
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Mobile Relay Configuration in Data-intensive
Wireless Sensor Networks
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Abstract— Wireless Sensor Networks (WSNs) are increasingly used in data-intensive applications such as micro-climate
monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit
all the data generated within an application’s lifetime to the base station despite the fact that sensor nodes have limited power
supplies. We propose using low-cost disposable mobile relays to reduce the energy consumption of data-intensive WSNs. Our
approach differs from previous work in two main aspects. First, it does not require complex motion planning of mobile nodes, so it
can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both
mobility and wireless transmissions into a holistic optimization framework. Our framework consists of three main algorithms. The
first algorithm computes an optimal routing tree assuming no nodes can move. The second algorithm improves the topology of the
routing tree by greedily adding new nodes exploiting mobility of the newly added nodes. The third algorithm improves the routing
tree by relocating its nodes without changing its topology. This iterative algorithm converges on the optimal position for each
node given the constraint that the routing tree topology does not change. We present efficient distributed implementations for
each algorithm that require only limited, localized synchronization. Because we do not necessarily compute an optimal topology,
our final routing tree is not necessarily optimal. However, our simulation results show that our algorithms significantly outperform
the best existing solutions.

Index Terms—Wireless sensor networks, energy optimization, mobile nodes, wireless routing
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1 INTRODUCTION

WSNs have been deployed in a variety of data-
intensive applications including micro-climate

and habitat monitoring [1], precision agriculture, and
audio/video surveillance [2]. A moderate-size WSN
can gather up to 1 Gb/year from a biological habitat
[3]. Due to the limited storage capacity of sensor
nodes, most data must be transmitted to the base
station for archiving and analysis. However, sensor
nodes must operate on limited power supplies such as
batteries or small solar panels. Therefore, a key chal-
lenge faced by data-intensive WSNs is to minimize
the energy consumption of sensor nodes so that all the
data generated within the lifetime of the application
can be transmitted to the base station.

Several different approaches have been proposed
to significantly reduce the energy cost of WSNs by
using the mobility of nodes. A robotic unit may
move around the network and collect data from static
nodes through one-hop or multi-hop transmissions
[4], [5], [6], [7], [8]. The mobile node may serve as
the base station or a “data mule” that transports data
between static nodes and the base station [9], [10],
[11]. Mobile nodes may also be used as relays [12] that
forward data from source nodes to the base station.
Several movement strategies for mobile relays have
been studied in [12], [13].

Although the effectiveness of mobility in energy
conservation is demonstrated by previous studies,
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the following key issues have not been collectively
addressed. First, the movement cost of mobile nodes
is not accounted for in the total network energy con-
sumption. Instead, mobile nodes are often assumed
to have replenishable energy supplies [7] which is not
always feasible due to the constraints of the physical
environment. Second, complex motion planning of
mobile nodes is often assumed in existing solutions
which introduces significant design complexity and
manufacturing costs. In [7], [8], [14], [15], mobile
nodes need to repeatedly compute optimal motion
paths and change their location, their orientation
and/or speed of movement. Such capabilities are
usually not supported by existing low-cost mobile
sensor platforms. For instance, Robomote [16] nodes
are designed using 8-bit CPUs and small batteries that
only last for about 25 minutes in full motion.

In this paper, we use low-cost disposable mobile
relays to reduce the total energy consumption of data-
intensive WSNs. Different from mobile base station
or data mules, mobile relays do not transport data;
instead, they move to different locations and then
remain stationary to forward data along the paths
from the sources to the base station. Thus, the commu-
nication delays can be significantly reduced compared
with using mobile sinks or data mules. Moreover, each
mobile node performs a single relocation unlike other
approaches which require repeated relocations.

Our approach is motivated by the current state of
mobile sensor platform technology. On the one hand,
numerous low-cost mobile sensor prototypes such as
Robomote [16], Khepera [17], and FIRA [18] are now
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available. Their manufacturing cost is comparable to
that of typical static sensor platforms. As a result, they
can be massively deployed in a network and used in
a disposable manner. Our approach takes advantage
of this capability by assuming that we have a large
number of mobile relay nodes. On the other hand,
due to low manufacturing cost, existing mobile sensor
platforms are typically powered by batteries and only
capable of limited mobility. Consistent with this con-
straint, our approach only requires one-shot relocation
to designated positions after deployment. Compared
with our approach, existing mobility approaches typ-
ically assume a small number of powerful mobile
nodes, which does not exploit the availability of many
low-cost mobile nodes.

We make the following contributions in this paper.
(1) We formulate the problem of Optimal Mobile Relay
Configuration (OMRC) in data-intensive WSNs. Our
objective of energy conservation is holistic in that the
total energy consumed by both mobility of relays
and wireless transmissions is minimized, which is
in contrast to existing mobility approaches that only
minimize the transmission energy consumption. The
tradeoff in energy consumption between mobility and
transmission is exploited by configuring the positions
of mobile relays. (2) We study the effect of the initial
configuration on the final result. We compare different
initial tree building strategies and propose an optimal
tree construction strategy for static nodes with no mo-
bility. (3) We develop two algorithms that iteratively
refine the configuration of mobile relays. The first
improves the tree topology by adding new nodes. It
is not guaranteed to find the optimal topology. The
second improves the routing tree by relocating nodes
without changing the tree topology. It converges to
the optimal node positions for the given topology. Our
algorithms have efficient distributed implementations
that require only limited, localized synchronization.
(4) We conduct extensive simulations based on re-
alistic energy models obtained from existing mobile
and static sensor platforms. Our results show that our
algorithms can reduce energy consumption by up to
45% compared to the best existing solutions.

The rest of the paper is organized as follows. Section
2 reviews related work. In Section 3, we formally
define the problem of optimal mobile relay configura-
tion. In Section 4, we present our centralized optimiza-
tion framework, an optimal solution for the base case
with a single mobile relay, an optimal algorithm for
constructing a routing tree given no mobility of nodes,
and a greedy algorithm for improving the routing
tree by adding new nodes. In Section 5, we present
an optimal relocation algorithm given a fixed rout-
ing topology. In Section 6, we discuss the efficiency
and optimality of our framework. In Section 7, we
propose efficient distributed implementations for our
algorithms. Section 8 describes our simulation results
and Section 9 concludes this paper.

2 RELATED WORK

We review three different approaches, mobile base
stations, data mules, and mobile relays, that use mo-
bility to reduce energy consumption in wireless sensor
networks. A mobile base station moves around the
network and collects data from the nodes. In some
work, all nodes are always performing multiple hop
transmissions to the base station, and the goal is to
rotate which nodes are close to the base station in
order to balance the transmission load [4], [5], [6]. In
other work, nodes only transmit to the base station
when it is close to them (or a neighbor). The goal is
to compute a mobility path to collect data from visited
nodes before those nodes suffer buffer overflows [7],
[8], [14], [15]. In [8], [19], [20], several rendezvous-
based data collection algorithms are proposed, where
the mobile base station only visits a selected set
of nodes referred to as rendezvous points within a
deadline and the rendezvous points buffer the data
from sources. These approaches incur high latencies
due to the low to moderate speed, e.g. 0.1-1 m/s [14],
[16], of mobile base stations.

