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Abstract: A Gaussian sum filter (GSF) is proposed in this paper on simultaneous localization 

and mapping (SLAM) for mobile robot navigation. In particular, the SLAM problem is tackled 

here for cases when only bearing measurements are available. Within the stochastic mapping 

framework using an extended Kalman filter (EKF), a Gaussian probability density function (pdf) 

is assumed to describe the range-and-bearing sensor noise. In the case of a bearing-only sensor, a 

sum of weighted Gaussians is used to represent the non-Gaussian robot-landmark range 

uncertainty, resulting in a bank of EKFs for estimation of the robot and landmark locations. In 

our approach, the Gaussian parameters are designed on the basis of minimizing the 

representation error. The computational complexity of the GSF is reduced by applying the 

sequential probability ratio test (SPRT) to remove under-performing EKFs. Extensive 

experimental results are included to demonstrate the effectiveness and efficiency of the proposed 

techniques. 

 

Keywords: Distribution approximation, Gaussian sum filter, mixture reduction, simultaneous 
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1. INTRODUCTION 
 

Mobile robots have been utilized to work for and 

with humans in an ever increasing pace. In addition to 

the motorized mobility, it is a fundamental 

requirement that a mobile robot should be able to 

know its position within its operating environment 

before any assigned task can be accomplished [1], for 

example; in space exploration, underwater navigation, 

warehouse and office deliveries. Furthermore, a priori 

knowledge of the environment may not always be 

available, such as in cases of search and rescue 

operations, otherwise a cost has to be invested in 

structuring the environment. Therefore, it is impor-

tant that the robot is able to build a map of its 

operating area. In most situations, the mobile robot is 

equipped with internal sensors, e.g., wheel encoders, 

that provide information on the robot motion from 

which the robot location is inferred. However, internal 

sensors operate in an open loop without ex-ternal 

references tend to accumulate location errors over 

time. External sensors, e.g., laser scanner, sonar or 

camera, are therefore frequently mounted on the 

mobile robot to provide some kind of external 

references to landmarks for its localization. External 

sensors may provide measurements in the form of 

range-and-bearing or just range-only or bearing-only 

measurements. Consequently, the type of sensor used 

plays a crucial role in the performance of any 

estimator or filter designed to localize the robot and to 

build a map.  

The pioneering work on SLAM was presented in 

[2] and introduced the concept of state estimation. A 

framework using the stochastic mapping was 

proposed in [3] to estimate the robot location, based 

on the Bayesian estimation theory. It was imple-

mented via an extended Kalman filter (EKF) with the 

availability of a range-and-bearing sensor. The work 

reported in [4] derived the convergence properties for 

the SLAM problem, using an EKF and also assuming 

that range-and-bearing measurements were available. 

Specifically, the stochastic mapping approach imple-

ments an EKF subjected to the pre-requisite that the 

system is linearizable and, most importantly, that the 

estimation uncertainty can be described by a Gaussian 

probability density function (pdf) whose characteristic 

parameters are the mean and covari-ance. The EKF 

then propagates the mean and co-variance through 

filter iterations and provides an optimal estimate in 

the sense of minimum mean-square-error. When 

range-and-bearing measurements are provided, the a 

priori pdf of a landmark can be characterized by a 

Gaussian and the EKF can be applied directly. 
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However, when only the bearing measurement is 

obtained, specially designed estima-tors must be 

employed due to the violation of the spatial Gaussian 

pdf assumption. This bearing-only SLAM problem is 

the focus of the work presented here.  

It is anticipated that for bearing-only SLAM, some 

form of representation of a non-Gaussian pdf should 

be adopted or appropriate filters have to be employed. 

In [5], a particle filter (PF) [6] was used to estimate 

the range of a landmark to the robot in a target 

tracking application. However, quite often the PF is 

computationally expensive because the repre-sentation 

of the non-Gaussian pdf requires a large number of 

weighted samples. The PF is also liable to the pre-

mature convergence or sample impoverish-ment 

problem where samples tend to concentrate on a small 

region of the solution space. Hence, the PF needs to 

be modified to counteract the sample impoverishment 

problem [7]. An approach that makes use of reduced 

particle representation and Kalman filtering was 

reported in [8]. The technique can be traced to the 

fundamental derivation of the Gaussian sum filter 

(GSF) as proposed in [9]. For this, an arbitrary pdf is 

represented by a weighted sum of Gaussians and the 

estimation is proved to comply of EKFs. The basic 

idea is to coordinate multiple filters, each operates in 

an appropriate solution domain, and the results are 

optimized via a weighted sum. This philosophy is also 

applied in the form of a mixture of expert systems 

[10]. A variation of the weighted sum principle also 

found many applications such as in radar tracking [11], 

vehicle tracking [12] and air traffic control [13]. These 

implementations present an interactive multi-model 

configuration where computational complexity can be 

reduced.  

The bearing-only SLAM problem requires some 

special treatment as the system dimension is not 

constant and measurements are incomplete due to the 

lack of range information. Initially, before any 

landmark is observed, the system contains only the 

robot location and orientation. The system dimension 

increases when landmarks are observed and included 

in the estimator, thus, leads to the initialization 

problem. As range information is missing, the 

landmark location cannot be inferred directly from 

one bearing measurement. A delayed initialization 

strategy was implemented in [14], whereby land-

marks were incorporated into the EKF after con-

firming that the associated uncertainty has been 

described with sufficient accuracy by a Gaussian pdf. 

The uncertainty was firstly represented by using a 

large number of samples and tested by a goodness-of-

fit metric using the Kullback divergence. However, 

the use of numerous samples would increase the 

computational load. Similar delayed strategy using an 

EKF was described in [15] where the use of samples 

was avoided but delays were still encountered. 

