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Abstract—We present an adaptive museum guidance system
called PhoneGuide. It uses camera-equipped mobile phones for
on-device object recognition in ad-hoc sensor networks and pro-
vides location and object aware multimedia content to museum
visitors.

I. INTRODUCTION AND MOTIVATION

A
lthough audio guides are widely established in many

museums, they suffer from several drawbacks compared

to state-of-the-art multimedia technologies: First, they provide

only audible information to museum visitors, while other

forms of media presentation, such as reading text or video

could be beneficial for museum guidance tasks. Second, they

are not very intuitive. Reference numbers have to be manually

keyed in by the visitor before information about the exhibit

is provided. These numbers are either displayed on visible

tags that are located near the exhibited objects, or are printed

in brochures that have to be carried. Third, offering mobile

guidance equipment to visitors leads to acquisition and main-

tenance costs that have to be covered by the museum.

With our project PhoneGuide we aim at solving these prob-

lems by enabling the application of conventional camera-

equipped mobile phones for museum guidance purposes. The

advantages are obvious: First, todays off–the–shelf mobile

phones offer a rich pallet of multimedia functionalities —

ranging from audio (over speaker or head-set) and video

(graphics, images, movies) to simple tactile feedback (vibra-

tion). Second, integrated cameras, improvements in proces-

sor performance and more memory space enable supporting

advanced computer vision algorithms. Instead of keying in

reference numbers, objects can be recognized automatically

by taking non-persistent photographs of them. This is more

intuitive and saves museum curators from distributing and

maintaining a large number of physical (visible or invisible)

tags. Together with a few sensor-equipped reference tags only,

computer vision based object recognition allows for the clas-

sification of single objects; whereas overlapping signal ranges

of object-distinct active tags (such as RFID) would prevent the

identification of individuals that are grouped closely together.

Third, since we assume that museum visitors will be able to

use their own devices, the acquisition and maintenance cost

for museum–owned devices decreases.

Yet, this approach holds several challenges. Museums are

complex public environments that are —from a computer

vision perspective— not very well controlled. Many hundreds,

up to thousands of objects have to be classified from arbitrary

perspectives, distances and under changing lighting conditions.

In cooperation with local museums, we have tackled some of

Fig. 1. Basic concept (a) and application (b,c) of the PhoneGuide system in a
museum: Adaptive classification in dynamic large-scale museum environments
supported by ad-hoc sensor networks and phone-to-phone communication.

these problems over the past three years. Ideas, solutions and

results are summarized in this article.

II. ADAPTIVE CLASSIFICATION

The major challenge of the PhoneGuide system is to locate

and to recognize museum objects automatically in captured

images. Although much research has been carried out in areas

such as image retrieval and object recognition, it remains

difficult to achieve high recognition rates in dynamic and

uncontrolled large-scale environments such as museums. Often

hundreds or even thousands of objects have to be reliably

classified under varying lighting conditions and from arbitrary

perspectives and distances. Small objects located in showcases,

for instance, can not be photographed separately and have to be

distinguished automatically from each other in a single image.

The object recognition process becomes even more demanding

if the computational possibilities of a mobile device are
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Fig. 2. Overview of adaptive classification infrastructure: During application, each phone collects environmental parameters and user feedback, sensor and
phone-to-phone interfaces. When leaving the museum, these parameters are transmitted to the server, that stores and applies the gathered information to
generate and improve the required classification elements (rules, image classifiers, spatial relationships). The adapted classification elements are transmitted
to the mobile phones of new visitors upon entering the museum.

limited.

To overcome these limitations, we have developed an adap-

tive classification infrastructure (cf. figure 2). It continuously

collects sensor data and user feedback to adapt and improve

the local classification process over time. This is supported by

utilizing a coarse sensor network that provides local informa-

tion (such as rough position and environmental illumination

data) to the mobile devices. Together with the user feedback

gathered during the application of the system, these parameters

are applied to adjust and optimize classifiers, and they can

be shared with other users through ad-hoc phone-to-phone

networks.

Many related approaches exist that adapt classifiers to spe-

cific technical circumstances, user behavior or environmental

conditions. Most of them, however, perform an adaptation

without future influence. Thus, they do not advance over time.