Data mules are similar to the second form of mobile
base stations [9], [10], [11]. They pick up data from the
sensors and transport it to the sink. In [21], the data
mule visits all the sources to collect data, transports
data over some distance, and then transmits it to the
static base station through the network. The goal is
to find a movement path that minimizes both com-
munication and mobility energy consumption. Similar
to mobile base stations, data mules introduce large
delays since sensors have to wait for a mule to pass
by before starting their transmission.

In the third approach, the network consists of mo-
bile relay nodes along with static base station and
data sources. Relay nodes do not transport data; in-
stead, they move to different locations to decrease the
transmission costs. We use the mobile relay approach
in this work. Goldenberg et al. [13] showed that an
iterative mobility algorithm where each relay node
moves to the midpoint of its neighbors converges
on the optimal solution for a single routing path.
However, they do not account for the cost of moving
the relay nodes. In [22], mobile nodes decide to move
only when moving is beneficial, but the only position
considered is the midpoint of neighbors.

Unlike mobile base stations and data mules, our
OMRC problem considers the energy consumption of
both mobility and transmission. Our approach also re-
locates each mobile relay only once immediately after
deployment. Unlike previous mobile relay schemes
[13] and [22], we consider all possible locations as
possible target locations for a mobile node instead of
just the midpoint of its neighbors.

Mobility has been extensively studied in sensor
network and robotics applications which consider
only mobility costs but not communication costs. For
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example, in [23], the authors propose approximation
algorithms to minimize maximum and total move-
ment of the mobile nodes such that the network
becomes connected. In [24], the authors propose an
optimal algorithm to bridge the gap between two
static nodes by moving nearby mobile nodes along the
line connecting the static points while also minimizing
the total/maximum distance moved. In [25], [26], the
authors propose algorithms to find motion paths for
robots to explore the area and perform a certain task
while taking into consideration the energy available
at each robot. These problems ignore communication
costs which add an increased complexity to OMRC,
and consequently their results are not applicable.

Our OMRC problem is somewhat similar to a num-
ber of graph theory problems such as the Steiner
tree problem [27], [28], [29] and the facility location
problem [30], [31]. However, because the OMRC cost
function is fundamentally different from the cost func-
tion for these other problems, existing solutions to
these problems cannot be applied directly and do not
provide good solutions to OMRC. For example, there
is no obvious way to include mobility costs in the
Steiner tree problem.

3 PROBLEM DEFINITION

3.1 Energy Consumption Models

Nodes consume energy during communication,
computation, and movement, but communication and
mobility energy consumption are the major cause
of battery drainage. Radios consume considerable
energy even in an idle listening state, but the idle
listening time of radios can be significantly reduced
by a number of sleep scheduling protocols [32]. In
this work, we focus on reducing the total energy con-
sumption due to transmissions and mobility. Such a
holistic objective of energy conservation is motivated
by the fact that mobile relays act the same as static
forwarding nodes after movement.

For mobility, we consider wheeled sensor nodes
with differential drives such as Khepera [17], Robo-
mote [16] and FIRA [18]. This type of node usu-
ally has two wheels, each controlled by independent
engines. We adopt the distance proportional energy
consumption model which is appropriate for this kind
of node [33]. The energy EM (d) consumed by moving
a distance d is modeled as:

EM (d) = kd

The value of the parameter k depends on the speed
of the node. In general, there is an optimal speed at
which k is lowest. In [33], the authors discuss in detail
the variation of the energy consumption with respect
to the speed of the mote. When the node is running
at optimal speed, k = 2 [33].

To model the energy consumed through transmis-
sions, we analyze the empirical results obtained by

two radios CC2420 [34] and CC1000 [35] that are
widely used on existing sensor network platforms. For
CC2420, the authors of [36] studied the transmission
power level needed for transmitting packets reliably
(e.g., over 95% packet reception ratio) over different
distances. Let ET (d) be the energy consumed to trans-
mit reliably over distance d. It can be modeled as

ET (d) = m(a+ bd2)

where m is the number of bits transmitted and a
and b are constants depending on the environment.
We now discuss the instantiation of the above model
for both CC2420 and CC1000 radio platforms. In an
outdoor environment, for received signal strength of
-80 dbm (which corresponds to a packet reception
ratio higher than 95%), we obtain a = 0.6× 10−7J/bit
and b = 4 × 10−10Jm−2/bit from the measurements
on CC2420 in [36]. This model is consistent with
the theoretical analysis discussed in [37]. We also
consider the energy needed by CC1000 to output the
same levels. We get lower consumption parameters:
a = 0.3 × 10−7J/bit and b = 2 × 10−10Jm−2/bit. We
will see in Section 5 that we maintain this high packet
reception ratio throughout our algorithm. We note
that although the mobility parameter k is roughly 1010

times larger than the transmission parameter b, the
relays move only once whereas large amounts of data
are transmitted. For large enough data chunk sizes,
the savings in energy transmission costs compensates
for the energy expended to move the nodes resulting
in a decrease in total energy consumed.

3.2 An Illustrative Example

We now describe the main idea of our approach
using a simple example. Suppose we have three nodes
s1, s2, s3 located at positions x1, x2, x3, respectively
(Fig. 1), such that s2 is a mobile relay node. The objec-
tive is to minimize the total energy consumption due
to both movement and transmissions. Data storage
node s1 needs to transmit a data chunk to sink s3
through relay node s2. One solution is to have s1
transmit the data from x1 to node s2 at position x2

and node s2 relays it to sink s3 at position x3; that
is, node s2 does not move. Another solution, which
takes advantage of s2’s mobility, is to move s2 to the
midpoint of the segment x1x3, which is suggested
in [13]. This will reduce the transmission energy by
reducing the distances separating the nodes. How-
ever, moving relay node s2 also consumes energy.
We assume the following parameters for the energy
models: k = 2, a = 0.6× 10−7, b = 4× 10−10.

In this example, for a given data chunk mi, the
optimal solution is to move s2 to xi

2 (a position that
we can compute precisely). This will minimize the
total energy consumption due to both transmission
and mobility. For small messages, s2 moves very little
if at all. As the size of the data increases, relay node
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s2 moves closer to the midpoint. In this example, it
is beneficial to move when the message size exceeds
4 MB. We illustrate in Table 1 the energy savings
achieved using our optimal approach and the other
two approaches for the relevant range of data sizes.
For large enough data chunks (≈ 13 MB), one relay
node can reduce total energy consumption by 10%
compared to the other two approaches. As the data
chunk size increases further, the energy savings de-
crease, and the optimal position converges to the mid-
point when the data size exceeds 43 MB. In general,
the reduction in energy consumption is higher when
there are multiple mobile relay nodes.

Fig. 1. Reduction in energy consumption due to mobile
relay. As the data chunk size increases, the optimal
position converges to the midpoint of s1s3.

