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Mobile Robot Local 
Measurements from a 

Ulf Larsson, Johan Forsberg, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis paper presents an algorithm for environment 

mapping by integrating scans from a time-of-flight laser and 
odometer readings from a mobile robot. The range weighted 
Hough transform (RWHT) is used as a robust method to extract 
lines from the range data. The resulting peaks in the RWHT are 
used as feature coordinates when these linedwalls are used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
landmarks during navigation. The associations between observa- 
tions over the time sequence are made in a systematic way using 
a decision directed classifier. Natural geometrical landmarks are 
described in the robot frame together with a covariance matrix 
representing the spatial uncertainty. The map is thus built up 
incrementally as the robot moves. If the map is given in advance, 
the robot can find its location and navigate relative to this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
priori given map. 

Experimental results are presented for a mobile robot with 
a scanning range measuring laser having 2-cm resolution. The 
algorithm was also used for an autonomous plastering robot 
on a construction site. The sensor fusion algorithm makes few 
erroneous associations. 

I. INTRODUCTION 

HIS paper presents a systematic method for integrating T scans from a time-of-flight laser on board a mobile robot. 
Experimental tests for indoor navigation have been completed. 
The method can be extended for outdoor navigation. 

Previous work in this area has used either a grid based 
approach (i.e., uncertainty grids [6]) or a symbolic approach 
where features are extracted and interpreted [2]-[14]. The 
current work uses the symbolic approach with the map stored 
as a set of feature coordinates relative to the robot and a 
corresponding covariance matrix. 

There are two basic types of uncertainty. First, the model of 
the world and the robot’s motion are uncertain and the range 
measurements are noisy and contain spurious large errors. 
Secondly, the identity of the observed features are unknown 
giving rise to scene interpretation and association problems. 
The algorithm developed deals with both these uncertainties 
in a systematic way. The robustified estimation is performed 
using a Kalman filter based approach while the association 
uses an approximate Bayesian classifier. 

The sensor fusion algorithms are robust enough to handle 
both the above mentioned spuriousness in the range measure- 
ments and large outliers in the ddometer measurements, as 
when the wheels slip on some object on the floor. The algo- 
rithms can be extended to include a vision system-theoretical 
and experimental work is in progress. 
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A. Outline of the Measurement Integration Algorithm 

following four steps: 
The map generation process integrates range scan using the 

1) Take a fangescan and extract the 
using the range weighted Hough tra 
least squares algorithm. 

2) Predict the map stat 
taken, with the moti 
(The dead reckoning 
in parallel with the other calculation 

3) Match the observations from the las 
dicted estimates in the map. Decide 

features. 

In step 3 we define the association function A,() which 
is an approximate estimate of the probability that a certain 
matching is correct. The match will be ,accepted only if 
Ai() > T ,  otherwise the observation is disc 
the actual estimation of the state vector from 
and odometer measurements are performed U 

Kalman filter [l]. 

11. REPRESENTATION 
INDOOR ENVIRONMEN 

The map generation algorithm presented 
indoor navigation using a scanning laser to measure ranges to 
objects in the horizontal plane. The most prominent features 
of an indoor scene are the straight lines corresponding to the 
walls. These can be detected efficiently using the algorithms 
described in Section 111. 

A. Feature Representation , 
In this paper the world is modeled as a set of infinitely long 

straight lines (walls); we use the term feature to refer to the 
element in the environment causing the line in the range scan. 
Each feature is described by it’s orthogonal distance ( d )  and 
direction (7) from the robot (see Fig. 2). These two parameters 
are referred to as the feature parameters or feature coordinates. 
We &rite the feature parameter for feature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi as 
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Assuming that the modeled part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the world contains some 
finite number N of such features, then at time t k  the features 
in the robots environment are described by the state vector 

X ( k )  = [dl(k) ~ ( k )  d2(k) 72(k)...d~(k) Y N ( ~ > I ~ .  

