
Mobile Phone and Cloud – a Dream Team for 3D Reconstruction

Alex Locher1 Michael Perdoch1 Hayko Riemenschneider1 Luc Van Gool1,2

1 CVL, ETH Zurich, Switzerland 2 VISICS, KU Leuven, Belgium

Abstract

Recently, Structure-from-Motion pipelines (SfM) for the

3D reconstruction of scenes from images were pushed from

desktop computers onto mobile devices, like phones or

tablets. However, mobile devices offer much more than just

necessary computational power. A combination of handheld

device with camera, display and full connectivity entails

possibilities for an on-line 3D reconstruction that would

have been difficult to implement otherwise. In this work, we

propose a combination of a regular mobile phone as fron-

tend with a centralized server plus annex cloud as backend

for collaborative, on-line 3D reconstruction. We illustrate

few advantages of this combination of a myriad of new pos-

sibilities: First, we automatically balance computational

load between the frontend and the backend depending on

battery autonomy and available bandwidth. Second, we se-

lect the best of algorithms given the available resources to

obtain better 3D models. Finally, we allow for collabora-

tive modeling in order to arrive at more complete and more

detailed models, especially when the objects or scenes are

big. This paper presents an implementation of such a joint

mobile-cloud modeling approach and demonstrates its ad-

vantages via real-life reconstructions.

1. Introduction

Over the last years, we have witnessed a steep increase in

3D developments. With the advent of 3D cinema, 3D TV,

3D printing, and cheaper or even free 3D modeling tech-

nologies, demand for 3D data production and consumption

is rising. Mobile phone manufacturers are well-aware of

this, and are preparing mobile phones with 3D scanning

capacities. Within the computer vision community, suc-

cess has pushed image-based Structure-from-Motion (SfM)

pipelines (e.g. [18, 1, 32, 36]) onto mobile phones [19, 9].

Yet, the results of SfM are not always satisfactory. Like

other 3D acquisition methods, SfM comes with a series of

limitations. Having to make further compromises by want-

ing to put the entire or large part of the SfM pipeline on a

mobile phone does not help. Even if the power of mobile

phones will keep on increasing, there remains a plenitude

Figure 1: Screenshot of Android mobile frontend: Live

camera preview (left) and current 3D reconstruction and

next best view guidance (right). A traffic light symbol indi-

cates the status of the tracker and reconstruction quality.

of more dedicated or refined algorithms that are difficult to

run onto mobile devices but could substantially improve the

quality of the 3D output.

Hence, we propose a combination of processing on a mo-

bile device (frontend) and processing on a server or cloud

(backend) to overcome these limitations. We exploit the

communication capabilities for which mobile devices have

been developed in the first place. Using the backend, ren-

ders the SfM pipeline more capable than would be possible

on the mobile device only. At the same time, via the use

of a mobile phone as frontend, the technology can be put

in the hands of millions. Rather than seeing the division

of work between front and backend as fixed, it is interest-

ing to allow for a dynamic load balancing between them,

e.g. safeguarding reasonable battery autonomy and mem-

ory availability. After all, users producing 3D models may

still want to make a phone call or use another app after re-

construction. Last but not least, the backend acts as the cen-

tral node of a collaborative network of mobile device users.

Rather than producing 3D models of the same objects re-

peatedly, the results produced by other users (if they agree

to share) can serve as a valuable starting point. Thus, users

can complete or enhance pre-existing models, or produce a

model simultaneously with other users, as a group.



1.1. Contributions

In the proposed approach, we propose to combine the

best of both the mobile and cloud worlds: on the one hand

the immediate visual feedback and guidance during scan-

ning and the omnipresence of modern smartphones; on the

other hand, the virtually unlimited electrical power, mem-

ory, storage capacity and computational resources of the

cloud server that allow to achieve better reconstruction qual-

ity and to exploit previous results. In particular, we discuss

these two problems:

1. Dynamic load balancing. Our method automatically

determines a load for the mobile client based on bat-

tery, CPU power and link bandwidth. The load is bal-

anced according to the available resources in the mo-

bile device and cloud, respectively.

2. Collaborative 3D modeling of landmark buildings.

Further, we show the advantage of guiding users to

take pictures that are maximally helpful in enhancing

the current model, as part of the immediate visual feed-

back that is given. Note that such functionality can

only be achieved by a system that is also aware of what

others have been / are doing. It allows the system to

exploit the crowd-sourcing potential of a collaborative

3D reconstruction, by giving a user an access to a prior

model of the scene available in the cloud that might

have been acquired by others beforehand.