TABLE 1
Energy consumption comparison

Data Size Costs at Costs at Costs at Reduction
(MB) Original Pos. Midpoints Optimal Pos.
5.00 42.78 70.71 42.04 1.73%
11.00 94.12 101.93 88.39 6.09%
12.00 102.68 107.13 94.71 7.75%
13.00 111.23 112.33 100.87 9.32%
14.00 119.79 117.53 106.89 9.06%
15.00 128.35 122.74 112.80 8.09%
16.00 136.90 127.94 118.62 7.28%
17.00 145.46 133.14 124.37 6.58%
18.00 154.01 138.34 130.06 5.98%
40.00 342.26 252.77 247.58 2.05%

The above example illustrates two interesting re-
sults. The optimal position of a mobile relay is not
the midpoint between the source and sink when
both mobility and transmissions costs are taken into
consideration. This is in contrast to the conclusion of
several previous studies [12], [13] which only account
for transmission costs. Second, the optimal position
of a mobile relay depends on not only the network
topology (e.g., the initial positions of nodes) but also
the amount of data to be transmitted. Moreover, as
the data chunk size increases, the optimal position
converges to the midpoint of s1 and s3. These results
are particularly important for minimizing the energy
cost of data-intensive WSNs as the traffic load of such
networks varies significantly with the sampling rates
of nodes and network density.

3.3 Problem Formulation

In our definitions, we assume that all movements
are completed before any transmissions begin. We also

assume there are no obstacles that affect mobility or
transmissions. In this case, as we show in Section
4.2, the distance moved by a mobile relay is no
more than the distance between its starting position
and its corresponding position in the evenly spaced
configuration which often leads to a short delay in
mobile relay relocation. Furthermore, we assume that
all mobile nodes know their locations either by GPS
units mounted on them or a localization service in the
network. We focus on the case where all nodes are in
a 2-dimensional plane ℜ2, but the results apply to ℜ3

and other metric spaces.
Our problem can be described as follows. Given a

network containing one or more static source nodes
that store data gathered by other nodes, a number
of mobile relay nodes and a static sink, we want to
find a directed routing tree from the sources to the
sink as well as the optimal positions of the mobile
nodes in the tree in order to minimize the total energy
consumed by transmitting data from the source(s) to
the sink and the energy consumed by relocating the
mobile relays. The source nodes in our problem for-
mulation serve as storage points which cache the data
gathered by other nodes and periodically transmit to
the sink, in response to user queries. Such a network
architecture is consistent with the design of storage-
centric sensor networks [38]. Our problem formula-
tion also considers the initial positions of nodes and
the amount of data that needs to be transmitted from
each storage node to the sink. The formal definition
of the problem is given below.

Definition 1: (Optimal Mobile Relay Configuration):
Input Instance: S, a list of n nodes (s1, . . . , sn) in the
network; O, a list of n locations (o1, . . . , on) where
oi is the initial position of node si for 1 ≤ i ≤ n;
Ssources, a subset of S representing the source nodes;
r, a node in S, representing the single sink; Msources =
{Mi ∣ si ∈ Ssources}, a set of data chunk sizes for all
sources in Ssources;

We define mi, which we compute later, to be the
weight of node si which is equal to the total number
of bits to be transmitted by node si. We define a
configuration ⟨E,U⟩ as a pair of two sets: E, a set
of directed arcs (si, sj) that represent the directed tree
in which all sources are leaves and the sink is the root
and U , a list of locations (u1, . . . , un) where ui is the
transmission position for node si for 1 ≤ i ≤ n. The
cost of a configuration ⟨E,U⟩ is given by:

c(⟨E,U⟩) =
∑

(si,sj)∈E

ami + b∥ui − uj∥
2mi + k∥oi − ui∥

Output: ⟨E,U⟩, an optimal configuration that mini-
mizes the cost c(⟨E,U⟩).

4 CENTRALIZED SOLUTION

4.1 Energy Optimization Framework
The Optimal Mobile Relay Configuration (OMRC)

problem is challenging because of the dependence of
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(a) Optimal routing tree
for 0 ≤ m ≤ 15MB.

(b) Optimal configura-
tion for 15MB≤ m ≤
25MB: same topology
but nodes relocate.

(c) Optimal configura-
tion for 25MB≤ m ≤ 60
MB. A new topology is
used.

(d) Optimal configura-
tion for 100MB≤ m ≤
150MB: a new topology
with more nodes.

Fig. 2. Example of optimal configurations as a function of amount of data to be transferred. In each part, source
nodes s1 and s2 must send m bits of data to the sink r. We consider m up to 150MB.

the solution on multiple factors such as the routing
tree topology and the amount of data transferred
through each link. For example, when transferring
little data, the optimal configuration is to use only
some relay nodes at their original positions. As the
amount of data transferred increases, three changes
occur: the topology may change by adding new relay
nodes, the topology may change by changing which
edges are used, and the relay nodes may move closer
together. In many cases, we may have restrictions
such as no mobility for certain relay nodes or we must
use a fixed routing tree. These constraints affect the
optimal configuration.

We illustrate how the optimal configuration de-
pends on the amount of data to transfer using the
example from Fig. 2a. When there is very little data
to transfer, the optimal routing tree Ta depicted in Fig.
2a uses only some of the relay nodes in their original
positions. When the amount of data to transfer from
s1 and s2 increases to 15 MB, the relay nodes in tree
Ta move to their corresponding positions in tree Tb

of Fig. 2b but the topology does not change. When
the amount of data to transfer from s1 and s2 is
between 25 and 60 MB, the optimal routing tree has
a different topology as shown in Fig. 2c. For even
larger messages, new trees with even more nodes
included are optimal. For example, when the amount
of data to be transferred is between 100 and 150 MB,
the optimal tree is depicted in Fig. 2d. No existing
tree construction strategy handles all these cases. For
example, the minimum spanning tree that includes
all network nodes has two fundamental problems. It
will typically include unneeded nodes, and it typically
creates non-optimal topologies as it focuses only on
the current location of nodes as opposed to where
nodes may move to.

We now present a centralized approach to solve
OMRC that breaks the problem into three distinct
steps: initial tree construction, node insertions, and
tree optimization. For each step, we present an al-

gorithm to solve the corresponding subproblem. Our
algorithm for initial tree construction is optimal for
the static environment where nodes cannot move.
However, we can effectively apply the later algo-
rithms if we must start with a different topology.
Our greedy heuristic for improving the routing tree
topology by adding nodes exploits the mobility of the
newly added nodes. Our tree optimization algorithm
improves the routing tree by relocating its nodes with-
out changing its topology. This iterative algorithm
converges on the optimal position for each node given
the constraint that the routing tree topology is fixed.
Our node insertion and tree optimization algorithms
use the LocalPos algorithm we propose in Fig. 3 that
optimally solves the simplest case (see Section 4.2) of
the mobile relay configuration problem where there
is a single source, a single sink, and a single relay
node. Our approach is not guaranteed to produce an
optimal configuration because we do not necessarily
find the optimal topology, but our simulation results
show that it performs well.