Recently, there has been some research on 

implementing an un-delayed strategy where land-

marks are incorporated into the estimator when they 

were firstly observed. In our preliminary work [16], a 

GSF was used in SLAM with efficiency improved by 

the sequential probability ratio test (SPRT). The un-

delayed strategy was also adopted in [17] with special 

treatment on the representation by Gaussians. In the 

work therein, the non-Gaussian pdf was represented 

by the geometrically distributed hypoth-esis as 

suggested in [18].  

The implementation of a GSF is, in fact, a parallel 

running of multiple EKFs. The major drawback of the 

GSF is its multiplicative complexity as compared to a 

single EKF. This observation naturally demands for an 

efficient implementation by removing redun-dant 

EKFs that do not contribute significantly to the state 

estimate. In [19], the significance of individual EKFs 

were checked statistically for removal through a 

greedy algorithm. An approach based on cost func-

tions was adopted in [20] to decide on the con-

struction of the Gaussian sum. However, these 

methods rely on the supply of samples as training data 

which is not rationally justifiable in the SLAM 

context. For this, the work in [21], where distances 

between Gaussian mixtures were derived, may be 

promising in dealing with the construction of 

Gaussian sums.  

In this work, a GSF will be applied in solving the 

SLAM problem for a mobile robot using bearing-only 

measurements. The contributions of this paper are 

twofold. First, the choice of the number of Gaussians 

and their parameters in the GSF will be elaborated. 

Insights will be given by formulating a relationship 

between the Gaussians and a specific approximation 

error probability. Secondly, an effi-cient method that 

overcome the computational complexity will be 

proposed here. The test and removal of redundant 

EKFs will be implemented on the basis of the SPRT to 

guarantee a predefined tolerable decision error with a 

finite number of tests required.  

The rest of the paper is organized as follows. In 

Section 2, the SLAM problem is briefly reviewed 

within the stochastic mapping framework and the 

need for Gaussian representation is introduced. 

Section 3 will be devoted to the development of the 

GSF with considerations on landmark initialization 

constraints, choice of GSF parameters and strategies 

to reduce the computational complexity. In Section 4, 

results from experiments using a Pioneer mobile robot 

will be given to illustrate the effectiveness of the 

proposed approach. Finally, a conclusion is drawn in 

Section 5. 

 

2. LOCALIZATION AND MAPPING 
 

When a mobile robot is deployed in its operating 
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environment, it is required that the robot keeps 

tracking of its own location and orientation, and be 

able to model the environment in the form of a feature 

based map. Fig. 1 illustrates the SLAM process for the 

conventional range-and-bearing case. This problem is 

cast as a state estimation process where the Bayesian 

estimation philosophy is applied. 

The location of the robot is referred to a world-

coordinate frame and its orientation is measured 

counterclockwise with respect to the x-axis. 

Landmarks are assumed to be scattered across the 

operating area and the sensor returns range and 

bearing measurements relatively to the robot position. 

The robot motion is described by a system or process 

model and the sensor is characterized by a 

measurement model. 

 

2.1. System model 

Let the system be described by a state vector and 

evolves in discrete time, that is [1] 

1 ( , ),k k k k+ = +x f x u w    (1) 

where x  is the state vector consisting of the robot 

and landmark locations, f  is the process model, u  

is the control command, w  is the control noise 

having a Gaussian pdf and subscript k  is the discrete 

time index. 

The state is, in general, not directly measurable but 

through noisy measurements described by a 

measurement model 

( ) ,k k k= +z h x v     (2) 

where h  is the observation function and v  is the 

observation noise with an arbitrary statistical 

characteristic. 

In the Bayesian estimation framework, informa-tion 

about the system is contained in the a posterior pdf. 

When observations are available, we are interested in 

the conditional pdf 

1

1

( ) ( )
( ) ,

( )

k k k k
k k

k k

p p
p

p

−

−

| |
| =

|
z x x Z

x Z
z Z

  (3) 

where Zk  is the aggregated observations available 

up to time k , and 

1 1( ) ( ) ( ) ,k k k k k k kp p p d− −| = | |∫z Z z x x Z x  (4) 

is a normalization factor. 

Further manipulation can lead to a recursive 

estimator given by a prediction step as 

1 1 1 1 1( ) ( ) ( ) .k k k k k k kp p p d− − − − −| = | |∫x Z x x x Z x (5) 

When implementing the above Bayesian estimation 

procedure for the special case of a linear 

process/observation system with noises described by a 

single Gaussian, the well known Kalman filter can be 

applied. For non-linear process/observation models, 

an EKF is frequently used, provided that the system is 

linearizable. 

 
2.2. Stochastic mapping 

When the discrete sampling time is small and the 

robot is moving at a low speed, the process model 

may be linearized by a Taylor series expansion from 

which the EKF is derived. Furthermore, if the sensor 

is able to provide sufficiently accurate measurement 

to landmarks (e.g., range-and-bearing measurements), 

then the observation model is also linearizable with 

acceptable linearization errors. In practice, most 

sensors can be characterized by a Gaussian pdf on its 

measurement errors. Based on the above conditions, 

the stochastic mapping for a mobile robot proceeds as 

given in the following steps with the use of an EKF 

[3]. 

1. When 0k = , set 

 3 1
0 0 0 ,v

×
,= ←x x    (6a) 

 3 3
0 0 0 ,v

×
,= ←P P    (6b) 

where the subscript v  stands for the robot, 

[ , ,φ ] ,T
v v v vx y=x  ( , )v vx y  is the robot location 

and φv  is the robot orientation. The zero settings 

denote the initial location of the robot being at the 

origin of a co-ordinate frame with zero uncertainty. 

