
, .

Mobile Robot Navigation:
The CMU System

Yoshimasa Goto and Anthony Stentz

Carnegie Mellon University

ocusing primarily on system architecture,
this article describes the current status of
autonomous land vehicle (ALV) research at F Carnegie Mellon University’s Robotics Insti-

tute. We will (1) discuss issues concerning outdoor
navigation; (2) describe our system’s perception, plan-
ning, and control components that address these
issues; (3) examine Codger, the software system that
integrates these components into a single system, syn-
chronizing the dataflow between them (thereby rnax-
imizing parallelism); and (4) present the results of our
experiments, problems uncovered in the process, and
plans for addressing those problems.

Carnegie Mellon’s ALV group has created an

autonomous mobile robot system capable of operating
in outdoor environments. Using two sensors-a color
camera and a laser range finder-our system can drive
a robot vehicle continuously on a network of side-
walks, up a bicycle slope, and over a curved road
through an area populated with trees. The complexity
of real-world domains and requirements for continu-
ous and real-time motion require that such robot sys-
tems provide architectural support for multiple sensors
and parallel processing-capabilities not found in sim-
pler robot systems. At CMU, we are studying mobile
robot system architecture and have developed a navi-
gation system working at two test sites and on two
experimental vehicles.

44 0885-9000/87/1100/0044/ $1.00@1987 IEEE IEEE EXPERT

5r . I '

We use two test sites, the CMU campus and Schen-
ley Park-a city park adjoining the campus. The
campus site contains a sidewalk network including
intersections, stairs, and bicycle slopes (see Figure 1).
Schenley Park has sidewalks curving through a treed
area (see Figure 2).

Figure 3 presents our two experimental vehicles-
NavLab (used in the Schenley Park test site) and Terre-
gator (used in the CMU campus test site). Each is
equipped with a color TV camera, plus a laser range
finder made by ERIM. NavLab carries four general-
purpose Sun-3 computers on board. Terregator links
by radio to Sun-3s in the laboratory. The SUN-3s
interconnect with an Ethernet. Our navigation system
works on both vehicles in both test sites.

Current system capabilities. Currently, the system

Executes a prespecified user mission over a
mapped network of sidewalks, including turns at
intersections and driving up the bicycle slope;
Recognizes landmarks, stairs, and intersections;
Drives on unmapped, curved, or ill-defined roads
using assumptions about local road linearity;
Detects obstacles and stops until they move
away;
Avoids obstacles; and
Travels continuously at 200mm per second.

~

Figure 1. The CMU campus test site

Figure 2.The Schenley Park test site.

W
Figure 3. Navlab (above) and Terregator (on the right.)

WINTER 1987 45

Figure 4. Outdoor navigation.

Captain 0
Pilot

Perception E r
Figure 5. The CMU system architecture.

I
i

Navi ator

I Driving Monitor I
I Driving U n i t 4

I Position Estimator I
I Driving Unit Navigator1

I Local Path P lanne- r l

4 Perception I

4 Helm I
gure 6. Pilot’s submodule structure.

This section defines goals of our outdoor naviga-
tion system and its design principles, and analyzes the
outdoor navigation task itself. We will describe our
system architecture as it is shaped by these principles
and analyses.

Design goals and principles. Our outdoor naviga-

Map-driven mission execution-The system
drives the vehicle to a given position (goal);
On- and off-road navigation-Navigation envi-
ronments include roads and open terrain;
Landmark recognition-Landmark sightings are
essential when correcting for drift in the vehicle’s
dead-reckoning system;

humans; and

motion is inadequate for our purposes. Percep-
tion, planning, and control should be carried out
while the vehicle is moving at a reasonable speed.

To satisfy these goals, we have adopted the follow-

Sensor fusion-A single sensor is not enough to
analyze complex outdoor environments. In addi-
tion to a TV camera and range finder, sensors
include an inertial navigation sensor and a wheel
rotation counter;
Parallel execution-Parallelism is essential when
processing data from many sensors, making
global and local plans, and driving the vehicle in
real time;and
Flexibility and extensibility-Also essential since
the whole system is quite large, requiring the inte-
gration of many modules.

tion system seeks the following goals:

Obstacle avoidance-As wise for robots as for

Continuous motion in real time-Stop-and-go

ing design principles:

Outdoor navigation tasks. Outdoor navigation
includes different navigation modes-Figure 4 illus-
trates several examples. On-road versus off-road is
just one example. Even during on-road navigation,
turning at intersections requires more sophisticated
driving skill than road following. In road following,
assuming that the ground is flat makes perception eas-
ier. But driving through the forest does not satisfy
this assumption, requiring more complex perception
processing.

