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Mobile Robot Navigation in 2-D Dynamic Environments

Using an Electrostatic Potential Field

Kimon P. Valavanis, Timothy Hebert, Ramesh Kolluru, and

Nikos Tsourveloudis

Abstract—This paper proposes a solution to the two-dimensional (2-D)
collision free path planning problem for an autonomous mobile robot uti-

lizing an electrostatic potential field (EPF) developed through a resistor net-
work, derived to represent the environment. No assumptions are made on
the amount of information contained in the a priori environment map (it

may be completely empty) and on the shape of the obstacles. The well-for-
mulated and well-known laws of electrostatic fields are used to prove that

the proposed approach generates an approximately optimal path (based on
cell resolution) in a real-time frame. It is also proven through the classical

laws of electrostatics that the derived potential function is a global naviga-
tion function (as defined by Rimon and Koditschek [11]), that the field is

free of all local minima and that all paths necessarily lead to the goal posi-
tion. The complexity of the EPF generated path is shown to be ( )
where is the total number of polygons in the environment and is the

maximum number of sides of a polygonal object. The method is tested both
by simulation and experimentally on a Nomad200 mobile robot platform

equipped with a ring of sixteen sonar sensors.

Index Terms—Electrostatic potential field, mobile robots, navigation.
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I. INTRODUCTION

This paper proposes an Electrostatic Potential Field (EPF) based so-

lution to the Mobile Robot (MR) path planning and collision avoidance

problem in two-dimensional (2-D) dynamic environments. The EPF is

obtained in four steps:

1) create an occupancy map of the environment;

2) create the corresponding resistor network that is representative

of the MR’s operational environment;

3) create the conductance map from the resistor network;

4) solve the resistor network to obtain the potential field.

The laws of electrostatic fields are used to prove that the proposed ap-

proach generates in real-time a local minima free minimum occupancy

approximately optimal path, and that all generated paths necessarily

lead to the goal position. No assumptions are made on the amount of

information contained in the environment a priori map; the map may be

(initially) completely empty. However, a complete sensor based model

of the environment is built and information from environment maps is

combined with on-line sonar sensor data, to plan, replan and execute a

collision free path in real-time. The resolution of the environment map

depends on the “size” of the smallest possible square cell in the grid.

The MR is modeled as a “point” about its center of mass; hence, the 2-D

workspace and the configuration space coincide. The MR is treated as a

“point source” where current is injected into it to compute the adjacent

cell resistances. Further, no assumptions are made on the shape of ob-

stacles, their location and their velocities. Obstacles are stored as a col-

lection of line segments with their half-planes intersecting to form the

obstacle area. Obstacles are modeled as areas of high resistance within

an area of low resistance; thus, areas of high obstacle occupancy are

mapped to high resistances and areas containing relatively few obsta-

cles are mapped to low resistances. Completely occupied cells of the

network are modeled as an infinite resistance (open circuit). The cell

the robot is assigned to is treated as an “empty cell” with no object,

so the robot may move through and out of the cell. With a maximum

potential at the robot’s initial position and the sole minimum at the de-

sired goal point, an EPF is created in which most of the current flow

is in areas of (least) minimum resistance, corresponding to a path of

minimum occupancy in the real environment while moving to the goal

point. Stated differently, the optimum path minimizes the sum of swept

occupancies (the total swept occupancy); the MR is pushed away from

the boundary of obstacles while being attracted towards the goal posi-

tion. It is shown that the complexity of the EPF generated path is linear

with respect to the number of obstacle edges within the environment,

O(mnM); where m is the total number of polygons in the environment

and nM is the maximum number of sides of a polygonal object.

The rest of the paper is organized as follows: Section II summa-

rizes related work and discusses the fundamental laws of electrostatic

potential fields, used as justification for the proposed solution. Sec-

tion III presents the path planner solution, Section IV identifies simi-

larities of the proposed approach with dynamic programming, and Sec-

tion V presents simulation and real-time results. Section VI concludes

the paper.

II. RELATED WORK AND BACKGROUND INFORMATION

A. Related Work

Most solution approaches to the MR navigation problem recommend

global navigation (generating a path leading to the goal point) and local

navigation (follow the global path avoiding collisions with obstacles).