1.2. Related work

Two related strands of research are closing in on each

other - offline SfM and online Simultainious Localisation

and Mapping (SLAM).

The offline SfM methods have progressed from cumber-

some, fragile processing to the efficient handling of large-

scale scenes. The initial SfM implementations were purely

single desktop-based offline systems [18, 28].

Offline SfM now successfully reconstructs scenes con-

taining hundred thousands or even millions of images [32,

8, 12]. Later, online reconstruction services decoupled the

user from the powerful hardware that carried out the recon-

structions [1], only needing to upload the images possibly

after some simple filtering. Recently, [27, 14, 13] demon-

strated an online SfM method which adds new images to

existing reconstructions and builds an incremental surface

model.

On the other hand, Rusinkiewicz et al. [30] demonstrated

a system for real-time 3D acquisition. PTAM [16] was

one of the first algorithms enabling tracking and mapping

using a hand held camera in real-time for small scenes.

Based on that, Kolev et al. [19] implemented the recon-

struction pipeline fully on a mobile phone. SVO [7] pro-

posed a semi-direct odometry algorithm allowing for robust

tracking in real time on micro aerial vehicles. In contrast

to these feature-based tracking methods, DTAM [25] uses

whole image alignment, allowing a very robust tracking.

The tracker is computationally expensive, but runs in real-

time on a GPU. LSD-Slam [4] uses only high gradient parts

of the image, which enables robust tracking of a 6 DoF cam-

era pose in real-time on a regular laptop or even a mobile

phone [31] without the need of a GPU.

Several works already incorporated a mobile client and a

remote server, especially in the area of image retrieval.

Girod et al. [11] worked on mobile visual search, where a

current image is compared against a remote database. Im-

age features are extracted and compressed on the phone and

the server is queried for visually similar pictures. Middel-

berg et al. [23] localizes the 6 DoF position of a mobile

phone by registering single images to a global model on a

server. Forster et al. [6] used multiple Mobile Aerial Vehi-

cles (MAVs) collaboratively for 3D scene reconstruction.

In scene reconstruction, often redundant information from

similar viewpoints is available. [22, 34, 27] propose meth-

ods for selection and prediction of the most valuable addi-

tional viewpoints. ProForma [27] shows an explicit direc-

tion as visual feedback. Mauro et al. [22] use content-aware

features of the 3D model and also provide a map of the best

views around a 3D model.

In general, there are related works for collaborative cloud

reconstructions. Hsiao et al. [15] build large reconstruc-

tions and let the users upload new images which are then

integrated into these as cloud service. Middleberg et al. [24]

provide a similar interface for uploading images, yet add in-

teractive building selection from a cadastral map to simplify

the retrieval. Both focus on incremental reconstruction and

do not contain any prior knowledge for view guidance.

The idea of load balancing for saving power was tackled

recently in [26]. To save power on a planetary rover plat-

form they suggest to turn of a visual localization and relay

on the dead reckoning odometry until the location uncer-

tainty raises beyond requested precision. An optimal sched-

ule for the desired precision and power savings is discussed.

Contrary to these related approaches, we propose a method

which balances the benefits of online and offline processing

specific for each task. We propose a method for jointly solv-

ing the 3D reconstruction by task delegation and integration

of prior knowledge.

2. Seamless Mobile-Cloud Reconstruction

Next, we introduce our general framework, detail its

three components (frontent, session models, global model),

and present three advantages of shared mobile-cloud pro-

cessing (balancing of workload, delegation of tasks, exploit-

ing high-level knowledge due to collaboration) as illustrated

in Fig. 2. The framework connects the main components of

the general reconstruction as follows.



image

aquisition

g
e

n
e

ra
l

p
ip

e
lin

e

s
p

e
c
if
ic

e
x
a

m
p

le
s

tracking

tracking quality transmission rateframerate

next best view

collaborative modeling

loop closure

view planning

model fusion

Prior Knowledge

dense reconstruction

recognition

localization

reconstruction

Task DelegationLoad Balancing

videostream keyframes

session model

global model

Figure 2: The proposed generic reconstruction pipeline involves several methods, which can be categorized into the 3 groups

of load balancing, task delegation and prior knowledge integration. For each we give specific examples.