4.2 Base Case

Before presenting our algorithm for OMRC, we
revisit the example of Section 3.2 as it represents the
simplest possible base case of the problem in which
the network consists of one source si−1, one mobile
relay node si and one sink si+1. In this section, we
calculate the optimal position for the relay node. We
use the following notation. In ℜ2, let the original posi-
tion of a node sj be oj = (pj , qj), and let uj = (xj , yj)
its final position in configuration U . According to our
energy models, the total transmission and movement
energy cost incurred by the mobile relay node si is

ci(U) = k∥ui − oi∥+ am+ b∥ui+1 − ui∥
2m

We also define

Ci(U) = ci(U) + am+ b∥ui − ui−1∥
2m
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This corresponds to the transmission cost of node si−1

plus the total cost of node si, which is the total cost
of the final configuration in this example. We need
to compute a position ui for si that minimizes Ci(U)
assuming that ui−1 = oi−1 and ui+1 = oi+1; that is,
node si’s neighbors remain at the same positions in
the final configuration U . We calculate position ui =
(xi, yi) for node si by finding the values for xi and
yi where the partial derivatives of the cost function
Ci(U) with respect to xi and yi become zero. Position
ui will be toward the midpoint of positions ui−1 and

ui+1. The partial derivatives �Ci(U)
�xi

, �Ci(U)
�yi

at xi and
yi, respectively are defined as follows.

�Ci(U)

�xi

= −2bm(xi+1 − xi) + 2bm(xi − xi−1)

+ k
(xi − pi)

√

(xi − pi)2 + (yi − qi)2

�Ci(U)

�yi
= −2bm(yi+1 − yi) + 2bm(yi − yi−1)

+ k
(yi − qi)

√

(xi − pi)2 + (yi − qi)2

Setting �Ci(U)
�xi

= 0, �Ci(U)
�yi

= 0, we get the following
two cases. Suppose si needs to move left. This means
pi is to the right of the midpoint of nodes si−1 and
si+1. Let Yi = k

4bm
1

√

1+
(yi−1+yi+1−2qi)

2

(xi−1+xi+1−2pi)
2

. The optimal

position is then xi =
1
2 (xi−1 + xi+1) + Yi. If si needs

to move right, then pi is to the left of the midpoint
of nodes si−1 and si+1. The optimal position is then
xi =

1
2 (xi−1+xi+1)−Yi. The corresponding yi in both

cases is (xi−1+xi+1−2pi)
(yi−1+yi+1−2qi)

(xi − pi) + qi.

We note that in some cases it might not be beneficial
to move, so the optimal position for the relay node is
its original position. The algorithm to compute the
optimal position of a relay node given its neighbors
is shown in Fig. 3.

4.3 Static Tree Construction

Different applications may apply different con-
straints on the routing tree. When only optimizing
energy consumption, a shortest path strategy (as dis-
cussed below) yields an optimal routing tree given
no mobility of nodes. However, in some applications,
we do not have the freedom of selecting the routes.
Instead, they are predetermined according to some
other factors (such as delay, capacity, etc). In other
less stringent cases, we may be able to update the
given routes provided we keep the main structure of
the tree. Depending on the route constraints dictated
by the application, we start our solution at different
phases of the algorithm. In the unrestricted case, we
start at the first step of constructing the tree. When
the given tree must be loosely preserved, we start
with the relay insertion step. Finally, with fixed routes,

function LOCALPOS(oi, ui, ui−1, ui+1)
⊳ Consider case si moves right
valid← FALSE;
xi ←

1
2
(xi−1 + xi+1)− Yi;

if xi > pi then
valid← TRUE;

else
⊳ Consider case si moves left
xi ←

1
2
(xi−1 + xi+1) + Yi

if xi < pi then
valid← TRUE;

end if
end if
⊳ Record if new position is different from previous one
if valid then

yi ←
(xi−1+xi+1−2pi)

(yi−1+yi+1−2qi)
(xi − pi) + qi;

u′

i
= (xi, yi);

if
∥

∥u′

i
− ui

∥

∥ > threshold then

return (u′

i
,TRUE);

end if
end if
⊳ not beneficial to move, stay at original position
return (oi, FALSE);

end function

Fig. 3. Algorithm to compute the optimal position of a
relay node that receives data from a single node and
transmits the data to a single node.

we apply directly our tree optimization algorithm.
Our simulations (Section 8) show that our approach
outperforms existing approaches for all these cases.

We construct the tree for our starting configura-
tion using a shortest path strategy. We first define
a weight function w specific to our communication
energy model. For each pair of nodes si and sj in
the network, we define the weight of edge sisj as:
w(si, sj) = a + b∥oi − oj∥

2 where oi and oj are the
original positions of nodes si and sj and a and b are
the energy parameters discussed in Section 3.1. We
observe that using this weight function, the optimal
tree in a static environment coincides with the shortest
path tree rooted at the sink. So we apply Dijkstra’s
shortest path algorithm starting at the sink to all the
source nodes to obtain our initial topology.

4.4 Node Insertion

We improve the routing tree by greedily adding
nodes to the routing tree exploiting the mobility of the
inserted nodes. For each node sout that is not in the
tree and each tree edge sisj , we compute the reduction
(or increase) in the total cost along with the optimal
position of sout if sout joins the tree such that data is
routed from si to sout to sj instead of directly from si
to sj using the LocalPos algorithm described in Fig. 3.
We repeatedly insert the outside node with the highest
reduction value modifying the topology to include the
selected node at its optimal position, though the node
will not actually move until the completion of the tree
optimization phase. After each node insertion occurs,
we compute the reduction in total cost and optimal
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position for each remaining outside node for the two
newly added edges (and remove this information for
the edge that no longer exists in the tree). At the end
of this step, the topology of the routing tree is fixed
and its mobile nodes can start the tree optimization
phase to relocate to their optimal positions.

5 TREE OPTIMIZATION

In this section, we consider the subproblem of find-
ing the optimal positions of relay nodes for a routing
tree given that the topology is fixed. We assume the
topology is a directed tree in which the leaves are
sources and the root is the sink. We also assume that
separate messages cannot be compressed or merged;
that is, if two distinct messages of lengths m1 and m2

use the same link (si, sj) on the path from a source
to a sink, the total number of bits that must traverse
link (si, sj) is m1 +m2.

First, we extend the base case solution of Section
4.2 to handle multiple flows passing through a mobile
relay node. Then, we propose an iterative algorithm
that uses the solution for this base case to compute
the new positions of the relay nodes in the routing
tree. We also show that this algorithm converges to the
optimal solution for the given tree given the topology
is fixed.

