
Mobile Robot Monocular Vision Navigation Based on Road Region and

Boundary Estimation

Chin-Kai Chang Christian Siagian Laurent Itti

Abstract—We present a monocular vision-based navigation
system that incorporates two contrasting approaches: region
segmentation that computes the road appearance, and road
boundary detection that estimates the road shape. The former
approach segments the image into multiple regions, then selects
and tracks the most likely road appearance. On the other hand,
the latter detects the vanishing point and road boundaries to
estimate the shape of the road. Our algorithm operates in urban
road settings and requires no training or camera calibration to
maximize its adaptability to many environments. We tested our
system in 1 indoor and 3 outdoor urban environments using

our ground-based robot, Beobot 2.0, for real-time autonomous
visual navigation. In 20 trial runs the robot was able to travel
autonomously for 98.19% of the total route length of 316.60m.

I. INTRODUCTION

Ability to navigate in one’s environment is important for

a fully autonomous mobile robotic system. One critical task

in navigation is to be able to recognize and stay on the road.

There are many proximity sensors that have been used to

detect the road, such as laser range finder (LRF) [1], [2],

stereo cameras [3], and Kinect [4]. However, these sensors

have limitations. For one, Kinect, which utilizes infra-red

technology, does not work outdoors, due to the presence

of sunlight. Furthermore, proximity information, although it

can be used to estimate the ground plane, it cannot directly

recognize the shape and appearance of the road without the

presence of bounding structures such as surrounding walls.

Monocular cues from a camera, on the other hand, have the

versatility of being applicable in most environments, while

readily encode these road information, which are the critical

for autonomous navigation. As such it is important to develop

robust monocular road recognition techniques to enhance the

available proximity-based navigation systems.

There are a few main issues in using monocular vision

road recognition. For one, road appearance varies from

place to place, which makes it difficult to define what a

road is. Consequently, many navigational approaches limit

their working environments to just previously visited places

through the teach-and-replay paradigm [5], [6]. These sys-

tems require the robot to traverse a specific environment

C.-K. Chang is with Department of Computer Science, Univer-
sity of Southern California, Hedco Neuroscience Building - Room
10, 3641 Watt Way, Los Angeles, California, 90089-2520, USA.
chinkaic@usc.edu
C. Siagian is with the Division of Biology, California Institute of

Technology, Division of Biology 216-76, Caltech, Pasadena, California,
91125, USA. siagian@caltech.edu
L. Itti is with the Faculty of Computer Science, Psychology, and Neu-

roscience, Univesity of Southern California, Hedco Neuroscience Building
- Room 30A, 3641 Watt Way, Los Angeles, California, 90089-2520, USA.
itti@pollux.usc.edu

Fig. 1. Beobot 2.0 performing autonomous navigation in an unknown
environment. There are two characteristics of the road that are exploited
by our system. One is the similarity appearance within the road, color of
the concrete, which can be compromised by shadows. The other cue is
the vanishing point at the end of the road, noted by the yellow dot. The
difficulty of vanishing point-based systems are their instability, as a small
location shift can result in large shape changes on the road area closest to
the robot, making it less suitable for navigation tasks.

during the training process before it can navigate on the

same road during testing. In addition, often times they

also need to be trained on many lighting conditions to be

illumination invariance. This is because these systems use

local corner/keypoint features such as SIFT [7] or KLT [8],

which are illumination specific.

There are, however, a set of approaches that do not

require specific training for a particular environment. These

systems try to recognize a road by exploiting its visual

characteristics. For example, a system by Rasmussen etal

[9] estimates the road as a triangular shape, and perform

histogram differencing between the road region and its two

flanking areas. The histogram is composed of a small number

of bins obtained through k-means LAB color clustering on

the image. Another system by [10] uses both color and

texture features to cluster the road area, and the subsequent

classification confidence values to estimate the extent of

the road. [11] relies on the salient nature of the road with

respect to its surrounding regions, and grows the road region

from a saliency map. One problem that region-growing based

systems face is that they are less robust to shadows on the

road. Observe figure 1 for an illustration of these challenges.

