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Abstract 
This paper describes a mobile robot navigation method 

in dynamic environments. The method uses a real-time om- 
nidirectional stereo which can obtainpanoramic range in- 
formation of 360 degrees. From this panoramic range in- 
formation, the robotfirst estimates its ego-motion b.v com- 
paring the current and the previous observations in order 
to integrate observations obtained at different positions. 
The uncertainty in the estimation is also calculated. Next, 
the robot recognizes and tracks moving obstacles. Finally, 
the robot plans a collision free path by a heuristic plan- 
ner in space-time considering the velocify uncertainty of 
observed obstacles. Experimental results show the effec- 
tiveness of our method 

1 Introduction 
Avoiding collision with moving obstacles is one of the 

important functions of mobile robots operating in dynamic 
environments. To avoid collision, the robot needs two abil- 
ities; one is recognizing dynamic environments, and the 
other is planning a collision free path. 

Recognition of obstacles usually requires temporal inte- 
gration of sensing data to cope with uncertainties of sensor 
data and changes of an environment. To integrate sensing 
data which is obtained from a moving observer, a reliable 
ego-motion estimation is indispensable. Since dead reck- 
oning suffers from accumulated errors, an ego-motion esti- 
mation based on external sensors such as vision is needed. 

For the ego-motion estimation or localization problem, 
many works use a feature-based matching (e.g., [I] ,  [3]). 
Such methods depend on the existence of features in envi- 
ronments. Moreover, finding matches and solving a mini- 
mization problem require much computation. 

Methods using featureless matching are also proposed. 
Lu et al. [SI proposed two ego-motion estimation methods 
using a laser range finder. Both methods are based on the 
correspondence between 2D contours obtained from the 
current and the previous range information. Laser range 
finders which scan a 2D plane have a drawback that ob- 
jects at a specific height can only he detected. Moreover, 
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since the methods compare only two scanned data, it may 
not be well applicable to the case where the uncertainty of 
range data is relatively large. Kidono et al. [6] proposed 
a method for estimating the hest ego-motion which mini- 
mizes the difference between two consecutive range data 
obtained by stereo. Our previous paper [7] applied this 
method to an omnidirectional stereo to solve the problem 
of narrow field of view. 

These featureless matching-based ego-motion estima- 
tion methods still have several problems. They only 
estimate the most probable ego-motion: this sometimes 
causes false range data matches in subsequent obsewa- 
tions. Moreover, they seem sensitive to noise in range data 
because they use only two range data. This paper, there- 
fore, proposes a new ego-motion estimation method which 
uses a sequence of range data for ego-motion estimation. 
The method also estimates the uncertainty of ego-motion. 
By estimating the uncertainty, the method can evaluate the 
reliability of each range data matching, thereby excluding 
unreliable matchings caused by moving obstacles or false 
stereo matches. 

Once an ego-motion is estimated, the robot updates the 
free space map and detects moving obstacles. The candi- 
dates are then tracked by the Kalman filter. We use our 
previous method 171 for obstacle detection and tracking. 

To plan a collision free path in dynamic environments, 
the robot must consider moving obstacles. Fiotini et. al.[4] 
proposed a velocity obstacle model, in which a collision 
possibility cone is calculated for the robot velocity; the 
method, however, does not consider the uncertainty of oh- 
stacle velocity. This paper employs a heuristic path planner 
which uses a space-time model with uncertainty [2]. 

We conducted navigation experiments with avoiding 
moving obstacle using our mobile robot (see Fig. 1). 
The robot is equipped with a omnidirectional stereo sys- 
tem. Fig. 2 shows an example panoramic disparity image, 
whose size is 720x100 and the disparity range is 80. The 
system can generate a disparity image in 0.2 [SI using a PC 
of dual-Athlon MP 2200+. Refer to [7] for the detail. 
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Figure 2: Omnidirectional disparity image. Brighter pixels indicate larger disparities. 

- 
Figure I: Our mobile robot 

Direction [degree] 
Figure 3: Example range profile. 

2 Ego-Motion Estimation 
We first compute the uncertainty of the current robot po- 

sition to determine a set of possible robot positions. Next, 
we calculate the difference between the view of the current 
and the previous range data for each candidate pair of the 
position and the orientation. Finally, we determine the cur- 
rent position and orientation with their uncertainties by a 
weighted least square-based estimation. 

2.1 Obtaining 2D Range Profile 
To make a map of static obstacles and to adopt a visual 

ego-motion estimation method, we first extract the nearest 
obstacle in each direction. From this data set, a 2D contour 
(called range profile) of the current free space centered at 
the robot position is obtained. Fig. 3 shows the range pro- 
file obtained from the disparity data shown in Fig. 2. In 
Fig. 3, the horizontal axis represents the viewing direction 
from the robot and the vertical axis represents distance to 
obstacles. The resolution of the direction is about 0.5 de- 

grees. Note that if no range data is obtained for a direction, 
the distance for the direction is set to zero. 

