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As the outcomes of rapid urbanization, the spatial separation of homes and workplaces extends the commuting distance and
complicates the commuting demand of residents. To promote urban livability and sustainability, it becomes crucially important to
understand the commuting patterns by decomposing and simplifying the diverse commuting demand. In this paper, a
methodology framework is proposed to describe the spatial structure of commuting demand in a city using mobile phone data.
Four steps are mainly included in the proposed methodology: the preprocessing of mobile phone data, the labeling of individuals
and their activity points, the construction of the jobs-housing relationship network, and the network decomposition based on the
community detection algorithm. To demonstrate the practical use of the proposed methodologies, a case study is carried out in
Shanghai to explore the commuting patterns of Shanghai residents. The result indicates the regions with dense jobs-housing
connections and cross-regional commuting demand. The result also finds that the administrative boundaries show a significant
effect on the residential commuting behavior and the metro lines on the cross-regional commuting behavior. The results generated
by the methodology proposed can be referenced by policymakers to support urban transportation planning and promote urban

livability and sustainability.

1. Introduction

Commuting is defined as the regular travel between one’s
place of residence and place of work or full-time study.
According to the comprehensive traffic surveys conducted in
the major cities of China, commuting trips averagely ac-
counts for as much as 40%-50% of weekday daily trips in a
city. As a substantial component of urban transportation
and individual mobility, commuting plays a very important
role in the overall travel patterns of residents and determines
urban livability and sustainability [1].

As the outcomes of rapid urbanization, large cities
gradually form the metropolitan areas consisting of urban
areas, subcity satellites, and intervening rural areas [2, 3]. In
the urban space reconstruction, the spatial separation of
home and workplace extends the distance of commute.

Additionally, traffic congestion, environmental pollution,
and the decline of life quality are also the consequences of
jobs-housing separation [4]. Many studies find that com-
muting has a great impact on the residents’ well-being [5, 6].
Commuting pattern is also widely regarded as an indicator
of urban spatial structure [7]. Therefore, understanding the
commuting patterns of residents and unveiling the spatial
structure of commuting demand throughout the city are the
prerequisites for the promotion of livability and
sustainability.

However, in current practice, the discussion of com-
muting demand is mainly focused on the spatial distribution
of commuting trips and to examine the spatial distribution
of housing and job opportunities separately [8, 9]; such a way
of consideration failed to capture the connection generated
by the jobs-housing flow on the urban spatial structure.
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Instead of seeing city as mere morphological entities with
clear and detectable borders, in the recent discussion of
urban development, the urban form of most urban regions is
constructed by the functional network of commuting
communities, which may be physically separated but con-
nected through dense flows of commuting trips and other
forms of daily mobility [10]. Under such a concept, to study
cities, we should study the network and examine the “space
of flow” [11].

In recent years, the newly arisen pervasive, geospatial
data generated by individuals are widely used in studying
individual mobility patterns [12], urban emissions [13],
newly arisen transportation mode [14, 15], and city structure
and city dynamic [16]. As a new travel survey tool, mobile
phone data are more pervasive and accurate than the existing
traditional methods, which provide a more complete track of
the spatiotemporal movements at the individual level. It
offers a new approach to study the jobs-housing relationship
and urban commuting demand structure [17]. Mobile phone
data can track individual travels and have been proven to
provide the temporal and spatial resolution to human
mobility in cities. It could be the potential data source to
capture the commuting flows and study the urban com-
muting demand structure.

This paper proposes a methodology for describing the
spatial structure of commuting flows in a city on the network
connection aspect using mobile phone data. Four steps are
mainly included in the proposed methodology: the pre-
processing of mobile phone data, the labeling of individuals
and their activity points, the construction of the jobs-
housing relationship network, and the network decompo-
sition based on the community detection algorithm. The
primary outputs of the methodology are the nonoverlapping
communities representing the division of spatial units with
dense internal jobs-housing connection and the overlapping
communities unveiling the association between commuting
flows and other factors. A case study is conducted using
mobile phone data collected over 15 days in September 2011
in Shanghai. The spatial structure of commuting flows in
Shanghai is unveiled and analyzed based on the proposed
framework.

After this section, this paper is organized as follows.
Section 2 gives a literature review on the related work.
Section 3 describes the problem of this paper. Section 4
introduces the methodology of this study. Section 5 con-
ducts a case study of Shanghai using the mobile phone data
and explores the spatial structure of commuting demand
based on the proposed methodology. Finally, the contri-
bution and future directions of this study are described in
Section 6.

