packet-switched network (2), it establishes a Packet Data 

Protocol (PDP) context (3), and registers to IMS (4). 

When the peer-to-peer application is launched, the UE publishes availability of its 

shared resources to the P2P AS. SIP PUBLISH method is used with resource 

publication event package [65] to publish resource information to the P2P AS 

(20-21). The P2P AS replies with 200 OK including a SIP-ETag header that contains 

the entity-tag allocated to the published resource (22-23).  

Next, the P2P AS may need to publish or update resource information in the P2P 

AS overlay network depending on the actual overlay architecture (24). In case a 

flooding algorithm is used for inter-P2P AS searches, nothing is done in this 

phase. In case of DHT algorithm, like Chord, is used, the resource metadata has 

to be stored into the appropriate node in the overlay. 

If the shared resource is later modified in the UE (25), the UE refreshes previous 

publication by sending a new PUBLISH request where SIP-If-Match header is used 

to match entity-tag of the resource (26-27). The P2P AS replies with 200 OK that 

contains a new entity-tag related to the modified resource (28-29) and publishes 

modified information forwards in the P2P AS overlay (30). 

Search 

To find resources in the peer-to-peer network, the UE performs search query to 

the P2P AS. The search signaling flow is presented in Figure 4.6. 
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FIGURE 4.6: RESOURCE SEARCH 

When a user initiates search in the peer-to-peer application (40), the UE sends a 

SUBSCRIBE request for the resource event package. This request is sent to the 

P2P AS (41-42) where it creates a soft-state subscription – meaning that the 

subscription will last for some time (determined by the Expires header field). The 

SUBSCRIBE request contains a Search filter [66] that specifies the search 

parameters. 

The P2P AS answers with a 200 OK message, this message does not have any 

search results but it signals to the client that the search query has been 

successfully received at the P2P AS (43-44). 
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Next, the P2P AS looks up its own database and forwards the query further to 

other P2P ASs in the overlay (45). 

Then P2P AS sends a NOTIFY request to the UE. This request usually contains a 

first collection of search results. In case the P2P AS did not have matching results 

in its local database and its waiting for search results from the overlay, it will 

send an empty NOTIFY request. The empty NOTIFY request is sent due to 

protocol reasons, as an immediate NOTIFY is required after a successful 

SUBSCRIBE as mandated by RFC3265 [67] (46-47). The UE answers with 200 OK 

(48-49). 

After the P2P AS receives the first set of results from the overlay (50) it will send 

results to the UE in a NOTIFY request (51-52), and the UE will acknowledge this 

with 200 OK (53-54). 

Later, when the P2P AS receives more results for the search, it sends further 

NOTIFY requests to the UE. When the last batch of results arrives from the 

overlay or when the search state expires in the P2P AS (55), the P2P AS sends the 

last NOTIFY request to the UE and sets the Subscription-State header value to 

terminated to indicate that the search state exists no more in the P2P AS. 

The search method used in our architecture is good for mobile use as it is 

incremental. The user does not have to wait for initial search results even if the 

search in overlay is taking some time. However, the use of incremental search 

creates some communication overhead as more SIP messages are passed 

between the P2P AS and the UE. 

Resource Connection 

Finally, to acquire the interesting resource or connect to the resource, the UE has 

to establish a session to the resource holder. The signaling flow for connecting to 

the resource in another UE is shown in Figure 4.7  
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FIGURE 4.7: RESOURCE CONNECTION 

When the user has found the resource he wants to connect to, he selects the 

resource from the search results to initiate the resource connection (80). Then, 

the UE-A sends an INVITE request to the SIP URI specified in the search results 

(81-83). This INVITE contains an SDP offer indicating a file transfer operation and 

some metadata indicating the resource to be retrieved. 

If the UE-B does not, for some reason, have resources to fulfill the request (84) it 

will send 182 Queued message to the UE-A to inform that the request is queued 

and will be answered later (85-87). Later, when the UE-B is ready to process the 

request, it answers with 200 OK containing the SDP answer (89-91), which the 

UE-A replies with ACK (92-94). 