A survey of techniques used for navigational planning along with a

S1083-4427/00$10.00 © 2000 IEEE
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comprehensive study of the problem is given in [39]. Global plan-

ners may be classified into roadmaps (visibility graphs, Voronoi dia-

grams, freeway net, and silhouette) [19]–[25], exact and approximate

cell decomposition approaches [26]–[29], and artificial potential fields

(APF’s). APF approaches generate a collision-free path from the field

formed by the obstacles and the goal point in the robot workspace [7],

[9]–[12]. Proposed solutions to overcome the problem of local minima

may be found in [8], [11], [13], [16]–[18], [32]. Several researchers

have also used the actual EPF [31], [36], [37], or even the magnetic

field [35] to solve a specific problem. In most cases a resistor network

is created as a hardware-based, analogue solution to a set of equations.

A comprehensive list of related references and a comparative study of

pertinent approaches including computational complexity comparisons

may be found in [12] and [16].

B. Background Information

Gauss’s law states that the total outward flux of the electric field in-

tensity over any closed surface S in free space equals the total charge

enclosed in the surface QS divided by the permittivity of free space ε.

Further, the curl-free electrostatic field E is the gradient of the vector

potential field φ. Combining Gauss’s law with the definition of electro-

static potential results in

r � E = r � (r�) = r2� =
QS

"
(1)

whereQS is the free charge in the Gaussian surface. In a closed system,

the only free charge is provided by external sources. At points of the

system that do not include sources the second derivative is equal to

zero, and Laplace’s equation is satisfied. Therefore, no minimum or

maximum is located internal to the field. At a source (sink), QS is

positive (negative) thus, a maximum (minimum) exists [1], [2].

Considering an arbitrary volume V bounded by surface S and with

a net charge Q within this region, it is known that the current I leaving

the region is the total outward flux of the current density vector through

the surface S

I =
S

D � ds = �
dQ

dt
= �

d

dt V

� � dv (2)

where D is the volume current density and ρ is the charge density. For

a stationary volume

V

r �D dv = �
V

@�

@t
dv or r �D = �

@�

@t
: (3)

For steady currents, charge density does not vary with time,r�D = 0:
Over any closed surface, the above equation results in an expression of

Kirchhoff’s Current Law (KCL)

S

D � ds = 0)
j

Ij = 0: (4)

Given a network of resistors, define K = 1 � � � Nas the set of all

nodes of the network. Each node of the network has a number of resis-

tors centrally tied. The actual number of resistors is determined by the

connectivity of the network. LetG be an N�1 matrix with gk the con-

ductance of each resistor of node k 2 K: In matrix form the complete

system of equations is A � V = J where A is an N �N matrix and V
and J are N � 1 matrices. The matrix V is the potential of each node

in the resistor network, J is the matrix of external current sources con-

nected to the network, and A is the system matrix. To obtain A; KCL

is applied to each node of the resistor network

k2K

Ilk = jl 8 l 2 K: (5)

Kl � K is the set of all nodes connected to node l; Ilk is the current

of the branch between nodes l and k; and jl is the total current from

external current sources entering node l: By replacing each branch cur-

rent, Ilk; with its equivalent statement as defined by Ohm’s Law, glk
being the conductance of the branch connected to the lth and kth nodes

(with l the central node of scrutiny), one gets

k2K

glk(v1 � vk) = jl: (6)

(vl�vk) is the potential drop from l to k; and glk = (gl � gk=gl+gk);
gkl = glk; 8fk; lg 2 K:

It is proven in [3] and [4] that the current in a network of linear pas-

sive resistors distributes itself in such a manner that the network settles

into a unique state of minimum power dissipation. The unique solution

to the resistor network system of equations is equivalent to minimizing

the instantaneous power consumed by the network and yields a max-

imum current path that follows the path of least resistance. The poten-

tial field created over a continuous surface, and through a discrete net-

work of linear passive resistors, is shown to be free of all local minima,

except at places of external sources or sinks.