2. Related Work

Understanding the urban commuting demand and the jobs-
housing relationship has long been considered as an es-
sential research topic in urban studies. Many studies have
provided evidence for the close relationship between
commuting and the livability and sustainability of a city
[7, 18]. These studies find that commuting behaviors not
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only result from life choices but also affect people’s lives.
Choi et al. examined the relative impacts of commuting time
with the overall well-being and happiness of the residents by
using survey data, suggesting that reduced congestion can
improve the public subjective well-being [5]. Based on
survey data, Zhu et al. compared the commuting pattern and
effects of different groups of people and explored its rela-
tionship with the residents’ overall well-being [19].

Dwelling and employment are the two fundamental
elements of a city. The commuting behaviors of residents is
closely related to the structure of a city. There are two main
approaches to assessing the structure of city regions [20].
One is the morphological approach, which employs the
attributes or internal characteristics of centers, such as the
number of jobs [21]. The morphological approach assesses
the city structure on the spatial pattern, with the balance in
the size distribution or distribution of absolute importance
of centers based on the data from field surveying, remote
sensing, and policy consulting.

The other is the functional approach, classifying the
metropolitan spatial structure based on the structure of flows
within spatial systems [20]. The functional approach believes
that the underlying structure of a city is determined by the
flows of people, freight, money, and information, which
connect the discrete places into an integrated system. More
and more scholars are trying to capture the structure inside
large cities or even the interaction between cities by studying
flows using new sources of data. The new sources of data
include public transportation card data [22], taxi trip data
[16], and business services network data [23]. However,
because of the limitations of data access, analytic tools, and
computation capabilities, studies of human travel flows had
limited development.

Traditionally, studies on the jobs-housing relationship in
a city are usually based on survey data, which is called the
small data [17]. Such a way of capturing commuting demand
has several weak points: on the one hand, it is costly and
inefficient [24], which makes it unable to easily cover large
groups of the population. For example, the fifth travel survey
of residents in Shanghai can only cover 0.8% of the residents
[25], and on the other hand, survey data can only record the
residents’ commuting behavior in a short period with low
accuracy [26].

In the past decade, the emergence of big geospatial data
has triggered the opportunity of studying the human mo-
bility pattern. Since 2005, Ahas and Mark [27] foresee that
mobile phone data can be used for investigating the space-
time behavior of society. In 2006, Ratti et al. [28] proposed
that location-based services (LBS) data could become a
powerful tool for urban analysis. Using mobile phone data,
they studied the intensity of urban activities and their
evolution through space and time at different times of the
day. In 2010, Ahas et al. studied the daily commuting pattern
of a subgroup of commuters and identified meaningful
locations of mobile phone users [29]. Based on the research
of Ahas et al. and Louail et al., researchers used LBS data to
understand cities in various situations, including studying
significant regions in cities by capturing flows of people or
identifying activity hotspots [30, 31], studying the impact of
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jobs-housing spatial mismatch on commuting behavior [32],
understanding the spatial structure of urban commuting
[33], and using nighttime light imagery and social media
check-in map to identify the structure of polycentric cities
[34].

In recent years, dozens of studies focus on using big
geospatial data to capture user traveling behaviors in large
cities or urban agglomeration areas [35]. Croce et al. ded-
icated to integrate the data fusion of traditional transport
surveys data with big data and offer support for building
transport system models. They also present formal criteria
and thresholds to characterize and segment passenger
mobility [36]. Harrison et al. pointed out in their paper that
passively collected GPS-based “Track & Trace” datasets of
individual mobility have great potential in enhancing
transportation modeling and policy-making [37]. Zhang
et al. investigated the temporal variations of trip-destination
distributions and their association with city spatial structure
using four types of inhomogeneous Poisson point process
models [38]. Tang et al. proposed a method based on en-
tropy-maximizing theory to model OD distribution in
Harbin city using large-scale taxi GPS trajectories [39]. These
studies validate the feasibility of using geospatial data to
analyze the spatial-temporal features of urban travel pat-
terns. Ghahramani et al. have explored the potential of using
mobile phone data to study the inter and intra-interaction
patterns of the urban community structure and identify
activity hotspots, while they did not consider the over-
lapping community structure of urban interaction patterns
[40-42].

In summary, studies are focusing on using a new source
of geospatial data as a supplement of traditional survey data
and a much more frequently updated data source for sup-
porting urban planning. Given the above examples and
features of big data, mobile phone data have great potential
for examining the spatial structure of the commuting pat-
terns in a city.