In addition, there is also a group of techniques [12], [13],

[14] that try to recognize the road by using the road vanishing

point. In general the technique relies on detecting converging

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1735-1/12/S31.00 ©2012 IEEE 1043

Road Region Estimation

Road Boundary Estimation

Vanishing Pt Detector Estimate Road Boundary Road Info Extraction

Road Color Feedback

Kalman FIlter

Offset 79px

Input Image Robot Controller

Road Color/Center Update

Road Color Feedback Road Color/Center Update

Estimate Road RegionGraph Segmentation Road Info Extraction

Fig. 2. Overall visual road recognition system. The algorithm starts by inputting the camera image to both the road region and road boundary estimation
modules. The road region estimator utilizes a graph-based segmenter, while the road boundary estimator relies on a real time vanishing point detection.
Both modules output road color average and the road center location, which are fused together by a Kalman Filter.

edge directions to vote for the most likely vanishing point.

The biggest problem we found was that the output location

can be unstable if there are several equally likely vanishing

points. Furthermore, because the vanishing point is far from

the robot, a slight deviation can result in a large change

in heading direction, making it unsuitable for navigation. It

is also important to note that most vanishing point-based

approaches are not real time, and, thus, not tested on a robot

for an autonomous navigational task.

Our novel contribution starts by presenting an autonomous

navigation approach using only monocular cues, comprised

of the two above-mentioned and opposing vision techniques.

That is, we designed and implemented real-time and robust

region appearance-based and vanishing point-based road

recognition. We then propose a navigation framework that

fuses both techniques to improve the robustness of the

overall system. We tested the system using Beobot 2.0

[15] in one indoor and three outdoor campus environments

to demonstrate its capabilities in unconstrained settings. In

addition, we also analyze the benefit of using the individual

cues in details, as well as comparing our system with other

road recognition systems [9], [12].

These two systems represent the two most popular monoc-

ular road detection approaches available in the literature.

In the following section II, we describe our presented

model, report the testing results in section III, and discuss

the findings in section IV.

II. DESIGN AND IMPLEMENTATIONS

The overview of our vision navigation system is illustrated

in figure 2. From the input image, we segment out the region

that are considered to be a road (described in subsection

II-A), while simultaneously estimate the road boundaries

by computing the road vanishing point (described in sub-

section II-B). In section II-C, using a Kalman Filter, we

then combine these two algorithms to produce a robust

estimation of the road, which is used to create control policy

for autonomous navigation.

A. Road Region Estimation

The input image size of 320x240 image is first down-

sampled to 80x60 to speed up the process and to filter

out spurious noise input. The road region estimator then

segments the image to large contiguous regions using [16]

and search for the segmented road region. The graph-based

algorithm recursively merge image regions if the intra-region

differences is lower than the inter-region difference plus a

constant k (we set k = 400) Initially, the road center is
selected from the center of the image, assuming the robot

starts out on the road, facing the direction of the road

heading.

This is done by creating a small search window Wfixed

on the bottom center of the image (observe figure 3). The

region that covers the largest area in Wfixed, by the number

of pixels, is chosen to be the road region. The system then

computes the road color by averaging the pixel values in the

region, which will be used to update an appearance prior

estimated the Kalman Filter.

Road region selection

Swerving Case

Kalman Filter

Road Color Road CenterNormal Driving Case

Fixed Center Window (Wfixed)

Float Window (Wfloat)

if color is not
similar enoughif both windows

overlap by 60%

Fig. 3. Road region selection process. The estimator searches for the road
region in the segmented input image using the center Wfixed window if
the robot is moving steadily in the middle of the road. However, if the robot
starts to swerve from the center of the road significantly, it then switches to
Wfloat. The system switches back toWfixed, when the robot successfully
re-centers itself.

1044

In addition, the estimator also computes the road region

center because it indicates the direction of the road. This is

done by estimating a slope of a line that bisects the bottom

portion of the road region (observe the yellow trace in figure

3). The reason of estimating only using the bottom part is

because it is in the immediate front of the robot, which

is much more critical for determining the current motion

command. The far end of the region will be considered in

future time steps, when the computation is repeated.

After each frame, the estimator checks if the output road

region is similar (in number of pixel, coordinate location,

and color) to the one produced in the previous frame. In

occurrences where the robot swerves too far away from

the center of the road, there is usually a large deviation.