III. THE PROPOSED SOLUTION

The navigation problem may be compared to the flow of electric

current within a sheet of conducting material. The proposed solution

implements a discrete form of the comparison, mapping obstacles into a

discrete resistor network. Through a combination of serial and parallel

resistances, the representational resistance matrix reduces to a finite

number of paths directly proportional to the number of objects in the

field. Each path has its head at the highest potential, and its tail at the

lowest potential corresponding to the initial and goal positions of the

MR, respectively. The path following the steepest gradient from the

initial position to the goal position will be the path of least resistance,

forming a minimal occupancy path from the initial position to the goal

position.

Four major modules: 1) Object Detection, 2) Localization, 3) Path

Planning, and 4) Collision Avoidance perform all tasks, while the

sensor based environment map generation and trajectory following are

being inherently included in the four mentioned modules [16]. The

algorithm to create the potential field follows four steps:

Step 1) Create an occupancy map of the environment

Step 2) Create the resistor network

Step 3) Create the conductance map

Step 4) Solve the resistor network to obtain the potential field.

A. The Occupancy Map

The potential field is actually used to calculate the path, however

cell decomposition is used to create the environment map. The space

in which the navigation takes place is first mapped onto a regular grid.

Level mapping and binary mapping is used to map the object into the

occupancy map. Fig. 1 shows, imposed on an object, the regular grid

used to perform the mapping into the occupancy map.

Both binary and level mapping are needed in a navigation approach.

In a global path planner, the resistor network must be able to scale the

mapping from the environment to the network so that the goal point

is included in the field. If the distance to the goal point is large, one

cell may map into a large physical area. If obstacles are smaller than

the cell size, a binary mapping technique is more likely to be unable to

find a path to the goal since it marks a single cell, which may only be

minimally occupied, as full. In this instance, if a level mapping tech-

nique is used, a minimally occupied cell is marked as such and the

robot is allowed to pass through the cell. The local collision avoidance

must not allow the robot to attempt to move through an occupied area;
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Fig. 1. Creation of the occupancy map. The robot is the circle. Sonar readings
are represented as lines radiating from the robot. For the Nomad200, new sonar
readings are obtained every 0.6 s.

thus, a binary mapping is required so that a physical area close to the

robot is rendered impassable by the presence of any object. Cells that

are close to the robot are mapped from the environment to the resistor

network using a binary technique; while more distant cells are mapped

according to the percentage occupancy of the cell—the level mapping

technique.

B. The Resistor Network and the Conductance Map

Once the occupancy map is generated, each cell is then mapped onto

a resistor network by replacing each cell in the occupancy map with

a set of eight resistors (N, NE, E, SE, S, SW, W, NW), each resistor

connected at a central point. The resistor network is obtained using the

/-norm approach. Each resistor is connected to one resistor from the

eight neighboring cells, unless the cell is on the boundary, in which

case those resistors on the outer edge(s) are left open circuited (infinite

resistance).

The value of the resistors is determined by the value of the corre-

sponding cell in the occupancy map as shown in Fig. 2 and by the

function of (7). Fig. 2 shows the sample resistance (heuristically deter-

mined) mapping function [16] utilized to map the occupancy of a cell

into the conductivity of a node in the resistor network. Three regions

of the map are marked to show the possible states of a node. If the oc-

cupancy of a cell places it in region I, the cell is classified as empty and

a maximum conductance is assigned. If the occupancy falls into region

III the cell is classified as full and the corresponding node is assigned a

minimum conductance. Region II corresponds to cells neither full nor

empty. The graph corresponds to the mapping function given by

f(x) = 10:0 � exp[�0:2(4:0 � x)3:05]: (7)

C. Formal Definition and Solution of the System of Equations

Formally, the overall system can be represented as follows.

Consider an environment map M; which contains obstacles of var-

ious shapes and sizes. The initial position of the robot is q0 and the des-

tination point is qf : Assume a square, bounded region centered about

Fig. 2. Resistance mapping function.

q0 which includes qf and can be divided into an n � n grid, X: The

grid is discretely represented by the matrix, C; where the value of each

entry (the occupancy) is given by cij ; the percentage of the area of the

grid cell occupied by obstacles of mapM: Mathematically, cij is given

by

cij =
Area(�ij \ M)

Area(�ij)
(8)

where ∩ is geometric intersection.