Because features are described relative to the robot it 
follows that there is no fixed coordinate system and no 
explicit representation of the robot's position. The state vector 
could also contain other features like "jump edges" at range 
discontinuities, corners or, for outdoor navigation, tree trunks. 
The algorithm given below can be modified to included these 
cases. 

B. The Motion Equations 

described by the vector 
The displacement of the robot from time tk-1 to tk is 

W k )  = bdk) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPYW PQ(k>l' 

given in the robot frame at time t k - 1 .  The first two components 
(pz,py) are the translation and the last component (pe )  is 
the rotation. In the robot used during the tests, the actual 
displacement is estimated from odometric data using the dead 
reckoning equations given in [ll]. The state transition of the 
N feature coordinates are 

where 

This equation is a kinematic model describing how the features 
positions change as the robot moves. Note that the state 
transition is linear in the motion U ( k )  but not in the state 
vector X ( k ) .  Observe that it is also possible to use this type 
of formalism for isolated objects such as tree trunks etc. 

C. Two Transformations to Fixed Coordinate Systems 

We have described how feature are described relative to the 
robot. It is also possible to represent the robot's position, or 
the position of an object, relative to two or more features. Two 
examples of this are given below. 

B y  introducing a local coordinate system attached to a pair 
of features with parameters (d1,yl) and (d2,72) relative to 
the robot, for example a comer in a room, it is possible to 
record the robot's absolute position or to reduce the size of 
the estimated state vector. The intersection of these two lines 
defines the origin of an ON-coordinate system. Choosing the 

Fig. 1. Range scan and map of a room. The range scan (shown as dots) 
consists of 450 range measurements over a 270' sector. The scale is in 
meters. The T-shaped symbol is the robot and the straight lines shows the 
walls detected in this range scan. 

z-axis to be rotated (yl(k) +72(k))/Z relative the robot frame 
gives the robot's position in this coordinate system as 

Other pairs of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d, , 7i) in the state vector can be transformed 
into the new fixed coordinate system. 

A second coordinate system is defined by the robot position 
at time t o .  Rewriting (2) and solving for the position using a 
least square method gives 

[%] = [G(X(o>)'G(X(O>>l-' 

x G(X(O)) ' [X(k)  - X(0 ) l .  (3) 

111. EXTRACTING FEATURES FROM RANGE MEASUREMENTS 

A time-of-flight laser on the robot takes a horizontal range 
scan of the surroundings. The parameters of the walls are 
extracted from these measurements using the Range Weighted 
Hough Transform (RWHT) [7]. With this method walls can be 
found even in very cluttered rooms. An example of a range 
scan and the detected walls are shown in Fig. 1. 

A. The Measurement Model 

Consider a feature/wall with feature coordinates (d, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7). The 
laser pointing in direction (P, then measures the range r, 
modeled as 

where U, is the random pulse to pulse range fluctuation. If 
the laser beam is reflected off the wall then the binary random 
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Fig. 2. Walls are described in the robot frame (the dashed arrows indicate 
the x- and y-axes) using the orthogonal &stance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd and the angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy. The 
distance d is positive when the wall is facing the robot (A, B, C, D, and I), 
and negatwe when it is facing away from the robot (F, G, and H) The feature 
parameters d c  and yc are marked in the figure 

variable E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1. If, on the other hand, the laser beam is 
reflected off some other object at range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR((P,) then E, = 0. 
To estimate the parameters of the feature we need a method for 
extracting the set { rm,  ym 1 ( E ~ ~  = 1)) from the range scan. 

B. Extracting Feature Parameters with the Hough Transfonn 

To extract the features parameters from the range scan we 
have to decide which measurements originate from features 
and which are from disturbing objects. From (4) we note that 
in the case of E, = 1 we get 

T, COS(C~, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) - d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, COS(C~, - 7). 

