Mobile Product Search with Bag of Hash Bits

Junfeng He, Tai-Hsu Lin, Jinyuan Feng, Shih-Fu Chang
Electrical Engineering Department, Columbia University

jh2700@columbia.edu, lord.lth@gmail.com, {jf2651, sfchang}@ee.columbia.edu

ABSTRACT

The advent of smart phones has provided an excellent plat-
form for mobile visual search. Most of previous mobile vi-
sual search systems adopt the framework of "bag of words”,in
which words indicate quantized codes of visual features. In
this work, we propose a novel mobile visual search system
based on ”"bag of hash bits”. Using new ideas for hash bit se-
lection, multi-hash table generation, and hamming-distance
soft scoring, we overcome the problem of bit inefficiency
affecting the traditional hashing approaches, and achieve
promising accuracy outperforming state of the art. The
framework is also general in that general feature type can
be used for generating the hash bits. Demos and experi-
ments over a large scale product image set demonstrate the
effectiveness of our approach.

Categories and Subject Descriptors

H.3 INFORMATION STORAGE AND RETRIEVAL:

Information Search and Retrieval
General Terms

Algorithms

Keywords

Mobile Visual Search, Image Search and Retrieval

1. INTRODUCTION

The advent of smartphones provides a perfect platform for
mobile visual search, in which many interesting applications
have been developed, such as mobile product search (Google
Goggles, Amazon Snaptell), location search or augmented
reality,etc. For mobile visual search, local feature(LF) like
SIFT or SURF etc., is a popular choice, since global features
usually can not support object-level partial search or match,
which is crucial in applications like product search.

One unique challenge of mobile visual search is to reduce
the amount of data sent from the mobile to the server be-
cause of limited bandwidth of networks such as 3G. Many
mobile visual systems extract features in the mobile side.
However, such local features need to be compressed before
transmission; Since sending the raw local features may cost
more than sending the image. Typical ways for compressing
local features is to quantize them to visual words, or apply
novel coding like CHoGJ[1]. On the server side, most sys-
tems adopt the model of "bag of words” (BoW), which rep-

Copyright is held by the author/owner(s).
MM’ 11, November 28-December 1, 2011, Scottsdale, Arizona, USA.
ACM 978-1-4503-0616-4/11/11.

resents one image as histograms of visual words contained
in the image. Usually a subset of candidate images would
be chosen from the database , according to some kinds of
distance (e.g., L2) between the query BoW histogram and
the histgorams of database images. Then some geometric
reranking/verification such as RANSAC, will be applied to
rerank the candidates.

2. PROPOSED SYSTEM

Hash Bit/Function Multi Hash Table

Selection Prolifiration
4 > \ Query data @ v
Leed —_L —
‘ Feature Hashing as: ol':\B.‘ago
| Bxacton |) ([tashile)
Network
" Spatial Filtering |
Display based on _
fumm— Bag of Hash Bits |
Search Results -

Ll

Mobile Server
Figure 1: Architecture of the Proposed Bag of Bits
Mobile Search System.

We have developed new algorithms and a visual search
system based on bag of hash bits instead of conventional
bag of words. Figure 1 shows the overall workflow of the
system. First, on the client (mobile) side, we compress local
features to tens of bits by hashing, which meet the band-
width requirements in practical mobile networks. On the
server side, after receiving hash bits of each local feature,
we can represent the whole image as bag of hash bits. To
some extend, the hash bits of each local feature can also
be viewed as visual word index, however, the advantage of
using hash bits are: the hamming distance between "word
index” of hash bits, can be used to approximate the feature
distance, and moreover, the hash bits allows us to create
indexing structure in a very flexible manner. These advan-
tages are important in developing successful search systems
that minimize the transmission delay and maintain high re-
trieval accuracy. With matched local features, we then ap-
ply an image-level spatial filtering to re-rank the images and
choose the top returned results. The spatial filtering utilizes
both the hash bits and the location of local features in one
image.

Some previous works have reported that hashing may not

be a good choice for mobile visual search, since a large num-
ber of bits are needed for each local feature, hence causing
high much transmission cost. In this work, however, we in-
troduce several novel ideas (summarized below with details
in the next section).

1. Reducing the number of required hash bits on the mo-
bile side by balancing and selecting hash bits[3].
2. Generating multiple hash tables on the server side by
re-using a compact pool of hash bits.
3. Leveraging the hamming distance provided by hash
bits in the spatial verification/filtering step.
Our system will have similar bit budgets (and hence trans-
mission cost) as the state-of-art works like CHoG [1], but a
higher search accuracy.