According to this analysis, we decompose outdoor
navigation into two navigation levels-global and

46 IEEE EXPERT

local. At the global level, system tasks are (1) to select
the best route to reach destinations given by user mis-
sions, and (2) to divide the route into segments, each
corresponding to a uniform driving mode. The cur-
rent system supports three navigation modes-
following roads, turning at intersections, and driving
up slopes.

Local navigation involves driving within a single
route segment. The navigation mode is uniform. The
system drives the vehicle along the route segment con-
tinuously, perceiving objects, planning paths, and
controlling the vehicle. These important tasks-
perception, planning, and control-form a cycle and
can be executed concurrently.

System architecture. Figure 5 presents a block dia-
gram of our system architecture, consisting of several
modules and a communications database linking the
modules together.

Module structure. To support tasks described in the
previous section, we first decomposed the whole sys-
tem into the following modules:

Captain executes user mission commands and
sends each mission’s destination and constraints
step-by-step to the Map Navigator, then awaits
the result of each mission step;

selects the best route, decomposes it into a route
segment sequence, generates a route segment
description including mapped objects visible
from the route segment, and sends all of this to
the Pilot;
Pilot coordinates the activities of Perception and
Helm, performing local navigation continuously
within a single route segment. Pilot is decom-
posed into several submodules that run concur-
rently (see Figure 6);
Perception uses sensors to find objects predicted
to lie within the vehicle’s field of view, and esti-
mates vehicle position when possible;
Helm gets the local-path plan generated by Pilot
and drives the vehicle;
Driving Monitor decomposes the route segment
into small pieces called driving units. A driving
unit comprises the basic unit for perception,
planning, and control processing at the local
navigation level. For example, Perception must
be able to process a whole driving unit with a sin-
gle image. Driving Monitor creates a driving unit
description describing objects in the driving unit,

Map Navigator searches the map database,

and sends that description to the following sub-
modules:

sending the driving unit description to-and get-
ting the result from-Perception;

using the results of Perception and dead
reckoning;
Driving Unit Navigator determines admissible
passages through which to drive the vehicle; and
Local Path Planner generates path plans within
the driving unit, avoids obstacles, and keeps the
vehicle in its admissible passage. The path plan is
sent to Helm.

Driving Unit Finder functions as an interface,

Position Estimator estimates vehicle position,

Codger. The second system architecture design
problem is module connection. Based on our design
principles, we have created a software system called
Codger (communications database with geometric
reasoning) that supports parallel asynchronous execu-
tion and communication between modules. The next
section describes Codger in detail.

We have employed parallelism in our perception,
planning, and control subsystems to navigate in real
time. Our computing resources consist of several
Sun-3 microcomputers, VAX minicomputers, and a
high-speed parallel processor known as the Warp-all
interconnected with an Ethernet. We have designed
and implemented the Codger software system to effec-
tively utilize this parallelism.

The Codger system for parallel processing. Codger
consists of a central database (local map), a process
called LMB (local map builder) that manages this
database, and the LMB interface (a function library
for accessing data, as shown in Figure 7). The LMB
interface compiles the system’s perceptual, planning,
and control modules; the modules, in turn, invoke
functions to store and retrieve data from the central
database. We can run Codger on any mix of Sun-3s
and VAXs to handle data type conversions automati-
cally, permitting highly modular development that
requires recompilation only for modules directly
affected by changes.

Data representation. Tokens-lists of attribute-
value pairs-represent local map data. We can use

WINTER 1987 41

Local Map Database

Local Map Builder

LMB Interface

Sensor Module 1

LMB Interface

Sensor Module 2

LMB Interface

Navigation Module 2

LMB Interface E3 Planning Module

.
LMB Interface

Navigation Module 1

Figure 7. The Codger software system.

tokens to represent physical objects, hypotheses,
plans, commands, and reports. A template file read
by the LMB at system startup time defines token
types. Attribute types can be the usual scalars (for
example, floats and integers), sets of scalars, or geo-
metric locations. Geometric locations consist of a
two-dimensional polygonal shape and a reference
coordinate frame. Codger provides mechanisms for
defining coordinate frames and automatically con-
verting geometric data from one frame to another,
thereby (I) enabling modules to retrieve data from the
database and (2) representing that data in a form
meaningful to the modules. Geometric data is the
on ly data that Codger interprets; all other data types
are interpreted by the modules using them.