The actual connection to the resource happens using some other protocol, such 

as MSRP for file transfer (95). 

When the media session ends, either of the UEs sends a BYE request (96-98) that 

is answered by a 200 OK reply by the other UE (99-101). 
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4.3.5 System Performance 

In [14] and [16], we present measurements results for our initial signaling 

architecture. Message sizes were measured and they are presented in Table 4.3.  

TABLE 4.3: SIP MESSAGE SIZES 

Action Request Size (bytes) Reply Size (bytes) 

Register REGISTER 370 200 OK 300 

Search INVITE 430–480 606 Not Acceptable 370–1380 

 ACK 320   

File list update MESSAGE 450–1380 200 OK 250 

Download INVITE 540 200 OK 290 

 ACK 390   

De-register REGISTER 380 200 OK 250 

 

In [19], we present publication and search delay calculations for our enhanced 

signaling architecture. These are presented in Table 4.4. 

TABLE 4.4: PUBLICATION AND SEARCH DELAY FOR ENHANCED ARCHITECTURE 

Action Request / Reply Delay 

Publication PUBLISH 240 ms 

  200 OK 150 ms 

  Sum 390 ms 

Search SUBSCRIBE 260 ms 

  Search in P2P AS 10 - 2000 ms
2
 

  NOTIFY
3
 340 ms 

  Sum 610-2600 ms 

 

As we can see, messages are quite large in size as SIP is a text-based protocol and 

as it has many mandatory protocol fields. However, as the measurement results 

                                                      
2
 Search delay in P2P AS varies largely depending on the size of the P2P network. In case some 

matches are found in the serving P2P AS, the first NOTIFY can be returned almost instantly; 

whereas, if the search has to propagate to a distant P2P AS, the delay can be much longer. 
3
 NOTIFY size varies greatly depending how many results are found. E.g., the NOTIFY used in 

these calculations contains information about one file found from two different peers. 
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show, the actual delay of transmitting any of these messages is less than one 

second. 

In [16] we present measurements on MP2P application memory use. The 

memory use of the application varied between 200 and 350 kilobytes, whereas 

the SIP stack and SIP profile manager consumed additional 170 kilobytes of 

memory. 

In [13] we present measurements on transfer speeds between mobile devices in 

a 3G network. We achieved speed of 100kbit/s with the limiting factor being the 

bandwidth from the mobile device towards the network. Compared to peer-to-

peer transfer speeds over Bluetooth in [43], where the best measured 

performance for transmitting a 10 kilobyte image was 3.5 seconds, resulting in 

the average transfer speed just below 23kbit/s, we can note that the 3G transfer 

speeds were over four times faster than those of Bluetooth. In addition, we are 

not limited to the proximity of Bluetooth connectivity with 3G. With more 

advanced radio technologies, such as High-Speed Packet Access (HSPA) and 

Evolution Data-Only (EVDO), the transfer speeds should be an order of 

magnitude higher. 

Acceptable Performance 

In [20] we present an analysis of a questionnaire survey, where 98 potential 

peer-to-peer application users were asked about their peer-to-peer usage habits. 

Among other questions, the potential users were asked about acceptable search 

delays and acceptable image download delays when using a mobile peer-to-peer 

application. These results are shown in Table 4.5 and Table 4.6 respectively. 
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TABLE 4.5: ACCEPTABLE SEARCH DELAYS 

Search delay (sec) Percentage of 

respondents accepting 

2 100 

30 74 

60 45 

>60 24 

 

TABLE 4.6: ACCEPTABLE IMAGE FILE DOWNLOAD DELAYS 

Image file download 

delay (sec) 

Percentage of 

respondents accepting 

2 100 

30 86 

60 56 

120 28 

>120 8 

 

From the results we can see that 100% of the potential users are satisfied with 

search delays less than two seconds and 74% with delays less than thirty 

seconds. When comparing these results to the measured signaling delays, we can 

see that the signaling delays in our application are no problem as they are always 

below the two second threshold. 