Consider a resistor network that consists of n�n nodes of resistors

each node containing eight resistors connected in parallel at one point.

The free end of each resistor is tied to one resistor from a neighboring

node. Let G be a matrix whose entries contain the value of the con-

ductances (inverse of the resistance) of each node of the network. Then

the function of (7) is a one-to-one and onto mapping from C to G such

that:

C
f(x)
�! G: (9)

Following KCL taken over the entire network, the matrix form of the

system of equations is

A � V = J (10)

where A is an (n2 � n2) matrix, called the admittance matrix; V is an

(n2 � 1) matrix representing the potential values at each node of the

resistor value; and J; the current matrix, is an (n2 � 1) matrix whose

values are non-zero only at points of application of external current

sources (the initial and final points only). The solution to (10) is

V = A
�1
� J (11)

and defines the discrete and bounded electrostatic potential field used

to determine the navigation path.

The boundaries of the field are defined at the outer cells of the net-

work and at nodes of the network whose corresponding occupancy cell

is marked 100% full. To determine a desired direction of travel from

the EPF, a vector is associated with each cell connected to the cell con-

taining the MR with magnitude equal to the amount of current flowing

through the specified branch. If the resistance between the central node

and all of its neighbor nodes is equal, then the potential drop can be

used in place of the current. The sum of these vectors is then reported

to be the direction of travel along the minimum occupancy path.
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D. Global Navigation Function

Rimon and Koditschek proposed a global navigation function to

specifically force the function used to generate the potential field to

have only one local minimum located at the single goal point [11].

Let 	 be a robot free configuration space, and let qf be a goal point

in the interior of 	. A map ': 	! [0; 1] is a navigation function if it

is

1) smooth on 	 (at least a C2 function);

2) polar at qf ; i.e. has an unique minimum at qf on the path-con-

nected component of 	 containing qf ;
3) admissible on 	, i.e., uniformly maximal on the boundary of �;

4) a Morse function.

The proposed EPF solution meets the four outlined criteria, and thus,

it is a global navigation function. The existence of the first derivative

of the electrostatic potential is proven by the fact that r� = (QS=");
where QS is the total charge applied through a source. The existence

of the first derivative of the potential field demonstrates the smooth-

ness of the function. Combining this result with Gauss’s Law shows

the existence of the second derivative of the potential field at points of

application of external sources. Points of the field that do not have a

connected external source have a second derivative of zero satisfying

Laplace’s equation. Further, a real-valued function on the free config-

uration space is said to be admissible if it is uniformly maximal on the

boundary of 	, that is, where the robot touches an obstacle

V (q)
= c 8 q 2 boundary(	)

< c 8 q 2 inside(	):
(12)

A boundary of the proposed EPF solution is a node at which the con-

ductance equals zero—when a node is open circuited. Strictly speaking

no comment on the potential of not connected points may be offered.

But since no current can flow into or out of a not connected node, it is

postulated that no path can intersect with the boundary. So the condition

is satisfied by the EPF. Further, according to Rimon and Koditschek,

it can be shown that trajectories of a dissipative system with admis-

sible potential energy that start with suitable initial velocity remain

away from the obstacles. Since the proposed EPF solution is compact,

and bounded, a controller obtained from the specified admissible func-

tion—Kirchhoff’s Laws—is bounded and steers the robot away from

the obstacles if some initial speed limit is imposed on the robot. The

fourth property is that a navigation function be Morse. A Morse func-

tion is one whose Hessian (the matrix of the second derivative) eval-

uated at the critical points is nonsingular. A simple explanation of a

Morse function is that there are no degenerate critical points in the field.

Note that the potential function is shown to satisfy Laplace’s equation

at all points within the field, thus, only saddle points exist at any critical

point within the field.