2.2 Uncertainty Model of Robot Motion 
The positional uncertainty increases as the robot moves 

due to slippage of wheels or a quantization error of odome- 
try. We model the uncertainty by a three-dimensional nor- 
mal distribution; the so-called 3u ellipsoid obtained from 
the covariance mauix Zx, represents the uncenainty re- 
gion, where X = (x. y, t?) is the robot’s state. The posi- 
tional uncertainty on (x,y) is calculated by projecting the 
ellipsoid on the x-y plane and the orientational uncertainty 
is calculated as its marginal distribution on B. These uncer- 
tainties are used for predicting possible robot positions and 
orientations in ego-motion estimation. 

2.3 Comparing Range Profiles 
We sample at least nine candidate positions inside the 

predicted uncertainty region for the weighted least square- 
based estimation. If the distance between the neighboring 
candidates is larger than a threshold (currently, 10[cm]), 
the number of candidates is increased. Candidates for 
the robot orientation are also generated by discretizing the 
range of the orientational uncertainty with the angular res- 
olution of the range profile. 

For each pair of candidate position and orientation, we 
can compute the view of a previous range profile. By com- 
paring such views of the previous k range profiles with the 
cment range profile, we calculate the difference between 
these range profiles. 

In a candidate position and orientation (x. y, $), a differ- 
ence of a disparity of direction B between the current and 
the ith previous observation is calculated by: 

where D,(t?) represents the disparity in direction t? at time 
is the variance of the disparity D!?T’(S - 6); 

~2 is the vanance of the observed disparity (currently, 
is calculated by the positional error of time 

f; a2D;l:’,#-d 
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. : 

(a) difference values 

(b) estimated probability distribution 
Figure 4 Estimation of the positional distnbutian 

f - i, the uncertainty of the disparity of the observation 
at f - i, and the motion uncertainty of the current frame. 
d(x ,  y. 4, i, 0) represents the Mahalanobis distance; if D,(B) 

,-; (e  ~ @) are from the same obstacle, d is assumed 
to follow a x2  distribution. Therefore, when d is larger 
than a certain threshold determined from the x 2  distrihu- 
tion, or when D,(H) or D:::’(Q - 4) is not obtained, we do 
not take the corresponding direction into consideration. By 
this way, the effect of false matches in stereo and that of the 
moving obstacles can he reduced. 

The difference of range profiles is then evaluated by: 

and Dlw) 

where [emjn, Lr] represents the range of possible view- 
ing directions (corresponding to the right and the left end 
of panoramic image); N(x, y. 4, i )  indicates the number of 
data for which the difference of disparity is obtained. This 
equation calculates the sum of the averaged squared dif- 
ference between range profiles normalized by the uncer- 
tainty of the disparities. Notice that we do not compare 
distances hut compare disparities in calculating the differ- 
ence because the error of disparity is constant while that of 
distance is larger for a longer distance. 

2.4 Estimating Ego-Motion 
Our previous method [7] selected the robot position and 

orientation which minimizes the difference between range 
profiles. However, such a method often leads to an incor- 
rect estimation of the position and orientation, particularly 

in an environment which does not have enough objects, For 
example, in a comdor, the reliability of the estimated posi- 
tion is high for the perpendicular direction to the comdor, 
while it is low to the direction along the corridor. In such a 
case, the estimated position along the corridor may be in- 
correct due to false matches caused by noises and moving 
objects. Fig. 4(a) shows a distribution of difference values 
Diff around the predicted position. As shown in the fig- 
ure, the uncertainty distribution of the estimated position 
is considered to be ellipsoidal; the reliability of the estima- 
tion is low along the longer principal axis of the ellipsoid. 
We, therefore, estimate not only the robot position and ori- 
entation but also their uncertainty. 

The probability distribution of the position and orienta- 
tion can he estimated by the difference values around the 
estimated point. Nickels and Hutchinson [9] solved a sim- 
ilar problem for the SSD-based feature tracking; they esti- 
mated the uncertainty of the target localization in the im- 
age. To estimate the uncertainty, they first calculate the 
SSD values around predicted position, then convert them to 
response distribution, which is defined by Singh and Allen 
[IO]. The response distribution calculates the confidence 
of each estimated position. 

In our method, the response distribution is represented 
by the following: 

r(x.y34) = exP(-KWky,4)) .  (3) 

where K is used as a normalization factor, which is deter- 
mined so that the following equation holds:: 

K min(Diff(x, y. 4)) = c, (4) 

where c is constant (currently, 5).  
Since the response distribution can he interpreted as a 

probability distribution of the position and orientation, the 
hest position and orientation are determined by a weighted 
least squares method. 