It follows that most of the range measurements ( ~ ~ , p ~ )  

Id - r ,  cos(p, - -y)l < h where h = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 d w .  (5 )  

The condition given in (5) is tested for a set of (d , y )  
candidates. If the condition is satisfied for a candidate then 
the measurement votes for that candidate. This is the Hough 
transform (HT). When using range measurements a range 
weighted version of the HT is needed. Thus the range weighted 
Hough transform (RWHT) C(d ,y )  is given by 

where E, = 1 satisfy 

~ ( d ,  Y) w(rm C O S ( C P ~  - Y) - d)rm (6)  
m 

where w() is a window function. The argument in w is equal 
to the shortest distance between the point ( rz ,  pz) and the line 
( d ,  7). Currently a unit rectangular window function W(Z) of 
width 2h is used 
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(7) 

This choice allows an efficient implementation. Weighting 
with the range T, is used since in the range scan the sampling 
is uniform with angular steps. Thus, as the distances increase, 
each sample corresponds to a longer surface segment, roughly 

proportional in length to the range ,. For more details see 

The peaks in the RWHT are foun by first searching for the 
single highest peak. The Hough peak is then enhanced using 
a robust least squares method giving the observation 

171 and [SI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
21 = [dl TIT = X ( k )  + w ( k )  

where the identity between I and t is unknown. The measure- 
ments that fall within an interval 

Idl - T m  Cos(Pm - Y~)I < 2h 

around this peak are then removed from the Hough transform 
and the procedure is repeated until all major peaks have been 
found. The RWHT should thus be seen as generating cluster 
gates. The resolution is not increased by making finer grids. 

Iv. ASSOCIATION AND ESTIMATION 

A critical point in the position estimation process is the 
association of a measurement to a specific feature in the state 
vector. Since the individual measurements have no identity, 
we need an algorithm to decide which feature the measure- 
ment originates from. In pattern recognition this is1 know as 
unsupervised classification (see, for example, [5]) .  Because we 
want to build a map of the environment while the robot mhves, 
the algorithm has to be recursive. 

the predicted value, either of a fixed size, or dependent upon 
the covariance, for example the Mahalanobis distance, [12]. 
This implies that the most probable match will always be 
chosen. Our algorithm refines this technique and uses the best 
match only i f the probability is high enough, otherwise the 
measurement is discarded. 

A. The State and Observation Vectors 

From a range scan at time t k  the range weighted Hough 
transform gives a total of L ( k )  features. Each extracted feature 
coordinate (d,y) is denoted by Zl (k )  where 0 5 I 5 L ( k ) .  
The corresponding covariance matrix is denoted by Sl(k) .  

The total number of different landmarks observed up to and 
including time ti, is denoted M ( k ) .  The state vector estimate 
X(S) in the Kalman filter at time t k  consists of these 2 ~ ( k )  
feature parameters as introduced in (1) 

Association algorithms often use some 

, J 

The estimated uncertainty covariance matrix of the estimate 
is denoted C(k ) .  The size of X ( k )  i s as the robot 
discovers new features, but might also 
discarded. 

The state vector estimate can be 
map. In the case of no prior inform 
extracted at time t o  

gives the initialization. 
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B. The Basic Association Algorithm 

We now return to the question of associating feature mea- 
surements 21 ( k )  to the features accumulated in the estimated 
state vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ( k ) .  In particular, this subsection gives an algo- 
rithm for associating a single observation with the estimated 
state vector. From Section 111-B it follows that we can write 
an observation & ( k )  of a feature as 

z l ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [%I 7721...77NI]x(k) + wZ(k) (8) 

where 771,772, . . . , T ~ N  are binary random variables with 

N 

Er/; = 1. 
a = 1  

Based on all the previous observations, we wish to calculate 
the probability P, that Zl(lc) is an observation of feature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, 
i 5 M ( k ) .  

P, = Pr(v, = 1 1 fi(1>, . . . , ~ ( L > , z ( I ) ,  . . . , ~ ( k - l ) , ~ l ( k ) ) .  