3. DESCRIPTIONS
3.1 Mobile side—Hash Local Feature into Bits

In the current implementation, we choose SURF as the lo-
cal feature, of its proven performance in accuracy and speed
in several existing systems.. We apply the Locality Sensi-
tive Hahsing(LSH)method [2] to compress the SURF fea-
tures. Following the considerations in [1], constrained by
transmission speed, we limit to 80 hash bits for each local
feature, so the hash bits must be very compact. We balance
each hash bit so that half of bits produced by each hashing
function are +1, and the other -1. To further improve the
efficiency and compactness of the hash bits, we applied a bit
selection algorithm as described [3], which chooses 80 most
compact bits from an initial candidate set of 1024 LSH bits.
As shown in [3, 4], bit balancing and selection can greatly
reduce the number of hash bits needed. More details about
the hash bit selection algorithm can be found in [3].

3.2 Server Side—Search with Bag of Bits
3.2.1 Matching Local Features with Hash Bits

For one local feature in the query image, we need to find
out its nearest neighbors from all local features stored in the
database. One popular technique in improving the hashing
performance (especially the recall rate) is to use multiple
hash tables. We adopt the same idea, but instead of send-
ing multiple sets of hash bits over the mobile network, we
randomly select multiple subsets of bits from a single pool
of hash bits (80 bits in the current implementation) and use
each subset to construct a table. We can thus construct
multiple tables without increasing the total amount of bits
needed to be transmitted. We search each table by checking
the buckets within a hamming radius to the query, instead
of checking only the same bucket of the query, which can
further reduce the number of tables needed. Matched im-
ages retrieved from each table are combined to form the
candidate set for subsequent verification. In our system, we
choose to use 12 tables, each indexed with 36 bits randomly
drawn from the 80 bits pool aforementioned, with hamming
radius r = 1 to 3, according to different tradeoffs between
accuracy and time.

3.2.2 Spatial Filtering

Given the set of features in the database that were matched
to features in the query image, one would like to check if
these matches are geometrically consistent, i.e., whether a
valid geometric transformation can be established between
the feature positions on the query image and the positions

in the database image. Considering the popular geomet-
ric verification method, RANSAC, is too slow, recently, a
method based on length ratios [1] has been proposed to ef-
ficiently verify geometric correspondences without actually
computing the transformation. Intuitively, it estimates the
portion of matched features between query and reference
images that share a consistent scale change. The higher
value this is, the higher score the candidate reference im-
age receives. Leveraging the hamming distance enabled by
the hash bits, we further modify this step by placing higher
weights on matched feature pairs with smaller hamming dis-
tances when computing the dominant scale change between
query and reference images. This is in contrast to the previ-
ous method that only counts the frequency of match pairs.
Our experiments confirmed clear performance improvement
by this modification step incorporating the hamming dis-
tance of the hash bits.

4. PROTOTYPE AND EXPERIMENTS

Figure 2: Example user interfaces. Users may select
the while image, or a subwindow as query input,
which can further be refined by interactive object
segmentation tools like Grabcut. Matched products
are shown on the right.

We have collected a product set with around 360K im-
ages crawled from Amazon.com. It contains diverse cat-
egories such as DVD/book covers, shoes, furnitures, gro-
ceries, kitchen supplies, etc. Each image contains about 100
SURF features on average, and hence we have about 36M
local features in the database.

We have created a test set of more than 100 query images,
which are separated from the reference database. The speed
of our system is comparable to the state-of-the-art mobile vi-
sual search system, such as the one based on CHoG [1]. More
specifically, the speed for the SURF feature extraction (1-
1.5s), transmission of query hash bits(1-2s), search (1-3sec),
result download/display (1-2s). However, our method can
perform significantly better, with at least 20% improvement
on precision of the top 100 search results, than the CHoG
method [1] (i.e., compressing local features with CHoG in
mobile side, and then applying BoW with a vocabulary tree
of 1M codewords, and reranking with the spatial filtering in
the server side).

5. REFERENCES

[1] V. Chandrasekhar, et.al. Mobile Product Recognition.
In Proceedings of ACM MM, 2010.

[2] M. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of STOC, 2002.

[3] J. He, T.-H. Lin, and S.-F. Chang. Hash Bit Selection
for Large Scale Similarity Search. Technical Report,
Columbia University, Sept., 2011.

[4] J. He, R. Radhakrishnan, S.-F. Chang, C. Bauer.
Compact Hashing with Joint Optimization of Search
Accuracy and Time. In Proceedings of CVPR, 2011.