In such cases, it switches to an identically sized window

Wfloat, located at the previous road center estimation. The

switch allows the system to react quickly to a dramatic robot

movement. As the robot re-centers itself on the road,Wfloat

keeps track of the movement, and the estimator only switches

back toWfixed when it sufficiently overlaps withWfloat. By

normally using Wfixed, the estimator provides a subtle bias

to the select regions that are near the center of the image.

B. Road Boundary Estimation

Find Vanishing Point

Build Gabor Pyramids

Vanishing Point Voting

V

p

radius=0.35*Image diagonal

Find Robust Edges

Non-uniform Sampling

γ
Op

θp

Fig. 4. Vanishing point detection module. The module first compute Gabor
pyramids in 4 directions and 3 scales. It then computes the edge direction
confidence scores to select only the most robust edges. The module then
votes for vanishing point location using robust edges within .35*image
diagonal below each respective vertical coordinate [12]. To speed up the
process, the module performs a non-uniform sampling of the candidate
locations. That is, it densely samples the locations around the vanishing
points from the last 10 frames, as well as sparsely samples the rest of the
locations.

Figure 4 illustrates the process of finding the road using

vanishing point detection. This module is inspired by [12],

which does not readily run real-time. We, on the other hand,

optimize the implementation and significantly modify many

parts of algorithm to make it run 100 ms/frame in our robot.

One notable modification is to go from 36 orientations to

a more realistic 4, which requires more robust processing

throughout the algorithm for a comparable performance. In

addition instead of only using static information, we utilize

a temporal filtering process to increase robustness.

Using the input image, the estimator computes dyadic

Gabor pyramids Gα,s for Nangle = 4 orientations α (equally
spaced between 0 to 180 degrees), at Nscale = 3 scales s.
For each orientation, the estimator averages out the responses

(observe equation 1) from all scales to create a single map

at the largest resolution.

Ḡα(i, j) = 1/Nscale

Nscale−1
∑

s=0

Gα,s(
i

2s
,

j

2s
) (1)

It then calculates the confidence value of the edge direc-

tion Gabor responses in each location by comparing how

dominant the largest response SA(1) is with respect to the
second SA(2):

Conf(i, j) = 1 −
ḠSA(2)(i, j)

ḠSA(1)(i, j)
(2)

The pixels with high confidence values are selected to vote

for the vanishing point location.

For each location candidate V , the estimator computes the
likelihood by accumulating scores from a local neighborhood

of pixels in a half-disk region P . The contributing score of
each voting pixel p ∈ P is computed according to:

score(V, p) =

{

1
1+γ∗dist(V,p) γ ≤ 8◦

0 otherwise
(3)

with γ = 6 (V p, Op) denoting the angle between line
V p and the dominant angle vector at p, illustrated in the
Vanishing Point Voting sub-module in figure 4.

To speed up the process, we introduce a non-uniform sam-

pling over the vanishing point locations. We densely sample

the locations around (within 1/10 of the image dimensions)
the estimated vanishing points from the last 10 frames, and

sparsely sample the rest of the image. Observe the Non-

uniform Sampling sub-module in figure 4. On average, the

system evaluates around only 3 percent (30 times speedup)

of all possible locations.

The estimator then selects the highest scoring vanishing

point location and finds its left/right road boundaries by

computing the likelihood score for each candidate ray in five

degree spacing. We propose two improved and more efficient

methods: Gabor Response Variance Score (GRVS) and color

difference (CD). Observe figure 5 for illustration.