2. When 0,k ≥  issue command uk  to drive the 

robot and make prediction on the robot state, 

according to 

 1 ( ),k k k k k+ | |= ,x f x u    (7a) 

 1 Ω ,T T
k k x k k x u u+ | |= ∇ ∇ +∇ ∇P f P f f f   (7b) 

 
Fig. 1. Simultaneous localization and mapping. 
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where the notation ( 1 )k k+ |  denotes the 

transition from time k  to 1,k + x∇f  and u∇f  

are Jacobians of the process model with respect to 

the state and control, and Ω  is the covariance 

matrix of the odometer noise given by 

2

2
γ

σ 0
Ω ,

0 σ
v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=     (8) 

where σv  and γσ  are the standard deviations of 

the speed and turn-rate measurement noise. 

3. If an observation, with range and bearing ( θ)r,  is 

declared from a new landmark, then perform the 

initialization as follows. 

(a) Generate an initialization function 

( , , ( ,θ)) ,T T T T
v fo f r=g x x x    (9) 

where x fo  is some previously registered landmark, 

( θ)x f r,  is the newly observed landmark with the 

range and bearing measurements and 

 
cos(φ θ)

( θ) .
sin(φ θ)

v v
f

v v

x r
r

y r

+ +⎡ ⎤
, = ⎢ ⎥+ +⎣ ⎦

x   (10) 

(b) Perform system augmentation 

1 [ , , ] ,T T T T
k k v fo f+ | ←x x x x       (11a) 

1 ,T
k k

−
+ | ←∇ ∇P gP g       (11b) 

where 

1 0
,

0

k k+ |− ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

P
P

R
       (12a) 

2

2
θ

σ 0
,

0 σ
r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=R        (12b) 

θσ ,σr  are the standard deviations of the range and 

bearing measurement noise assuming a Gaussian 

pdf, and ∇g  is the Jacobian of the initialization 

function with respect to the system state and 

measurements. 

4. If the observation is from a previously registered 

landmark through a data association process, then 

perform a Kalman filter update by calculating 

1ν ( ),k k+ |= −z h x        (13a) 

1 ,T
k k+ |= ∇ ∇ +S hP h R         (13b) 

1
1 ,T

k k
−

+ |= ∇K P h S         (13c) 

and 

1 1 1 ν,k k k k+ | + + |= +x x K       (14a) 

1 1 1 ,k k k k+ | + + |= − TP P KSK       (14b) 

where ν  is the innovation, S is the innovation 

covariance,∇h  is the Jacobian of the measurement 

model with respect to the robot and measured 

landmark, K is the Kalman gain. 
 

2.3. Bearing-only SLAM 

Bearing-only SLAM is more challenging than the 

range-and-bearing SLAM process as the sensor only 

provides bearing measurements. As noted from the 

stochastic mapping procedures, it is difficult to 

initialize a landmark without range information. 

Furthermore, a Gaussian pdf is ineffective to describe 

the associated uncertainty in the range to the landmark. 

Some researchers have adopted a delayed initialize-

tion strategy, e.g., [14] and [15]. However, it is 

generally not straightforward to assign decision rules 

(with specific probability of error in decisions) and to 

determine when such decision can be made in order to 

incorporate a new landmark into the system. 

Fortunately, a further investigation into the stochastic 

mapping procedure reveals that, if the noise 

characteristic from the bearing measure can be 

modelled as a Gaussian then the EKF iterations can 

still be applied.  

In the current research, we will present an 

application of the Gaussian sum filter consisting of a 

bank of EKFs to the bearing-only SLAM problem. 

This filter is a very attractive candidate as the EKFs 

can be applied with a proper representation of the 

initial pdf for the range to a landmark. The 

computational burden of using a bank of parallel 

EKFs will be resolved by reducing the number of 

EKFs through a hypothetical test where decision 

errors can be explicitly specified. 
 

3. GAUSSIAN SUM FILTERING 
 

The Gaussian sum filter is directed towards 

representing an arbitrary pdf with the use of a mixture 

or a number of weighted Gaussian pdfs. It has been 

demonstrated that the representation error can be 

maintained at a low level, with proper choices on the 

mixture parameters, namely, the set of weighting 

factors, the means and variances of the Gaussians. Fig. 

2 illustrates the concept of a Gaussian sum filter. Each 

Gaussian is operative in an EKF which conducts its 

own estimation of the robot and landmark location. 

Their outputs are then weighted and summed to 

provide an overall aggregated estimation.  

In general, for an arbitrary pdf, one can have the 

following approximate distribution. 

 ∑ Ω≈
=

N

i
iiip

1

),,()( mNx α    (15) 
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where N  is the number of Gaussians in the sum, αi  

is the weight, d
i Rm ∈  and dd

i
×∈Ω R  are the 

means and covariances of individual Gaussians 

)),()(
2

1
exp(

||)2(

1
),(

1
ii

T
i

i
d

ii mxmxmN −Ω−−
Ω

=Ω −

π

(16) 

and where d  is the dimension of the Gaussian pdf, 

the weights are constrained by 

 
1

α 1, α 0 ,
N

i i

i

i

=
= ≥ ∀∑    (17) 

and the vector of parameters is defined as 

 1, 1,[ , ] [ , ].i i i id i iddm mϑ Ω = Ω Ωm   (18) 

When it is required, e.g., to associate measure-

ments to registered landmarks, the aggregated filter 

output may be calculated sequentially from time k  

to 1k +  by 

1
1 1 1 1

1

α ,
N

k
k k i i k k

i

+
+ | + , + | +

=
=∑x x       (19a) 

1
1 1 1 1

1

α ( ),
N

k
k k i i k k i

i

+
+ | + , + | +

=
= +∑P P P      (19b) 

where 

1

1

1

1

1 1 1 1 1 1 1 1

α λ
α ,

α λ

1λ exp( 0 5ν ν ),

(2π)

,

( )( ) ,

k
k i i
i N k

j jj

T
i i i i

d
i

T
i i k k

T
i k k k k i k k k ki

+

=

−

, + |

, + | + + | + , + | + + | +

=

= − .
| |

= ∇ ∇ +

= − −

∑

S

S

S hP h R

x x x xP

(20) 

and weight 1αk
i
+  is denoted as the normalized 

weight at time 1,k + λi is the likelihood of an 

individual EKF, νi is the innovation corresponding to 

meas-urements, Pi is the error covariance matrix and 

1 1i k k, + | +x  is the state estimate from each elementary 

filter of EKFs. 