3. Problem Description

In this paper, the spatial structure of commuting demand
concerns the spatial distribution of activities associated,
characterized by the centralization and clustering of the
associated activities. The spatial separation of home and
workplace not only extends the commuting distance but also
complicates the commuting patterns in the city. On the one
hand, the commuting behavior varies from person to person.
The commuting demand of residents in the city is an in-
tegrated comprise of the demand from different levels with
different travel time, distance, frequency, and volume. On
the other hand, commuting demand is influenced by many
external factors. For example, according to the study con-
ducted in Beijing, China, commuters who live along the
expressways are more likely to have a long-distance com-
mute 2019. Therefore, the main task of this paper is to clarify
the spatial structure of commuting flows based on the
massive input of commuting demand and reveal the rela-
tionship between commuting flows and other external
factors.

Mobile phone data provided by the mobile operator are
not initially collected for the analysis of human movement,
but for the purposes of billing and operation. This paper tries
to answer the following questions: how can we describe the
commuting behaviors of residents in a city using mobile
phone data? With the massive input of residents’ commuting
behaviors, how can we depict the spatial structure of
commuting demand throughout the city?

In response to the questions mentioned above, first, the
raw mobile phone data are preprocessed to mitigate the data
noise. To describe the commuting behaviors, mobile users
and their activity points are labeled according to some preset
rules. To understand the spatial structure of the commuting
demand, the commuting flows throughout the city are used
to construct the network representing the spatial distribu-
tion of commuting flows. Network analysis is introduced in
this paper as the tool to analyze the commuting flows in the
city. The structure of the network can be a persuasive proof
for the spatial structure of commuting demand.

4. Methodology

4.1. Framework. The framework of the methodology pro-
posed in this paper is shown in Figure 1. In this paper,
mobile phone data are used to unveil the spatial structure of
commuting demand. The methodology can be divided into
three steps: (1) data preprocessing: extract the human
mobility information from the mobile phone dataset and
mitigate the noise in the data by using the binning method.
(2) Extracting user jobs-housing information: label mobile
users as residents and commuters, label their activity points
as home and workplace, and construct a jobs-housing re-
lationship network to represent the commuting connection
in a city. (3) Mining urban commuting demand structure: by
using two types of network community detection methods,
the spatial structure of commuting demand in a city can be
depicted from two different aspects.

4.2. Data Preprocessing. Once a user can be captured by
more than one BTS simultaneously, its signal will be handed
over frequently between these BTSs and generate a signif-
icant number of records in a very short time. The frequent
handover does not only lead to the waste of computational
resources but also the misjudgment of spatial movement.
Therefore, a binning method [43] was used to cope with this
problem and reduce the volume of data. The resolution of
spatial grids is set to 500 m * 500 m, for not being too small
to affect the activity intensity of users [44].

(1) A grid set is generated to cover the study area and
reflect the spatial location

(2) The average positions of every user for every 10
minutes are calculated and define which grid it
belongs to. The centroid of this grid will be regarded
as the position of the user during the 10-minute
period.

The binning will generate a set of control points for each
phone user, formulated as the following equation:
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i:1:2)"') (1)

where c; refers to the i control point of a user; t; represents
the time when the user arrived at the control point.

c; (grid;, t;),

4.3. Extracting User Jobs-Housing Information

4.3.1. Identification of Residents and Their Home. Due to the
large data volume, a simple method proposed by Li et al. is
utilized to identify the home locations of residents from
mobile phone data [43]. The method includes two rules:

(1) From 9 p.m. to 9 a.m. of the next day, the user stays at
a place for no less than 6 hours

(2) In our observation periods, the user stays in the place
meeting the rule (a) for more than 2/3 days

If a user satisfies both the rules, the user can be con-
sidered as a resident, and the place will be considered as the
location of the home.

4.3.2. Identification of Commuters. In previous studies,
workplaces are often considered to be unique for every
commuter. The identifying methods of work location always
find a fixed place based on the regularity of individual travel
patterns during the observation days [45]. In this way, the
commuters who have multiple work locations are neglected.
To avoid this defect, commuters are identified by the fol-
lowing method.

Obviously, if a resident appears in a place other than his
home, he can be regarded as goes out. An assumption is
proposed in this study that commuters should be the resi-
dents who stay significantly more time outside home on
weekdays when comparing with noncommuters.

