
Title Mobile robot navigation in dynamic environments
using omnidirectional stereo

Author(s) Koyasu, Hiroshi; 三浦, 純; 白井, 良明

Citation Proceedings - IEEE International Conference on
Robotics and Automation. 1 P.893-P.898

Issue Date 2003-09

Text Version publisher

URL http://hdl.handle.net/11094/14065

DOI

rights

c2003 IEEE. Personal use of this material is
permitted. However, permission to
reprint/republish this material for advertising
or promotional purposes or for creating new
collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted
component of this work in other works must be
obtained from the IEEE..

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Proceedings of the 2003 IEEE
Internatiooal Conference 00 Robotics & Automation

Taipei, Taiwan, September 14-19, 2003

Mobile Robot Navigation in Dynamic Environments
using Omnidirectional Stereo

Hiroshi Koyasu, Jun Miura, and Yoshiaki Shirai
Department of Computer-Controlled Mechanical Systems

Osaka University, Suita, Osaka 565-0871, Japan
{koyasu,jun,shiraiJ@cv.mech.eng.osaka-u.ac.jp

Abstract
This paper describes a mobile robot navigation method

in dynamic environments. The method uses a real-time om-
nidirectional stereo which can obtainpanoramic range in-
formation of 360 degrees. From this panoramic range in-
formation, the robotfirst estimates its ego-motion b.v com-
paring the current and the previous observations in order
to integrate observations obtained at different positions.
The uncertainty in the estimation is also calculated. Next,
the robot recognizes and tracks moving obstacles. Finally,
the robot plans a collision free path by a heuristic plan-
ner in space-time considering the velocify uncertainty of
observed obstacles. Experimental results show the effec-
tiveness of our method

1 Introduction
Avoiding collision with moving obstacles is one of the

important functions of mobile robots operating in dynamic
environments. To avoid collision, the robot needs two abil-
ities; one is recognizing dynamic environments, and the
other is planning a collision free path.

Recognition of obstacles usually requires temporal inte-
gration of sensing data to cope with uncertainties of sensor
data and changes of an environment. To integrate sensing
data which is obtained from a moving observer, a reliable
ego-motion estimation is indispensable. Since dead reck-
oning suffers from accumulated errors, an ego-motion esti-
mation based on external sensors such as vision is needed.

For the ego-motion estimation or localization problem,
many works use a feature-based matching (e.g., [I] , [3]).
Such methods depend on the existence of features in envi-
ronments. Moreover, finding matches and solving a mini-
mization problem require much computation.

Methods using featureless matching are also proposed.
Lu et al. [SI proposed two ego-motion estimation methods
using a laser range finder. Both methods are based on the
correspondence between 2D contours obtained from the
current and the previous range information. Laser range
finders which scan a 2D plane have a drawback that ob-
jects at a specific height can only he detected. Moreover,

0-7803-7736-2/03/$17.00 02003 IEEE

since the methods compare only two scanned data, it may
not be well applicable to the case where the uncertainty of
range data is relatively large. Kidono et al. [6] proposed
a method for estimating the hest ego-motion which mini-
mizes the difference between two consecutive range data
obtained by stereo. Our previous paper [7] applied this
method to an omnidirectional stereo to solve the problem
of narrow field of view.

These featureless matching-based ego-motion estima-
tion methods still have several problems. They only
estimate the most probable ego-motion: this sometimes
causes false range data matches in subsequent obsewa-
tions. Moreover, they seem sensitive to noise in range data
because they use only two range data. This paper, there-
fore, proposes a new ego-motion estimation method which
uses a sequence of range data for ego-motion estimation.
The method also estimates the uncertainty of ego-motion.
By estimating the uncertainty, the method can evaluate the
reliability of each range data matching, thereby excluding
unreliable matchings caused by moving obstacles or false
stereo matches.

Once an ego-motion is estimated, the robot updates the
free space map and detects moving obstacles. The candi-
dates are then tracked by the Kalman filter. We use our
previous method 171 for obstacle detection and tracking.

To plan a collision free path in dynamic environments,
the robot must consider moving obstacles. Fiotini et. al.[4]
proposed a velocity obstacle model, in which a collision
possibility cone is calculated for the robot velocity; the
method, however, does not consider the uncertainty of oh-
stacle velocity. This paper employs a heuristic path planner
which uses a space-time model with uncertainty [2].