The previous information up to o ( k )  and Z ( k  - 1) is approx- 
imated by the state estimate and error covariance, giving the 
approximate probability 

P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx Pr(qz = 1 I X ( k  I L - 11, C ( L  I /c - 11, z~(/c), s~(Ic)).  
(9) 

If Zi is an observation of feature coordinates X,, then the 
prediction of ZZ is H , X ( k  I IC - l), where 

Using the corresponding covariance matrix, we get the likeli- 
hood function for Zl being an observation of Xi  as 

where Sl is the covariance of the measurement Zl. The time 
index is omitted for brevity. 

Using Bayes rule, an approximation of the probability (7) 
for 1 5 i 5 M(L)  is given by the association function Ai( )  

defined as 

where q models the likelihood that the measurement corre- 
sponds to a feature that is not yet in the estimated state vector 
( M ( k )  < i 5 N ) .  This likelihood q can be thought of as 
the ‘intensity of detectable objects’ in the scene. Including the 
parameter q has a very significant effect on the behavior of the 
association algorithm and the shape of the decision regions, 
(see Fig. 3.) 

The function Ai(Z2, Sl) gives us an estimate of the proba- 
bility that 21 is an observations of the feature i. In landmark 
based navigation it is not always desirable to use the best 
match as it is often very confusing to make even a single 

-3.5 -2 -f.5 -1 -05 0 0.5 1 1.5 2 2.5 

Fig. 3. Illustration of the association function and the effect of the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q. The plots shows the decision regions when matching one observation to 
one of two features. Note that this example uses unrealistic parameter values 
to better illustrate the principle. The variance of the estimate of feature two 
is twice that of feature one. In both plots a threshold T of 95% is used. 
The white regions indicate where no match is possible with this criterion. In 
the upper plot q is zero, indicating that the two features are the only ones 
possible. In the lower plot q is 0.01 indicating a small likelihood of detecting 
a previously unknown feature. Note the fundamental difference between the 
decision regions for these two cases! The features (at (0,O) and (1 ,O) )  are 
indicated by white plus signs and white circles with one standard deviation 
radius. 

mismatch but quite harmless to just skip an observation. 
Thus only observations with A , ( )  > T are accepted as 
observations of the feature parameters X,. The threshold T 
is “close” to one and usually used as an tuning parameter. 
An illustration of the algorithms behavior is given in Fig. 3. 
When a sufficiently probable association has been found and 
accepted, the measurement is used to update the state using 
Kalman filtering. 

C. Simultaneous Association of Features 

Thus far, the relations between the features coordinates have 
not been used. If a good map is available, either a priori or 
from earlier observations, but the robot position uncertainty 
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is large, then the variance for each estimated feature will be 
large but some will be strongly correlated. In this case it is 
possible to get a higher probability for the hypothesis if more 
than one measurement is matched simultaneously. Thus we 
might recognize a corridor by its width or a room by its size 
rather than the by distance to the individual walls. 

As an example, let us look at the case of matching a pair of 
two observations to a pair of two features in the state vector. 
The approach is the same as given earlier. The likelihood for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z1,Zz being observations of features zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j is given by 
(see equation at the bottom of this page) and the association 
function for simultaneously associating 2 1  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2  with feature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z and 3 ,  respectively, is thus (see (12) at the bottom of this 

In the derivation of (12) we have assumed that there is no 
correlation between the unobserved features. The normalizing 
denominator is partioned into three terms. The first term is 
the case where the measurements are observations of features 
estimated in the state vector. The second term consist of the 
sum of the likelihood functions for the case where one of 
the measurements is generated by a feature estimated in the 
state vector and the other measurements is an observation of 
a feature not yet estimated. The last term q2 corresponds to 
the case where both measurements are new observations of 
previously unknown features. 

D. Adding New Features to the State Vector 

Those observation that could not be associated to a previ- 
ously detected feature in the state vector e g h t  be observations 
of “new” features not yet included in X .  To avoid that 2, 
introduces a duplicate we require that 

‘ 

page). 