E. Linear Complexity Path Generation

As explicitly shown in [16], the complexity of the occupancy map

generation for each polygon is

C
(i)
OM = ni + size

2(4ni + I) (13)

for a total complexity given by

COM =

m

i=1

ni + size
2(4ni + I) (14)

where ni is the number of vertices of the ith polygon of the space,

size is the dimension of the resistor network (the network has size ×

size nodes), and m is the number of polygons in the space. If nM is

assigned to be the maximum number of vertices of any polygon in the

space, then it may be asserted that

COM � m(nM + size
2(4nM + I): (15)

All other procedures that follow the occupancy map generation rely

only on the fixed dimension occupancy map, operating with a constant

complexity, depending only on the size of the resistor network that is

fixed at run time. The values of the occupancy map are mapped in a

one-to-one and onto mapping to the resistor network. This process is a

simple numerical conversion from percentage occupancy to resistance

value based on (7). All that is required is a single pass through the

occupancy map, resulting in a complexity of

CIM = size
2: (16)

The solution of the system of equations is done over a sparse represen-

tation of the system matrix both before and after the factorization. The

complexity of Cholesky factorization using full matrices is found to be

O(N3)

C =

N

i=1

N

j=1

i�1

k=1

1 =

N

i=1

(N � i)(i� 2)

= (N + 2)

N

i=1

i�

N

i=1

i2 � 2N

N

i=1

1

= 1
2
(N + 2)N(N + 1)� 1

6
N(N + I)(2N + I)� 2N2

= 1
6
N3
� 3

2
N2 +

7
6
N: (17)

Making the system matrix sparse allows one loop to iterate over a con-

stant number much smaller thanN: Since the resistor network is a fixed

network, the connectivity of each node is the same regardless of the

mapping from the environment. Knowing the connectivity, not only

can the fill for a solution be predicted, but an optimal ordering for the

elimination can be performed off-line and then hardcoded into the cal-

culation of the solution [5], [21], [30], [33]. The complexity of finding

the Cholesky factorization of the system matrix including sparsity of

the system matrix and with previous knowledge of the created fill (with

c1 and c2 constants much smaller than N) is of the order of O(N)

C =

N

i=1

c1c2 = c1c2N c1; c2 � N (18)

The complexity of the total solution is the summation of (16)–(18)

C =COM + CIM + CS

=mnM +m(4nM + 1)size2 + 3size2 + size: (19)

Removing the non-variable terms, this reduces to O(mnM) which is

linear with respect to the variables, the number of polygons in the space,

m; and the maximum number of sides of any polygon, nM :

IV. SIMILARITY TO DYNAMIC PROGRAMMING

The Dynamic Programming (DP)-based approach to the shortest

path finding problem is divided into the sub-problems of finding the

next step plus finding the rest of the path with the total cost given by

the general expression [21], [24], [30]

C(u; v) = c(u; v) + c(v; f) (20)
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where u is the present node, v is the next step, and f is the final destina-

tion. The EPF-based solution may also solve the problem in a similar

manner. Ohm’s Law determines the electric current of a path as the

product of the potential and the conductance

I(u; f) = �(u; f) � g(u; f): (21)

When tracing a path through a resistor network from node u to node

f the path takes an initial step through only node v: After node v; the

path degenerates into a sequence of series and parallel branches (resis-

tances). The overall conductance of the path can be split accordingly

I(u; f) = �(y; f) � [g(u; v) + g(v; f)]: (22)

The total amount of current that flows through a path remains constant

due to the conservation of energy principle associated with a closed

electric circuit. When current in a path encounters parallel branches,

the current is split between the branches according to the conductive

strength of the branches. Since the path from u to f is initiated only

through node v; there is no current split; thus, I(u; f) can be seen en-

tirely in the branch current of I(u; v)

I(u; v) = I(u; f) = �(u; f) � [g(y; v) + g(v; f)]: (23)

Anywhere in the resistor network, the current at each step reflects the

conductance of the immediate branch, g(u; v); and the effective con-

ductance of the rest of the network, g(v; f); along the path.

Both DP and EPF algorithms require knowledge of the immediate

next step, as well as complete knowledge of the rest of the path. A dy-

namic programming algorithm recursively solves for the remainder of

the path, while the EPF algorithm utilizes the complete system of equa-

tions to solve for the effective cost of the remainder of the path. Dy-

namic programming algorithms, backtracking algorithms, and the EPF

algorithm all guarantee a shortest path approach. Both the DP and back-

tracking algorithms operate with a complexity magnitude of O(n2); n
is the number of nodes in the network. As previously justified, the basic

EPF solution may also be implemented to operate with O(n2) magni-

tude; recall that the variable N is the size of the system matrix which

is N � N; or equivalently n2 � n2:

V. SIMULATION AND EXPERIMENTAL RESULTS

Both simulation and experimental (real-time) results are presented

and several implementation issues are discussed. The proposed nav-

igation system has been implemented on the Nomad 200 robot using

the Cognos development software package that provides a communica-

tion link with the actual mobile robot [15]. It is mentioned that results

resemble experimental results as explicitly shown in [16] for most case

studies.