We conducted navigation experiments with avoiding
moving obstacle using our mobile robot (see Fig. 1).
The robot is equipped with a omnidirectional stereo sys-
tem. Fig. 2 shows an example panoramic disparity image,
whose size is 720x100 and the disparity range is 80. The
system can generate a disparity image in 0.2 [SI using a PC
of dual-Athlon MP 2200+. Refer to [7] for the detail.

893

mailto:koyasu,jun,shiraiJ@cv.mech.eng.osaka-u.ac.jp

Figure 2: Omnidirectional disparity image. Brighter pixels indicate larger disparities.

-
Figure I: Our mobile robot

Direction [degree]
Figure 3: Example range profile.

2 Ego-Motion Estimation
We first compute the uncertainty of the current robot po-

sition to determine a set of possible robot positions. Next,
we calculate the difference between the view of the current
and the previous range data for each candidate pair of the
position and the orientation. Finally, we determine the cur-
rent position and orientation with their uncertainties by a
weighted least square-based estimation.

2.1 Obtaining 2D Range Profile
To make a map of static obstacles and to adopt a visual

ego-motion estimation method, we first extract the nearest
obstacle in each direction. From this data set, a 2D contour
(called range profile) of the current free space centered at
the robot position is obtained. Fig. 3 shows the range pro-
file obtained from the disparity data shown in Fig. 2. In
Fig. 3, the horizontal axis represents the viewing direction
from the robot and the vertical axis represents distance to
obstacles. The resolution of the direction is about 0.5 de-

grees. Note that if no range data is obtained for a direction,
the distance for the direction is set to zero.

2.2 Uncertainty Model of Robot Motion
The positional uncertainty increases as the robot moves

due to slippage of wheels or a quantization error of odome-
try. We model the uncertainty by a three-dimensional nor-
mal distribution; the so-called 3u ellipsoid obtained from
the covariance mauix Zx, represents the uncenainty re-
gion, where X = (x. y, t?) is the robot’s state. The posi-
tional uncertainty on (x,y) is calculated by projecting the
ellipsoid on the x-y plane and the orientational uncertainty
is calculated as its marginal distribution on B. These uncer-
tainties are used for predicting possible robot positions and
orientations in ego-motion estimation.

2.3 Comparing Range Profiles
We sample at least nine candidate positions inside the

predicted uncertainty region for the weighted least square-
based estimation. If the distance between the neighboring
candidates is larger than a threshold (currently, 10[cm]),
the number of candidates is increased. Candidates for
the robot orientation are also generated by discretizing the
range of the orientational uncertainty with the angular res-
olution of the range profile.

For each pair of candidate position and orientation, we
can compute the view of a previous range profile. By com-
paring such views of the previous k range profiles with the
cment range profile, we calculate the difference between
these range profiles.

In a candidate position and orientation (x. y, $), a differ-
ence of a disparity of direction B between the current and
the ith previous observation is calculated by:

where D,(t?) represents the disparity in direction t? at time
is the variance of the disparity D!?T’(S - 6);

~2 is the vanance of the observed disparity (currently,
is calculated by the positional error of time

f; a2D;l:’,#-d

894

. :

(a) difference values

(b) estimated probability distribution
Figure 4 Estimation of the positional distnbutian

f - i, the uncertainty of the disparity of the observation
at f - i, and the motion uncertainty of the current frame.
d(x , y. 4, i, 0) represents the Mahalanobis distance; if D,(B)

,-; (e ~ @) are from the same obstacle, d is assumed
to follow a x2 distribution. Therefore, when d is larger
than a certain threshold determined from the x 2 distrihu-
tion, or when D,(H) or D:::’(Q - 4) is not obtained, we do
not take the corresponding direction into consideration. By
this way, the effect of false matches in stereo and that of the
moving obstacles can he reduced.

The difference of range profiles is then evaluated by:

and Dlw)

where [emjn, Lr] represents the range of possible view-
ing directions (corresponding to the right and the left end
of panoramic image); N(x, y. 4, i) indicates the number of
data for which the difference of disparity is obtained. This
equation calculates the sum of the averaged squared dif-
ference between range profiles normalized by the uncer-
tainty of the disparities. Notice that we do not compare
distances hut compare disparities in calculating the differ-
ence because the error of disparity is constant while that of
distance is larger for a longer distance.

