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ABSTRACT 
Accurate navigation of a mobile robot in cluttered rooms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUS- 

ing a range-measuring laser as a sensor has been achieved. To 
extract the directions and distances to the walls of the room 
the range-weighted Hough transform is used. The following 
experimental results are emphasized: 

The area around the robot is measured using an on-board 
scanning time-of-flight laser. The observations of the walls are 
extracted using the range-weighted Hough transform (RWHT) 
and the position of the robot is continuousb updated using an 
extended Kalman filter (EKF). The experimental tests present- 
ed concern navigation in one room at a time. This is useful as 

The robot extracts the walls of the surrounding room 

from the range measurements. The distances between 

parallel walls are estimated with a standard deviation 

smaller than 1 cm. 

It is possible to navigate the robot along any preselected 

trajectory in the room. One special case is navigation 

through an open door detected by the laser. The 

accuracy of the passage is 1 cm at a speed of 0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd s .  
The trajectory is perpendicular to the wall within 

0.5 degrees in angle. 

When navigating through corridors, the accuracy is 

better than 1 cm at 0.8 m / s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the maximum speed of the 

robot. 

Odometric data and laser measurements are combined 

a proof of concepts, and makes the result clearer and easier to 
understand. A complete map-building and navigation system 
along these lines is under development with preliminary re- 

sults given in [ 141. 

Different Sensor Systems and Related Work 

Robot navigation is generally based on a combination of inter- 
nal sensors (like odometers and rate gyros) for dead reckoning 
and external sensors (like time-of-flight lasers) for finding ob- 
jects in the surroundings of the robot and for locating external 
position references. Robot navigation is a wide research area 

with numerous contributions including books like [6] and 

[ 151. Navigation can use external references and landmarks 
occurring naturally in the environment like walls and tree 
trunks. Landmarks can also be artificial as in navigation using - - 

using the extended Kalman filter. The size of the cluttered 

rectangular room and the position and orientation (pose) of 

the robot are estimated during motion. The extraction and 

the result ing navigation are very zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArobust against  both 

spurious measurements in the laser measurements and 

disturbing objects. 

INTRODUCTION 
A method for navigating a mobile 
robot in cluttered rooms and corri- 
dors is introduced and tested using 

the robot in Fig. 1. The localization 
of the robot is performed relative to 
the walls of an indoor environment. 

radio beacons (including GPS) and, for indoor navigation, ret- 

roreflective tape as in [ll]. 
To put this contribution in its proper context some of the 

sensing principles used for mobile robot navigation are out- 
lined in Table 1. The first column is for the scanning time-of- 
flight laser used in this paper. The second column is for a typ- 
ical ultrasonic system. The last column is for a navigation sys- 

tem where a rotating laser measures 
angles to several identical beacons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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using ultrasonics have been carried 

out in several laboratories (see [4] 

Of stripes Of retroreflec- 
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Table 1 Typical Sensors for Mobile Robot Navigation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~~ 

Time-of- Ultrasonics Laser beam 
flight and reflectors 
laser 

~ 

Beam width 

Sampling 

Side lobes 

Spurious 
measurements 

Dropouts 

Useful range 

Range 
resolution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.04+ 0.03+ 
0.002 R rn. 0.2R rn. 

0.25 ms 20-100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArns 

None 13 dB 

Few Many 

Many Few 

0.5-30m 0.1 -5m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2cm. (3 = lcm. 

0.001 + 
0.001 R m 

(0.1 rns) 

None 

Very few 

Not Critical 

0.2-1OOm 

and [ 151). Ultrasonics has the drawback that the angular reso- 
lution is poor and spurioses are common, [15]. This makes di- 
rect use of ultrasonics difficult. To improve resolution an un- 

certainty grid and a Bayesian type of filtering are used in [7]. 
In [ 161 ultrasonics is used to build a feature-based map. Mod- 

elling and simulation efforts as in [ 10) are important as well as 

the basic physics [21]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An alternative technology is scanning range-measuring 

time-of-flight lasers. The range resolution is about the same as 
that for ultrasonics, but the angular resolution is much better 
and there are less spurioses. The combined advantages result 
in the time-of-flight laser generally giving a high-resolution 
two-dimensional scan of the robot’s environment in a fraction 

of a second. In (51 it is described how a scanning range-mea- 
suring laser can be used to correct the position errors intro- 
duced during dead reckoning. A direct matching of range data 
to an a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori map is used to find the corrections. Mutual de- 

pendencies are modelled in [ 191 and tested experimentally. 
Map building and path planning among polygonal objects are 

the subject of (91. Simulations are made with a perfect dead 
reckoning assumption. 