When the summed representation is applied in the a 

priori pdf in the conditional pdf (3), the stochastic 

mapping can be carried out by a bank of EKFs as 

shown in [9]. The remaining problem renders to how 

to choose the Gaussian sum parameters. 

 
3.1. Choice of parameters 

By invoking the principle of maximum entropy for 

insufficient reasoning, the initial range pdf for a new 

observed landmark is assigned with a uniform 

distribution. Assume that a range measurement is 

available, it is treated as a random variable due to 

noise corruptions. If one knows the mean and variance, 

then a Gaussian distribution can be used to describe 

the measurement without risking over-confidence. If 

only the mean is available, the exponential 

distribution is required to represent the variable. On 

the other hand, when the mean and variance are both 

unknown, which is the case for a bearing-only sensor, 

the uniform distribution has to be used instead. In 

addition, the bearing measurement error distribution 

can be characterized by a Gaussian distribution as 

normally found in practical sensors.  

Let the bearing sensor operates within a working 

range, [ , ].min maxr r r∈  We assume that the desired 

pdf is represented by a sum of N  Gaussians of a 

given ( ).dp x  Now we propose a Gaussian sum with 

the same number of components as that of the desired 

pdf, then the probability that the approximation error 

to be maintained above a threshold can be given by 

the Chebyshev inequality. That is, for one of the 

Gaussian  

 ( ) 2
ε ,

ε
p dP ϑ ϑ || ϒ ||

|| − ||≥ ≤   (21) 

where pϑ  and dϑ  are the parameters of the 

proposed and desired Gaussian sums, ε  is the error 

bound, || ϒ ||  is the Frobenius norm
1

 for the 

covariance ϒ of the difference between the 

parameters.  

If the N  groups of proposal parameters are 

chosen identically and independently, we may invoke 

the weak law of large numbers and have  

                                                        
1 The Frobenius norm, 

2γ ,iji j
|| ϒ ||= | |∑ ∑ is adopted here as the 

matrix norm because the off-diagonal elements in ϒ  

representing the orientation of the distribution are also taken 

into account. 

 
Fig. 2. Concept of Gaussian sum filter. 
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 ( ) 2
ε τ,

ε
dpP

N
ϑϑ

|| ϒ ||
|| − ||≥ ≤ =   (22) 

where pϑ  is the sample mean of the parameters, and 

τ  is the error probability threshold.  

Examining the above inequality, we see that for a 

given number of Gaussians and a fixed approxi-

mation error ε,  the error probability threshold τ  is 

only affected by the distribution of the parameters via 

ϒ . It is, in general, difficult to assign the individual 

parameters for the proposed Gaussian sum. 

Alternatively, the choice of parameters should avoid 

potential risks of being over-confident. Therefore, by 

invoking the principle of maximum entropy, we 

maximize the magnitude of the covariance ϒ . Since 

a uniform distribution maintains the largest entropy, 

we assign the means of the Gaussians to be evenly 

allocated within the working range [ , ].min maxr r r∈  

That is  

 
( )

(2 1), 1 .
2

max min
i min

r r
m r i i N

N

−
= + − =  (23) 

Similar argument also leads to the assignment of 

equal weighting factors when a landmark is firstly 

initialized, that is  

 1α , .i N i
−= ∀     (24) 

Regarding the selection of the covariances Ω ,i  

the desired pdf is chosen as uniform over the sensor 

range. Without loss of generality, assume that the 

support of the uniform pdf spans ±1.  Furthermore, 

consider the approximation of this uniform pdf by a 

single Gaussian (which is normalized to such a scale 

compatible to the span of the support) as shown in Fig. 

3, where the approximation error is shown by the 

shaded areas. 

Let the probability of the Gaussian approach zero 

for the supports far away from ±1,  then the 

approximation error also tends to zero. Furthermore, 

let the variance of the Gaussian be selected such that 

the errors within and beyond the uniform pdf are 

given by  

2
1

21

1 1ε exp( ) ,
22πσ 2σ

in

x
dx

−

−
= −∫      (25a) 

2

21

2ε exp( ) ,
2πσ 2σ

out

x
dx

∞ −
= ∫       (25b) 

where σ  is the variance of the Gaussian.  

In addition, let there be a second Gaussian, e.g., on 

the right-hand side (for positive supports 0x > ), but 

the means and variances of the two Gaussians are 

selected such that they span the same support as 

before. Then the approximation error from the second 

Gaussian will complement the first Gaussian, see Fig. 

4 (shaded area). Considering the left-hand side 

Gaussian, the lack of representation to the uniform pdf 

(upper right area) is compensated by the additive 

portion contributed from the second Gaussian on the 

right-hand side. 

Taking the absolute approximation error as a 

measure of the errors, the exact cancellation of errors 

within the uniform pdf is achieved by selecting the 

variance such that the Gaussian function is set at the 

point where the two Gaussians joint. The variances of 

the Gaussians can be determined by letting the 

Gaussian intersect the uniform pdf at 1x =  such that 

the Gaussian is half of its peak, i.e.,  

 
2

2
exp( ) 0.5,

2σ
x−

=    (26) 

or 1.1774σx = . Thus  

 σ 0.85,=     (27) 

with reference to the ±1 limits on the uniform pdf. 

Fig. 5 illustrates the effect of the choice of the 

Gaussian variance. The graph shows the uniform pdf 

(rectangle) to be represented and the Gaussians 

(dotted) and their sum (solid) for the use of 2, 5, 10 

and 20 Gaussians respectively. It is observed that a 

 

Fig. 3. Gaussian approximation error. 