.Sj,nchroni,-ation. The LMB interface provides func-
tiops for storing and retrieving data from the central
database. Tokens can be retrieved using specifications
(Boolean expressions evaluated across token attribute
values). Specifications can include computations such
as mathematical expressions, Boolean relations, and
comparisons between attribute values. Geometric
indexing is particularly important for mobile robot
systems. For example, planners must search a map
object database to locate suitable landmarks or to
find the shortest path to goals. Codger provides many

functions, including those for computing distance and
intersections of locations-functions that can be
embedded in specifications and matched to the
database.

Codger embeds a set of primitives synchronizing
and smoothing data transfer between system modules.
The data retrieval mechanism implements synchroni-
zation. Modules send specifications to the LMB as
either one-shot or standing requests: The calling mod-
ule blocks for one-shot specs, while the LMB matches
the spec to the tokens and retrieves matching tokens,
and the module resumes execution. I f no tokens
match, the module either stays blocked until a match-
ing token appears in the database-or an error is
returned and the module resumes execution-
depending on an option specified in the request. For
example, before it can plan a path, the path planner
may use a one-shot request to find obstacles stored in
the database. In contrast, Helm (controlling the vehi-
cle) uses a standing spec to retrieve tokens that supply
steering commands whenever those tokens appear.

Parallel asynchronous execution of modules. Thus
far, we have run ou r scenarios with four Sun-3s inter-
connected through an Ethernet. Captain, Map Navi-
gator, Pilot, and Helm are separate modules in the
system; Perception comprises two modules (range and

- l X IEEE EXPERT

camera image processing). The modules run in paral-
lel, synchronizing themselves through the LMB
database.

Global and local navigation. The interaction
between Captain, Map Navigator, and Pilot exempli-
fies Codger’s parallelism. Captain and Map Navigator
search the map database to plan the vehicle’s global
path in accordance with mission specifications. Pilot
coordinates Perception, Path Planning, and control
through Helm to navigate locally. Global and local
navigation operations r u n in parallel. Map Navigator
monitors Pilot’s progress to ensure that Pilot’s transi-
tion from one route segment to the next occurs
s ni oo t h 1 y .

Driving pipeline. Another good example of parallel-
ism occurs wi thin Pilot itself. As described earlier,
Pilot monitors local navigation. For each driving unit,
Pilot performs operations in the following order:
Pilot predicts the driving unit, recognizes it with the
camera and scans i t for obstacles with the range
finder, plans a path through it , oversees the vehicle’s
execution of it, and establishes driving constraints.
These four operations are separate modules in Pilot,
linked together in a pipeline (see Figure 8). While in
steady state, Pilot (1) predicts a driving unit 12 to 16
meters in front of the vehicle, (2) recognizes a driving
uni t , (3) scans i t for obstacles (in parallel) eight to 12
meters in front, (4) plans a path four to eight meters
in front, and (5) drives to a point four meters in
front. The stages of the pipeline synchronize them-
selves through Codger’s database.

Processing times vary for each stage as a function
of the navigation task. The vision subsystem requires
about 10 seconds of real time per image when navigat-
ing on uncluttered roads, the range subsystem
requires about six seconds, and Local Path Planner
requires less than a second. I n this case, the pipeline’s
stage time equals the vision subsystem’s-specifically,
10 seconds. In cluttered environments, Local Path
Planner may require I O to 20 seconds or more-
thereby becoming a bottleneck. In either case, Helm
does not permit the vehicle to drive onto a driving
uni t unti l that driving unit has propagated through all
stages of the pipeline (that is, until all operations have
been performed on it). For example, when driving
around the corner of a building, the vision stage must
wait u n t i l the vehicle reaches the corner to see the next
dri1,ing un i t . And once the vehicle reaches the corner,
i t mus t wait for the vision, scanning, and planning
stages to process the driving unit before driving again.

-
Recog n ize/Scan

Plan

~~ ~

Figure 8. The driving pipeline.

NavLab and Terregator are equipped with many
sensors including a laser range finder, color cameras,
and motion sensors such as a gyro and shaft-encoder
counter. To obtain a single, consistent interpretation of
the vehicle’s environment, sensor results must be
fused.