In cases where search takes more than two seconds to complete, due to delays 

in the P2P AS overlay, the incremental search functionality provides results as 

they become available, thus enhancing the user experience. 

When questioned about acceptable image file download delays, all users were 

happy with a sub two-second delay, whereas 86% were happy with a sub thirty-

second delay, and 56% were happy with sub one-minute delay. If available 

bandwidth is roughly 100kbit/s, which is a typical 3G upstream bandwidth, we 

cannot presume that an image file can be downloaded in a sub two-second 
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timescale as only about 25kB can be transmitted in that time, and that does not 

even include signaling delays. However, in 30 seconds we are able to download 

750kB of data, which should be enough for image transfer in mobile context. 

As a concluding note, the signaling delays are not an issue at all. When 

downloading larger than 100kB objects, the file transfer delay starts to dominate 

over the signaling delay – thus being the limiting capability for all networked 

mobile applications, not just for peer-to-peer applications. 

4.3.6 Securing Mobile Peer-to-Peer 

According to [68], the security problems of P2P systems include: authentication, 

encryption, privacy and confidentiality, and ability to deal with malicious nodes. 

A bit different categorization is used by Daswani et al. [69], who organize the 

security issues of P2P data-sharing into four areas: availability, file authenticity, 

anonymity, and access control. 

In a P2P file-sharing environment we can divide security issues by functionality 

into two main categories – into security issues of search and into security issues 

of content transfer. Whereas content searches are done using a fairly static 

super-peer, the actual content is transferred from peer to peer, where the other 

peer can be any random, never-seen-before node.  

In [15], we discuss search and download security issues, as well as availability 

and anonymity issues of mobile peer-to-peer networks. In this paper, we discuss 

how securing both peer-to-peer signaling and content downloads is important to 

prevent unwanted entities from gaining private information from the peer-to-

peer traffic.  

We found out that if searches are done in centralized or hybrid peer-to-peer 

architectures where a node sends queries to a single super-peer, securing this 

connection is rather easy as the mobile node can have a shared secret with the 

super-peer that is used for authenticating and signaling encryption between the 
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mobile node and the super-node. One candidate for such shared secret is the 

secret key K, which is shared between the mobile node Universal Subscriber 

Identity Module (USIM) and the network Authentication Center (AuC). 

However, because downloads are done between random peers, it is much more 

difficult to secure this inter-peer connection as it is not feasible to have shared 

secrets between all possible peers in the network. Thus, authentication between 

the peers has to be based on Public Key Infrastructure (PKI) or on a centralized 

authentication server. 

In the paper, we also propose using Secure / Multipurpose Internet Mail 

Extensions (S/MIME) and Transport Layer Security (TLS) in our SIP based peer-to-

peer architecture to secure the signaling and download connections. 

4.4 Conclusions 

In this chapter, we presented our SIP based mobile peer-to-peer architecture. 

Our application architecture is based on the hybrid peer-to-peer architecture 

where network operators are running super-nodes in their networks as SIP P2P 

Application Servers. Our application architecture satisfies all requirements for a 

mobile peer-to-peer application stated in Section 3.2: 

1. It minimizes the traffic in mobile nodes to conserve bandwidth and 

processing load, and thus also the battery on mobile device, 

2. it minimizes adverse effects of high churn on mobile device, 

3. it enables users to perform wildcard searches, and 

4. it lets mobile operator to have control on the service. 

As our architecture uses text based SIP for signaling, the signaling is not the most 

efficient. However, as the measurement results show, the delays of transmitting 

the signaling messages were less than one second in all cases, which, according 

to our user study, satisfies 100% of users. Only the initial joining to the network 

and publishing the list of resources to the P2P AS potentially takes more time. 
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Chapter 5 – Conclusions 

Finally, in this chapter, we provide conclusions on our mobile peer-to-peer 

research. We begin this chapter by reviewing the research objectives. Then, we 

present the key findings of the thesis. Last, we give ideas for some future 

research topics on the subject.  