L y , m  r(*,y. 4 ) ~  
Cx,,.m r(x, Y. 4) 
Cx,yo r(x, Y .  dr  j =  
C,,y.m r(x. y. 4) 

$ =  C.s.m r(x.y.  414 
Cx,y.m r(x. y. 4) 

p =  

( 5 )  

Under the assumption of additive zero mean indepen- 
dent errors, the estimated error covariance matrix is also 
calculated by: 

X’,.* <=.Y.m) ’ 

LJ,# r (x.Y#l lx-m-~)  Lyr rlx.Y.@)(x-*)v-N La,# rl+y.m,lx-i)(m-h 
Lo,+ r(x,Y.m) E.s* rlrY*l E,,y* <=.Y.m) 

E,,y,* <w.m)l=-sv-9, B.,# <=J.mH)v-9) Z,,7r <x.y.mlv-9)(#-4) 
Z , . r  <X.Y.@I LJ,# <AY.+) 

Z,,r .c=r.nc.-mm4 B,,r., <x.Y.m-9)(#-& <w.m,crn-m)(r-41 
La,# <X.Y.@) E”,”,+ <r.Y.m) Lr,# ri.I.Y.# =I 

(6)  

=x, 

I 
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Figure 5:  Experimental result of ego-motion estimation. 

Fig. 4(h) shows the probability distribution calculated by 
the covariance matrix. The contour of the probability dis- 
tribution matches well to that of the original difference 
distribution, This covariance matrix is used to calculate 
~ D ~ ; ~ c s - m ,  in Eq. (1). 

2.5 Result of Ego-Motion Estimation 
Fig. 5 shows a result of ego-motion estimation. In the 

figure, black lines represent boundaries of static obstacles 
in the environment, dark gray line represents the estimated 
trajectory of the robot, and bright gray ellipses represent 
the estimated uncertainty of each position. In Fig. 5 ,  at the 
points 2 - 4,  the uncertainty along the x axis was large he- 
cause the robot could not obtain reliable range information 
for the x direction. Then, at the goal (point 5) .  the un- 
certainty along x axis became smaller because wall A was 
near to the robot. 

3 Recognizing Dynamic Environment 
This section briefly describes methods of generating a 

free space map and detecting and tracking moving ohsta- 
cles. Please refer to [7] for the detail. 

3.1 Making a Free Space Map 
A free space map is generated by temporal integration 

of range data. For the range measurement in one direction, 
the region before the estimated range is interpreted as a 
safe region and the region near the estimated range as an 
obsracle region. Safe regions are used for making a map 
of static obstacles, while obstacle regions are for detecting 
moving obstacle candidates. 

Each grid of the map holds a counter which indicates 
how many times the grid has been observed as a safe re- 
gion. If the counter value of a grid is higher than a certain 
threshold (currently five), the grid is considered free. The 
set of free grids constitutes the current free space. Fig. 6 
shows an example map. 

3.2 Detecting and 'hacking Moving Obstacles 
If a point in the current range profile is completely in- 

side the free space, the point is considered as a part of a 

Figure 6 An example map. The white region indicates the free 
space: gray regions indicate the seas where observation counts 
are less than the threshold; black regions indicate the area where 
the observation is never counted. 

moving obstacle. Since the points from the same obstacle 
may split into several obstacle regions, we merge a set of 
moving points if their relative distance is less than a certain 
threshold. We consider a merged group of such points as 
a candidate for moving obstacle and use their mass center 
as its observed position. Each candidate is tracked using 
the Kalman filter [5 ] ;  the filter outputs the position and the 
velocity of each obstacle and their uncertainties. 

4 Path Planning 
Our path planning method is based on a space-time 

search to cope with moving obstacles. The method con- 
siders the velocity uncertainty of obstacles in planning. To 
determine the path towards a destination, we use a heuris- 
tic path planner. If the destination is in the free space of 
the map, the robot use it for path planning. Otherwise, the 
robot selects a temporary destination (a via point) which is 
in the free space and nearest to the given destination, and 
used it for path planning. 

First, the planner generates a circular path which con- 
nects the current position and the destination and whose 
tangent line at the current position is the same as the cur- 
rent orientation of the robot. If the path is judged to lead 
the robot to a collision with a (static or dynamic) obstacle, 
the planner searches for a path to avoid it. 

Currently our robot moves at a constant speed. This 
setup simplifies the path planning. 