The Frontend is implemented on the mobile client and

forms the interface to the user. It is responsible for

acquiring an input stream of sensor data, for load bal-

ancing and for providing immediate visual feedback.

The Session Models contain each the reconstruction cre-

ated by a single scanning session of a user. They are

synchronized between the client and cloud side.

The Global Model stores the already reconstructed 3D

content. The collaborative part integrates the individ-

ual session models with this global model, once their

accurate localization is available.

A bidirectional connection between the client and the re-

mote server allows for sophisticated load balancing. The

scheme involves aspects such as the offloading of dense

modeling, the delegation of object-specific reconstruction

to dedicated algorithms (task delegation), and the exploita-

tion of the full 3D environment for visual guidance (prior

knowledge). We propose three novelties in the context of

such mobile-cloud framework, namely load balancing, task

delegation and prior knowledge integration.

The Load Balancing divides the work depending on the

available resources (battery, CPU power, data link

bandwidth).

A Task Delegation scheme acts as a higher level load bal-

ancing layer and tries to assign reconstruction tasks to

the platform and algorithm best suited.

Prior Knowledge brings additional benefits to the user.

Having the cloud in the background, the user gets ac-

cess to a collaborative environment where sharing can

simplify her task substantially. The system points out

how the user can best contribute.

We demonstrate the capabilities of such framework with an

implementation that we test on several examples.

3. The 3D Dream Team in Action

The fully working implementation consists of a mobile

smartphone application and server counterpart, incorporat-

ing several state-of-the-art components. We introduce the

most important parts here and then give more details in fol-

lowing sections.

3.1. Mobile Client

An Android application on a smartphone or tablet acts

as the mobile client, incorporating the mobile frontend and

additional layers for communication and load balancing. Its

user interface (Fig. 1) and parts of the visualisation are writ-

ten in Java, whereas the vision algorithms are implemented

in native C++ code and all computations are currently per-

formed on the phone’s CPU. The tracker of the publicly

available LSD SLAM [4] continuously tracks the 6 DoF

camera position, with respect to selected keyframes, us-

ing semi-dense image alignment. While tracking, the depth

of high gradient pixels in the active keyframe are refined

by many small baseline comparisons. As soon as the dis-

tance between the camera and the closest keyframe is large

enough, a new keyframe is initialized by projecting depth

values of the last keyframe into the current frame.

Keyframes with depth maps, which are not refined any

longer, are incorporated into a pose graph, forming the

client’s session model. Individual nodes of the pose graph

are connected by an estimated 7 DoF similarity transform

and optimized using general graph optimization. The com-

munication module exchanges keyframes, localization and

visualisation data, depending on the current load balancing

scheme, with the remote server.

3.2. Cloud Server

In the cloud, the reconstruction server listens for incom-

ing connections of mobile clients. After successful identi-

fication, a session id is generated and a new session model



is started. Keyframes and pose constraints from the client

are saved and the corresponding pose graph is created. Ad-

ditional constraints between the new and existing data are

searched by local features matching. Matching candidates

are evaluated by incorporating the pose priors and image

retrieval applied to the existing keyframes in the session

model. The server application is also implemented as a C++

application and links to the g2o [20] optimisation. Feature

extraction and matching are performed using a GPU imple-

mentation [35]. Reconstruction and registration are realized

using VisualSFM [37] controlled over a socket.

4. Load balancing

The load balancing layer enables to change parameters

of the frontend on the fly. Its goal is to optimize the user ex-

perience given the computation resources available, to min-

imize power consumption, and to achieve the fastest pos-

sible model registration in the cloud. The load balancing

is based on low level parameters (battery b, connectivity c

and cpu power p) and controls the keyframe transmission

and tracking schemes. The following input parameters are

used: the battery level is given in percents of charge left,

b ∈ [0, 1], the connectivity is measured using the current

connection standard c ∈ {E, 3g, 4g,WLAN} and the cpu

power is modeled by the number of cores (p ∈ N).