M 

(13) 

where M is the number of features already included in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 
Thus, the approximate probability that the observation is not 
from one of the estimated features has to be greater than T 
for a new feature to be added. 

When a new feature is added, the state vector is augmented 
with the two new variables and the covariance matrix with the 
2 x 2 covariance matrix. The covariance between the newly 
added states and the other states is zero. The new state vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 4. 
one motor each, with a thlrd motor used 
wheel. Computation and control are performe 
PC running a multitasking operating system 
measure the rotation of the rear wheels and th 
the robot is the scanning range measuring laser 
up to 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd s ,  but most tests were performed at 
speeds are impractical in the tlght i 

and covariance matrix in the filter is then given by 

LuSAF-Lulei Sem Autonomous Robot. The two rear wheels have 

E. Deleting Duplicate Estimates of a Feature 

probability that a new feature might be added by 
resulting in two separate estimates of the same fe 

Even if the condition in (13) is fulfilled, there is a small 
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(e) 

Fig. 5.  Map generation test where the robot navigates around a rectangular object in the laboratory. The sequence of plots illustrate how the robot builds its map 
incrementally. The robot measures continuously while it moves, and made several measurements between each of the above plots. Each of the five plots show 
the robot position, the current state of the map and the latest range scan. (a) The first plot is taken before the robot started to move. Thus, all the walls in the map 
was generated from Hough peaks in the same range scan. (b) -(e). The subsequent plots show how the map is built zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the robot moves around the laboratory. 
Note how the upper wall is rediscovered in plot (d). The final plot (e) shows the robot on its second loop around the room, successfully using the map it created 
on the first lap. Typical standard deviations are 2 cm. The endpoints of the lines are currently only recorded for plotting, and not filtered. The scale is in meters. 
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TABLE I 
STATISTICS FROM TEN EXPER~MENTAL ROBOT RUNS AROUND THE LABOFL~TQRY 

FOR THE SIZE OF THE ROOM, AND THE ANGLE BETWEEN THE WALLS. 
IN FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 THE TABLE SHOWS THE SAMPLE STANDARD DEVIATION 

THE SECOND PART OF THE TABLE SHOWS THE MAXIMUM DEVIATIONS 
FROM THE MEAN RATHER THAN THE STANDARD DEVIATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, 

highest risk for such duplicates is when the robot returns to the 
initial position and rediscovers features seen before--compare 
with Figs. 5 and 10. To detect such duplicates it is necessary 
to check that the estimates are well separated. This is done 
using the same principles as above. 

Assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXM and X,  are both estimates of the same 
feature X,,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi < M .  The estimated state vector is then 

X1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[;,I [ . . .  ] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+w 

X M - 1  

with Cov(W) = C. The distance XM - X, is used as a test 
variable in the modified association function 

where 

e- 4 (X, -H ,X)T  ( [ - H J ] C [ - H * I ] T ) - 1 ( X M  -H,R) 

27r 2/ I [ - H, I ]  C [ - H,I] T I 
P , * ( X M )  = 

/ 

If A,*(XM) > T then the estimated state vector is merged 
to 2(M - I) elements using 

x* = K*X 

where 

with the covariance matrix 

E* = K * c K * ~ .  (16) 

The merged state vector X *  and the covariance matrix C* 
is then used as the new estimate of the feature parameters. 
Note that if there is no correlation between XM and the other 
elements in X ,  then (14) is identical to (11) and (15)-(16) can 
be rewritten in the form of a Kalman Filter update [ 151. 

I 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  The upper plot shows nine overlid ranges scan aligned using dead 
reckoning. The lower plot shows the same measurements but aligned using 
position estimates from the navigation algorithm Dunng the test the robot 
passed between the rooms as indxated by the numbered “T” symbols The 
final zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscan taken in positlon 9 d u n g  this test is also shown in Fig 1 The 
figure size is about 15 by 10 meters. 

v. EXPERIMENTAL RESULTS USING A RANGE 
MEASURING LASER ON A MOBILE ROBOT 

The experiments were carried out using the mobile robot 
LuSAR (LuleH Semi Autonomous 
tests described wefe for navigation 
obstacle in a room and when re-entering a room three times 
with a disturbing slip over a tube in betwee 
robot returns to the initial pos 

A. The Mobile Robot LuSAR 

Using the multitaski 
and odometnc dead 
time-consuming mea 
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Fig. 7. In the simulations the robot moved between the four rooms,with 
noise added to both motion and measurements. The "+" signs are the random 
range measurements. 