 

 

Fig. 4. Complemented approximation error. 
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smaller number of Gaussians, e.g., 2 Gaussians, gives 

a coarse representation; while the use of a larger 

number of Gaussians (up to 30 Gaussians) provides a 

very small approximation error.  

Note that since the support of the uniform pdf is 

halved due to the addition of the second Gaussian, the 

remaining approximation error is also halved. 

Therefore, the approximation error decreases 

monotonically when the number of Gaussians 

increases, provided that the variance of the Gaussians 

is selected corresponding to the separation of their 

means, i.e.,  

σ (0.85Δ ) 2, ,i m i= / ∀         (28a) 

1Δ , 1 1.i im m m i N+= − < < −        (28b) 

Given an error threshold ε,  the number of 

Gaussians can then be calculated. The reduction of the 

approximation error by adding Gaussians is 

determined by the number of Gaussians used.  

Fig. 6 illustrates the approximation error against the 

number of Gaussians (solid) and the reduction in the 

error (dotted). When using more than 8 Gaussians, the 

reduction in approximation error is not significant as 

compared to the maximum error from using a single 

Gaussian. Furthermore, since the approxima-tion error 

(35, 36) is the integration of the error across the 

supports, the distribution of the error itself then 

becomes irrelevant. It is obvious that the law of 

diminishing return applies in this case, i.e., the gain in 

using a large number of Gaussians diminishes. 

Moreover, the number of Gaussians used is also 

determined by the trade-off between the approxima-

tion accuracy and the permissible computational 

resource. Here, according to the argument stated 

above, we choose 9 for the number of Gaussians used 

in the representing the range measurement uncertainty. 

This number will be reduced, in order to decrease the 

computational complexity, as described in the 

following section. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Approximation of uniform pdf. 

 

Fig. 6. Approximation error vs. number of Gaussians.
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3.2. Reduction of EKFs used 

The number of Gaussians or extended Kalman 

filters used in the Gaussian sum filter, to a certain 

extent, affects the computational efficiency of the 

filter. Therefore, the number of EKFs used should be 

kept as small as possible provided that the range 

measurement pdf, in the SLAM context, is adequately 

represented within a specified error limit. The strategy 

adopted in this work is that when a EKF is ensured of 

superior performance, the other elementary filters in 

the GSF are then removed in order to reduce the 

computational complexity. 

 
3.2.1 Sequential probability ratio test 

The sequential probability ratio test (SPRT) is a 

decision-making technique that allows for the choice 

of a delayed decision in addition to the conventional 

acceptance and rejection decisions and does not 

require a knowledge of the likelihood distribution to 

derive the decision thresholds.  

In our SLAM problem with the Gaussian sum filter 

approach, the ratio of the innovations from the EKFs 

is used as the test metric. We define the hypotheses as 

0H : this particular EKF truly estimates the 

     system states,   (29) 

1H : any other EKF truly estimates the system 

states. 

Given the null H0 and alternative H1 hypotheses and 

the thresholds A  and B , the test procedure is 

conducted. At time indexed by ,dk  the null 

hypothesis for the i -th EKF is accepted if  

 0

11

(ν ( ) )
,

(ν ( ) )

dk
i

ik

p k H
A

p k H=

|
>

|∏    (30) 

and the alternative hypothesis is accepted if 

 0

11

(ν ( ) )
,

(ν ( ) )

dk
i

ik

p k H
B

p k H=

|
<

|∏    (31) 

otherwise, additional measurements to obtain νi  

( 1)k +  at the next time step are required. Note that 

ν ( )i k  stands for the innovation of the i -th EKF at 

time index .k  

The relation between the thresholds and decision 

errors of false alarm αa  and missed detection αb  is 

given by the following expression and can be user-

specified. In our implementation the common practice 

that both errors are specified at 0.05  is followed. 

 
1 α α

, .
α 1 α

b b

a a

A B
−

≈ ≈
−

   (32) 

3.2.2 Test against multiple alternatives 

In cases where there are multiple alternatives such 

as estimates resulting from a bank of EKFs, several 

choices for the likelihood of the alternative hypothesis 

may be considered, for example:  

Minimum:  

 1 1
1

(ν ) min { (ν )},i j
j j i

p H p H
= , ≠

| = |   (33) 

Maximum: 

 1 1
1

(ν ) max { (ν )},i j
j j i

p H p H
= , ≠

| = |   (34) 

Average: 

 1 1

1

1
(ν ) (ν ).

1

N

i j

j j i

p H p H
N = , ≠

| = |
− ∑   (35) 

The minimum likelihood approach is aggressive, 

aiming to reduce the number of EKFs in a minimum 

number of iterations. However, in some situations 

there may be other equivalently performing EKFs 

close to the best performing one. At the other end of 

the spectrum, the maximum ratio strategy adopts a 

conservative philosophy. It may take extensive 

filtering iterations before the next high-performing 

EKF is sufficiently inferior to the best performing 

EKF. Hence, a delayed improvement on the 

computational efficiency is expected. The averaging 

approach smoothes out the likelihood ratio sequences 

and produces a moderate decision strategy. Thus, it 

compromises between the risk involved and the 

efficiency improvement. Therefore, the latter 

approach is adopted in this work. 
 

3.2.3 Removal of elementary EKFs 

Assume that the GSF is operating with a total 

number of EKFs. When a decision is made according 

to SPRT, one of the EKFs (e.g., the k -th) will remain 

in the filter bank (the null hypothesis accepted) while 

all others are removed from the GSF. The aggregated 

system estimates (19) are copied to the k -th EKF and 

its weight is set to unity. The outcome is therefore an 

efficient implementation of a GSF which reverts to 

that of using a single EKF, and hence resulting in a 

significant reduction in complexity. 
 