5.1 Extended Base Case

Before we describe our optimal algorithm for this
problem, we extend the solution to the base case
presented in Section 4.2 to the more general multiple
flow traffic pattern. The network now consists of
multiple sources, one relay node and one sink such
that data is transmitted from each source to the relay
node and then to the sink. We modify our solution
as follows. Let si be the mobile relay node, S(si) the
set of source nodes transmitting to si and sdi the sink
collecting nodes from si. The cost incurred by si in
this configuration U is:

ci(U) = k∥ui − oi∥+ ami + bmi∥ud − ui∥
2

where mi is the total amount of data that si transmits
to sdi . Similar to the single source base case, we define

Ci(U) = ci(U) +
∑

sl∈S(si)

aml + b∥ui − ul∥
2ml

This corresponds to the transmission cost of all nodes
sl that send messages to node si plus the total cost of
node si. In this case, this also corresponds to the total
cost of configuration U which we wish to minimize.
First, we compute mi as

∑

sl∈S(si)
ml. We then follow

the same routine of computing the points at which

both partial derivatives �Ci(U)
�xi

and �Ci(U)
�yi

become
zero. We obtain the following positions:

xi = pi+
−Bx(

√

B2
x +B2

y ± k)

A
√

B2
x +B2

y

yi = qi+
−By(

√

B2
x +B2

y ± k)

A
√

B2
x +B2

y

procedure OPTIMALPOSITIONS(U0)
converged ← false;
j ← 0;
repeat

anymove ← false;
j ← j + 1;
⊳ Start an even iteration followed by an odd iteration
for idx = 2 to 3 do

for i = idx to n by 2 do

(uj
i
,moved)← LOCALPOS(oi, S(si), sdi );

anymove ← anymove OR moved
end for

end for
converged ← NOT anymove

until converged
end procedure

Fig. 4. Centralized algorithm to compute the optimal
positions in a given tree

where

A = mi +
∑

sl∈S(si)

ml

Bx = mixd +
∑

sl∈S(si)

mlxl +Api

By = miyd +
∑

sl∈S(si)

mlyl +Aqi

We note that these values correspond to two candidate
points moving in each direction (left/right). The opti-
mal position is the valid value yielding the minimum
cost.

5.2 Optimization Algorithm

We propose a simple iterative approach to compute
the optimal position ui for each node si. We define the
following notations. Let uj

i = (xj
i , y

j
i ) be the position

of node si after the jth iteration of our algorithm
for j ≥ 0 and U j = (uj

1, . . . , u
j
n) the computed

configuration of nodes s1 through sn after j iterations.
We define u0

i = oi. Note that the mobile relay nodes
do not move until the final positions are computed.

Our algorithm starts by an odd/even labeling step
followed by a weighting step. To obtain consistent
labels for nodes, we start the labeling process from
the root using a breadth first traversal of the tree. The
root gets labeled as even. Each of its children gets
labeled as odd. Each subsequent child is then given
the opposite label of its parent. We define mi, the
weight of a node si, to be the sum of message lengths
over all paths passing through si. This computation
starts from the sources or leaves of our routing tree.
Initially, we know mi = Mi for each source leaf node
si. For each intermediate node si, we compute its
weight as the sum of the weights of its children.

Once each node gets a weight and a label, we start
our iterative scheme. In odd iterations j, the algorithm
computes a position uj

i for each odd-labeled node si
that minimizes Ci(U

j) assuming that uj
i−1 = uj−1

i−1 and
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uj
i+1 = uj−1

i+1 ; that is, node si’s even numbered neigh-
boring nodes remain in place in configuration U j .
In even-numbered iterations, the controller does the
same for even-labeled nodes. The algorithm behaves
this way because the optimization of uj

i requires a
fixed location for the child nodes and the parent of si.
By alternating between optimizing for odd and even
labeled nodes, the algorithm guarantees that the node
si is always making progress towards the optimal
position ui. Our iterative algorithm is shown in Fig. 4

Fig. 5. Convergence of iterative approach to the
optimal solution. Each line shows the configuration
obtained after 2 iterations. The optimal configuration is
reached after 6 iterations.

Fig. 5 shows an example of an optimal configura-
tion for a simple tree with one source node. Nodes
start at configuration U0. In the first iteration, odd
nodes (s3 and s5) moved to their new positions
(u1

3, u
1
5) computed based on the current location of

their (even) neighbors (u0
2, u

0
4, u

0
6). In the second it-

eration, only even nodes (s2 and s4) moved to their
new positions (u2

2, u
2
4) computed based on the current

location of their (odd) neighbors (u1
1, u

1
3, u

1
5). Since s3

and s5 did not move, their position at the end of this
iteration remains the same, so u1

3 = u2
3 and u1

5 = u2
5. In

this example, nodes did two more sets of iterations,
and finally converged to the optimal solution shown
by configuration U6.

Even though configurations change with every iter-
ation, nodes only move after the final positions have
been computed. So each node follows a straight line to
its final destination. As the data size increases, nodes
in the optimal configuration get more evenly spaced.
In fact, in any given configuration, the maximum dis-
tance traveled by a node is bounded by the distance
between its starting position and its final position in
the evenly spaced configuration.

The above example shows another property of our
algorithm. When a node si moves and its neighbors
(si−1 and si+1) remain in place, it moves in the direc-
tion of the midpoint of si−1si+1. This results in a re-
duction in the length of one of the transmission links.
The other may increase in length but will never exceed
the new length of the first link. This remains valid for
multiple children case. So in any configuration U i+1,
the length of the largest link is at most the length of
the largest link in the previous configuration U i. So
if we start with a route along good quality links, this

quality will be preserved in the optimal configuration
(and throughout intermediate configurations).

6 EFFICIENCY AND OPTIMALITY

We first consider efficiency. Our initial tree construc-
tion algorithm is essentially a single source shortest
path algorithm. Using Dijkstra’s algorithm, the time
complexity is O(n2) where n is the number of nodes.
Our second algorithm needs to compute the reduction
in cost for each pair of node and tree edge, so the
time complexity is O(n2). Our tree optimization algo-
rithm runs until the change in position for each node
falls below a predefined threshold. The value of this
threshold represents a tradeoff between precision and
cost. As the threshold decreases, more iterations are
needed for convergence. Upon termination, no node
can move by itself to improve the overall cost (within
the threshold bound). We have not completed a rate of
convergence analysis for this algorithm. However, in
our simulations, we reach our error threshold within
8 to 10 iterations. Since each iteration involves only
half the nodes and each computation of uj

i can be
performed in constant time, the time complexity of
our algorithm is O(�n), where � is the number of
iterations to reach convergence. Given that � ≤ 10
in our simulations, our observed time complexity
is O(n). The resulting time complexity for the full
approach is O(n2).

With respect to optimality, our resulting config-
uration is not necessarily optimal because we do
not necessarily find the optimal topology. However,
two of our algorithms, the initial tree construction
algorithm and the tree optimization algorithm, are
optimal for their respective subproblems. That is, our
initial tree construction algorithm is optimal in a static
environment where nodes cannot move so that only
the original positions of the nodes are considered.
Likewise, for our tree optimization algorithm, we
prove that the final configuration where no node can
move by itself to improve the overall cost (within the
threshold bound) is globally optimal; that is, no si-
multaneous relocation of multiple nodes can improve
the overall cost. We present the proof of optimality in
the appendix.