First, we introduce a novel GRVS method, which measures

the consistency of line l using only Nangle = 4 Gabor
orientations. The technique creates Nangle-orientation bins

Bα to store the Gabor response of every pixel on line l based
on its highest response angle. The GRVS is then computed

based on the bin with the highest count Bmax:

GRV S(l) =
(|Bmax|/|l|)

2

std(Bmax)
(4)

Here |l| refers to the total number of pixels on line l,
while |Bmax| and std(Bmax) are the total number of pixels
and Gabor magnitude standard deviation in bin Bmax. The

advantage of GRVS is that it does not require many Gabor

1045

Vanishing Point Road Support Ray

20deg 20deg

Ray i
Ray i+1

Ray i-1

140 deg / 5 each = 29 rays

Find Road AreaBoundary Score

R1
R2

Color Diff GRVS

Fig. 5. Finding Road Boundaries. From the vanishing point, we extend ray
with 5 degrees spacing and evaluate how likely each ray is a road boundary.
Refer to text for details.

orientation bins to establish line consistency. The assumption

is that if there exist a line, all the pixels on the line ought

to have similar Gabor responses (indicated by low standard

deviation), and orientation (by having a clear majority in bin

counts) even if the dominant angle is not aligned with the

vanishing point ray. Figure 6 illustrates the process.

VP 1

2

3

4

5

2

0˚ 0

90˚

Orientation Gabor Response Count

45˚

4 1

1

135˚

3 51 3

Gabor Response Bin

(Max Count Bin Bmax = 3 / Total Pixels |l| = 5)

Gabor Response Variance Score

GRVS =

Stdev(, ,)3 51

2

Fig. 6. Gabor Response Variance Score (GRVS). The Gabor responses of
the points along a candidate road boundary line l are indicated by with cyan
bars. The table to the right tabulates the total count of dominant angles for
each orientation. Here, the 45◦ angle wins out, and the result is used to
calculate GRV S(l).

The color difference (CD) method calculates RGB color

average of pixels within 20 degrees of each side of the ray,

with the inner road region denoted as R1 and the outer

flanking area as R2.

We also tested the system using HSV and LAB color

space, and find no significant performance difference.

Observe the Color Difference sub-module in figure 4 for

illustration. CD is computed using:

CD(R1, R2) = diff(R1, R2) − diff(RRoad, R1) (5)

The first term maximizes the contrast between the road and

flanking areas R1 and R2, as measured by color euclidean

distance. The second term, on the other hand, minimizes the

color difference between R1 and the current Kalman Filter

estimated road color RRoad.

The GRVS and CD scores are multiplied to obtain the

final likelihood score. We found that the combination of these

factors are more robust than either one to handle the variety

of road appearances.

The process is repeated to find the second road boundary

before the module computes the average road color and the

road middle point, located at the middle bottom of the area

enclosed by the two boundaries.

C. Combining Road Region and Boundary Estimation

Both road region and boundary estimation modules out-

puts the road color average and road middle point state vector

Xk =
[

R{r,g,b} k xk

]

(6)

where R{r,g,b} k is RGB color, and xk is the horizontal

location of the middle point. The Kalman filter integrates

these state vectors using a Zero-Acceleration prediction

model because the robot tends to stay on the road center

while moving forward and the road color appearance remain

similar to previous frame.

The Kalman Filter estimation is then fed back to each

respective module, thus indirectly incorporating information

from one module to the other.

Finally, the overall system computes the distance between

the image center the road center, and use it as a differential

input for a PID robot heading control to align the robot to

the center of the road.

III. TESTING AND RESULTS

We test the system accuracy in recognizing the center of

the road in one indoor (HNB) and three outdoor (AnF, Equad,

and SSL) environments. Observe figure 7 for example scenes

and table I for pertinent information about each site. We

carry out two different testing procedures: one to assess the

accuracy of the system in recognizing the center of the road

(section III-A), done offline and compared against ground-

truth, while the second is for autonomous robot navigation

(section III-B).

A. Visual Road Recognition

We manually drive the robot through the environments to

collect testing videos. In each frame, we then annotate the

left and right boundaries, and extending them to meet at the

vanishing point. We then calculate the road center point using

the technique explained at the end of section II-B.

On some frames, it is harder to clearly label the two

sides of the road, in cases such as an intersection. For

this experiment, we skip these frames altogether because

they have more than one heading option. In autonomous

navigation, whenever the robot has to make a decision near

an intersection, it selects the nearest road to the estimated

heading.

1046

Fig. 7. Example images from each testing environment. We display 4 example figures for sites HNB, AnF, Equad, and SSL. Below each figure, we
display the system’s road segmentation estimation, denoted by the red shading. In addition, we also added the vanishing point estimation, denoted by the
blue dot, with the green line extended being the road boundary. Also, we added a yellow line on the bottom of each image that points to the direction of
the robot heading. As we can see, the system works on various road appearance, width, and under many lighting conditions. Furthermore, it is also able
to overcome various challenges, such as pedestrians and sporadic shadows.