3.3. Data association and landmark initialization 

Data association is the procedure as of how a given 

measurement is linked to a registered landmark in the 

system. The conventional approach is used here to 

implement a nearest neighbor test. Given, for example, 

a bearing-only measurement θ,  its statistic-cal 

distance to a registered landmark is inferred by the 

normalization of the difference from the expected 

bearing, that is  

2 1γ ν ,S
−=          (36a) 

ˆν θ ,θ= −          (36b) 
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ˆ arctan φ ,
f v

v
f v

y y

x x
θ

⎛ ⎞−
= −⎜ ⎟⎜ ⎟−⎝ ⎠

      (36c) 

2
θσ ,T

S = ∇ ∇ +h P h        (36d) 

where θ̂  is an expected bearing measurement. Note 

that the innovation and its covariance are calculated 

corresponding to the aggregated system states. 

 

3.3.1 Associating existed landmarks 

When landmarks are observed repeatedly, the 

measurements will be used to update individual EKFs. 

Since the measurements are obtained from the real 

robot and landmarks, data association is conducted 

using the aggregated state estimations, as given by the 

procedure of (36). On the contrary, if data association 

is conducted for an individual EKF, some EKFs will 

not be updated due to failures in data association. 

Consequently, the weights of EKFs cannot be adjusted. 

In this work, we adopt the conventional Mahalanobis 

distance based nearest-neighbour validation using the 
2χ  test. For instance, for a 5%  error threshold, the 

threshold on γ  is set at 3.84 for a one degree-of-

freedom distribution. 

 

3.3.2 Initializing landmarks 

When a new landmark is observed while the GSF is 

operating, it is incorporated into all the EKFs. Since 

the location of the new landmark is independent of the 

landmark estimates in the GSF, it is difficult to assign 

the weights of individual EKFs after the landmark 

initialization. The following strategy is adopted on the 

basis of the fact that, the best estimation at hand is the 

aggregation of estimations from the EKFs. Here, we 

regenerate the full number of EKFs by copying the 

aggregated estimation to all EKFs and initialize each 

of them using the bearing measurement and a 

randomly picked pseudo range given by (23). All the 

weights are reset to 1.N
−  

 

3.4. Computational complexity 

In [5], a particle filter is applied in estimating the 

ranges of targets using bearing-only sensors. In 

principle, the PF [6] is a sample-based implementa-

tion of the Bayesian estimation theory. Notably, the 

PF is effective in formulating estimators for non-

linear and non-Gaussian systems in contrast to the 

widely used EKF. The EKF, in turn, is efficient for 

systems that are linear and uncertainties can be 

modelled by Gaussian pdfs.  

In the PF, a pdf is represented by a large number of 

particles or samples,  

 
1

( ) δ ( ),PF i i i

i

p w
∞

=
= −∑x x x   (37) 

where iw  is the weight of a sample, such that 

1,ii
w

∞ =∑  and δi  is a Dirac delta function which 

is zero everywhere except at .ix  

For the EKF, the pdf is parameterized by its mean 

m  and variance Ω,  

( )11
( ) exp 0.5( ) Ω ( ) ,

(2π) Ω
T

KF
d

p
−= − − −

| |
x x m x m

(38) 

where, again, d  is the dimension of the Gaussian.  

In order to truly approximate an arbitrary pdf, the 

number of samples used in a PF could approach an 

intractable large number. Otherwise, if insufficient 

samples are used (e.g., less than 10000), due to 

computational resource limitations, sample 

impoverishment problems [22] may render the PF 

impracticable. On the other hand, the EKF represents 

the pdf by parameterizing the mean and variance and 

the GSF contains a small multiple of these parameters. 

Therefore, the number of parameters is significantly 

less than the number of samples used in PFs. The 

update of the PF also requires to calculate the 

likelihood functions in accordance to the number of 

samples. Thus, an additional complexity is further 

added to the PF implementation. 

 

4. EXPERIMENTS 
 

4.1. Experimental setup and evaluation 

Several experiments have been conducted to 

illustrate the effectiveness of the proposed Gaussian 

sum filtering approach for mobile robot localization 

and mapping. The robot, Pionner DX2, is driven to 

follow several trajectories with different starting 

positions and in different laboratory environments. 

The robot moves at 0.15m/sec and turns at ±6  

deg/sec maximum. Furthermore, a laser scanner 

(SICK LMS200) using only the bearing 

measurements, as the proof-of-concept, and a camera 

are used as the sensing device. The laser scanner 

provides scans across 180  in front of the robot, 

landmarks are extracted from scans using reflector 

strips. The camera gives 256 gray-level images of 

200 150×  pixels resolution, contains a 60  field-of-

view, also pointing forward from the robot. 

Landmarks are extracted from interest points at the 

transitions of furniture edges and the floor [7].  

The estimated robot trajectories resulted from 

various implementations and the produced maps are 

used to quantify the effectiveness of the proposed 

method. Since the range-and-bearing SLAM using a 

laser scanner has been thoroughly studied, its results 

are used as the references comparing the results from 

GSF implementations. In addition, they are also 
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Compared against a single EKF and the conventional 

GSF (without EKF reduction by SPRT). The SLAM 

quantity is evaluated according to the root-mean-

squared values of the robot position error as well as 

the landmark location errors. Moreover, the estimation 

uncertainties are assessed by the geometric mean 

between the range-bearing SLAM and the proposed 

GSF uncertainties. Laser scans of the environment are 

also included as a visual reference. 

 

4.2. Using bearings from a laser scanner  

4.2.1 Trajectory 1 

For the test on trajectory 1, Fig. 7, the robot (shown 

as a triangle) moves on a counterclockwise circular 

path (the centre circle) where its position is relative to 

its initial position at time zero. Figs. 7(a) and 7(b) 

show the mapped environment and the corresponding 

position error when only odometer feedback is used to 

estimate the robot position. The map of the 

environment generated is not satisfactory which 

shows inconsistence on the laser scans of the 

laboratory. On the other hand, if the estimated robot 

position is correct, the laser scans should overlap and 

produce a concise boundary of the laboratory. The 

position errors (middle lines in the sub-figures of Fig. 