2.4 Estimating Ego-Motion
Our previous method [7] selected the robot position and

orientation which minimizes the difference between range
profiles. However, such a method often leads to an incor-
rect estimation of the position and orientation, particularly

in an environment which does not have enough objects, For
example, in a comdor, the reliability of the estimated posi-
tion is high for the perpendicular direction to the comdor,
while it is low to the direction along the corridor. In such a
case, the estimated position along the corridor may be in-
correct due to false matches caused by noises and moving
objects. Fig. 4(a) shows a distribution of difference values
Diff around the predicted position. As shown in the fig-
ure, the uncertainty distribution of the estimated position
is considered to be ellipsoidal; the reliability of the estima-
tion is low along the longer principal axis of the ellipsoid.
We, therefore, estimate not only the robot position and ori-
entation but also their uncertainty.

The probability distribution of the position and orienta-
tion can he estimated by the difference values around the
estimated point. Nickels and Hutchinson [9] solved a sim-
ilar problem for the SSD-based feature tracking; they esti-
mated the uncertainty of the target localization in the im-
age. To estimate the uncertainty, they first calculate the
SSD values around predicted position, then convert them to
response distribution, which is defined by Singh and Allen
[IO]. The response distribution calculates the confidence
of each estimated position.

In our method, the response distribution is represented
by the following:

r(x.y34) = exP(-KWky,4)) . (3)

where K is used as a normalization factor, which is deter-
mined so that the following equation holds::

K min(Diff(x, y. 4)) = c, (4)

where c is constant (currently, 5).
Since the response distribution can he interpreted as a

probability distribution of the position and orientation, the
hest position and orientation are determined by a weighted
least squares method.

L y , m r(*,y. 4) ~
Cx,,.m r(x, Y. 4)
Cx,yo r(x, Y . dr j =
C,,y.m r(x. y. 4)

$ = C.s.m r(x.y. 414
Cx,y.m r(x. y. 4)

p =

(5)

Under the assumption of additive zero mean indepen-
dent errors, the estimated error covariance matrix is also
calculated by:

X’,.* <=.Y.m) ’

LJ,# r (x.Y#l lx-m-~) Lyr rlx.Y.@)(x-*)v-N La,# rl+y.m,lx-i)(m-h
Lo,+ r(x,Y.m) E.s* rlrY*l E,,y* <=.Y.m)

E,,y,* <w.m)l=-sv-9, B.,# <=J.mH)v-9) Z,,7r <x.y.mlv-9)(#-4)
Z , . r <X.Y.@I LJ,# <AY.+)

Z,,r .c=r.nc.-mm4 B,,r., <x.Y.m-9)(#-& <w.m,crn-m)(r-41
La,# <X.Y.@) E”,”,+ <r.Y.m) Lr,# ri.I.Y.# =I

(6)

=x,

I
895

Figure 5: Experimental result of ego-motion estimation.

Fig. 4(h) shows the probability distribution calculated by
the covariance matrix. The contour of the probability dis-
tribution matches well to that of the original difference
distribution, This covariance matrix is used to calculate
~ D ~ ; ~ c s - m , in Eq. (1).

2.5 Result of Ego-Motion Estimation
Fig. 5 shows a result of ego-motion estimation. In the

figure, black lines represent boundaries of static obstacles
in the environment, dark gray line represents the estimated
trajectory of the robot, and bright gray ellipses represent
the estimated uncertainty of each position. In Fig. 5 , at the
points 2 - 4, the uncertainty along the x axis was large he-
cause the robot could not obtain reliable range information
for the x direction. Then, at the goal (point 5) . the un-
certainty along x axis became smaller because wall A was
near to the robot.

3 Recognizing Dynamic Environment
This section briefly describes methods of generating a

free space map and detecting and tracking moving ohsta-
cles. Please refer to [7] for the detail.

3.1 Making a Free Space Map
A free space map is generated by temporal integration

of range data. For the range measurement in one direction,
the region before the estimated range is interpreted as a
safe region and the region near the estimated range as an
obsracle region. Safe regions are used for making a map
of static obstacles, while obstacle regions are for detecting
moving obstacle candidates.

Each grid of the map holds a counter which indicates
how many times the grid has been observed as a safe re-
gion. If the counter value of a grid is higher than a certain
threshold (currently five), the grid is considered free. The
set of free grids constitutes the current free space. Fig. 6
shows an example map.