7 DISTRIBUTED ALGORITHMS

Our solutions to the three subproblems assume
a centralized scheme in which one node has full
knowledge of the network including which nodes are
on the transmission paths to each source, the original
physical position oi of each node si, and the total mes-
sage length m to be sent from each source. Whereas
the centralized algorithm computes the optimal static
tree and the optimal position of each node in the
restructured tree, it incurs prohibitively high overhead
in large-scale networks. We now present a distributed
and decentralized version of each of our algorithms.
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We modify the first phase, the tree construction
phase, to use a fully distributed routing algorithm.
We pick greedy geographic routing since it does not
require global knowledge of the network although
any algorithm with such property can be used.

After a routing tree is constructed, the tree restruc-
turing phase begins. Network nodes outside the tree
broadcast their availability (as NODE IN RANGE
message) to tree nodes within their communication
range and wait for responses for a period of time Tw.
Similarly, tree nodes enter a listening phase Tu. Dur-
ing that period, tree nodes receive messages of differ-
ent types (NODE IN RANGE, OFFER, . . .). Each tree
node that receives one or more NODE IN RANGE
message responds to the sender by giving it its loca-
tion information and its parent’s location information.
Each non-tree node so that receives location infor-
mation from a tree node si during Tw computes the
reduction in cost if it joins the tree as parent of si
and adds si to a list of candidates. At the end of Tw,
the non-tree node selects from the candidate list the
node that results in the largest reduction and sends it
an offer. It also sends the tree node with the second
largest reduction a POTENTIAL OFFER message. At
the end of Tu, each tree node vt that collected one or
more offers and potential offers operates as follows.
If vt’s best potential offer exceeds its best offer by a
certain threshold B and vt has not already waited R
rounds, vt waits rather than accepting its best offer in
the hopes that its best potential offer will become an
actual offer in another round. By waiting, it sends ev-
eryone a REJECT OFFER, restarts the listening phase,
and records that it has waited another round. Oth-
erwise, vt accepts its best offer by responding to its
sender p with an ACCEPT OFFER message and to the
remaining nodes with a REJECT OFFER message. It
then updates its parent in the tree to p, resets Tu and
starts the listening phase again.

A non-tree node p that receives an ACCEPT OFFER
message moves to the corresponding local optimal
location and joins the tree. It becomes a tree node and
enters the listening phase. On the other hand, if p does
not receive an ACCEPT OFFER, p repeats the process
by broadcasting its availability again and resetting Tw.
We note that values in p’s candidate list cannot be
reused to extend offers to old tree nodes since those
tree nodes could have a new parent at this point in
time. When the second phase ends, any remaining
non-tree nodes stop processing whereas tree nodes
enter the tree optimization phase. Fig. 6 shows the
algorithm executed by each tree node.

Giving tree nodes the ability to wait before accept-
ing an offer increases the chances of using mobile
relay nodes to their full potential. For example, con-
sider a scenario where several mobile relay nodes can
greatly improve the capacities of several tree links but
are all closest to one specific link. They will all send
offers to the same tree node while the rest of the tree

procedure TREERUN

⊳ Phase I: Run routing algorithm to discover parent and children
(parent, children) ← DISTRIBUTEDROUTING;
⊳ Phase II: Start tree restructuring phase
offers ← ∅; potentialoffers ← ∅; wait ← 0;
repeat

⊳ Listen to incoming offers or changes in structure
repeat

RECEIVE(sender, type, data);
if type = MOBILE IN RANGE then

SEND(sender, META DATA, info);
else if type = OFFER then

offers.add(data);
else if type = POTENTIAL OFFER then

potentialloffers.add(data);
else if type = UPDATE STRUCTURE then

children.add(data.newchild);
children.remove(data.oldchild);

end if
until timeout
⊳ Process offers and pick best
if offers ∕= ∅ then

bestOffer ← offers.dequeue();
bestPotentialOffer ← potentialoffers.dequeue();
if bestPotentialOffer > bestOffer*B and wait < R then

SEND(bestOffer.sender, REJECT OFFER);
wait++;

else
SEND(bestOffer.sender, ACCEPT OFFER);
parent ← bestOffer.sender;

end if
end if
while offers ∕= ∅ do

offer ← candidates.dequeue();
SEND(offer.sender, REJECT OFFER);

end while
until timeout
⊳ Phase III: Iterate moving to optimal local positions
converged ← false;
while not converged do

(u, converged) ← LOCALPOS(o, parent, children);
⊳ Exchange location info with parent and children
SEND(parent, NEW LOCATION, u);
for all child ∈ children do

SEND(child, NEW LOCATION, u);
end for
RECEIVE(parent, NEW LOCATION, parent.u);
for all child ∈ children do

RECEIVE(child, NEW LOCATION, child.u);
end for

end while
end procedure

Fig. 6. Local algorithm executed by tree nodes

nodes in their proximity will receive modest offers
from more distant mobile nodes. If the tree nodes
cannot wait, they will be forced to accept a modest
offer and the mobile nodes will either remain unused
or they will help more distant tree nodes where their
impact is reduced since they use up more energy to
get to their new location.

The centralized tree optimization algorithm can be
transformed into a distributed algorithm in a natural
way. The key observation is that computing each uj

i

for node si only depends on the current position
of si’s neighbors in the tree (children and parent),
nodes that si normally communicates with for data
transfers. Thus, si can perform this computation. The
distributed implementation proceeds as follows. First,
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Fig. 7. Graph of the average static energy consump-
tion ratio of TREE+INS+FO as a function of data chunk
size for our three tree construction strategies PB, HB,
and GG

there is a setup process where the sender s1 sends a
discover message that ends with the receiver sn; the
two purposes of this message are (1) to assign a label
of odd or even to each node si and (2) for each node
si to learn the current positions of its neighbors. A
node si sends its current position to node sj when
acknowledging receipt of the discover message. Sec-
ond, there is a distributed process by which the nodes
compute their transmission positions. We make each
iteration of the basic algorithm a “round”, though
there does not need to be explicit synchronization.
In odd rounds, each odd node computes its locally
optimal position and transmits this new position to its
neighbors. In even rounds, each even node does the
same. A node begins its next round when it receives
updated positions from all its neighbors. The final
step is to have the nodes move to their computed
transmission positions, send messages to their neigh-
bors saying they are in position, and finally perform
the transmission. To ensure the second process does
not take too long, we limit the number of rounds to 8;
that is, each node computes an updated position four
times. Simulation results show that this is enough to
obtain costs close to optimal (see Section 8).

8 SIMULATIONS

We carried out simulations on 100 randomly gen-
erated initial topologies, each of which has 100 nodes
placed uniformly at random within a 150m by 150m
area. We used these initial topologies to generate two
subsequent sets of complete topologies with estab-
lished sources and sink. We used the first set to study
the effectiveness of our algorithms as the amount of
data transferred to the sink varies and the second set
to study the effectiveness of our algorithms for dif-
ferent numbers of sources. In the first set, we selected
sources and sinks uniformly at random from these 100
nodes. We varied the number of sources from 4 to 12,
by increments of 2, and used each number of sources
for 20 initial topologies. For each resulting topology,
we created many separate input instances by varying

the data chunk size from 1MB to 150MB where the
data chunk size for an input instance is the common
amount of data to be transferred from each source to
the sink. In the second set, for each initial topology, we
generated 10 different complete topologies by starting
with 2 randomly selected sources, and adding two
new sources to the previous set at each step.