7(b)) also grow unbounded against time (upper and 

lower lines are the 3σ  uncertainty bounds) over the 

tested period for 500 steps of 0.2sec each due to the 

accumulation of uncorrected errors. 

Results using a single EKF are shown in Figs. 7(c) 

through 7(e) respectively. The mapped environment 

shows consistence with the reference range-and-

bearing SLAM results. The robot position errors are 

bounded within the uncertainties and are much 

reduced as compared to the case of using odometry 

only. However, it is noted here that the magnitude of 

uncertainties are larger as compared to the GSF 

approaches presented in the sequel. Landmark 

location errors are small but initial errors are larger 

than the GSF cases, which signified the need for the 

proper representation of landmark range uncertainty.  

A conventional GSF, using 9 EKFs as the proposed 

GSF, is implemented where the reduction of EKFs is 

not included. Results are shown in Figs. 7(f) to 7(h). 

Satisfactory results are depicted for a consistent 

environment map with small robot and landmark 

errors. Results from the proposed GSF 

implementation, with SPRT-based EKF reduction, are 

depicted in Figs. 7(i) to 7(l). Map and position/ 

location errors are comparable to the conventional 

GSF case. In addition, it should be noted here that the 

number of EKFs included in the GSF, Fig. 7(l), has 

been reduced to one when the GSF converges with all 

landmarks in the environment being observed. 

 

4.2.2 Trajectory 2 

In this case, the robot is driven in the same 

laboratory as the previous experiment. However, the 

robot starts at a different position, thus, a different 

landmark observation sequence is obtained in this 

experiment. Results are show in Figs. 8(a) to 8(l) 

separately. Similar conditions as trajectory 1 are 

observed in this experiment. Hence, the GSF approach 

is considered as effective on a different environment 

and initial condition. 

 

4.2.3 Trajectory 3 

The robot is ported to another laboratory and the 

trajectory starts from a circular path, then a straight 

line (toward the left-hand side), back to the left and 

then another semi-circular path. Results are shown in 

Figs. 9(a) through 9(l). Again, the resultant laboratory 

map is not satisfactory when using odometry to 

estimate the robot position. For the rest of the 

experiments, outcomes are comparable to the previous 

two cases with the proposed GSF approach producing 

efficient and effective localization and mapping. 

 

4.2.4 Trajectory 4 

A forth trajectory is followed by the robot in the 

same environment as for trajectory 3, but the robot 

starts at a different position giving different landmark 

observation sequences. Figs. 10(a) to 10(l) depict the 

experimental results obtained in this case. SLAM 

quantities are equivalent to the previous cases, hence, 

the proposed approach is also considered satisfactory. 

 

4.3. Using a camera 

A camera is further used as the sensor when the 

robot follows trajectories 1 to 4 respectively. Typical 

images captured by the camera are shown in Figs. 11 

and 12 containing scattered image frames from frame 

1 to frame 500 corresponding to the GSF iteration 

time steps. The scene illustrates test-benches, cabinets 

and chairs in the laboratory. Furthermore, since laser 

reflectors are not visually extractable, only robot 

position errors are considered while landmark errors 

are not evaluated in the context of localization. 

 
4.3.1 Trajectory 1 

Figs. 11(k) and 11(l) contain results for the mapped 

environment and the robot position errors, 

respectively. The mapped environment illustrates a 

consistence as compared to the range-and-bearing 

SLAM case. The position errors are bounded within 

the uncertainties. However, due to the limited camera 

field-of-view and resolution, results are inferior to the 

experiment using the laser scanner. 

 
4.3.2 Trajectory 2 

Results from this experiment are shown in Figs. 

11(m) and 11(n). Observations and comments to the 

results from trajectory 1 also apply here. Moreover, 

the robot position errors maintain a similar order 
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Fig. 7. SLAM results from trajectory 1: Odomoter:- (a) Mapped environment; (b) Robot position error and 

uncertainty. EKF:- (c) Mapped environment; (d) Robot position error and uncertainties; (e) Landmark 

errors. Conventional GSF:- (f) Mapped environment; (g) Robot position error and uncertainties; (h)

Landmark errors, Proposed GSF:- (i) Mapped environment; (j) Robot position error and uncertainties; (k)

Landmark errors; (l) No. of EKFs used in the GSF. 
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Fig. 8. SLAM results from trajectory 2: Odomoter:- (a) Mapped environment; (b) Robot position error and 

uncertainty. EKF:- (c) Mapped environment; (d) Robot position error and uncertainties; (e) Landmark 

errors. Conventional GSF:- (f) Mapped environment; (g) Robot position error and uncertainties; (h)

Landmark errors, Proposed GSF:- (i) Mapped environment; (j) Robot position error and uncertainties; (k)

Landmark errors; (l) No. of EKFs used in the GSF. 
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Fig. 9. SLAM results from trajectory 3: Odomoter:- (a) Mapped environment; (b) Robot position error and 

uncertainty. EKF:- (c) Mapped environment; (d) Robot position error and uncertainties; (e) Landmark 

errors. Conventional GSF:- (f) Mapped environment; (g) Robot position error and uncertainties; (h)

Landmark errors, Proposed GSF:- (i) Mapped environment; (j) Robot position error and uncertainties; (k)

Landmark errors; (l) No. of EKFs used in the GSF. 
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Fig. 10. SLAM results from trajectory 4: Odomoter:- (a) Mapped environment; (b) Robot position error and 

uncertainty. EKF:- (c) Mapped environment; (d) Robot position error and uncertainties; (e) Landmark 

errors. Conventional GSF:- (f) Mapped environment; (g) Robot position error and uncertainties; (h)