5.1 Objectives Revisited 

The main objective of this thesis is to present how peer-to-peer based services 

can be efficiently realized in next-generation SIP/IMS networks by reusing their 

existing protocols as much as possible, and to present some enhancements to 

these protocols. We also evaluate what kind of special requirements the mobile 

environment poses for peer-to-peer applications and consider those 

requirements in our application design.  

Longer term objective for the research is to develop a peer-to-peer framework 

over which different kinds of mobile services can be deployed without providing 

centralized service architecture in the network. This framework should provide 

service discovery and service connection services for various overlying 

applications.  
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5.2 Results 

Compared to other mobile peer-to-peer research, where the research has often 

focused on the peer-to-peer protocols used in the fixed Internet, and on 

modification of these protocols to be used in the mobile environment, we 

present a unique way of integrating a peer-to-peer network model on top of IMS 

networks. We have considered the special requirements of the mobile 

environment in our research, and built the application architecture considering 

how to meet those requirements best. 

In our architecture, SIP is reused as the peer-to-peer signaling protocol, i.e., for 

uploading resource info from a mobile client to a super-peer, for searching 

resources in the peer-to-peer network, and for initiating resource connections, 

e.g., file transfers between mobile peers. 

We present a SIP based hybrid peer-to-peer application architecture where the 

SIP Application Server (SIP AS) functions as a peer-to-peer super-peer. We show 

that the hybrid peer-to-peer architecture is the best fit for mobile peer-to-peer 

network as it minimizes overhead in mobile nodes and as it allows the mobile 

operator to have control on its users – even in multi-operator environment. 

Indeed, other mobile peer-to-peer research projects presented in this paper are 

also mostly based on hybrid or centralized peer-to-peer architectures, due to 

these architectures’ low overhead in the mobile nodes. 

Finally, we present measurement results on the application performance and 

compare these results to user requirements acquired from the user survey. 

Comparing these two, we see that our application satisfies the user requirements 

for the application performance. 

5.3 Further Discussion 

We presented a SIP enabled peer-to-peer service framework that can be used as 

the basis for a multitude of peer-to-peer services. Our framework is not limited 
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to one type of peer-to-peer service but it provides generic tools for resource 

advertisement, resource discovery, and resource connection. 

Use of mobile peer-to-peer services can provide mobile operators cost savings as 

the service infrastructure is distributed among the end-nodes. The operator 

might have to run a super-node, but the infrastructure costs of running a simple 

super-node, compared to running the whole service based on the traditional 

client-server model, are minimal.  

One potential issue in low-bandwidth environments is that the SIP is not the 

most efficient protocol as it is text based and as it has many mandatory protocol 

fields. If messaging overhead of SIP is considered as too large, use of binary SIP 

or SigComp should be considered. 

5.4 Future Research Possibilities 

As people are sharing personal and private information in peer-to-peer systems 

they might want to control who has access to this information; this is also shown 

in the results of our mobile peer-to-peer survey [20]. Traditional centralized 

access control and group management techniques cannot be directly applied to 

inherently distributed peer-to-peer networks. Some interesting questions 

regarding group management are: who is controlling the group, is there one 

controller or is control distributed among many peers, who is authenticating 

peers that want to join the group, etc. 

An interesting aspect, especially from mobile point-of-view, is caching in peer-to-

peer networks. If a mobile device is hosting a resource that becomes immensely 

popular it might have problems serving it to large crowds. Usually peer-to-peer 

networks tackle this problem so that all peers who get the resource are also 

sharing it. However, due to intermittent nature of mobile connections, it might 

be useful to cache this popular material in nodes that are located in the fixed 

network and that have fast connections. Cache servers might also improve 

general scalability of mobile peer-to-peer networks. 
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Last, continuing on the research we did in [20], it would be interesting to 

perform user tests with real mobile peer-to-peer applications to see how users 

use peer-to-peer applications in the mobile environment, and how this differs 

from the usage of peer-to-peer applications in the fixed network. 
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