A simple method amounts to choose a threshold § and to
consider that the resident with the average stay time outside
home over § on weekday as a commuter; otherwise, he/she is
anoncommuter. Here, the average stay time outside home of
all residents is chosen as the threshold §, which will split
residents into two equal parts—commuters and
noncommuters.

4.3.3. Identification of Job Activity Points. Given the i
control point and the following k control points where
grid; . #grid; ,_, =--- = grid; #grid; ;,k>1, the activity
duration of the user who stays at grid; can be calculated
using the following equation:

d = ti+k—1 - ti' (2)

According to the household travel survey of Shanghai, 30
minutes can represent the critical station of an individual’s
daily movement and contribute to the comprehensive un-
derstanding of individual activities [46]. Thus, the location
where an individual stays over 30 minutes is defined as an
activity point.

However, the mobile phone data does not contain in-
formation of the activity purposes or activity types. In this
paper, activity points at work time (9 am.-6 p.m. on
weekdays) are defined as job activity points.

4.3.4. Construction of the Jobs-Housing Relationship
Network. In this study, TAZ is chosen as the analysis unit.
The grid with the centroid in a TAZ is regarded as belonging
to the TAZ. The reasons why we do not adopt the grid points
as the analysis unit are as follows.

First, the data noise of mobile phone data is a big
problem in practical application (e.g., frequent handover
between adjacent BTS). The data preprocessing can only
mitigate the data noise but not completely eliminate them. In
fact, we find that it is never possible to completely eliminate
the data noise. When the noise occurs, the user’s actual
position will be lost. In such circumstances, choosing the
grids as the analysis unit may generate results deviate from
reality. On the other hand, choosing TAZ as the analysis unit
can further mitigate the influence generated by the data
noise.

Second, choosing the grid as the analysis unit has a major
defect. The grids are usually too small to have enough data
samples that can reflect the spatial structure of commuting
demand. Choosing grids as the analysis unit, most of the
jobs-housing connections between grids are at a very small
value. On that basis, the community connection algorithm
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will have a higher possibility to mistakenly classify the grids
and generate unreliable results.

For the residents in TAZ i, the number of job activity points
they have per hour in TAZ j can be defined as the number of
connections from TAZ i to TAZ j, which is denoted as Q;;
here. By aggregating all job activity points and home location, a
403 x 403 matrix V' can be obtained as the following equation:

Qu Qp - Qlj
B Qy Qp - Qy (3)
Q1 Qnp -+ Q

To build a network, each TAZ is represented as a node.
Between every nodei and j, two directed edge ¢;; and e; will
be constructed with the weight Q;; and Qj;.

4.4. Mining Spatial Structure of Urban Commuting Demand.
The commute flows within a city connect discrete places into
an integrated system. Among TAZs, commute trips can be
aggregated to obtain spatial interactions between zones.
Constructing a network and applying network analysis
methods upon TAZs, we can further understand the urban
commute interactions.

In network analysis, a community is a collection of
highly interconnected nodes [47]. The nodes belonging to
different communities are sparsely connected. In order to
retrieve comprehensive information of the structure in the
complex network, we decompose the network into different
communities by using community detection. It can help us
divide the city into subregions with intensely interactive
jobs-housing relationships. The resulting meta-network,
whose nodes are the communities, will then be used to
visualize the city commuting demand structure.

There are mainly two types of community detection
methods, nonoverlapping community detection and over-
lapping community detection. For the nonoverlapping com-
munity, every node in the network can only belong to one
community. A huge variety of community detection tech-
niques have been developed based variously on centrality
measures, flow models, random walks, resistor networks,
modularity optimization, and many other approaches [48, 49].
The other type of approach is overlapping community de-
tection, which believes that communities in networks often
overlap and nodes can simultaneously belong to several
communities [50]. These approaches include the clique per-
colation method [51], local optimization of fitness function
[52], and clustering link communities [50]. In recent studies,
algorithms are also developed to detect the evolving tendency
of the overlapping communities [53, 54].

In this study, we use both methods to decompose the jobs-
housing network, as we find that both methods can describe the
urban commuting demand structure in different aspects.

4.4.1. Nonoverlapping Community Detection.
Nonoverlapping community detection can be implemented
in many algorithms [55]. Here, the fast unfolding algorithm

is adopted to decompose our network [56]. This algorithm is
based on modularity optimization. The modularity of a
partition is a scalar value between —1 and 1 that measures the
density of links inside communities as compared to links
between communities [57]. It is defined as the following
equation:

1 kik;
M = m L [sz - z—mj] 5(% Cj)> (4)
where Q;; represents the weight of the edge e;;, k; is the
sum of the weights of the edges attached to vertex i, and ; is
the community to which vertex i is assigned; the §-function §
(u, v) is 1 if u=v and 0 otherwise, and m = 1/22ijQij.