The robot is intended to be used as a semiautonomous, 
teleoperated robot controlled by fairly high-level telecom- 
mands. A human operator selects the sequence of commands 
while the robot performs low-level control and planning. With 
increasing autonomy, the communication bandwidth needed 
and the human workload will decrease. During the current 
mapping tests, the steering of the robot was by the operator. 
Examples of previously tested autonomous operations are 
passing through doors [7] and navigating along corridors [9]. 
The use of rate gyro was demonstrated in [lo]. 

B. Building a Map of a Laboratory with an Obstacle 

In this test a map is generated for a room with a rectangular 
object in the middle. The sequence of plots in Fig. 5 shows 
how the map was generated recursively as the robot was driven 
around the object. 

To evaluate the accuracy of the map the robot was driven 
around the lab twice, saving the state (or map) after each lap. 
The speed varied between 0.5 and 1 m/s, generally higher 
during the second lap. This process was repeated twelve times. 
In two of these tests the robot made some small mistakes when 
generating the map; failing to include the short wall in the 
upper right corner of the map, and duplicating wall. Neither 
of these faults caused any serious disturbance to the system 
and are in no way fatal. The ten entirely successful runs were 
used to compute the statistics in Table I. 

The results conform nicely with what could be predicted. 
The longer walls are estimated more precisely than the shorter 
ones, especially the angle, and the estimates improve after the 
second lap by about as much as can be predicted from theory. 
The standard deviations from the experiments agrees fairly 
well with those predicted by the Kalman filter. 

Error in Estimation of y-PosiSon 

0'25j 
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m 

Fig. 8. The error in the distance to the lower wall as the robot moves around 
the four rooms in Fig. 7. The plot shows the error in the robot's y-position 
estimate during 5 different test runs.The robot builds the map during the first 
lap. It relocates the lower wall around time 26. During the following laps, the 
newly created map is used, giving much smaller errors. 

Error in Estimation of y-Position Using A Pnori Map 
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Fig. 9. The plot shows the error in the y-position of the robot for 10 
simulations. In these simulations an a priori map was given. Each simulation 
corresponded to 12-and-a-half laps around the building modeled in Fig. 7. 

C. Passing Through Several Cluttered Rooms 

The next test was made with the robot passing through two 
laboratories, a hallway and a small room, Fig. 6. The robot 
started in one laboratory (pos l), moved out into a hallway 
(pos 2 to 4), turned back into the laboratory (pos 5 )  and moved 
further into the next laboratory (pos 6, 7). From there it turned 
back through the first laboratory and into the hallway (pos 
8) and back to the laboratory again (pos 9). (Positions refer 
to Fig. 6.) The plots show range measurements taken at the 
nine positions overlaid onto each other using the navigation 
algorithm, and for comparison using only dead reckoning from 
the odometers. 

The rooms are rather cluttered and it can be quite difficult to 
detect the walls in the range scan. Still the robot was capable 
of navigating. The robot of course used many more scans to 
navigate than is shown in the plots, as it continuously scans 
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Fig 10 Error in the y-posibon for 10 simulations identxal to those in Fig. 9, 
except that no map was given in advance. Thus the errors are larger during the 
first loop and then decrease A cnbcal point is when the robot observes features 
that have been occluded for a long bme. Th~s  first happens at bme index 20. 
In one of the test runs the algonthm faled to associate the measurements of 
the wall used to calculate the y-posltion leadmg to a bias 1~ the estimate. 

the environment while it moves. The largest disturbance was 
caused when the robot drove over a tube (a rotation around 
z = -4 and y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3) .  