We used the following settings to model the trans-
mission and mobility costs of our nodes. For transmis-
sion, we use a = 0.6 × 10−7 and b = 4× 10−10 as the
standard setting which is consistent with the empirical
measurements on CC2420 motes [36]. For mobility,
we used different settings in each of our two sets.
In the first set, we used k = 2 as the standard setting
because it models several platforms such as Robomote
[16], [17]. In the second set, we set k to be 1, 2 and 4
since we additionally use that set to study the effect
of different mobility costs on the energy reduction.
Furthermore, we set the maximum communication
distance of a node to be 30m, which was shown to
result in a high packet reception ratio for the CC2420
radio [36]. We ran simulations using different values
for the convergence threshold. We obtained similar
gains for values less than or equal to 0.01. In the
following simulations, we set the threshold to 0.01.

Our algorithmic framework starts with an initial
routing tree. In the centralized setting, we construct
this initial routing tree using the following three
widely used routing algorithms: power based routing,
hop based routing, and greedy geographic routing.
Power based routing computes a shortest path from
the sink to each source with each edge weight being
the square of the distance between the two corre-
sponding nodes plus some constant value to represent
the energy consumed a+ bd2 to transmit each byte of
data over that edge. Hop based routing minimizes the
number of hops between each source and the sink
and is the base of several widely used algorithms
in wireless networks (e.g. AODV [39]). Given our
maximum communication range of 30m, we do not
have any links with poor quality which is a common
concern with hop based routing. Greedy geographic
routing is a greedy strategy in which each node
forwards messages to the reachable node (within the
communication range of the node) that is closest to
the sink. The first two tree construction approaches
require global knowledge of the network whereas
the last one is fully localized. For the distributed
setting, we construct the initial routing tree using
greedy geographic routing because it is fully localized.
Of the 100 initial topologies, the distributed routing
algorithm resulted in a disconnected path between the
sources and the sink in only four networks given our
maximum communication distance of 30m.

We study variants of our strategy where we use
only one optimization, inserting nodes or optimiz-
ing a given tree, to determine the benefit of both
optimizations. Specifically, we use TREE to represent
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tion ratio of optimization INS+FO as
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our three tree construction strate-
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our three tree construction strate-
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the variant where we only construct an initial tree
and do no optimizations, TREE+FO to represent the
variant where we optimize the initial tree, TREE+INS
to represent the variant where we insert nodes into
the initial tree, and TREE+INS+FO to represent the
variant where we insert nodes into the initial tree and
then optimize the final tree. The three possibilities
for TREE are PB, HB, and GG which represent the
Power Based, Hop Based, and Greedy Geographic
tree construction algorithms, respectively. For each
input instance I , we let TREE(I) denote the energy
consumed by the initial tree constructed by our three
tree construction algorithms PB, HB, and GG, and we
let TREE +OPT (I) denote the energy consumed by
the final optimized tree where TREE can be PB, HB, or
GG and OPT can be INS, FO or INS+FO. The reduction
ratio achieved by optimization OPT on input I for tree
construction algorithm TREE is (TREE(I)−TREE+
OPT (I))/TREE(I). We measure the performance of
optimization OPT on initial tree strategy TREE by
computing the average reduction ratio achieved by
OPT over all input instances I of set 1 that have
the same data chunk size. Moreover, for each input
instance I and each algorithm TREE+OPT, we define
the static energy ratio (TREE+OPT (I))/PB(I) where
PB(I) is the cost of the power based tree which is
the optimal cost for the static version of this prob-
lem where no nodes can move. The static energy
ratio measures the benefit of our algorithms which
exploit mobility of nodes versus the static optimal
configuration. We measure the overall performance
of algorithm TREE+OPT by computing the average
static energy ratio achieved by TREE+OPT over all
input instances I of set 1 that have the same data
chunk size. Finally, we measure the performance of
optimization INS+FO on initial tree strategy TREE by
computing the average reduction ratio achieved by
INS+FO over all input instances I of set 2 that have
the same number of sources.

8.1 Centralized Algorithm

We first show the benefit of exploiting the mobil-
ity of relay nodes by computing the average static
energy consumption ratio of TREE+INS+FO for all
data chunk sizes for each of our three tree building
strategies PB, HB, and GG as shown in Fig. 7. For all
three initial tree strategies, we see that the average
static energy consumption ratio drops quickly as the
data chunk size increases. For HB and GG, the average
static energy consumption ratio starts out higher than
100% because PB(I), the optimal tree for the static
case, is roughly 37% lower than HB(I) and GG(I)
for any of our input instances. Even given this initial
disadvantage of a poor starting tree from an energy
consumption perspective, we see that the average
static energy consumption ratios of HB+INS+FO and
GG+INS+FO drop below 100% for data chunk sizes of
12 MB and 15 MB, respectively. As the data chunk size
increases further, both HB+INS+FO and GG+INS+FO
achieve average static energy consumption ratios of
75% and 60% for data chunk sizes of 60 MB and
150MB, respectively. The results for PB+INS+FO are
even better because we start with the optimal tree
for the static case. Thus, the average static energy
consumption ratio for PB+INS+FO is always below
100% and reaches 55% for 150 MB.

We now evaluate the benefit achieved by our opti-
mizations FO, INS, and INS+FO for each of our tree
building strategies PB, HB, and GG. We note that in
this set of simulations, we used our centralized im-
provement schemes with the distributed tree building
approach GG. The purpose is to test the limits of
our optimizations given a non-optimal starting tree. A
fully distributed setup is studied later in this section.

We start with optimization INS+FO. Fig. 8 plots
the average reduction ratio for optimization INS+FO
for PB, HB, and GG. In all three cases, we see the
same basic trend; the average reduction ratio increases
as data chunk size increases. For both HB and GG,
the average reduction ratio starts at roughly 25% for
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small data chunk sizes and exceeds 60% for large data
chunk sizes; for PB the average reduction ratio starts
near 0% and exceeds 43% for large data chunk sizes.
The difference in average reduction ratio, in particular
for small data chunk sizes, is due to the quality of the
initial tree. For PB, the initial tree is good so there is
little that our optimization INS+FO can do to improve
energy consumption for small data chunk sizes. For
HB and GG, the initial tree can be very poor, so
INS+FO can provide immediate improvement to the
tree to significantly reduce energy consumption by an
average of 25% for data chunk sizes of only 1MB. We
note that although INS+FO achieves higher reduction
ratios for HB and GG than for PB, the total energy
consumed by PB+INS+FO is lower than the total
energy consumed by HB+INS+FO or GG+INS+FO.