This algorithm includes the following two steps which
are repeated iteratively until no increase of modularity is
possible:

(1) Modularity optimization: optimized modularity by
allowing only local changes of communities

(2) Community aggregation: the identified communities
are aggregated in order to build a new network of
communities

We adopted the fast unfolding toolkit provided in Py-
thon-igraph package in this study.

4.4.2. Overlapping Community Detection. As for over-
lapping community detection, we use the method based on
link communities clustering [50]. The basic concept of this
method is assuming that nodes in the network have multiple
identities, and they will cluster in corresponding communities
according to their identities. In another word, communities are
depending on the attribute of the links between its members.
Hence, this method clusters the links by measuring the sim-
ilarity of links. The nodes connected by the links in the same
cluster will be regarded as belonging to the same community.
For that, there will be several links connecting a single node,
with these links being clustered into different clusters; the node
can simultaneously belong to several communities.

In this paper, we use the linkcomm package in R to
conduct overlapping community detection. This algorithm
chooses the Jaccard similarity coeflicient to calculate the
similarity matrix for links in the network and cluster the
links using hierarchical clustering. The similarity between e;;
and e, is formulated as the following equation:

S(eik, ejk) = I, ()0, ()

Y AT 5
n, ()un, (j)| ©)

where #, (i) denotes the neighbors of node i. In order to
determine the best cluster number, this algorithm also in-
troduces the index of partition density to measure the
connection inside communities. The detail of the algorithm
is in [58].

5. Case Study and Results

5.1. Study Case. A case study is carried out in Shanghai, the
economic center of China. By the end of 2011, the



administrative territory of Shanghai consisted of 16 districts
and 1 county, covering an area of about 6340 km”. According
to the master plan of city of Shanghai, the central urban area
is mainly located within the outer ring expressway. The
Huangpu River divides Shanghai into two parts: Pudong on
the east side and Puxi on the west side.

In this paper, the study area is supposed to cover all the
administrative territories of Shanghai. However, after sub-
dividing the territory of Shanghai into 447 traffic analysis
zones (TAZs), we discover varying degrees of data missing
existing in the raw dataset during the study period. As a
result, 403 TAZs are selected as the study area after elimi-
nating 44 TAZs with severe data missing (Figure 2). The
remaining TAZs cover all the central urban areas and sat-
ellite towns of Shanghai.

Anonymous mobile phone data used in this paper were
collected for billing and operational purposes from Sep-
tember 1 to September 15, 2011, in Shanghai, China. The
dataset contains the basic information of the wireless
communication between mobile stations and base trans-
ceiver stations (BTS), including the encrypted mobile phone
identifier, the service time, the service type, the geographic
location of the connected BTS, and the location area (LA).
That is to say, the position of mobile phone users will be
represented by the location of the BT'S they are connected to.
A record of mobile phone data will be generated when a call
is placed or received, a text message is sent or received, the
phone is switched on or switched off, or the phone signal is
handed over from one BTS to the other BTS. The average
number of records was 1 billion per day, covering 25 million
active users. The coverage radius of a BTS is 500-800 meters.

5.2. Result of User Jobs-Housing Relationship Extraction.
By the identification methods, we identified 9.86 million
residents, accounting for 42% of the total population of over
23.47 million in Shanghai by the end of 2011 [59]. We
compare the population density identified by mobile phone
data with permanent residents in the sixth national census in
2010 (Figure 3). The correlation coefficient between them is
0.91. Although deviations inevitably exist, mobile phone
data can generally cover residents in the area of Shanghai.

From the 9.86 million residents identified, we first
eliminate the mobile phone users who never move during
the observation period (1.13 million users in total). Then, for
the remaining 8.73 million residents, we calculate the av-
erage stay time outside home on weekdays for each user and
plot the probability density function as shown in Figure 4.
Two peaks can be found: one is around 4 hours and another
is around 11 hours. Staying outside home for 11 hours is
rational for a commuter on weekdays, i.e., go out at 7 or 8
a.m. and return home at 6 or 7 p.m. The mean value of stay
time outside home on weekdays for all 8.73 million residents
is 7.93 hours. Choosing this value as threshold & can divide
the residents into two equal parts—commuters and
noncommuters.