Types of sensor fusion. We have identified three
types of sensor fusion:‘

Competitive fusion-Sensors provide data that
either agrees or conflicts. Both cases arise when
sensors provide data of the same modality. In
CMU’s systems, determining the vehicle’s posi-
tion best characterizes this type of fusion. Read-
ings from the vehicle’s dead-reckoning system
and landmark sightings provide vehicle position
estimates.
Complementary fusion-Sensors provide data of
different modalities. Recognizing three-
dimensional objects illustrates this kind of

49

fusion. Using a color camera and laser range
finder, CMU systems recognize a set of stairs.
The color camera provides image information
(such as color and texture) while the laser range
finder provides three-dimensional information.
Independent fusion-CMU systems use a single
sensor for each task. For example, distant land-
mark recognition requires a single sensor. In this
case, only the camera is used for landmarks
beyond the range of the laser range finder.

Examples of sensor fusion tasks. Vehicle position
estimation and landmark sighting exemplify sensor
fusion tasks.

Vehicle position estimation. In our road-following
scenarios, vehicle position estimation has been the
most important sensor fusion task. By vehicle posi-
tion, we mean the vehicle’s position and orientation in
the ground plane (three degrees of freedom) relative
to the world coordinate frame. The current system
has two sources of position information.

First, dead reckoning provides vehicle-based posi-
tion information. Codger maintains a history of steer-
ing commands issued to the vehicle, effectively
recording the vehicle’s trajectory from its starting
point.

Second, landmark sightings directly pinpoint the
vehicle’s position with respect to the world at a given
time. In the campus test site, the system has access to
a complete topographical map of sidewalks and inter-
sections on which it drives; it uses a color camera to
sight the intersections and sidewalks, and uses these
sightings to correct the vehicle’s estimated position.
Intersections are of rank three, meaning that the vehi-
cle’s position and orientation with respect to the inter-
section can be determined fully (to three degrees of
freedom) from the sighting.

Our tests have shown such landmark sightings to be
far more accurate-but less reliable-than the current
dead-reckoning system; that is, landmark sightings
provide more accurate vehicle position estimates but
the sightings occasionally fail. If vehicle position esti-
mates from landmark sighting and dead-reckoning
disagree drastically, Codger settles the conflict in
favor of the dead-reckoning system; otherwise, the
landmark sighting is used. In such cases, Codger
adjusts the vehicle trajectory record to agree with the
most recent landmark sighting and discards all previ-
ous sightings.

Codger can handle landmark sightings of less than
rank three. The sidewalk on which the vehicle drives
is our most common landmark. Since a sidewalk
sighting provides only the orientation and perpendicu-
lar distance of the vehicle to the sidewalk, the correc-
tion is of rank two. Therefore, the vehicle’s position
is constrained to lie on a straight line. Codger projects
the vehicle’s position from dead reckoning onto this
line, using the projected point as a full (rank three)
correction. This approximation works well since most
vehicle motion error is lateral drift from the road.

Pilot control. Complementary fusion is grounded in
Pilot’s control functions. Pilot ensures that the vehi-
cle travels only where it is permitted and where it is
able. For example, the color camera segments road
from nonroad surfaces. The laser range finder scans
the area before the vehicle for obstacles or unnaviga-
ble (that is, rough or steep) terrain. The road surface
is fused with free space and passed to Local Path
Planner. Since the two sensor operations do not
necessarily occur simultaneously, the vehicle’s dead-
reckoning system also comes into play.

Colored range image. Another example of camera
and range data complementary fusion is the colored
range image, created by “painting” a color image
onto a range image depth map. Our systems use the,
resultant image to recognize complicated three-
dimensional objects (such as a set of stairs). To avoid
relatively large error in the vehicle’s dead-reckoning
system, the vehicle remains motionless while digitizing
a corresponding pair of camera and range images.’

Problems and future work. We plan to improve our
sensor fusion mechanisms. Currently, Codger handles
competing sensor data by retaining the most recent
measurement and discarding all others. This is
undesirable for the following reasons: First, a single
bad measurement (for example, a landmark sighting)
can easily throw the vehicle off track. Second, meas-
urements can reinforce each other. By discarding old
measurements, Codger loses useful information. The
system needs a weighting scheme to combine compet-
ing sensor data. In many cases, it’s useful to model
error in sensor data as Gaussian noise. For example,
dead-reckoning error can arise from random error in
wheel velocities. Likewise, quantization error in range
and camera images can be modeled as Gaussian noise.
Various schemes exist for fusing such data, ranging
from simple Kalman filtering techniques to full-blown
Bayesian observation networks.”’