Relevance feedback methods, for instance, are a common

technique for information retrieval systems that evaluate the

user’s feedback on query results. MacArthur et al. [1] apply a

decision tree for an image retrieval application that adapts to

the subjective relevance (indicated by the user) for each query

result. Based on this, a new query is performed. In contrast to

our approach, this method does not apply the information gath-

ered from one user to improve queries of other users. Draper

et al. [2] introduced ADORE, an adaptive object recognition

system that selects the optimal classification technique for an

arbitrary recognition task automatically. Yet, ADORE does not

adapt or improve over time since no feedback or other data is

collected. In contrast our system applies only one static set of

features.

Machine-learning techniques with adaptive learning behavior

can be found in robotics. Hagras et al. [3], for example,

present an autonomous mobile robot that continuously adapts

to a changing environment and utilizes a continuous learning

technique in order to accomplish tasks in agricultural domains.

Our system collects and applies visitor feedback in addition

to environmental parameters to adapt primarily to the users’

application behavior as well as to environmental conditions.

The adaptive classification infrastructure of PhoneGuide con-

sists of a stationary server and an arbitrary number of mobile

phones and sensor boxes. Their general functionalities are

briefly summarized below. More details are provided in the
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following sections.

The server continuously carries out two main tasks: First, it

constantly collects and stores adaptation parameters, such as

environmental information and user feedback, that have been

gathered by each individual mobile phone during run-time

(i.e., during the museum visit). These parameters are transmit-

ted from the phones to the server when leaving the museum.

Note that there is no on–line connection between the mobile

devices and the server during run–time. Second, the server

applies the adaptation parameters for creating and improving

the required classification elements, such as rules, image

classifiers, and spatial relationships, off–line. These improved

elements are transmitted to the mobile phones of new visitors

when entering the museum. Note that our off-line adapta-

tion allows for the application of computationally expensive

training processes that would overload current mobile devices.

This decentralized attempt makes the system highly scalable

to an arbitrarily large number of users since the heavy-weight

training process is carried out off–line on the server while

the lower–weight classification task is performed individually

and in parallel by each mobile phone. This distinguishes our

approach from all centralized mobile classification systems

that perform multiple recognition requests sequentially on a

remote server [4], [5], or utilize high–performance (Tablet)

PCs as mobile devices [6], [7], [8].

The server consists of three major components: One module

is responsible for the preprocessing steps (object tracker and

spatial relationship (SR) creator) that are required for classi-

fying multiple objects in a single image (explained in section

recognition of sub–objects). Furthermore, the server contains

a preprocessor that prepares image data for training existing

image classifiers. Another module dynamically creates rules

and image classifiers based on adaptation parameters. The

rules (e.g., defined by a naive bayes classifier) determine which

classifier has to be selected for a specific environmental state.

The states are defined by temporally collected environmental

parameters, such as local position data and illumination in-

formation. Thus, for each state, the optimal classifier can be

selected and trained.

The front–end application on the mobile phone provides a user

interface and tracks (unnoticed by the user) actual recognition

results as well as provided user feedback: As an outcome

of the object identification, a probability-sorted objects list

is displayed after taking a photograph. The user selects the

correct object from this list with a minimum number of clicks

(only one click if the object has been classified correctly, two

clicks if the correct object has second highest probability,

etc.). This provides essential feedback that is used later for

adaptation on the server. Sensor boxes that are located in the

proximity provide the necessary information to determine the

users’ rough locations through a simple pervasive tracking

method [9], as well as the approximated local illumination

state of the environment.

Before the classification is carried out, however, the correct

image classifier (pre-trained by and transmitted from the

server earlier) has to be selected based on the incoming

environmental data of the nearby sensor boxes. This data

serves as input for those rules which the classifier selector

applies for determining an (for the given conditions) optimal

classifier. Optionally, the selected classifier can utilize spatial

relationships to identify multiple objects within a single image.

The phone-to-phone interface can be applied for exchanging

adaptation parameters dynamically during run-time (i.e., with-

out a check-in/check-out at the server when entering or leaving

the museum). These parameters will not be used for retraining

the classifiers on the phone (as they would be used for on the

server), but for adapting pre-trained classifiers to momentary

situations in the museum. Note that this component is still

under development and has not been formally evaluated.