In order to verify the job activity points identified, we
introduce the net inflow index to measure whether a TAZ
tends to be a job center or a residential community. In the
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network we constructed, the connection between every two
TAZs can be regarded as the commuting flow. The com-
muting flow from TAZ i to TAZ j can be considered as the
outflow from TAZ i and the inflow to TAZ j. The net inflow
index for TAZs is defined as the following equation:

net; = zi:jS - ZQU. (6)

As the average value of net; is 0, a TAZ with net; >0
means that more job activity points are attracted into it,
which means that this TAZ is more likely to be a job center.



Journal of Advanced Transportation

0.10
. Noncommuters Commuters
5 0.08
&
g \
kst
< 0.06
2
Z
&
< 0.04
fnd
".E‘
3
° 0.02
[aW

Mean =7.93h
0.00
0 5 10 15 20 25h

Weekday average stay time outside home

FiGuRre 4: Identification of commuters.

While a TAZ with net; <0 means it is more likely to be a
residential community.

We calculate the net inflow index for all TAZs and
identify whether a TAZ is a job center or a residential
community. As shown in Figure 5, TAZs 1-4 are top 4
central business districts (CBDs) in Shanghai, and TAZs 5-6
are two bases for high-tech industries; TAZs 7-10 are large
residential communities. These results are in accordance
with the actual land use. Therefore, the net inflow index can
be used to characterize a TAZ as the job center or residential
community. And it also verifies the job activity points we
identified.

5.3. Result of Spatial Structure of Urban Commuting Demand

5.3.1. Result of Nonoverlapping Communities. After
extracting the job activity points for commuters, we con-
struct the jobs-housing network as the input of community
detection. The nonoverlapping community detection algo-
rithm iterates twice and finds a two-level hierarchical
structure (Figure 6). In the two meta-networks constructed,
whose nodes are the communities, we numbered commu-
nities in the descending order according to the number of
job activity points inside them. Although we have never
input any spatial relationship into the algorithm, it can still
merge adjacent TAZs into the same community. The hi-
erarchical subregional structure provides insights into how
the city could be properly divided into closely related
subregions based on jobs-housing relationship. Commu-
nities in the network represent regions with an intense jobs-
housing connection.

One of the interesting findings is that in both the
structures, the boundaries of communities perfectly coincide
with administrative boundaries. In suburban districts, each
community is an administrative unit. But in central urban
areas, communities often involve several administrative
units. The division of communities is related to the acces-
sibility of job opportunities. In the suburban district, due to

poor cross-regional traffic connections, cross-regional job
opportunities are not easily accessible. But in central urban
areas, the public transportation systems are well developed,
which makes cross-regional employment accessible. This
finding indicates that residential commuting behavior is
highly restricted by administrative boundaries, especially in
suburban areas. The reason can be traced back to trans-
portation planning, which was based on the administrative
division. The finding also proves the rationality of the city
commuting demand structure uncovered.

In order to describe the commuting patterns between
communities, we calculate the number of four types of job
activity points for each community. N is the total number
of job activity points in the community; N, is the number of
job activity points in the community produced by its own
residents; N is the number of job activity points produced
by its residents but located outside the community; N, is the
number of incoming job activity points from residents in
other communities. The number of four types of activity
points for each community is shown in Figure 7.

To further classify the communities, three indexes de-
scribing the numerical gaps between the four types of job
activity points are proposed. The three indexes are
I, =N,/N,, I,=N;/N,, and I;=N,/N,. Using the
k-means clustering algorithm [60] and the three indexes as
its input, the algorithm can easily classify communities into
three clusters. The spatial distribution of communities is
shown in Figure 8, and the average value of the indexes in
each group is shown in Table 1. According to the charac-
teristic of the communities, we name them as follows:

(i) Job center: Communities with a higher value of N,
and N, but a lower value of N, which indicate that
these communities contain much job opportunities
and attract a great number of commuters from other
communities.

(ii) Residential: Communities with a higher value of N,
and N; but a lower value of N, which indicate that
these communities are more likely as residential
communities that a great part of residents has to
seek job opportunities outside.

(iii) Isolated: Communities with a higher value of N, but
a lower value of N; and N,. These communities are
rather isolated, for they do not attract commuters
and their residents seldom work outside.