50 IEEE EXPERT

Management of driving units and sensor view
frames is essential in local control. This section dis-
cusses control problems in local navigation.

Adaptive driving units and sensor view frames. For
each driving unit (each minimum control unit), the
CMU system perceives objects, generates a path plan,
and drives the vehicle. The Perception module digi-
tizes an image in each driving unit, and the vehicle’s
position is estimated and its trajectory is planned once
in each driving unit. Therefore, stable control requires
an appropriate driving unit size. For example, the sen-
sor view frame cannot cover avery large driving unit.
Conversely, small driving units place rigid constraints
on Local Path Planner because of the short distance
between starting point and goal point. Aiming the
sensor view frame determines the point at which to
digitize an image and to update vehicle position and
path plan.

Our current system’s sensor view frame is always
fixed with respect to the vehicle. Driving unit size is
fixed for driving on roads (four to six meters in
length) and is changed for turning at intersections so
that the entire intersection appears in a single image
(for easy recognition) and to increase driving stability
(see Figure 9). In current test sites, this method almost
always works well.

For intersections requiring sharp turns (about 135
degrees), the current method does not suffice.
Because there is only one driving unit at intersections,
the system digitizes an image, estimates vehicle posi-
tion, and generates a path plan only once for a large
turn. Furthermore, since the camera’s field of view is
fixed straight ahead, the system cannot see the driving
unit after an intersection until the vehicle has turned
through the intersection. Though actual paths gener-
ated are not so bad, they are potentially unstable.

This experimental result indicates that the system
should scan for an admissible passage, and update
vehicle position estimation and local path plan more
frequently when the vehicle changes its course faster.
We have the following plan to improve our method
for managing driving units:

Driving unit length-The length of the driving
unit is bounded at the low end by Local Path
Planner’s requirements for generating reasonable
path plans, and at the high end by the view frame
that Perception requires for recognizing given
objects .

swalk4

. . . .

Figure 9. An intersection driving unit.

YI -
L : driving unit length

I : driving unit interval

Figure 10. Adaptive driving units.

Driving unit interval-The distance between
centers of adjacent driving units is the driving
unit interval. Adjacent driving units can be over-
lapped: that is, they can be placed such that their
interval is shorter than their length (see Figure
10).
Adjusting driving unit length and interval-In
simple passages, the lengths and intervals of driv-
ing units are long. If the passage is complex (for
example, on highly curved roads and intersec-

._

- _

WINTER 1987 51

0

..

..

tions or in the presence of obstacles) the lengths
and intervals are shorter. And if the required
driving unit interval must be shorter than the
driving unit length, driving units are overlapped.
Therefore, the vehicle’s position is estimated and
a local path is planned more frequently so that
the vehicle drives stably, as Figure 10 illustrates.
Adjusting sensor view frame-The sensor view
frame with respect to the vehicle (that is, the dis-
tance and direction from the vehicle to the driv-
ing unit) is adjusted using the pan-and-tilt
mechanism of the sensor. In most cases, a longer
distance to the next driving unit allows a higher
vehicle speed. If Perception and Pilot processing
times are constant, the longer distance means a
higher vehicle speed. But the longer distance
produces less accuracy in perception and vehicle
position estimation. Therefore, distance is deter-
mined for required accuracy, depending on the
passage’s complexity. Using the pan-and-tilt
mechanism, Perception digitizes an image at the
best distance from the driving unit, since the sen-
sor’s view frame is less rigidly tied to the vehicle’s
orientation and position.

Vehicle speed. Autonomous mobile robots must be
able to adjust vehicle speed automatically so that
vehicles drive safely at the highest possible speed. The
current system slows the vehicle in turning to reduce
driving error.

Delays in processing in Local Path Planner and
communication between Helm and the actual vehicle
mechanism cause error in vehicle position estimation.
For example, because of continuous motion and non-
zero processing time, vehicle position used as a start-
ing point by Local Path Planner differs slightly from
vehicle position when the vehicle starts executing the
plan. Because smaller turning radii give rise to larger
errors in vehicle heading, which are more serious than
displacement errors, Helm slows the vehicle for
smaller turning radii-a useful method for stabilizing
vehicle mqtion.

tem to adjust vehicle speed to the highest possible
value automatically:

..