Consequently, it will be discussed in the outlook section.

The remainder of this article will discuss these components in

more detail.

III. PERSPECTIVE INVARIANCE

In practice, our system has to be flexible enough to compen-

sate for individual user behavior. The ways in which visitors

approach and observe an object can vary to a great degree.

This leads to significant perspective differences in photographs

that are taken for classification. For ensuring an acceptable

recognition rate, the classification process must be scale and

perspective invariant.

To solve this problem, we apply the video capturing function-

ality of mobile phones to record videos containing multiple

perspectives and distances of each object in the museum.

These videos are preprocessed by the server (as indicated in

the previous section): keyframes are extracted and clustered.

The aim is to eliminate redundant frames and select frames

that contain descriptive perspective and scale information.

The remaining frames are forwarded to the image classifier

generator that —based on these frames— configures and

trains an optimized classifier. Consequently, these videos are

applied for an efficient initial training of the system. They are

recorded for all objects only once by the museum operator

when installing the system. Each subsequent modification of

the exhibit requires the recording of a video for the changes

only (e.g., one video of a new object or an existing object at

a new location). However, the classifiers will be continuously

updated and temporally improved over time. All images that

are captured by the visitors, in combination with their indi-

vidual recognition results and sensor values, are adaptation

parameters and are consequently part of the adaptation process.

Thus, step-by-step, the system will adapt to the most common

photographed perspectives and distances that were chosen by

the museum visitors —and consequently to the visitors’ be-

havior and to periodic environmental (lighting) conditions. To

prevent misapplications from adaptation drifts due to incorrect

user feedback, the server eliminates outliers through clustering

automatically. Details on the adaptive training method and

results from a user study that validates a common visitor

behavior (and consequently justifies this approach) can be

found in [10]. Figures 3a and 3b illustrate two examples from

a user study which show that visitors follow a similar behavior

pattern and approach the same objects in very similar ways.

They take photographs within small distinct areas, rather than

from all possible perspectives and distances. Our system will



4

be able to adapt exactly towards these perspectives and scales

after a period.

IV. CLASSIFICATION IN LARGE–SCALE AND DYNAMIC

ENVIRONMENTS

Perspective and scale invariance are requirements that have

to be met for all objects individually. In public environments,

such as museums, two –more global– challenges have to be

addressed: scale and dynamics. The large number of objects to

be recognized under varying lighting conditions (mainly due

to the changing daylight) represent other major barriers for

achieving high recognition rates. To overcome these problems,

we apply a coarse network of custom-built sensor boxes (cf.

figure 2) that provides the additional information to phones

located in their proximity.

A. Large-scale classification

In general, it holds that the more objects a classifier has

to separate, the lower its recognition rate will be. Each sensor

box is equipped with a Bluetooth chip for communicating with

the mobile phones that are located in its signal range. Other

than sensor data, the chip also transmits its unique ID. The IDs

of all sensor boxes in the network together with their known

positions and signal ranges span a coarse grid of (possibly

overlapping) signal cells. Estimating the cell in which a phone

is currently located by analyzing all detectable sensor boxes

(and possibly by evaluating the strength of each signal —

which is currently not supported due to an implementation in

J2ME MIDP 2.0, CLDC 1.1) indicates to each device its own

rough position within the museum. Based on this position data,

the classifier selector chooses a classifier that is optimized

for recognizing only the objects which are located in the

proximity of the user (i.e., objects that are located within

the same signal cell as the user). In practice, only a small

number of objects need to be distinguished from each other

while an arbitrary number of objects can be recognized with a

suitable number of signal cells. More information about how

our classification approach is guided by pervasive tracking

techniques can be found in [9]. Figure 3 illustrates a floor

plan of the City Museum of Weimar that was equipped with

eight sensor boxes for experiments. The spanned grid of signal

cells are color coded. The number of objects located in each

signal cell ranged between 2 and 28.