We next consider optimization FO alone. Fig. 9
plots the average reduction ratio for optimization FO
for PB, HB, and GG. In all three cases, the average
reduction ratio starts at 0% for small data chunk sizes
and increases to roughly 18% for HB and GG and 33%
for PB for large data chunk sizes. It is interesting to
note that FO is most effective for PB whereas INS+FO
achieved significantly greater reduction ratios for GG
and HB for all data chunk sizes.

Finally, we consider optimization INS alone. Fig. 10
plots the average reduction ratio for optimization INS
for PB, HB, and GG. In all three cases, we see the
average reduction ratio of INS alone is comparable to
that of INS+FO (within 5%-8% for data chunk sizes
of at least 15MB). For very small data chunk sizes,
the average reduction ratio is constant until a certain
threshold is exceeded and then rises significantly.

We now evaluate our approach as we vary the num-
ber of sources. We used the greedy geographic tree
GG as our initial tree and INS+FO as our optimization
algorithm. Fig. 11 shows the average reduction ratio
as a function of the number of sources. We observe
that this ratio remains almost constant for different
values of k as the difference in ratios for different
number of sources does not exceed 3.5%. Fig. 11 also
shows the effect of mobility costs on the reduction
in energy consumption costs in general. As mobility
costs decrease, it becomes more effective for mobile
nodes to move over longer distances and reduce the
communication consumption further so the reduction
in total costs increases as k decreases.

Given our simulation results, we draw the fol-
lowing five conclusions. First, we achieve the best
results when we use the power based tree PB as
our initial tree. Second, if we use the power based
tree, either optimization alone is very effective and
both optimizations together achieve the best results.
Third, if we start with either the hop based tree HB
or the greedy geographic tree GG, the most effective
optimization is the node insertion optimization INS
which achieves nearly as good an average reduction
ratio as INS+FO. Fourth, if we start with the hop

based or greedy geographic tree, we can achieve a
static energy ratio that is close to that achieved by
starting with the power based tree if we apply both
optimizations. In particular, the node insertion opti-
mization INS helps alleviate the initial disadvantage
by adding a lot of new nodes into the tree. We briefly
explain the reason for all of these conclusions. The
key observation is that the hop based and greedy
geographic trees HB and GG tend to create initial
trees with relatively long edges and relatively few
nodes whereas the power based tree PB tends to create
trees with lots of nodes and relatively short edges
because of the quadratic cost metric. As a result, for
HB and GG, optimization FO alone which rearranges
nodes is relatively ineffective as it can only balance the
relatively long edges. On the other hand, optimization
INS alone can insert new nodes into the tree and thus
create a new tree with significantly shorter edges on
average given HB or GG as the initial tree. Because
PB starts with many more nodes and shorter edges,
PB does not benefit as much from node insertion INS
as HB and GG do, and PB benefits a lot more from
node rearrangement FO than HB and GG do. Fifth,
the improvement ratios that we obtain are almost
independent of the number of sources in the network.

In all our simulation results, the standard devia-
tion varied between 4% and 6.5%. We identified six
outlier topologies which deviated from the mean by
more than 10%. In these topologies, the sources were
either very close to the sink so there was little room
for improvement or very far from the sink so the
improvement was much greater than the average case.

8.2 Distributed Algorithm

We now evaluate how well our distributed im-
plementation works. Our initial tree is the greedy
geographic tree GG. We consider four optimizations:
the centralized implementation of INS+FO, the dis-
tributed implementation of just FO, the distributed
implementation of just INS, and the distributed imple-
mentation of INS followed by the distributed imple-
mentation of FO. For the distributed implementation
of INS, we set parameter B to 10% (a potential offer
must be 10% better than the best actual offer to
cause a node to wait). Fig. 12 shows the average
reduction ratio of each of these optimizations. The
average reduction ratio for distributed INS+FO starts
at 20% for small data chunk sizes, reaches 30% for
data chunk sizes around 20MB, and exceeds 40% for
data chunk sizes larger than 75MB. The gap between
the average reduction ratio for centralized INS+FO
and distributed INS+FO starts at roughly 5% for small
data chunk sizes and increases to roughly 15% for
large data chunk sizes. This gap is due to the lack
of global information when performing the insertion
step. Expensive links in the tree that do not have
nearby relay nodes are not able to communicate with
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Fig. 11. Graph of the average reduction ratio of the
centralized and distributed GG+INS+FO optimizations
as a function of the number of sources, a data chunk of
75MB and different values of k.
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Fig. 12. Graph of the average reduction ratio of the
centralized optimization (INS+FO) and three distributed
optimizations (FO, INS, INS+FO) as a function of data
chunk size for the greedy geographic tree GG.

further but available relay nodes whose help is only
offered to cheaper but nearby links. This problem
is exacerbated as the data chunk size increases. We
varied values for B between 10% and 50% and for R
between 1 and 3. For all combinations of B and R that
we tested, we obtained similar results to those of Fig.
12. As in the centralized case, distributed INS is more
effective than distributed FO. However, doing both
distributed optimizations does result in roughly a 10%
improvement compared to only doing the distributed
INS optimization for most data chunk sizes.

Similar to the centralized implementation, we ob-
serve a slow reduction in the improvement ratio as
the number of sources increases for k = 2 and 4 (Fig.
11). For cheaper mobility cost (k = 1), the difference
in improvement ratios increases at a faster rate and
reaches 9% as the number of sources increases from 2
to 20. This is because when mobility is cheaper, in an
optimal setting, nodes can move over longer distances
to help expensive links. However, as we mentioned
earlier, in a distributed setting, mobile nodes are not
aware of those distant expensive edges. Moreover, as
the number of sources increases, the number of mobile
nodes available to help decreases. Both factors com-
bined make the distributed implementation slightly
less effective for a high number of sources.

9 CONCLUSION

In this paper, we proposed a holistic approach to
minimize the total energy consumed by both mobility
of relays and wireless transmissions. Most previous
work ignored the energy consumed by moving mobile
relays. When we model both sources of energy con-
sumption, the optimal position of a node that receives
data from one or multiple neighbors and transmits it
to a single parent is not the midpoint of its neighbors;
instead, it converges to this position as the amount of
data transmitted goes to infinity. Ideally, we start with
the optimal initial routing tree in a static environment
where no nodes can move. However, our approach

can work with less optimal initial configurations in-
cluding one generated using only local information
such as greedy geographic routing. Our approach
improves the initial configuration using two iterative
schemes. The first inserts new nodes into the tree. The
second computes the optimal positions of relay nodes
in the tree given a fixed topology. This algorithm
is appropriate for a variety of data-intensive wire-
less sensor networks. It allows some nodes to move
while others do not because any local improvement
for a given mobile relay is a global improvement.
This allows us to potentially extend our approach
to handle additional constraints on individual nodes
such as low energy levels or mobility restrictions due
to application requirements. Our approach can be
implemented in a centralized or distributed fashion.
Our simulations show it substantially reduces the
energy consumption by up to 45%.
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