Concentric, sector, and multiple nuclei structure are the
three generalizations of urban structure [61, 62]. From the
result of classification, we can simplify the commuting
demand structure of Shanghai into a combination of these
three structures. On the city scale, we can see a multiple
nuclei structure. The central urban area is the largest center,
and there are several centers of isolated communities in
suburban areas. In the central urban area, the Puxi area on
the west side of the Huangpu River is a concentric structure,
with Huangpu district (community 1 in level 1 structure) as
the job center and several similar residential communities on
the periphery (communities 2, 3, 4, 15, and 17 in level 1
structure). On the east side of the Huangpu River, Pudong
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FIGURE 6: Result of nonoverlapping community detection: (a) level 1 (b) level 2.

district is a sector structure extended along the river. In the
level 2 structure, we can clearly see the communities finally
merging into a sector structure. The central urban district
can be considered as a circle with four parts of areas
(communities 1-4 in the level 2 structure) as sectors radi-
ating out from the center of the circle. As a newly developed
district, Pudong is a job center rather than a residential
community, but the number of job activity points in the
Pudong sector is still less than that of other sectors in central
urban areas.

Further exploring the reason for forming the com-
muting demand structure, we compare the level 2

structure with the layout of the metro network (Figure 9).
The metro network in Shanghai is shaped in a radial
pattern, from the city center to suburban areas. In the level
2 community structure, communities in the central urban
area are all extended outward along with radiating metro
lines, with averagely three metro lines in one community.
Communities are also formed at the end of the metro
lines. From this structure, we can infer that the com-
muting behavior of residents living along the metro lines
depends heavily on the metro line, and their workplaces
aggregate along the metro line. For residents living at the
end of metro lines, their workplaces are aggregated in
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TasLE 1: Clustering result of communities.

Cluster I, (N,/N;) I, (N3/N;) 1I;(N,/N,)
Cluster 1: job center 0.50 0.31 0.50
Cluster 2: residential 0.66 0.55 0.34
Cluster 3: isolated 0.87 0.10 0.13

suburban communities. This result demonstrates that, as
the major traffic corridors, metro lines are playing im-
portant roles in forming the city commuting demand
structure.

5.3.2. Result of Overlapping Communities. By applying
overlapping community identification on the jobs-housing
network, the algorithm segments the TAZs of Shanghai into
86 communities, with most of the communities merged by
adjacent TAZs. Based on the shape of the communities, we
classify the 86 communities into three types: large com-
munities (17 communities in Figure 10(a), small commu-
nities (66 communities in Figures 10(b) and 10(c), and
banded communities (4 communities in Figure 10(d)).

In the large communities in Figure 10(a), the first
community is constructed by TAZs in the city center. The
other 16 communities are all in the suburban area. These
large communities show the area of the central urban district
and the towns in the suburban area based on the jobs-
housing relationship. In urban transportation planning, this
result can help to determine the planning area. In suburban
areas, the boundary of communities is mostly in correlation
with the boundary of administrative districts. As comparing
to nonoverlapping communities, the result is similar. In the
central urban area, public transportation systems are well
developed, which makes cross-regional employment easy.
But in the suburban districts, due to poor cross-regional
traffic connection, cross-regional job opportunities are
difficult to reach.

When depicting the area of the central urban area and
the towns in suburban areas, the overlapping communities
also depict the small communities with the intense jobs-
housing connection inside the large communities, as is
shown in Figures 10(b) and 10(c). Small communities are
mostly distributed in urban central areas, which indicate that
there are a large number of short-distance commuters in the
central area of the city. These commuters are commuting
within a small area of 3-5 TAZs. In recent years, there are
fewer immigrations moving into the central urban area of
Shanghai. Most of the residents in the central urban area are
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FIGURE 10: Result of overlapping community detection. (a) Large communities, (b) small communities in the central urban area, (c) small

communities in the suburban area, and (d) banded communities.

natives, and they have bought their house before the steep
rising of the housing prices. Their living places are close to
their working places, with small commute distance and
forming the small communities.

At the same time, there are also 4 banded communities in
the overlapping communities indicating the long-distance
commuting demand (Figure 10(d)). At the fringe of the central
urban area, the population consists of a high proportion of
immigrations and forms into large-scale residential commu-
nities. The 4 banded communities are shaped as sector
structure radiating out from the city center to the residential
communities at the fringe of the central urban area. Comparing
the communities with the metro lines in Shanghai, the banded
communities are all extending outward along with radiating
metro lines, with averagely two metro lines to form a banded
community. From this structure, we can infer that the com-
muting behavior of residents living along the metro lines
depends heavily on the metro line, with their workplaces ag-
gregating along the metro line. This result demonstrates that, as
the major traffic corridors, metro lines are playing important
roles in forming the city commuting demand structure.