B. Illumination invariance

Most image-based classification techniques become unsta-

ble with significant changes in illumination. In museums, for

example, the lighting changes frequently next to windows or

due to the fact that the room lights are sometimes turned

off and sometimes turned on. Each of our sensor boxes uses

seven hemispherically aligned photo diodes (cf. figure 3) that

measure the incoming radiance at a solid angle of 180 degrees

for the position where they have been placed. This is shown

in figures 3c and 3d for the eight sensor boxes. The gray

scale intensity values can be compared with omnidirectional

photographs that have been taken from roughly the same

positions. These seven values are broadcasted (together with

the sensor ID) to each phone located in the proximity of the

sensor box. Consequently, the local illumination information

is available and is stored together with a time-stamp on the

phone. As mentioned earlier, they are part of the adapta-

tion parameters that can be used on the server for adapting

classifiers to different local illumination conditions. If, for

instance, a recognition fails, the captured image together with

the corresponding illumination data will be transmitted to the

server as part of the adaptation process. On the server, it has

then to be decided whether the misclassification was due to

varying lighting conditions or due to an invalid perspective

or scaling. This can be done by geometrically registering the

failed image to all existing images of the same object that are

already stored on the server. If an appropriate match is found,

it is selected and the brightnesses of the common image areas

are compared. If, however, the registration process failed either

due to changes in illumination or in perspective/scale a new

classifier is created to cope with the new lighting conditions.

Furthermore, the rules are updated. The illumination data is

also used locally on the phone to select the correct pre–trained

classifier.

V. CLASSIFICATION OF SUB-OBJECTS

Many exhibits in museums are protected against environ-

mental influences or human curiosity by placing them into

showcases or behind other barriers. In these cases, visitors can

not take photographs of individual objects without capturing

others simultaneously. This section explains how our adaptive

classification framework is extended to support the recognition

of multiple objects in a single photograph. Practically, the

classification of sub-objects happens in two steps: After taking

a photograph, a regular image classification is carried out

first as described above. In this step, we do not differentiate

between photographs that contain single or multiple objects.

Since image classification techniques rather than object recog-

nition methods are applied, a scene with multiple objects

can be identified just like scenes with individual objects. As

mentioned above, the classification result is presented to the

users as a probability-sorted objects list. Just like for individual

objects, the user selects —with a minimal number of clicks—

the correct scene (if the scene is recognized, it is displayed as

first entry in the list and one click is sufficient). After defining

the correct scene context, the individual sub-objects in the

photograph are classified automatically. The results are labeled

and the sub-objects are linked with a sub-object list as shown

in figure 4f. From this list, the user can finally select the object

of interest and multimedia content is presented.

Our classification technique for sub–objects is based on spatial

relationships [11]. For scenes that contain inseparable sub–

objects, the video material that is applied for initial off-line

training on the server (see section perspective invariance) is

treated in a special way: In the first frame of these training

videos, the operator manually identifies all sub-objects (cf.

figure 4a). These objects are tracked by the object tracker (cf.

figure 2) via SIFT throughout all subsequent frames (cf. 4b).

If new objects appear, they have to be manually identified to
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Fig. 3. Eight sensor boxes were distributed in the City Museum of Weimar during a formal user study. The floorplan in the center illustrates their location
and the spanned signal cells (color coded). The measured incoming radiances of each sensor can be compared with omnidirectional photographs taken from
the same positions (c, d). The location of 15 subjects when taking photographs of two different sample objects are outlined in (a, b). They indicate that
visitors independently approach the same objects within the same small region —even though much more space was available (the areas shown in (a, b) are
only fractions of the actual rooms).

be tracked. By doing so, the spatial relationship tracker (cf.

figure 2) continuously computes spatial relationships (such as

maximal search angles and distances) between all sub-objects.

Additionally, the size of each sub-object’s bounding box and

it’s individual classification features are computed and stored.

The features are used to train individual classifiers on the

server that are specialized to detect the sub-objects on the

phone.

The trained classifiers and computed spatial relationships are

transferred to the phones along with the additional data when

entering the museum. After taking a photograph on the phone,

the scene context has to be classified first, as explained

above (cf. figure 4c). After this step, the corresponding set of

classifiers and spatial relationships are selected automatically.

An anchor object is classified that is assumed to be located in

the center of the photograph. We apply multi-resolution clas-

sification to cope with different scales. Perspective invariance

is hereby ensured, as explained above.