In a completely static environment, the EPF planner may generate

a complete path through a known environment in a single iteration;

the generated path is guaranteed to be approximately optimal (min-

imum total occupancy) at the given cell resolution level. However, as

the robot moves closer to the desired goal point, the path may be re-gen-

erated given a different cell resolution, if necessary. On the other hand,

in a dynamic environment, the EPF is recalculated at each sampling

time (that varies according to the cell resolution); when this is the case,

only the next step of the approximately optimal path is generated. In

a dynamic environment the EPF takes into account the previous path

changes in every iteration. In this manner, the dynamic environment is

reduced to a sequence of static snapshots (during one sampling time

interval). Results are presented next. Comments, justifications and dis-

cussion are given when necessary.

Fig. 3. Simulation test case 1 in four different static environments.

Fig. 4. Simulation test case 2 in two different static environments.

A. Simulation Results

Figs. 3–5 show simulation runs in several static environments

demonstrating the inclination of the EPF approach to maximize the

distance from the obstacles as the robot is driven along the path.

In these three simulation test cases, the environment was broken

into squares 110 × 110 pixels, corresponding to 11 × 11 in in the

environment. The effect of this imposed minimum resolution is seen

especially in Fig. 4(b). As the vehicle is attempting to move down a

straight hallway, the initial move is to center the robot, however, due

to the minimum resolution, the path overshoots and is not actually

centered between the two walls. Further, note that the occupancy value

of any cell corresponds to a single value representing the percent of

the cell filled by obstacles. In the case of binary mapping, all that is

known is that an object resides within the cell. Small obstacles in the

environment may be poorly represented, thus causing the generated

path to pass very close to the obstacle. In both cases of Fig. 5, the

obstacles are larger than the resolution of a single cell; thus oscillatory

behavior is almost non existent. The paths taken in these two examples

demonstrate the increase in effectiveness of the EPF solution as the

environment becomes more cluttered. The path of Fig. 5(b) is a very

smooth path that approaches the goal at all times.The path taken by

the robot at each point can be seen to maximize the distance from all

close obstacles. The path of Fig. 5(a) also attempts to maximize the

distance from the obstacle.

Fig. 6 demonstrates the ability of the EPF path planner to navigate

long hallways. The MR is shown at the end of the path. The path of

Fig. 6(b) after the robot has reached the center hallway appears to show

some discrepancy when compared with the path of Fig. 6(a). The sinu-

soidal path at the beginning of the path of Fig.6(b) is due to a high cell

resolution. Since the goal point is far away, each cell contains less in-

formation about the walls of the environment, slightly modifying the
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(a)

(b)

Fig. 5. Simulation test case 3 in two slightly different static environments.

path. As the robot moves closer to the wall, the occupancy of the cells

close to the robot increases and forces the robot to rebound off the wall

slightly. This effect is seen in many of the test studies when the resolu-

tion is very large compared to the size of the obstacles.

Fig. 7 demonstrates the case of a dynamic environment with a hidden

obstacle, and at the same time provides the clearest justification for an

on-line global path planner. The motion of the obstacle begins when

the robot reaches point A, and it slides into its final location. In this

case, it is assumed that the EPF path planner has complete knowledge

of the dynamic object, including its velocity vector. This allows the

robot to completely avoid the “blocked” area. With less precise infor-

mation about the moving obstacle, the path taken is much less ideal

than the one shown in this test case. In some simulation runs, when the

dynamic obstacle was completely unknown, the potential field avoided

the area as long as the sonar sensors identified the obstacle. Once the

sonar sensors lose sight of the obstacle, the potential field “forgets”

about the obstacle and attempts to plan a path through the gap of the

two objects. While the sonars detected the obstacle, if the EPF planner

pushed the robot far enough around the seven-sided obstacle, the path

planner planned around the obstacle avoiding the area of the moving

(a)

(b)

Fig. 6. Test case 4: two paths generated in a simulated hallway environment.