I ’

We have the following method for enabling our sys-

Schedule token-In each cycle, modules and sub-
modules working at the local navigation level
store their predicted processing times in a sched-
ule token. Perception is the most time-consuming
module, and its processing time varies drastically
from task to task.

Adjusting vehicle speed-Using the path plan
and predicted processing time stored in the sched-
ule token, Helm calculates and adjusts vehicle
speed to maximum acceleration and the modules
can finish processing the driving unit before the
vehicle reaches the end of its planned trajectory.

Local path planning and obstacle avoidance. Local
path planning finds a trajectory for the vehicle
through admissible space to a goal point. Our vehicles
are constrained to move in ground planes around
obstacles (represented by polygons) while remaining
within a driving unit (also a polygon). We have
employed a configuration space How-
ever, this algorithm assumes the vehicle is omnidirec-
tional. Since our vehicles are not, we smooth the
resultant path to ensure that the vehicle can execute it.
The smoothed path is not guaranteed to miss obsta-
cles. We plan to overcome this problem by developing
a path planner that reasons about constraints on the
vehicle’s motion.

Some a priori information about the vehicle’s envi-
ronment must be supplied to the system-even if that
information is incomplete, and even if it is nothing
more than a data format for storing explored terrain.
For example, the user mission “turn at the second
cross intersection and slop in front of the three oak
trees” does not make sense to the system without
environmental description. The navigation map is a
database storing the environment description needed
for navigation.

Map Structure. The navigation map-a description
of physical objects in the navigation world-is com-
posed of two parts: the geographical map, and the
object database. The geographical map stores object
locations with their contour polylines. The object
database stores object geometrical shapes and other
attributes; for example, the navigational cost of
objects. Our current system describes all objects with
both the geographical map and the object database; in
general, however, either of them can be unused. For
example, the location of a particular flight of stairs is
known but its shape is unknown.

first layer stores shape attributes (such as road width,
road length, stair height, or number of steps). The

Shape descriptions are composed of two layers. The

52 IEEE EXPERT

Mission control

Vehicle resource
management

Signal processing

Physical hardware

Figure 11. Extended system architecture.

second layer stores actual geometrical shapes repre-
sented by the surface description. It is easy to describe
incomplete shape information with only the first
layer.

Data retrieval. Map data is stored in the Codger
database as a set of tokens forming tree structure. To
retrieve map data, parent tokens contain indexes to
children tokens. Because Codger currently provides
modules with a token retrieval mechanism that picks
up only one token at a time, retrieving large portions
of the map is cumbersome. We plan to extend Codger
so that it can match and retrieve larger structures,
possibly combining that with an inheritance
mechanism.

While navigation is one goal of a mobile robot sys-
tem, navigation itself is not an end; instead, it is a
means for achieving the final goals of the autonomous
mobile robot system-goals such as exploration,
refueling, and carrying baggage. Therefore, system
architecture must accommodate tasks other than navi-
gation.

Figure 11 illustrates one example of an extended sys-
tem architecture that loads, delivers, and unloads bag-

gage. Four layers comprise the whole system-mission
control, vehicle resource management, signal process-
ing, and physical hardware. Captain (only one module
in the mission control layer) stores the user mission
steps, sends them to the vehicle resource management
layer one by one, and oversees their execution.

In the vehicle resource management layer, different
modules work for different tasks. Although their tasks
are different, modules work in a symbolic domain and
do not handle the physical world directly. They oversee
mission execution, generate plans, and pass informa-
tion to modules in the signal processing layer. Through
Codger, they communicate with each other if neces-
sary. Included in the vehicle resource management
layer are Map Navigator and Pilot, parts of the navi-
gation system. Manipulator makes a plan (for exam-
ple, how to load and unload baggage with the arm)
and sends it to Arm Controller.

Using sensors and actuators, modules in the signal
processing layer interact with the physical world; for
example, Perception processes sensor signals, Helm
drives the physical vehicle, and Arm Controller oper-
ates the robot arm. The bottom level contains the real
hardware, even if it includes some primitive controller.
This layer includes the sensors, the physical vehicle,
and the robot arm.

Codger system, we can easily expand it to include
these additional capabilities.

Since we built our current system architecture on the

..

..

..