The error is defined as the deviation between the human

annotated and system estimated road center point. In our

robot camera setup, one pixel at the bottom of the image

is equivalent to one centimeter. We report the experiment

results in figure 8.

We include the results of our road region and boundary

estimation, as well as the combined performance. In addition,

we also compare our system with two other road recognition

systems: [9], which primarily uses region color appearance

to find the road, and [12], which detects the vanishing point

in the image. Note that our system runs real time, 100

ms per frame, which is critical for autonomous navigation

tasks. As a comparison, our implementation of [9] runs

780ms per frame, while [12] runs 43 seconds per frame. All

experiments for this section is run on a 2.2GHz Intel Core2

Duo processor.

Overall, our full system is able to estimate the road center

reliably in all testing environments as its average error is

under 5 percent when compared to the road width. For

example, in AnF, the average accuracy is 9.41cm, while the

road width is 2.12m. Furthermore, our full system produces

the best overall result, when compared to the individual

algorithms within the system. Although the full system may

not always produce the best result for every environment, it is

the most stable when compared to the individual algorithms.

The road region estimator, which gives the best result in

HNB and AnF, tends to perform optimally in environments

with uniform road appearance. However, it is less effective

on roads where there are more inconsistencies because of

factors such as shadows. This case is illustrated by the

example in the fifth column of figure 9. On the other hand,

the road boundary estimator has higher tolerance to many

TABLE I

EXPERIMENT SITES INFORMATION

HNB AnF Equad SSL

Traversal Length 36.67m 105.75m 138.27m 326.00m

Total Frames 3919 7217 5371 8569

Road Width 1.5m 2.12m 3.1m 4.47m

road appearances, but often with lower accuracy, such as

the slightly off right boundary detection in the forth column

of figure 9. The overall system, however, balances these

characteristics as it approach the accuracy of road region

estimator in uniform roads, but with the robustness of road

boundary estimator to provide usable navigation results even

in very challenging conditions.

10

20

30

HNB AnF Equad SSL Total

Region Boundary Full System Rasmussen, etal. [9] Kong, etal. [12]

E
rr

o
r

(c
m

)

Fig. 8. Road Recognition Results. The bar graphs illustrate the performance
of the different algorithms in recognizing road in different environments.
Performance is measured by the difference between the ground truth and
estimated road center in cm. We report the results by the individual
algorithms in our approach, road region and road boundary estimation, and
the overall system. In addition, we also include implementations [9] and
[12]. Note: shorter bars are better, the shortest in each group denoted by a
star.

1047

Road Region

Estimator

Road Boundary

Estimator

Full System

Rasmussen, etal.

[9]

Kong, etal.

[12]

Fig. 9. System Comparison Examples. The different systems outputs are organized to different rows with the first three rows occupied, in order, by the
individual algorithms in our approach, road color region detection and road boundary estimation, and then the overall system. In addition, we also include
an implementation of systems by [9] (forth row) as well as [12] (fifth row).

In addition we also compare our individual algorithms

with similar alternative methods. Much like our road region

estimator, the system by [9] also primarily utilizes color,

rather than edge information, to detect the road. However,

their system uses a fixed set of triangular templates as shape

prior. Ours, on the other hand, segments the road region

without a pre-conceived notion of road shape, and directly

extract the road middle point for navigation.

The system [9] is accurate if the triangular road shape is

sufficiently visible with similar flanking areas. However, in

urban environments, the flanking areas are more complex.

For example, one side can be similar to the road, such as in

column three of figure 9. Our road region estimator, on the

other hand, is not constrained with a particular shape and

can adapt to this difficulty as can be seen in the example. Its

drawback, however, is that it fails when a significant part of

the road is covered by a shadow, such as in th fifth column

of figure 9. Here, the estimator splits the road into multiple

segments and selects the one that appears most similar to

the color prior. In this case, a shape prior would be helpful,

which in our overall system comes from the road boundary

estimator.