Vision and stereovision in combination with extended Kal- 

man filters have been used in [3]. In (21 a set-based algorithm 
is used to achieve very low computation times. The third col- 
umn in Table 1 is a very special type of ‘vision’-based naviga- 

tion (111, (221. Stripes of retroreflective tape are used as land- 
marks making the image processing both simple and robust. 
This navigation system is in fact in industrial use for AGV nav- 
igation. The repeatability is better than 0.5 cm at full speed. 

One contribution in this paper is the extraction of walls us- 
ing the Hough transform (HT) and its range-weighted gener- 
alization. The RWHT is very robust, allowing some 15 people 
to move around in the room during the experiments. The HT 

as such was used on images in (131 for finding corners and 
floor-wall intersections. It turns out that the HT is more effi- 
cient on range data than on images. 

One problem all these systems have in common is the ex- 
tensive and time-variable computing required by complex 
navigation algorithms. In this paper the time delay during 
computation is modelled and included in the algorithms. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure I .  The mobile robot used in the experiments. The scanning 
range-measuring [aser is mounted on the front. The robot has three 
wheels, with odometers on the two rear wheels, and steering and 
traction on the front wheel. The maximal speed of the robot is 0.8 ml 
s and the maximum steering angle is 90 degrees. The range-measur- 
in9 laser system is controlled using a T800 transputer. The Hough 
transform is computed on an i486-based PC standing just in front of 
ths tower of  the robot. The computer for motion control of the robot 
is MC68020-based. 

ettect, the dead reckoning and the observation parts ot the Kal- 
man filter are partially separated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
EXTRACTING OBSERVATIONS FROM THE 
LASER MEASUREMENTS 
This section illustrates how the Hough transform extracts flat 
surface elements (walls) from the range measurements of the 
scanning laser and how the door opening is detected. The 
measurements are presented as a polar curve and not as a tra- 
ditional image. The Hough transform of a range scan is ‘clean- 
er’ and much more reliable than the Hough transform of a typ- 
ical image. Thanks to occlusion in the range scan parallel lines 
are unlikely to occur close to each other. Hence the lines are 
well separated in the Hough space. A typical range scan is 

shown in Fig. 2. 

The walls are modelled by the perpendicular distance d 
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3ure 2. A laser scan taken in one of  the robot laboratories. The scanner 

is at position 0,O. The scanning range-measuring laser used is an IBEO 
Ladar-2D. The laser beam is about 4 cm in diameter and the maximum 
range is 32 m. The standard deviation in range is approximately 2 cm. A 
sector o f  270 degrees zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis sampled with an angular resolution of 0.6 de- 
grees. The mirror rotates continuously with 8 rotations per secondgiving 
450 readings for each rotation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
from the robot, and the angle y to the perpendicular relative 

to the robot's orientation. The range scan is a set of points in 

polar coordinates ( T i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqi }  relative to the robot. The range 

scan is taken while the robot moves and is thus somewhat dis- 
torted by the motion. It is simple to correct the distortion 
caused by the motion by assuming a constant velocity during 
the 0.1 seconds required for one 270 degree scan. This is, how- 
ever, not done below since at 0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd s  the distortion is small. 

The Hough Transform 

To find the walls relative to the robot a weighted version of the 
Hough transform is used. The g-weighted Hough transform 

C(d, y) is defined as 

where w is a window function and g is a weighting func- 

tion to be selected below. The argument in w is equal to the 

shortest distance between the point (ri,'pi) and the line (d,y) . 

Currently a unit rectangular window function w(x) of 

width 2a is used. 