4.1. Tracking scheme

Controlling the tracking allows to balance between

power consumption and usability. We define three different

tracking strategies: NONE, SLOW and FAST. The strategy

is chosen by the load balancing as:

QT (b, p) =











NONE, if p = 1

SLOW, if p > 1 ∧ b < 0.15

FAST, otherwise

(1)

In normal operation mode (QT = FAST) the tracker runs

at a resolution of 320 × 240 pixels and at the maximal

achievable framerate. In order to respect the mobile device

lifetime, tracking quality is reduced on low battery levels

(QT = SLOW). This is achieved by reducing the input im-

age size to 240× 160 pixels and limiting the framerate to 8

fps. In case of a low end phone (with a single CPU), track-

ing is disabled completely and the user is prompted to take

individual photographs of the scene (QT = NONE), mak-

ing sure that there is enough overlap. In this case, all of

the computations are delegated to the server backend. This

saves a lot of computational power but also potentially re-

duces the reconstruction quality.

In order to find the optimal image sizes, we measured the

average framerate of the tracker on a test sequence using

our system on different devices (see Table 2). The smallest

frame size offers the highest framerate, but due to the low

Table 1: Average power consumption of the different track-

ing schemes measured using a HTC One mobile phone.

tracking scheme power consumption relative

NONE 2.5 mW 100 %

SLOW 1.7 mW 68 %

FAST 0.7 mW 28 %

image quality, tracking quality is bad. Similar to the authors

of [31] we found a frame size of 320 × 240 to be the best

compromise for the mobile phone. Table 1 shows the per -

scheme average power consumption of a sample sequence.

4.2. Transmission scheme

The rate and resolution at which keyframes are trans-

ferred to the server influence the reconstruction quality of

the server-side session model as well as the chance of a

successful registration to the global model. In reality, the

communication channel has limited bandwidth and constant

transmission also drains the battery of the mobile phone. By

controlling the keyframes’ image resolution, we can adjust

the transmission time to the current network status. The

active transmission scheme QC is a function of the connec-

tivity c and battery level b:

QC(c, b) =











LOW, if b < 0.15 ∨ c ∈ {E}

MEDIUM, if b ≥ 0.15 ∧ c ∈ {3g}

HIGH, otherwise

(2)

The low connectivity strategy (QC = LOW) only transmits

very small thumbnails of images to the server, which are

registered to the global model but not used for model exten-

sion. The high resolution image is stored on the internal SD

card and eventually transferred to the server as the connec-

tion quality increases. In the medium connectivity scenario

(QC = MEDIUM), keyframes with resolution of 640×360
are transferred to the server. The increased image resolu-

tion allows a more accurate registration and an additional

model extension on the cloud. The higher resolution im-

ages are again stored on the device’s SD card. In situations

with good connections (QC = HIGH), a high resolution

image (1280× 720 pixels) is immediately transferred to the

server, where it can contribute to the extension of the global

model. Table 3 summarizes typical transmission times for

images in the corresponding scheme.

5. Task delegation

In addition to the low level load balancing, acting mainly

on the mobile frontend, we also introduce a high level task

scheduling on the algorithmic layer. Its task is to assign the



Table 2: Average tracking framerate of our system, measured for different devices and frame sizes. The dimension highlighted

in green offers the best compromise in terms of tracking quality and power consumption and are therefore selected by the

load balancing. The last column shows the chosen camera default framerate, being slightly higher than the tracker’s rate.

Device CPU Frame Size Camera FPS

240× 160 320× 240 640× 480 1280× 720

HTC One 4 × 1.7 GHz 24.5 17.2 6.4 2.1 20.0

Galaxy Note 8.0 4 × 1.6 GHz 22.7 15.8 3.6 1.6 17.0

Google Nexus 9 2 × 2.3 GHz 24.2 21.2 4.7 2.1 22.0

Laptop Intel i7-3520M 4 × 2.9 GHz 72.8 56.4 19.2 7.1 —

Table 3: Transmission time for different images and link

speeds (green highlighted are active in the system).

Image Size JPG Size Link

E 3g 4g WiFi

320× 180 28 KB 1.9s 0.6s 60ms 4ms

640× 360 86 KB 5.7s 1.7s 170ms 12ms

1280× 720 257 KB 17.1s 5.1s 510ms 38ms

reconstruction of scene parts to the algorithm best suited for

those parts and to the platform providing the necessary re-

sources. The concept holds for any kind of specific recon-

struction algorithms, but is demonstrated on the resource

demanding dense reconstruction.

Load balancing typically tries to offload heavy tasks to

the backend. In our system only a coarse tracking com-

bined with keyframe selection is performed on the mobile

phone. Although dense modeling has been shown possi-

ble on the phone, the system is bound to offload this heavy

task to the cloud, respecting battery lifetime and improving

results. For visualisation, the sparse point cloud of the ses-

sion model is fed into the CMVS & PMVS2 [10] pipeline

delivering high quality 3D pointclouds.