We also compare our road boundary estimator with [12].

These two vanishing point-based algorithms differ in that the

former utilizes fewer number of edge orientations than the

latter, 4 and 36, respectively. In our experiments, we find

that even with a small number of orientations, our system

maintains the same level of performance, while operating

in real-time. This is because a lot of the edge information is

repeated between neighboring angles. We also found that the

two diagonal Gabor angles (α = 45◦ and 135◦) contribute
the most in the vanishing point voting. Another important

factor that we added is temporal information, which we

found to be critical because static edge information can

be noisy and often times makes it hard for a system to

distinguish the true vanishing point from the false ones. By

adding temporal continuities our estimator is able to discard

sporadic false positives and improve its accuracy.

Both algorithms, however, have a difficulty in specifying

the road shape when only one boundary is viewed in the

image (sixth column of figure 9) when the robot swerves

slightly off course. What usually occurred is that the true

road vanishing point does not receive enough support. With

the help of the road region estimator the overall system can

alleviate the error and still outputs a road center much closer

to the ground truth center.

Given these results we proceed to test system for au-

tonomous navigation. In such scenario, any erroneous devi-

ation produced in one frame will be amplified in subsequent

frames if the robot does not make the proper correction.

B. Autonomous Navigation

We test the system using our robot, Beobot 2.0 [15], which

is 57cm in length and 60cm in width. The camera itself

has a regular 60 degree field-of-view and is mounted 117cm

above the ground, at the center of the robot. We measure

autonomous navigation success by calculating the percentage

of distance in which the robot is driving autonomously.

Observe figure 10 for an example trajectory.

1048

Start
End

Total Length 60.54m

Fig. 10. Example trajectory of autonomous navigation using the presented visual road recognition system. Here Beobot 2.0 has to traverse through a
60.54m route. The autonomous navigation is indicated by the green trail, while the remote control (to rescue the robot from hitting a wall) is colored in
red. The reason why the robot moved to the right is because it decided to take the right turn on a road that suddenly decreases its width by a half. In
addition, we also the added a few example images to show the different parts of the route, where we see that the robot has to manage its path around
people and other vehicles.

TABLE II

AUTONOMOUS NAVIGATION PERFORMANCE RESULTS

HNB AnF Equad SSL Total

Path Length 36.67m 59.09m 64.79m 155.24m 316.60m

Auto. Drive 36.67m 57.50m 62.12m 153.45m 309.74m

Manual Drive 0.0m 1.58m 2.38m 1.78m 5.74m

Performance 100% 97.33% 95.87% 98.84% 98.19%

We run the robots five times on each site and average its

performance. We selected the longest continuous path within

each site so that the robot does not have to make decisions

at the intersection. Table II reports the length of the route as

well as the percentage of trajectory in which Beobot 2.0 is

driving by itself.

From the table, we can see that the system rarely fails,

averaging 98.19 percent of autonomous driving. One reason

for the failure was that the robot was stuck in a small

opening, while going through a door. This occurred because

the door frame protrusion was thin, and it quickly went out

of the camera field of view. When the robot saw the frame,

it tried to avoid it for a short period, until the door was out

of the field of view. But then it saw what was beyond the

frame, and tried to re-center itself using that portion of the

road, not knowing the door frame was in its blind spot. We

believe, this case can be improved by better modeling of the

environment, using techniques such as SLAM (Simultaneous

Localization and Mapping).

Another problem that we encountered was that the road

concrete some times extruded out to a bench seating or a bike

parking area. Most times, the robot was able to stay on the

road and move beyond the extruded area. However, once or

twice, the robot would move toward the extruded area such

as in figure 7, specifically just prior to the red section of the

trajectory. As the robot traversed through the extruded area,

its lateral location tend to be biased toward the extrusion to

center itself on the road. At some point, the left boundary of

the road would be move out of the field of view, while the

extrusion itself projected to a triangular shape. The system

then fit a road to the corner of the extrusion, making the

robot deviate from the road. In this case a wider angle lens

or an omni-directional camera would allow the system to

maintain a view of the true road, and prevent such situation.