The scale and position of the anchor object’s bounding box

are then used for selecting the correct spatial relationships

(cf. figure 4d). The maximal search angles and distances to

neighboring sub-objects guide the following search process:

The closest neighbor is searched at the mean distance and

angle (green dot in figure 4e) which is defined by the spatial

relationships. If a sub-object could not be classified at this

position, a search mask is spirally shifted around the initial

position (yellow dots in figure 4e) until a sub-object is clas-

sified: If the excitation of the classifier is above a predefined

threshold (blue dot in figure 4e), a sub-object is found only

if, in addition, the excitations for neighboring search points

are lower (orange dots in figure 4e). Otherwise, the final

position of the subobject is gradually moved further until the

highest excitation is discovered (red dot in figure 4e). To

ensure a rapid classification directly on the phone, integral

images are initially computed that can be used for a fast feature

computation within the search masks.

Additional sub–objects are found by repeating this process

from already detected sub–objects. Note that only undetected

sub–objects have to be traced. Since the spatial relationships

can be optimized continuously the more sub-objects have been
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Fig. 4. Classification of sub-objects: On the server, individual sub-objects have to be manually identified in the first frame of each video (a). They are then
automatically tracked throughout all frames (b) to compute spatial relationships. On the phone, the scene context has to be detected first (c). The corresponding
spatial relationships are then used (d) to search for all sub-objects (e). The identified sub-objects are labeled, and the one of interest can be selected from a
sub-objects list (f).

detected, the classification process will speed up with each

detected sub-object. For instance, if the distance between two

sub-objects has been determined for one particular perspective

and scale, it can be used as a scaling factor to adjust the spatial

relationships of the remaining sub–objects.

The adjusted spatial relationships can be stored on the phone

and transmitted to the server as part of the adaptation pro-

cess. This way, the approximation of spatial relationships for

individual perspectives and scales will also be continuously

optimized over time. Note that the adaptation of our sub-object

classification is currently being implemented.

After all sub-objects have been found, they are labeled and

linked to close–up pictures in the sub-object list (cf. figure

4f). The visitor can browse through this list to select the object

of interest. Multimedia content of the selected object is then

presented.

VI. RESULTS AND OUTLOOK

In cooperation with the City Museum of Weimar, we were

able to test and to evaluate our system during regular opening

hours. In our current implementation, we applied a well

selected set of global image features [12], [10] and three-

layer neural networks for image classification [10]. Since

the classification is widely independent from the adaptation

framework, it can easily be replaced by enhanced algorithms,

such as SIFT, as soon as their computation time on the

mobile devices becomes acceptable. On Nokia 6630 mobile

phones, our local object recognition algorithm implemented

in J2ME requires on average 3.8 seconds. For 139 objects,

Fig. 5. Result of a questionaire gathered in the course of a user study from
15 museum visitors. Each question was answered through a ranking between
1 (worst) and 7 (best).

we achieve a recognition rate of 92.6% for experienced users

and 82% for totally inexperienced museum visitors. In the

context of a user study [10], we achieved these results under

realistic conditions (i.e., arbitrary perspectives and scales,

evaluated over a duration of 4 business days at different day

times and illumination situations). We could also show that a

temporal adaptation does lead to a continuous improvement
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System Location
information

Recognition
on server

Temporal
adaptation

Recognition rates

Hare et al. [4] No Yes No 850 images of 850 2D paintings: 80.0% for 200 trials

Bay et al. [7] No No No 205 images (splitted into two sets) of 20 objects: 91.5% for 116 trials

Fasel et al. [8] No No No 207 images (splitted into two sets) of 20 objects: 94.6%a for 119 trials

Bay et al. [6] Yes No No 130 images of 22 objects: 80.0% for 200 trials
rec. rate ∼ independent of #objects

Fritz et al. [5] Yes Yes No 40 images of 20 objects: 97.5% for 40 trials
1005 images of 201 objects: 91% for 115 trials
rec. rate ∼ independent of #objects

PhoneGuide Yes No Yes 7200 images of 139 objects: 92.6% for (6 perspectives x 139 objects =) 834
trials (expert user); 82% for 139 trials (museum visitors)
rec. rate ∼ independent of #objects

a97.5% for an unsplitted image set. Matching time is not applicable for mobile devices.

TABLE I
COMPARISON OF PHONEGUIDE WITH RELATED APPROACHES.

of the recognition rate over time [10].