Fig. 7. Simulated dynamic environment test case 5.
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(a)

(b)

(c)

Fig. 8. The results of three different, real-time test runs.

object. Observe that with knowledge of the overall structure of the en-

vironment the EPF approach directs the robot to move not necessarily

in the direction of the goal, but in the direction which generates the

most efficient path to the goal. The EPF approach, knowing that the dy-

namic obstacle will block the intended path has enough time to modify

the path and completely avoid the area of the moving obstacle. Com-

plete knowledge of the environment is unlikely in dynamic situations,

making this particular behavior more of an ideal than a reality and not

suitable in rapidly changing environments.

B. Experimental Results

Real-time experimental results have been obtained using the

Nomad200 in a laboratory environment. The room is a clean environ-

ment with rectangular obstacles and measures approximately 300 in

by 150 in. The grid size used to calculate the EPF-based path was set

to be 13 × 13 giving a sampling rate of approximately 1 s. (Note that a

grid size of 11 × 11 reduces the sampling rate to approximately 0.65 s.)

The objects were placed in the room, their position measured and the

Fig. 9. Experiment in a realistic structured environment with moving
obstacles.

(a)

(b)

Fig. 10. Navigation in the same environment. (a) Simulated and (b) real time
results.

result placed in a map, which can be viewed by the Cognos software

package. The robot is localized within the room before each test run.

The position of the robot is recorded at regular time intervals and

the subsequent path is displayed through the Cognos’s GUI. During



194 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 2, MARCH 2000

(a) (b)

(c) (d)

Fig. 11. Occupancy map and potential field of two different environments. (a) is the occupancy map whose solution is shown in (c), and (b) is the occupancy
map whose solution is shown in (d). A contour mapping of the potential fields of (c) and (d) reflect the position of equipotential surfaces in the field.

the test executions, all programs were run, under the Linux operating

system, directly on the main processor of the robot, a Pentium 133.

Fig. 8 displays three different, real-time runs of the EPF solution. The

paths displayed show the robot as the solid circle at the end of the

traversed path. The circles along the path show the robot’s position at

regular intervals. In all experimental runs, the robot completed the run

from the initial position to the desired end point with no collisions. No

localization module was used with these test runs.

The testbed shown in Fig. 9 is the actual overall floor plan of our

laboratory facility. The robot starts from point A and the final destina-

tion is point C. Moving obstacles, humans in this case, force the robot

to divert from its path. Obstacles’ trajectories are represented with the

dashed line, while the robot’s trajectory is represented with the red line.

The robot reaches the goal point avoiding collisions.

Fig. 10 compares the navigation results using the Cognos simulation

package and the Nomad 200 robot, for the same test case (environment,

goal points, and initial position). The initial and final positions are the

same with a single intermediate goal point located at point A. As the

robot tracks to the final position; it attempts to pass between the ob-

stacle in the middle of the room and the uppermost obstacle. As the

robot reaches point B of the path, a hidden obstacle (a human in the

experimental case) moves to block the path of the robot with a speed

roughly equivalent to the speed of the robot. The potential field knows

neither the presence nor the velocity vector of the obstacle a priori.

C. Discussion

The effect of different parameters within the occupancy map and the

resulting effect on the potential field are explicitly shown in Figs. 11

and 13. Fig. 11(a) shows the occupancy map of an environment devoid

of obstacles. The resulting potential field of Fig. 11(c) demonstrates

the resulting potential field used to generate the optimal path. A single

obstacle is inserted into the environment of Fig. 11(b). The potential

field generated for this mapping is shown in Fig. 11(d). In the figure

of the potential field, the lines in the XY -plane represent a contour

drawing of the potential field corresponding to equipotential surfaces

within the field.

All paths will move from one line to the next in the direction of the

tangent of the line. The intensity of the lines in the figure represents the

relative speed of the negative descent of the potential field. Areas of the

occupancy map that contain obstacles are represented as depressions

within the field. Thus, the flat surface at the top of the occupancy field

represents the free space of the environment.