4.1 Avoiding Collision with a Static Obstacle 
Fig. 7 illustrates the process of generating a path avoid- 

ing a collision with a static obstacle. In the first path can- 
didate (arc PoVoCo in Fig. 7), the planner selects a point 
which is farthest from the free space (V, is selected) and 
draws a line perpendicular to the tangent line of the circu- 
lar path there, and selects a via point (Cl) on the line in the 
free space which is nearest to the point (Vol. For this via 
point, the planner repeats the same operation until a safe 
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Figure 7: Avoiding static obstacles. Gray regions indicate ob- 
stacles. 

i:: Y 

Figure 8: Avoiding moving obstacles. 

circular path is found (try arc PoV,G,, select G2. and find 
PoC2). If a path is found but the endpoint of the path is 
not the original destination, this process is iterated with the 
selected via point (G,) being the initial position and the 
original destination (CO) as the destination. 

4.2 Avoiding Collision with a Dynamic Obstacle 
Fig. 4 illustrates the process of generating a path to 

avoid a moving obstacle. Let xo = (xo,yo,Xo,yo) be the 
obstacle state (position and velocity) at the current time. 
We assume every obstacle has a circular section, and ex- 
pand it by the robot’s approximate radius; CO in the figure 
thus indicates the initial (expanded) obstacle (its radius is 
r) ,  S indicates the position of the (point) robot, and D in- 
dicates the destination. 

We model the acceleration of a moving obstacle by an 
isotropic normal distribution. Let U be the so-called 3u ra- 
dius of the distribution: then the region where the obstacle 
may exist at time f is represented by: 

(x - (xo + ior))j.,+ (Y - (YO + y0r))* - ( r  + ut)* < 0, (7) 

which is indicated as C,  in Fig. 4. The boundary of the 
time-evolving regions form a leaned cone in space-time. 
The robot must plan a path which never enter the cone. 
The planner first generates a circular path to the destina- 
tion (Fig. 4 A). If the path penetrates the cone, the robot 
plans a collision-avoiding path, which i s  as near to the first 
circular path as possible. So the planner calculates two 

l;hy 
via oini 

collision 
point Star t  

Figure 9: Result of path planning. 

tangent circular path from its initial position on both side 
of the cone, and one of the tangent points is used as a via 

Since the robot moves at a constant speed, a robot path 
point. 

in (x, y ,  t )  space is represented by: 

(8) 

where xr ,  yr and 8, represent the current robot position and 
orientation, respectively, r represents the radius of a circu- 
lar path, v represents the robot’s speed. Our robot cannot 
change the turning radius continuously but can use only a 
set of radii due to a hardware limitation. The planner thus 
examines all of the radii to select the nearest one to the 
ideal (tangent) circular path. This is done by searching for 
the radius whose minimum value of the left side of the in- 
equality (7) is positive and smaller than those of other radii 
on both side of the cone. On each circular path obtained 
from one of the selected radius, the nearest point to the 
cone is selected as a via point (points B and C in Fig. 4). 
Then the planner generates two paths by calculating a fur- 
ther path from each via point to the destination, and selects 
the shorter one. 

4.3 Path Planning Example 
Fig. 9 shows the result of a path planning simulation. In 

the figure, the gray region represents the free space which 
the robot recognizes, the broken arrow represents the ini- 
tial position and the moving direction of a moving obsta- 
cle, black lines represent calculated paths, circles are pro- 
jections of collision-possible regions in space-time on the 
X-Y plane. In the simulation, the robot could not generate 
a path to go to the goal directly, so the robot found a via 
point and generated a path through it. 

5 Experiment 
We performed experiments of navigation in dynamic 

environments. The total processing time is currently about 
0.5 seconds using a dual-Athlon MP 2200+ PC, in which 
the ego-motion estimation takes about 0.3 seconds. 

Fig. 10 shows the result of an experiment in which the 
robot and a person pass each other. Speed of the robot is 

x = rcos(fr + 8,) + xr - rcos8, i y = r s in( j t+8 , )+y , - r s in8 ,  ’ 
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ego-motion estimation method which does not depend on 
any features in environments and also estimates its uncer- 
tainty. After recognizing and tracking moving obstacle us- 
ing estimated ego-motion, the robot plans a collision free 
path by a heuristic planner in space-time considering the 
velocity uncertainty of observed obstacles. Experiments 
of navigation in dynamic environments were performed to 
show the effectiveness of our method. 

Currently, the robot moves at a constant speed. This 
constraint may lead to an inefficient path. For example, 
when an obstacle crosses the robot's path, it may be more 
efficient for the robot to stop and wait for the obstacle pass- 
ing by than to follow an avoiding path. A future work is to 
improve the path planner so that it can consider the change 
of robot speed. Another future work is to reduce the pro- 
cessing time, especially that for ego-motion estimation, in 

obstacle I order to increase the reactiveness to moving obstacles - 
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