Experiment

We illustrate the capabilities of the dense modeling in Fig. 3.

The first visual feedback from the LSD SLAM’s pose graph

already gives a good impression of the scene but is very

noisy (Fig. 3a). Thanks to the basically unlimited resources

on the server side, the feature detection and matching can be

massively parallelized and the sparse point cloud can be re-

constructed almost on the fly. The textured surface (Fig. 3b)

based on the sparse point cloud already provides much more

detailed feedback, is less noisy and can be calculated in

seconds on the server. Finally, the dense model (Fig. 3c)

of a large scene is computed on the server and pushed to

the client. Due to the offloading, the densification step is

not limited in size and saves power by not running on the

client’s CPU.

6. Prior Knowledge Integration

Another corner stone in our mobile-cloud framework is

the use of prior knowledge that is available when previous

users have made their results available already. By a regis-

tration of the session model to the global model, the cloud

provides reconstruction results of parts not modeled by the

user herself and, furthermore, extends the global 3D model

with the new session information coming from that user.

Moreover, a view planning algorithm [22] creates a coher-

ent map of the environment and guides the user towards the

locations from where best to take additional images in order

to best complement the current state of the model.

6.1. Localization and Integration of Session Models

So far, the server-side session model was composed only

from the local observations made by a single the mobile

client. The immense size of cloud storage allows to build

and store images and 3D models of substantially larger

scaled scenes, such as city-scale models, detailed models of

landmarks, statue collections, etc. To use this offline stor-

age, first a registration or localization of the current session

model must be performed. With a substantial part of the

SfM pipeline already running on the mobile phone, typ-

ically the load balancing decides that a dedicated cloud-

based image retrieval algorithm is to be used. Our imple-

mentation employs a bag-of-words specific object retrieval

system with spatial verification. To initialize the system, a

visual vocabulary was trained on a representative sample of

images from a city-scale street-level dataset.

In the localization phase, SIFT features from the keyframe

images computed for the session model SfM are labeled us-

ing an approximate nearest neighbor to the closest visual

words. A fast TF-IDF scoring is applied to compute the

similarity with all images in the database and a shortlist of

the most similar ones is geometrically verified for a con-

sistent affine transformation between the query image and

each of the database images. Finally, the images are re-

ranked using the number of consistent matches as a scoring



(a) LSD depth frames (top view in small) (b) textured surface (top view in small) (c) dense cloud

Figure 3: The pose graph with asscociated depth images delivers a fast but noisy feedback on the phone. Although theoret-

ically possible on the phone, the demanding dense reconstruction is offloaded to the server. A textured surface based on the

sparse point cloud already yields good visual feedback whereas the dense point cloud gets available with a small latency.

function. The relevant part is then selected by considering

the top candidate camera positions in the SfM model as well

as their 2D-3D matches.

At this stage the session model from the mobile user is

coarsely localized in the same reference frame as the global

model on the cloud server. Hence, it is known how to

use the session model to extend the 3D environment. For

keyframe-wise fine registration to the global model, a 3D

submodel around the coarse location of the keyframe is ex-

tracted from the global 3D model and loaded into Visu-

alSFM. The camera poses of the submodel are kept fixed,

while the server side session model is merged into it and

optimized with an incremental bundle adjustment [36]. For

the fusion of global and session model, the optimization is

performed over all cameras in the local submodel. Note that

due to the extraction of a submodel from the global model,

the fusion algorithm does not dependent on the overall size

of the global model. Finally, the new globally registered

keyframes and poses can be integrated into the global model

and made available to other users.

Experiments

The reconstruction and registration speed are demonstrated

on a real-world scenario in Fig. 4. The sequence was

recorded with a mobile phone and a global server model

was created using a Canon EOS 70D. For the experiment,

the video was replayed on the mobile phone connected to

the remote server over WiFi. Timings are average measure-

ments for this particular sequence. We distinguish between

two cases, one where we are able to register the local model

and one where a registration is not possible. The latter case

corresponds to a scene not covered by any global model.

Right after starting the scan session, a still noisy point cloud

from the SLAM gives a first impression of the scene (A).