We compare our system with the most related approaches

in table I: Fritz et al. [5] introduced a city guide for mobile

phones that identifies buildings or monuments. Photographs

that are coupled with GPS location data are transferred to a

remote server via UMTS or GPRS for classification using

a variation of SIFT called i-SIFT. Hare et al. [4] developed

a museum guide for Pocket PCs that recognized paintings.

Images are sent to a server that computes SIFT features but

applies image retrieval techniques for classification. Bay et al.

[7] also demonstrated a museum guide based on a Tablet PC.

However, in contrast to [5], [4] the classification is carried

out locally using SURF. In their previous work [6], they also

apply Bluetooth emitters for pervasive tracking. In their latest

approach [8], they suppress multiple feature–point matches

between test and model images by removing all matches

above a minimal distance. None of these approaches is either

adaptive or able to improve over time while being used.

Consequently, we believe that realistic recognition rates and

invariance against perspective, scaling, and illumination for

large-scale and uncontrolled situations (hundreds or thousands

of objects, and changing lighting) are difficult to achieve with

such techniques.

Besides estimating the quantitative benchmark data, we were

interested in the subjective impression of museum visitors

after using our system. Therefore, we asked fifteen subjects to

fill out a questionnaire and answer (inter alia) the following

questions (1=worst, 7=best)[10]:

1) How convenient was the duration of waiting for the

location estimation (pervasive tracking)?

2) How do you judge the recognition performance of

PhoneGuide?

3) How simple was the handling of the application?

4) How satisfied were you with the integrated concept of

PhoneGuide?

5) Can you imagine that PhoneGuide would become an ad-

equate alternative to today’s museum guidance systems

(e.g., audio guides)?

6) Do you believe that PhoneGuide can be applied in

different contexts (e.g., for city guidance)?

The results are presented in figure 5. The relatively long

waiting time required for the device localization was the most

criticized aspect of our approach. In our implementation, it

takes approximately 13 seconds for the scanning of nearby

Bluetooth emitters. This waiting time occurs only during

transitions between signal cells. The waiting time for the

recognition process remains constant. However, it is clear

that such high waiting times can easily occur for individual

recognition tasks if a centralized classification framework

would be used (such as in [4] and [5]). They will not scale well

with an increasing number of users and simultaneous classi-

fication requests. Our decentralized classification architecture

addresses all recognition requests in parallel and directly on

the local devices. Thus, no additional waiting time that is due

to network communication, and sequential request–handling

on the server is introduced. Newer and faster phones will even

decrease the waiting time for individual classifications.

Note that the results described above do not yet consider

the illumination sensor data (see section large-scale classi-

fication). A formal long-term evaluation of our system that

incorporates this information is one of our future tasks. They

also do not include the recognition rate and performance

for sub-object classification (see section recognition of sub-

objects). Although this must also be evaluated formally and

under realistic conditions, we carried out an initial benchmark

test: Our current implementation requires 2 to 3.5 seconds

for classifying 6-8 sub-objects with a recognition rate of 93%

(6% of all sub-objects were not found and 1% of all sub-

objects were found at wrong places, 90 trials have been carried

out with three different object sets). In some cases, reflections

or shadows of visitors on (sub–)objects might lead to miss–

recognitions and can prevent sub–objects from being located

correctly. For instance, image portions of small sub–objects

can be occluded by lens flare effects that modify their true

appearance completely.

Currently, adaptations to user behavior and environmental

changes do not become immediately effective. Adaptation

parameters have to be uploaded to the server first to lead

to improvements later. For enabling quicker adaptations to
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changes that take place during the actual museum visit, we

are investigating and implementing additional ad-hoc network

techniques —as they might be used in the future for car-to-car

communication and other areas. As illustrated in figure 1a, a

short direct point-to-point connection is established between

all phones that are within signal range (for compatibility

reasons we use Bluetooth at the moment, but WiFi is also

imaginable). Since each phone stores information about each

individual succeeded or failed classification trial together with

a time stamp, this data can be provided constantly to other

phones. By doing this, we ensure that each phone stores statis-

tical information about current object–individual classification

rates as well as about confusions with other objects. Since this

is continuously being repeated while the visitors move through

the museum, the data that is stored on each phone is always as

up-to-date as possible (likely to be different for each visitor —

depending on the movements and actions of all visitors). This

data allows for influencing the classification process directly

without re-training. As for transmitting information from the

sensor boxes, this process is carried out in the background and

remains unnoticed by the user.