Landmark errors, Proposed GSF:- (i) Mapped environment; (j) Robot position error and uncertainties; 

(k) Landmark errors; (l) No. of EKFs used in the GSF. 
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Fig. 11. Typical images of the laboratory environment for trajectories 1 and 2, (a)-(j). SLAM results from using 

camera: Trajectory 1:- (k) Mapped environment; (l) Robot position error and uncertainty. Trajectory 2:-

(m) Mapped environment; (n) Robot position error and uncertainty. 
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Fig. 12. Typical images of the laboratory environment for trajectories 3 and 4, (a)-(j). SLAM results from using 

camera: Trajectory 3:- (k) Mapped environment; (l) Robot position error and uncertainty. Trajectory 4:-

(m) Mapped environment; (n) Robot position error and uncertainty. 
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of magnitude as the previous case. Hence, the 

proposed GSF approach is considered consistent in 

performance. 

 

4.3.3 Trajectory 3 

Figs. 12(k) and 12(l) contain results for the mapped 

environment and the robot position errors while the 

robot is following trajectory 3. The mapped environ-

ment illustrates, as for trajectories 1 and 2, a 

consistence as compared to the range-and-bearing 

SLAM case. The position errors are also bounded 

within the uncertainties. 

 

4.3.4 Trajectory 4 

The robot is further driven in an additional 

trajectory. Results from this experiment are shown in 

Figs. 12(m) and 12(n). They are equivalent to the 

results from trajectory 3 in the previous experiment. 

However, due to the limited camera field-of-view, 

occlusion and different landmark observation 

sequences, results are inferior to those obtained from 

trajectory 3. 

 

4.4. Discussion 

Experimental results are further summarized in 

Tables 1 and 2. In the tables, the robot position errors 

are denoted by , ,φv v vx y  while the landmark errors 

are given by , .x yf f  In Table 1, the first column 

contains errors resulted from using only the odometry 

to estimate the robot position. The second column 

shows errors from using a single EKF for bearing-

only SLAM. The third and forth column give results 

from using a conventional GSF (without EKF 

reduction) and the proposed GSF (with EKF reduction, 

and is denoted by SPRT) respectively. These errors are 

computed by taking the root-mean-squared values 

over the GSF iteration sequence. The location errors 

are given in meters (m) and the orientation error is 

given in degrees ( ).  

In Table 1, the smallest error is indicated in bold-

face while the worst ones are denoted in italics. It is 

observed that the best and worst indicators are spread 

across the different EKF/GSF implementation 

approaches. However, it should be emphasized that 

most worst-case results come from the EKF case 

while the proposed SPRT implementation gives most 

of the best results. In addition, worst case errors from 

the single EKF have a higher order-of-magnitude 

(shown in bolded-italics) than both the GSF/SPRT 

approaches. Hence, a single EKF is unreliable in the 

bearing-only SLAM problem paradigm. It is also 

further noted that the proposed GSF has used a 

diminishing number of elementary EKFs in the filter 

with a reduction in computational complexity.  

Results from using a camera are summarized in 

Table 2. Evidently, errors of equivalent order of 

magnitudes are observed. Although the orientation 

errors are larger as anticipated, which is mainly due to 

limitations in the camera field-of-view and resolution. 

Nonetheless, the vision-based GSF implementation is 

performing satisfactorily. 

 

5. CONCLUSIONS 
 

We have presented a Gaussian sum filter for the 

estimation of the mobile robot pose and landmark 

Table 1. Localization and mapping errors: using laser 

scanner. 

Error Odometry EKF  GSF SPRT

Trajectory 1 

xv 0.152 0.026 0.025 0.015

yv 0.176 0.021 0.020 0.019

vφ  11.545 1.272 0.523 0.378

fx NA 0.120 0.109 0.093

fy NA 0.073 0.082 0.047

Trajectory 2 

xv 0.179 0.022 0.020 0.021

yv 0.193 0.022 0.012 0.020

vφ  12.783 0.442 0.798 0.921

fx NA 0.057 0.062 0.071

fy NA 0.040 0.035 0.044

Trajectory 3 

xv 0.430 0.024 0.027 0.025

yv 0.752 0.048 0.041 0.042

vφ  24.146 0.505 0.493 0.594

fx NA 0.024 0.036 0.030

fy NA 0.019 0.035 0.025

Trajectory 4 

xv 0.652 0.063 0.041 0.042

yv 0.434 0.053 0.047 0.046

vφ  26.510 1.691 0.548 0.502

fx NA 0.056 0.038 0.036

fy NA 0.107 0.016 0.020

 

Table 2. Localization errors: using camera. 

Trajectory Error 

 xv yv vφ  

1 0.174  0.093 2.940 

2 0.072  0.091 3.888 

3 0.110  0.164 3.566 

4 0.125  0.134 4.732 
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locations, in the SLAM context for an unstructured 

environment using a bearing-only sensor. Due to the 

lack of range measurements, stochastic mapping using 

an EKF is replaced with a Gaussian sum filter in the 

form of a bank of EKFs. The parameters of the initial 

Gaussians are determined on the basis of the 

approximation error incurred by using the Gaussian 

sum for representing a uniform probability density 

function. A proper compromise between the accuracy 

and complexity suggests a practically tractable initial 

number of EKFs to be used. The implementation 

complexity is further reduced by removing non-

performing EKFs via the sequential probability ratio 

test. The ultimate GSF then reverts to a single EKF. 

Experiments have been conducted using the bearing 

measurements form a laser scanner and a camera as 

the bearing-only sensors in several environments and 

trajectories followed by the robot. Our results have 

shown that the proposed GSF implementation method 

is effective and efficient. Further work is directed 

towards implementations in large operating 

environments. 
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