After three seconds, the first two keyframes are transmit-

ted to the server. Using the retrieval engine, close images

in the global model are identified and matched against the

new images and matches are used to localize them. The

whole localization step, including indexing, retrieval, sub-

model extraction and additional bundle adjustment takes

nine seconds on the server. A compressed version of the

global model can be presented to the user, only 18 seconds

after session start (B). While the user is still scanning, the

computation of a dense model is started on the server. The

densification step takes 55 seconds for 17 new keyframes.

The final refined global model becomes available after 78

seconds (E). In the case of unsuccessful global registration,

the server still reconstructs the local scene. 23 seconds after

the session start, a more accurate sparse cloud extends the

information of the SLAM system (C). A server side densi-

fication provides a dense point cloud of only the local scene

after 61 seconds (D).

6.2. Visual Feedback and View Guidance

An important part of the user experience is the quality

and latency of the visual feedback. We provide multiple

types of visualization depending on the cloud’s availabil-

ity and registration status. A successful registration to the

global model makes it possible to display model parts never

scanned by the user himself. In addition, the user is vi-

sually guided towards poorly covered scene parts in order

to improve them. For this instance, a dedicated next best

view algorithm [22] runs on the server after every signifi-

cant update. A colored grid is transferred to the client and

displayed simultaneously with the 3D model. It indicates

where to best take additional images, in order to extend the

existing 3D model. Please note that next best view guid-

ance can also be run entirely on the phone, yet only when

the session model is finely registered to the global model the

true collaborative power of our mobile-cloud reconstruction

comes to bear.



Figure 4: A timeline of a sample sequence processed by our system. During the scan session on the mobile phone, keyframes

(indicated by peaks) are transferred to the remote server, where an immediate registration to a global model is started. In

parallel a sparse reconstruction only of the session model delivers an accurate sparse point cloud, which again is densified

on the cloud. The middle row shows the visual feedback, available to the client at different time steps. If global registration

succeeds, a dense version of the whole surrounding is presented immediately and afterwards extended by the new images

(bottom row). A next best view (nbv) map, indicates good spots for additional images with red peaks.

Experiment

The next best view map for the sequence in Fig. 4 illustrates

its behaviour. Before the global model is extended, the top

left corner shows red peaks corresponding to good spots

from where to take additional views. After merging views

from the session model the corresponding spots vanish and

new peaks arise closeby. The new proposed spot matches

the incomplete facade of the church, visible in Fig. 4 B.

The calculation of the next best view on the server took 166

seconds. For comparison, we run the same computation on

the phone itself, being 20 times slower on average.

7. Conclusion

We presented a 3D reconstruction framework seamlessly

tying together a mobile client application and a powerful

cloud solution enabling collaborative reconstruction of a

potentially large scene using everyday smartphones. The

combination of multi-layered, fast reconstruction feedback

with next best view propositions helps the user to optimize

the reconstruction result. A separation between session

and global models allows to handle multiple users in par-

allel and to extend existing reconstructions. A load balanc-

ing scheme ensures that valuable resources such as battery

power are used wisely. A high level task delegation assigns



reconstruction tasks to methods and platforms most appro-

priate for the job. We demonstrated the capabilities of the

approach through an implementation that combines a real-

time Android phone part with a server counterpart. This is a

proof-of-concept paper and there is ample room for exten-

sions, e.g. efficient surface reconstruction [2, 3], scene to

speech transcription [33], object specific reconstruction [5],

or semantic segmentation [21, 29] or decomposition [17].

Acknowledgment. The European Research Council

(ERC) project VarCity (No.273940) and H2020 project

REPLICATE (No.687757) supported this work.

References

[1] ARC 3D Webservice. http://www.arc3d.be/.

[2] A. Bódis-Szomorú, H. Riemenschneider, and L. Van Gool.

Fast, Approximate Piecewise-Planar Modeling Based on

Sparse Structure-from-Motion+Superpixels. In CVPR, 2014.

[3] A. Bodis-Szomoru, H. Riemenschneider, and L. Van Gool.

Superpixel Meshes for Fast Edge-Preserving Surface Recon-

struction. In CVPR, 2015.

[4] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale

direct monocular slam. In ECCV, 2014.

[5] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. 32(9):1627–1645, 2010.

[6] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza. Collab-

orative monocular slam with multiple micro aerial vehicles.

In IROS, 2013.

[7] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-

direct monocular visual odometry. In ICRA, 2014.

[8] J.-M. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Raguram,

C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and Marc-

Pollefeys. Building rome on a cloudless day. In ECCV. 2010.