3.2 Detecting and 'hacking Moving Obstacles
If a point in the current range profile is completely in-

side the free space, the point is considered as a part of a

Figure 6 An example map. The white region indicates the free
space: gray regions indicate the seas where observation counts
are less than the threshold; black regions indicate the area where
the observation is never counted.

moving obstacle. Since the points from the same obstacle
may split into several obstacle regions, we merge a set of
moving points if their relative distance is less than a certain
threshold. We consider a merged group of such points as
a candidate for moving obstacle and use their mass center
as its observed position. Each candidate is tracked using
the Kalman filter [5] ; the filter outputs the position and the
velocity of each obstacle and their uncertainties.

4 Path Planning
Our path planning method is based on a space-time

search to cope with moving obstacles. The method con-
siders the velocity uncertainty of obstacles in planning. To
determine the path towards a destination, we use a heuris-
tic path planner. If the destination is in the free space of
the map, the robot use it for path planning. Otherwise, the
robot selects a temporary destination (a via point) which is
in the free space and nearest to the given destination, and
used it for path planning.

First, the planner generates a circular path which con-
nects the current position and the destination and whose
tangent line at the current position is the same as the cur-
rent orientation of the robot. If the path is judged to lead
the robot to a collision with a (static or dynamic) obstacle,
the planner searches for a path to avoid it.

Currently our robot moves at a constant speed. This
setup simplifies the path planning.

4.1 Avoiding Collision with a Static Obstacle
Fig. 7 illustrates the process of generating a path avoid-

ing a collision with a static obstacle. In the first path can-
didate (arc PoVoCo in Fig. 7), the planner selects a point
which is farthest from the free space (V, is selected) and
draws a line perpendicular to the tangent line of the circu-
lar path there, and selects a via point (Cl) on the line in the
free space which is nearest to the point (Vol. For this via
point, the planner repeats the same operation until a safe

896

Figure 7: Avoiding static obstacles. Gray regions indicate ob-
stacles.

i:: Y

Figure 8: Avoiding moving obstacles.

circular path is found (try arc PoV,G,, select G2. and find
PoC2). If a path is found but the endpoint of the path is
not the original destination, this process is iterated with the
selected via point (G,) being the initial position and the
original destination (CO) as the destination.

4.2 Avoiding Collision with a Dynamic Obstacle
Fig. 4 illustrates the process of generating a path to

avoid a moving obstacle. Let xo = (xo,yo,Xo,yo) be the
obstacle state (position and velocity) at the current time.
We assume every obstacle has a circular section, and ex-
pand it by the robot’s approximate radius; CO in the figure
thus indicates the initial (expanded) obstacle (its radius is
r) , S indicates the position of the (point) robot, and D in-
dicates the destination.

We model the acceleration of a moving obstacle by an
isotropic normal distribution. Let U be the so-called 3u ra-
dius of the distribution: then the region where the obstacle
may exist at time f is represented by:

(x - (xo + ior))j.,+ (Y - (YO + y0r))* - (r + ut)* < 0, (7)

which is indicated as C, in Fig. 4. The boundary of the
time-evolving regions form a leaned cone in space-time.
The robot must plan a path which never enter the cone.
The planner first generates a circular path to the destina-
tion (Fig. 4 A). If the path penetrates the cone, the robot
plans a collision-avoiding path, which i s as near to the first
circular path as possible. So the planner calculates two

l;hy
via oini

collision
point Star t

Figure 9: Result of path planning.

tangent circular path from its initial position on both side
of the cone, and one of the tangent points is used as a via

Since the robot moves at a constant speed, a robot path
point.

in (x, y , t) space is represented by:

(8)

where xr , yr and 8, represent the current robot position and
orientation, respectively, r represents the radius of a circu-
lar path, v represents the robot’s speed. Our robot cannot
change the turning radius continuously but can use only a
set of radii due to a hardware limitation. The planner thus
examines all of the radii to select the nearest one to the
ideal (tangent) circular path. This is done by searching for
the radius whose minimum value of the left side of the in-
equality (7) is positive and smaller than those of other radii
on both side of the cone. On each circular path obtained
from one of the selected radius, the nearest point to the
cone is selected as a via point (points B and C in Fig. 4).
Then the planner generates two paths by calculating a fur-
ther path from each via point to the destination, and selects
the shorter one.

4.3 Path Planning Example
Fig. 9 shows the result of a path planning simulation. In

the figure, the gray region represents the free space which
the robot recognizes, the broken arrow represents the ini-
tial position and the moving direction of a moving obsta-
cle, black lines represent calculated paths, circles are pro-
jections of collision-possible regions in space-time on the
X-Y plane. In the simulation, the robot could not generate
a path to go to the goal directly, so the robot found a via
point and generated a path through it.