WINTER 1987 53

Copyright B 1987 The Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from IEEE EXPERT,

10662 Los Vaqueros Circle, Los Alamitos, CA 90720

W e have described the CMU architecture
for autonomous outdoor navigation-a
highly modular architecture including
components for both global and local

navigation. A route planner carries out global naviga-
tion, searching a map database to find the path best
satisfying a mission, and overseeing its execution.
Modules carry out local navigation, using a color
camera and a laser range finder to recognize roads and
landmarks, scanning for obstacles, reasoning about
geometry to plan paths, and overseeing the vehicle’s
execution of a planned trajectory.

A single system integrates perception, planning, and
control components through the Codger software sys-
tem. Codger provides a common data representation
scheme for all modules in the system, paying special
attention to geometry. Codger also provides primitives
for synchronizing modules to maximize parallelism at
both local and global levels.

We have demonstrated our system’s ability to drive
around a network of sidewalks and along a curved
road, to recognize complicated landmarks, and to

.
Yoshimasa Goto, a rerearcher for the corporate engineering divi-
sion of Matsushita Electric Industrial Company, Ltd., is a visiting
scientist at Carnegie Mellon University’s Robotics Institute. For the
last two years, he has worked on CMU’s autonomous land vehicle
project. His interests include map-driven navigation and system
architecture for autonomous robots. He received his BA and MS in
mechanical engineering from Nagoya University in Japan.

I

Anthony Stentz is a doctoral student in computer science at Car-
negie Mellon University. His interests include mobile robots, path
planning, computer vision, system architecture, and AI. H e
received his BS in physics from Xavier University, and his MS in
Computer Science f;om Carnegie Mellon University.

The authors can be reached at the Computer Science Dept., Car-
negie Mellon Univ., 5000 Forbes Ave.. Pittsburgh, P A 15312-3890.

avoid obstacles. Future work will focus on improving
Codger to handle more difficult sensor fusion prob-
lems. This work will seek better schemes for local
navigation and will strive to reduce our dependence on
map data. [B

Acknowledgments

CMU’s entire ALV group helped shape our architec-
ture’s design. We extend special thanks to Steve Shafer,
Chuck Thorpe, and Takeo Kanade.

This research was supported by the Strategic Com-
puting Initiative of the Defense Advanced Research
Project Agency (DoD) through ARPA Order 5351,
and monitored by the US Army Engineer Topographic
Laboratories under contract DACA76-85-C-0003.
Views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing official policies, either expressed or
implied, of DARPA or the United States government.

References
1. Y. Goto et al.. “CMU Sidewalk Navigation System,” Proc.

2. M. Hebert and T. Kanade, “Outdoor Scene Analysis Using
FJCC-86, Dallas, Tex.. Nov. 1986.

Range Data,” Proc. 1986 IEEE Int’ l Conf. Robotics and Auto-
mation, San Francisco, Calif., Apr. 1986.

3 . T. Kanade, C. Thorpe, and W. Whittaker, “Autonomous Land
Vehicle Project at CMU,” froc. 1986.4CM Compirter Con!.,
Cincinnati, Ohio, Feb. 1986.

1. S. Shafer, A. Stentz, and C. Thorpe, “An Architecture for Sen-
sor Fusion in a Mobile Robot,” Proc. IEEE Int ’ l Con!.
Robotics and Automation, San Francisco, Calif., Apr. 1986.

5 . R. Wallace et al., “First Results in Robot Road-
Following,” R o c . lJCA1-85, Los Angeles, Calif., Aug. 1985.

6. R. Wallace et al., “Progress in Robot Road Following,” Proc.
IEEE Int’I Conf. Robotics and Automation, San Francisco,
Calif., Apr. 1986.

7. H. Durrant-Whyte, Integration. Coordination, and Control of
Multi-Sensor Robot Systetns. PhD dissertation, University of
Pennsylvania, Philadelphia, Pa. 19104, 1986.

8. E.M. JMikhail and F. Ackerman, Observations and Leas/
Squores, University Press of America, Lanharn, Md., 1976.

9. T. Lozano-Perez and M.A. Wesley, “An Algorithm for Plan-
ning Collision-Free Paths Among Polyhedral Obstacles,”
Comm. ACM, Vol. 22, No.10, Oct. 1979.

IO. T. Lozano-Perez, “Spatial Planning: A Configuration Space
Approach,” IEEE Trans. Computers, Feb. 1983.

54 IEEE EXPERT