In summary, from the result of overlapping commu-
nities, we can describe the commuting demand structure of
Shanghai as follows:

(i) On the city scale, there is a multiple nuclei structure,
with the central urban area as the largest center and
several centers of large communities in suburban
areas.

(ii) Inside these multiple centers, there are many small
communities with intense jobs-housing connec-
tions, and most of them are in the central urban
area.

(iii) In the central urban area, there are several sector
structures radiating out along the metro lines from
the city center to the fringe, showing long-distance
commuting demand.

5.4. Summary of Results. Comparing nonoverlapping and
overlapping communities, we find that they describe the
urban commuting demand structure in different aspects:

(i) For nonoverlapping communities, each node only
belongs to one community, which forces them to be
inside the community with the strongest connection.
Thus, nonoverlapping communities are more suit-
able to describe the whole picture of the spatial
structure of urban commuting demand.
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(ii) On the other hand, each node in overlapping
communities can belong to multiple communities at
the same time, which allows it to describe the cross-
regional commuting demand.

As for the spatial demand of urban commuting demand,
it is found that

(i) By decomposing the jobs-housing network into
nonoverlapping communities, according to the
number of job activity points, communities can be
classified into three types. The commuting demand
structure in Shanghai can be simplified into a
combination of concentric, sector, and multiple
nuclei structure.

(ii) By decomposing the jobs-housing network into
overlapping communities, a three-level urban
commuting demand structure is discovered in
Shanghai, which can be described by three types of
communities: large communities indicating the
multiple nuclei structure, small communities rep-
resenting short-distance commuting communities,
and banded communities indicating long-distance
commuting demand.

The results in both community detection algorithms also
have some similarities; it is found that

(i) The boundary of communities in nonoverlapping
communities and the large communities in over-
lapping communities are mostly in correlation with
the boundary of administrative districts, indicating
that residential commuting behavior is highly re-
stricted by the administrative boundaries, especially
in suburban areas.

(ii) Level 2 structure in nonoverlapping communities
and the banded communities in overlapping com-
munities all extend along with radiating metro lines,
demonstrating that metro lines are playing impor-
tant roles in leading commuting demand and
forming city commuting demand structure.

6. Contribution and Future Directions

As the focus has been shifted to designing demand from
serving demand, it becomes increasingly important to depict
the jobs-housing relationship and study the commuting
patterns in a city. The better understanding of the jobs-
housing relationship and commuting patterns enables us to
gain an overall knowledge of commuting demand, city
commuting demand structure, and even further, to promote
urban livability and sustainability.

In this paper, a methodology framework is proposed to
describe the spatial structure of commuting demand in a city
from mobile phone data. Commuters and their job activity
information is extracted to construct the jobs-housing
network representing the commuting demand of the city. By
using nonoverlapping and overlapping community detec-
tion to decompose the structure of the network, the com-
muting demand structure of the city is unveiled. To
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demonstrate the practical use of the proposed methodolo-
gies, a case study is carried out in Shanghai to explore the
commuting patterns of Shanghai residents.

The main contributions of this study are as follows:

(i) The proposed methodology framework enables to
decompose the commuting demand and extract the
city structure from human mobility data, which has
the potential to apply on different flow dataset to
reflect urban structure in different aspects. For in-
stance, applying the methodology on taxi trip flow
data, cash flow data, and information flow data to
reflect different flow connection structure.

(ii) The methodology can generate the result that de-
scribes the urban structure in a large city with
multiple subcenters. The result generated is based on
analyzes of current demand, which can be applied as
the basis of the subareas division in practical
transportation planning programs.

There are several further directions based on this study.
There exists a debate about not only the residential density
but also the commuting time that will affect the commuting
behavior and urban commuting structure forming. Thus,
how community time impacts an urban structure is a po-
tential research topic. Furthermore, the methodology pro-
posed in this paper only considers the spatial aspects of the
jobs-housing connection in the city. In future studies, the
temporal aspects of demand can also be considered to de-
scribe how the city commuting demand structure changes
according to the change of time. Proposing a quantitative
criterion to classify the communities according to their
shape and location is a potential research topic. On the one
hand, it requires to describe the spatial shape of commu-
nities using several numerical indexes, and on the other
hand, it also requires to consider not only the spatial location
but also the built environment of the communities. Further
practical application based on the result of this study is also a
research aspect. This study describes the commuting be-
havior of groups of people by aggregating the demand. Based
on human group behavior, it will be exciting and meaningful
to study and describe individual commuting behavior in a
city and further our understanding of human traveling
behavior [63].
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