We believe that mobile-phone enabled guidance systems have

a substantial potential in future —for indoor (such as for

museum guidance) as well as for outdoor (such as for city

guidance) applications, and that computer vision support is

complementary to other sensory information (such as provided

by GPS, RFID, etc.) and manual user input. For achieving

realistic classification rates in dynamic and complex public

environments, however, we see an intelligent system adapta-

tion as an essential component. For large-scale and dynamic

outdoor environments, established web services such as google

earth indexing or Flickr can be applied to organize (geo-

graphically and temporally) the data accumulated by adaptive

classification systems.
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I. RELATED WORK (OPTIONAL SIDEBAR)

For designing digital mobile guidance systems, a multitude

of different technologies exist. They can be categorized in

three major groups (cf. figure 1): User feedback approaches

allow visitors to identify objects manually in order to

retrieve further context information. They comprise traditional

museum guidance techniques such as audio guides (object

IDs are provided on human-readable lables or in handouts

that have to be keyed in by users), as well as electronic lists

(of images or text) provided on the mobile device that visitors

browse through in terms of making a selection.

Sensor systems apply small sensor devices for identification.

They are either attached to exhibits for identifying them

directly, or they are used to determine the location and/or

orientation of the mobile device within the environment (and

consequently determine objects in its proximity). Wireless

connection technologies such as RFID[1], [2], Bluetooth

[1] or Infrared [3], [2], [4] are usually utilized for this.

Precise object identification with sensors only could be

accomplished through narrow signal ranges of the emitters to

ensure unambiguousness. Välkkynen et al. [2], for instance,

use sensor devices called SoapBoxes [5], which host several

integrated sensors. Besides scanning for RFID chips in

the proximity (which are are embedded in each SoapBox),

a SoapBox can be triggered by a mobile device through

infrared or laser light (via an integrated light sensor). A

wireless connection between the corresponding SoapBox and

the mobile device is established and context data, such as

URLs are transmitted.

Several similar approaches exist that evaluate the user’s

location for providing context information [3], [6], [7].

Wide-range emitters (Bluetooth, WiFi, or GPS) are used

frequently to determine the approximated location of users.

With this information an assortment of close objects can be

presented in a selection list. One of the first location–based

mobile guidance systems was called Cyberguide [3]. Simple

maps with outlines of buildings and context information

are displayed on a hand-held device equipped with a GPS

receiver. For indoor applications, infrared beacons are

evaluated to estimate the device’s position. Cheverst et al.

[7] have introduced a city guidance system on a Tablet PC

that combines user feedback with location information. For

recognizing objects, users have to manually provide a rough

indication of how far they are away. The location information

is then estimated by detecting nearby WiFi hotspots. An

overview of different location–based guidance systems can

be found in [8].

In [9] a technique was presented that captures each room of

a museum with a fisheye–camera. The resulting panorama

images are presented on a PDA —registered to the real world

via a digital compass attached to the device. Depending on

the orientation, objects can be selected by simply clicking on

the corresponding region of the panorama image. A remote

server then delivers the appropriate multimedia content.

Computer vision approaches utilize integrated or attached

cameras for classification —either by recognizing the object

directly or by identifying machine–readable barcodes (e.g.,

Fig. 1. Overview of different techniques that are applied for object
identification in digital mobile guidance systems.

QR-Codes, Datamatrix) located next to them ( e.g., [10]).

Especially direct recognition techniques seem to be very

promising for object identification. This is also confirmed by

user experiments, such as the ones performed by Davies et

al. [11]. They investigated the acceptance of pure location–

based versus computer vision based (classification was only

simulated in their experiments for controlling the recognition

rates) techniques for guidance systems. They found that both

approaches are equally preferred —despite the imperfect

classifications. The various direct object classification

techniques that perform a recognition directly on the local

device [12], [13], [14] or on a remote server [15], [16] have

been summarized and compared with PhoneGuide in the

main text.
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