5 Experiment
We performed experiments of navigation in dynamic

environments. The total processing time is currently about
0.5 seconds using a dual-Athlon MP 2200+ PC, in which
the ego-motion estimation takes about 0.3 seconds.

Fig. 10 shows the result of an experiment in which the
robot and a person pass each other. Speed of the robot is

x = rcos(fr + 8,) + xr - rcos8, i y = r s in(j t+8 ,)+y , - r s in8 , ’

897

ego-motion estimation method which does not depend on
any features in environments and also estimates its uncer-
tainty. After recognizing and tracking moving obstacle us-
ing estimated ego-motion, the robot plans a collision free
path by a heuristic planner in space-time considering the
velocity uncertainty of observed obstacles. Experiments
of navigation in dynamic environments were performed to
show the effectiveness of our method.

Currently, the robot moves at a constant speed. This
constraint may lead to an inefficient path. For example,
when an obstacle crosses the robot's path, it may be more
efficient for the robot to stop and wait for the obstacle pass-
ing by than to follow an avoiding path. A future work is to
improve the path planner so that it can consider the change
of robot speed. Another future work is to reduce the pro-
cessing time, especially that for ego-motion estimation, in

obstacle I order to increase the reactiveness to moving obstacles -
References
[l] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A Com-

putationally Efficient Solution to the Simultaneous Local-
ization and Map Building (SLAM) Problem. In Pmc. of
IEEE Inr. Con$ on Roborics and Automation, pages 1009-
ioi4,2000.

Figure 1 0 An experimental result.
about 0.3[m/sl and that of the person is about O.S[m/s].
The left side of the figure shows snapshots of the exper-
iment. The right side shows recognition results of both
static and dynamic obstacles and planned path.

In the experiment, first, the robot planned a circular path
to the destination (see Fig. IO(a)). Then, the robot de-
tected a person approaching the robot. Since the position
of the person was far from the robot and speed of the per-
son was vely larger than that of the robot, the uncertainty of
the person position was large at the time of possible colli-
sion. Thus the robot planned a path to avoid collision with
a small turning radius (see Fig. 10(b)). After some time
passed, the uncertainty of the person decreased, then the
robot replanned a circular path to the destination (see Fig.
lO(c)) and finally arrived there (see Fig. 10(d)).

6 Conclusion
We have developed a mobile robot navigation method

for dynamic environments using omnidirectional stereo.
To recognize environments reliably, the robot employs an

121 A. Elnagar and A. Basu. Local Path Planning in Dynamic
Environments with Uncertainty. In Proc. of IEEE I m Con$
on Multisencor Fusion and Inregration for Intelligent Sys-
tems, pages 183-190, 1994.

[3] M. Etah, T. Aoki, and K. Hata. Estimation of Structure
and Motion Parameters far a Roaming Robot that Scans the
Space. In Pmc. of 7th lnf. Con$ on Computer Vision, vol-
ume 1, pages 579-584, 1999.

[4] P. Fiorini and Z. Shiller. Motion Planning in Dynamic En-
vironments using Velocity Obstacles. Int. J. of Robotics Re-
search, 17(7):76&772, 1998.

[51 T. Katayama. Application of K a l m n Filter. Asakura
Shoten, 1983. (in Japanese).

[6] K. Kidono, 1. Miura, and Y. Shirai. Autonomous visual nav-
igation of a mobile robot using a human-guided experience.
Robotics and Autonomous Systems, 40(2-3): 12 1-1 30,2002.

[7] H. Koyasu, 1. Miura, and Y. Shirai. Realtime omnidirec-
tional stereo for obstacle detection and tracking in dynamic
environments. In Proc. of IEEE Int. Con$ on Imelligem
Robots and Systems, pages 31-36.2001.

[XI E Lu and E. Milios. Robot Pose Estimation in Unknown
Environments by matching 2 0 Range Scans. Journal of
Intelligent and Robotic Systems, 18:249-275, 1997.

[9] K. Nickels and S. Hutchinson. Estimating Uncertainty in
SSD-based feature tracking. Image and Vision Computing.
2047-58.2002.

[lo] A. Singh and P. Alien. Image-Flow Computation: An
Estimation-Theoretic Framework and a Unified Perspective.
Compurer Vision Graphics and Image Processing: Image
Undersranding, 56(2) : 152-177, 1992.

898