Fig. 12 demonstrates the effect of resolution on the occupancy and

subsequently on the potential field. The physical area of the environ-

ment to be mapped into a single cell of the occupancy map is deter-

mined by the relative distance of the initial position and the goal po-

sition. A larger resolution of the cells implies that less information is

represented per cell of the occupancy map. However, a larger area of
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(a) (b)

(c) (d)

Fig. 12. Two different mappings, and related potential field, of the same environment. The resolution of the occupancy map reflected in (a) is smaller than the
resolution of the cells of the occupancy map in (b). The availability of more paths in the potential field of (d) as compared to the field of (c), reflects the increased
area covered by the mapping. The contour lines of (c) and (d) reflect the equipotential surfaces of the respective potential field.

the environment can be represented. If the goal point is near the edge

of a map with a certain resolution, increasing the resolution will move

the goal point to a cell which is more central to the map, allowing more

paths to be potentially generated. In Fig. 12, the additional paths are

especially seen in the contour lines of the potential field of Fig. 12(d).

Fig. 12(a) is the occupancy map, which corresponds to the potential

field of Fig. 12(c), and Fig. 12(b) is the map which corresponds to the

potential field of Fig. 12(d).

Another method to incorporate more of the environment into the oc-

cupancy map, and thus into the solution space of the potential field, is

to increase the size of the grid. As more cells are added to the grid,

more of the environment can be represented without changing the res-

olution of the current cells. When deciding the desired size of the grid

the desired time of computation should be considered. Even though the

computational complexity for the solution of the potential field is a con-

stant, and thus does not show in the overall computational complexity,

the majority of the runtime of the process is consumed through the cal-

culation of the solution of the resistor network. Thus, a resistor grid

which is very large would take an inordinate amount of time to solve,

negating any advantage gained through increasing the size of the grid.

VI. CONCLUSIONS

The proposed potential field follows the natural laws of electrostatics

to build a single EPF represented discretely as a lumped element re-

sistor network. A single metric, resistance, reflects both the distance to

the goal and the presence of obstacles. A system of linearly independent

equations is solved to generate two related fields, the scalar potential

field and the vector current field. Tracing a path of maximum current

flow through the branches of the network is equivalent to tracing a path

of minimum resistance that maps to a minimum occupancy path.

Minimizing area occupancy along a navigation path inherently in-

corporates two important navigation constraints: minimize the distance

traveled and avoid collisions with obstacles. Since the optimum path

minimizes the sum of swept occupancies, a straight-line path gives a

minimal occupancy path in an area without obstacles. An obstacle in

the environment not only effects the immediate cells of the resistor net-

work; the resistances of all regions of the network are affected. Com-

pletely occupied cells of the network are modeled as an infinite resis-

tance, or more simply put as an open circuit. Thus, the optimum path,

seeking to minimize the total occupancy of the path, is pushed away

from the boundary of obstacles, yet is attracted towards the goal posi-

tion.

The “occupancy” optimization criterion has several advantages over

a simple distance criterion. A distance optimization criterion, or cost

function, cannot be variable—the distance between any two points is

fixed. Thus, no other allowances can be incorporated into the cost func-

tion. On the other hand, the occupancy of a cell describes the volume

of obstacles in the environment, or the smoothness of the ground in

the environment, or any combination of quantities that may effect the

quality of the path through the area of the environment.
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The result of the EPF solution is a minimum occupancy path. The

immediate next step plus the rest of the path determine the complete

path. The network resistance of the rest of the path is an effective resis-

tance; it is the series and parallel combination of all connected nodes

between the next step and the goal point. A very low resistance cell in

parallel with a very high resistance cell will average out to a medium

resistance path. An averaging happens as the resistor network’s system

of equations is solved. Within a long hallway, the effective resistance

of the space immediately next to the two walls is highest. The effective

resistance between the two walls forms a trough with the lowest point

the exact center of the hallway. A robot following the path of lowest

resistance through the hallway tends to center itself in the hallway; in

effect, maximizing the distance from all obstacles in the immediate en-

vironment. This affect is seen between any grouping of objects through

which the EPF path goes.
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