[9] D. Fritsch and M. Syll. Photogrammetric 3d reconstruction

using mobile imaging. In IS&T SPIE Electronic Imaging

Conference, 2015.

[10] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-

view stereopsis. 32(8):1362–1376, 2010.

[11] B. Girod, V. Chandrasekhar, D. M. Chen, N.-M. Che-

ung, R. Grzeszczuk, Y. Reznik, G. Takacs, S. S. Tsai, and

R. Vedantham. Mobile visual search. Signal Processing

Magazine, IEEE, 28(4):61–76, 2011.

[12] J. Heinly, J. L. Schönberger, E. Dunn, and J.-M. Frahm. Re-

constructing the world in six days. In CVPR, 2015.

[13] C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof.

Incremental surface extraction from sparse structure-from-

motion point clouds. BMVC, 2013.

[14] C. Hoppe, M. Klopschitz, M. Rumpler, A. Wendel, S. Kluck-

ner, H. Bischof, and G. Reitmayr. Online feedback for

structure-from-motion image acquisition. In BMVC, 2012.

[15] D. Hsiao, N. Tabing, Z. Popovic, K. Tuite, and N. Snavely.

Photocity: Training experts at large-scale image acquisition

through a competitive game. In CHI, 2011.

[16] G. Klein and D. Murray. Parallel Tracking and Mapping for

Small AR Workspaces. In ISMAR, 2007.

[17] N. Kobyshev, A. Bódis-Szomorú, H. Riemenschneider, and

L. Van Gool. Architectural Decomposition for 3D Landmark

Building Understanding. 2016.

[18] R. Koch, M. Pollefeys, and L. Van Gool. Multi viewpoint

stereo from uncalibrated video sequences. In ECCV, 1998.

[19] K. Kolev, P. Tanskanen, P. Speciale, and M. Pollefeys. Turn-

ing mobile phones into 3d scanners. In CVPR, 2014.

[20] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and Bur-

gard. G2o: A general framework for graph optimization.

ICRA, 2011.

[21] A. Martinović, J. Knopp, H. Riemenschneider, and L. Van

Gool. 3D All The Way: Semantic Segmentation of Urban

Scenes from Start to End in 3D. In CVPR, 2015.

[22] M. Mauro, H. Riemenschneider, A. Signoroni, R. Leonardi,

and L. Van Gool. A unified framework for content-aware

view selection and planning through view importance. In

BMVC, 2014.

[23] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt.

Scalable 6-dof localization on mobile devices. In ECCV,

2014.

[24] S. Middleberg, O. Untzelmann, T. Sattler, and L. Kobbelt. A

scalable collaborative online system for city reconstruction.

In ICCVWS, 2013.

[25] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:

Dense tracking and mapping in real-time. In ICCV, 2011.

[26] P. Ondruska, C. Gurau, L. Marchegiani, C. H. Tong, and

I. Posner. Scheduled perception for energy-efficient path fol-

lowing. In ICRA, 2015.

[27] Q. Pan, G. Reitmayr, and T. Drummond. Proforma: Prob-

abilistic feature-based on-line rapid model acquisition. In

BMVC, 2009.

[28] M. Pollefeys, R. Koch, M. Vergauwen, and L. Van Gool.

Hand-held acquisition of 3d models with a video camera. In

3DIM, 1999.

[29] H. Riemenschneider, A. Bodis-Szomoru, J. Weissenberg,

and L. Van Gool. Learning Where To Classify In Multi-View

Semantic Segmentation. In ECCV, 2014.

[30] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3d

model acquisition. In Siggraph, 2002.

[31] T. Schöps, J. Engel, and D. Cremers. Semi-dense visual

odometry for AR on a smartphone. In ISMAR, 2014.

[32] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-

ploring photo collections in 3d. In Siggraph, 2006.

[33] J. Weissenberg, M. Gygli, H. Riemenschneider, and L. Van

Gool. Navigation using Special Buildings as Signposts. In

MapInteract, 2014.

[34] S. Wenhardt, B. Deutsch, E. Angelopoulou, and H. Niemann.

Active visual object reconstruction using d-, e-, and t-optimal

next best views. In CVPR, 2007.

[35] C. Wu. Siftgpu: A gpu implementation of scale invariant

feature transform (sift), 2007.

[36] C. Wu. Towards linear-time incremental structure from mo-

tion. In 3DV, 2013.

[37] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore

bundle adjustment. In CVPR, 2011.