IV. DISCUSSION AND CONCLUSIONS

In this paper we present a novel monocular image-based

road recognition system that fuses road region and boundary

estimation. By using two complementary ways to character-

ize the road, we are able to produce a system that is robust in

various indoor and outdoor environments. In the road region

estimation, we introduce an straight-forward segmentation-

based technique to isolate the road without shape constraints.

On the other hand, in the road boundary estimation, we

propose an efficient vanishing point detection, to allow our

system to run in real-time on a robot.

For example, we add a non-uniform sampling mechanism

in the vanishing point voting step to reduce computation

time. In addition, we demonstrate that even with a reduced

number of orientations, our system still maintain its accuracy

because of the use of a new Gabor Response Variance

Score (GRVS) method. Furthermore, we also compare our

algorithm with other approaches, and show that it performs

better than others in our dataset.

Finally, our contribution also includes a series of field tests

to show that our system is able to autonomous navigate in

both indoor and outdoor environments by reliably detecting

the navigable road area.

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of NSF,

General Motors, ARO and DARPA.

The authors affirm that the views expressed herein are

solely their own, and do not represent the views of the United

States government or any agency thereof.

1049

REFERENCES

[1] Z. Hu, H. Wang, L. Zhang, and H. Yu, “Laser based sensor boundary
recognition of mobile robot,” in International Conference on Network-
ing, Sensing and Control, Okayama, Japan, March 2009.

[2] K. Wurm, R. Kummerle, C. Stachniss, and W. Burgard, “Improving
robot navigation in structured outdoor environmets by identifying
vegetation from laser data,” in Intelligent Robots and Systems (IROS),
oct. 2009, pp. 1217 –1222.

[3] S. Hrabar and G. Sukhatme, “Vision-based navigation through urban
canyons,” Journal of Field Robotics, vol. 26, no. 5, pp. 431 – 452,
2009.

[4] J. Cunha, E. Pedrosa, C. Cruz, A. Neves, and N.Lau, “Using a depth
camera for indoor robot localization and navigation,” in RGB-D RSS
workshop, Los Angeles, California, 2011.

[5] Z. Chen and S. Birhfield, “Quantitative vision-based mobile robot
navigation,” in International Conference on Robotics and Automation,
May 2006, pp. 2686 – 2692.

[6] C.-K. Chang, C. Siagian, and L. Itti, “Mobile robot vision navigation &
localization using gist and saliency,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2010, bb,
both first authors contributed equally.

[7] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Intl. Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[8] C. Tomasi and T. Kanade, “Detection and tracking of point features,”
Carnegie Mellon University, Tech. Rep. CMU-CS-91-132, April 1991.

[9] C. Rasmussen, Y. Lu, and M. Kocamaz, “Appearance contrast for fast,
robust trail-following,” in International Conference on Intelligence
Robotics and Systems, October 2009, pp. 3505 – 3512.

[10] T. Kuhnl, F. Kummert, and J. Fritsch, “Monocular road segmentation
using slow feature analysis,” pp. 800 –806, june 2011.

[11] P. Santana, N. Alves, L. Correia, and J. Barata, “Swarm-based visual
saliency for trail detection,” in Intelligent Robots and Systems (IROS),
oct. 2010, pp. 759 –765.

[12] H. Kong, J.-Y. Audibert, and J. Ponce, “General road detection from a
single image,” IEEE Transactions on Image Processing, vol. 19, no. 8,
pp. 2211 – 2220, August 2010.

[13] P. Moghamadam, J. A. Starzyk, and W. S. Wijesoma, “Fast vanishing
point detection in unstructured environments,” IEEE Transactions on
Image Processing, vol. PP, no. 99, pp. 1 – 6, July 2011.

[14] M. Nieto and L. Salgado, “Real-time vanishing point estimation
in road sequences using adaptive steerable filter banks,” Advanced
Concepts for Intelligence Vision Systems Lecture Notes in Computer

Science, pp. 840 – 848, 2007.
[15] C. Siagian, C.-K. Chang, R. Voorhies, and L. Itti, “Beobot 2.0: Cluster

architecture for mobile robotics,” Journal of Field Robotics, vol. 28,
no. 2, pp. 278–302, March/April 2011.

[16] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, pp.
167–181, 2004.

1050