VI. SIMULATIONS 

In the simulations described here the robot moves between 
four rooins of varying sizes, Fig. 7. The robot moved in a 
circle between the rooms in the direction A B C D. The plots 
illustrates typical behavior of the algorithm under different 
circumstances, both with and without an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori map. The 
association algorithm seems fairly reliable when the motion 
uncertainty is < 10% of the travelled distance. It is illustrative 
to see how the covariance is reduced when the robot returns 
to its initial position Fig. 8. 

A. Map Building and Association 

In the first simulation the robot built its map while travelling 
between the four rooms. The state vector is initialized with 
the feature coordinates of two walls which are then used 
as the position reference to evaluate the performance of the 
navigation algorithm. Fig. 8 show the error in the y-position. 

The map is created during the first lap. The following laps 
have about 5 times smaller errors as the map created during 
the first lap can now be used. The plot shows how the error 
increases during the first lap around the four rooms. When 
(around t = 26) the robot re-locates the lower wall, the error is 
immediately decreased as the algorithm successfully associates 
the new measurement with the correct feature in the map. 
During the following loops the error is much smaller as the 
robot can use the map it created during the first loop. 

B. Navigating with and Without an A Priori Map 

An a priori map can be provided to the robot by initializing 
the state vector with the feature coordinates for all the walls. 

This section compares ,the 
without such an a priori ma 

Noisy odometric readin 
lowing statistics for one motion step. 

0.46 
Mean(@) = 0.047 

- 3  [ l i20 ] 
a l u  

0.0025 0.0002 -0.0003 
Cov(6) = 0.0002 0.0023 0.0097 i 

with translations in meters and rotations in radians. 
In Fig. 9, the error in the estimated y-position is plotted 

when the robot navigated using an apriori map. The y-position 
is defined here as the distance to the lower wall. The error, 
as seen in the plot, increases when robot is between rooms A 
arid B and between rooms C and D. In these locations, the 

position. The orientation (not p 

repeated without an a pri 

estimation errors appear 
is that the error is sign 
rooms B or C where th 

at time index 15 (the same 
The first loop when the m 

period. In one of the test run 
the measurements from the 
the y-position. This resulted in the 
Fig. 10. 

W. CONCLUSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND FUTUR 

The algorithm was tested 

due to a mechanical fault, on 
on its axis. Simulations were 

drawback at prese 
, with up to 25 w 
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This will also allow simultaneous matching of more than two 1121 J. Leonard, H. Durrant-Whyte, and and I. J. Cox, “Dynamic map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- .  ” 
building for an autonomous mobile robot,” in IROS-90, pp. 89-95. 

[13] P. Moutarlier and R. Cbatila, “Stochastic multisensory data fusion for 
mobile robot location and environment modeling,” in Robot. Res. 5th 

features’ increasing the robustness Of the algorithm’ 
Another method to improve speed is to represent states that 
are far away from the robot relative to other states, rather than 

The reader should observe that only distances and angles 

that further improvements such as including additional features 
like “jump edges” at range discontinuities, isolated objects and 
corners would be straight forward to implement. Improved 

Int. Symp., pp. 85-94. 
1141 R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spa- 

tial relationships in robotics,” Autonomous Robot Vehicles. Berlin: 
Springer-Verlag, 1990. 

N J  Prentice-Hall, 1988. 

directly relative to the robot. 

to walls are used. This keeps the results unified. It is obvious 11.51 L. Soderstriim and P. Stoica, System Identification. Englewood Cliffs, 

estimation of the endpints of lines will make it possible to 
use the map for path planning. Matching of lines might also 
use the endpoints, either as a consistency test, or more closely 
incorporated in the probability estimation. This will be the 
subject of future developments 

The navigation system has been used both in the semi 
autonomous robot LuSAR and in an autonomous plastering 
robot tested on a construction site. 
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