This choice allows an efficient implementation. For the case 

g = 1 it follows that 

C,(d, y) = the number of measurements inside the strip 

with width 2a centered around the line (d,y) (3) 

h 

Figure 3. The Hough transform c , (y, d) of the room in Fig. 2. The walls 
can be extracted as peaks in the Hough transform. The noise from small 
objects near the laser makes it hard to detect the walls. The vertical scale 
is the histogram count. For both Fig. 3 and 4 the resolution is 6 degrees 
and 10 cm. 

After discretization in (d,y) , the special transform C,  is thus 

a counting function making C,(d, y) a histogrum. The trans- 

form C, of the scan in Fig. 2 is plotted in Fig. 3. 

In the range scan the sampling is uniform with angular 

steps 6,. As the distances increase, each sample corresponds 

to a longer surface segment. To compensate for this the sur- 

face sampling rate is introduced as the weighting function g 2 ,  

giving 

The weighting makes C, sensitive to even single spurious 

measurements at large distances - especially the cosine term. 

A compromise is to use only range weighting, g 3  = T i ,  giving 

called the range-weighted Hough transform. This could still 

be sensitive to spurious measurements at large distances. 

However, the limited range (30 meters) of the laser limits 

this effect. Without such a range limit some other kind of 

validity check of the measurements might be necessary. For 

the room in Fig. 2 range-weighted Hough transform is 

plotted in Fig. 4. At short ranges the signal-to-noise ratio 

has increased. More plots of the HT and RWHT of range 

measurements are given in [ 81 for indoor scenes and in [ 181 

for an outdoor scene with a building. 

The peaks in the RWHT are found by first searching for the 
single highest peak. The measurements associated with this 
peak are then removed from the Hough transform and the 
procedure is repeated until all major peaks have been found. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. The range weighted Hough transfomz C,(y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the room in 
Fig. 2. The four wallsgive clear peaks while the small objects close to the 
laser are suppressed by the range weighting. The vertical scale is the 
weighted histogram count, roughly proportional to the visible length of 
the walls. 

\ .... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kobot  position ' The door, acting as a disturbance- 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 3 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

Each peak in the histogram gives an estimate of the perpendic- 
ular distance and the relative orientation of a surface. The 
Hough peak is then enhanced using a robust least squares 

method giving the observation (a,?). 
When searching for the walls of a rectangular room, the re- 

liability of the estimate can be increased by searching for 
groups of four peaks at 90 degree intervals, rather than for sin- 
gle peaks. Increased scores are thus given to walls that are or- 
thogonal or parallel to other walls. This method is used in the 
experiments described in the experimental results section. 
This has the additional advantage that we need to find only one 
such group of four peaks, thus making the iterative approach 
for finding several peaks unnecessary. 

In the navigation experiments the angular resolution of the 
Hough transform was usually about three degrees (120 angu- 
lar steps for a normal Hough transform or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 for the room-ex- 
tracting version). The distance resolution was usually 2.5 cm. 
The required computation time is proportional to the product 
of the number of angular steps and the number of measure- 
ments. It is not affected significantly by the distance resolu- 
tion. 

Extracting the Position of a Door 

Doorways are detected by searching for several consecutive 

measurements beyond the wall, see Fig. 5. If the detected 
opening has the correct size, then it is classified as an observa- 
tion of a door opening. The position of the opening is estimat- 
ed as the mean of the positions of the two door-frames. The 

beam width and the angular step 6, give approximately the 

sum of two uniformly distributed noise sources and are ap- 
proximated by Gaussian noise. 

NAVIGATION IN A CLU77ERED ROOM AND 
THROUGH AN OPEN DOOR 

This section describes how the position of the mobile robot inside 

\Door opening 

Door-frame 

Observations and the State Vector 

The observations of the walls are extracted by the Hough 

transform and described by the perpendicular distance d and 

direction y relative to the robot's pose. This can be used to 

model any polygonal building. For the special case of a room 
with four walls the model relative to the robot will be 

If the room is rectangular, then the walls will be at 90 de- 

gree intervals and only one angle y is needed to describe the 

orientation of the room relative to the robot, see Fig. 6. Ap- 

pending the position dd of the door gives the observation vec- 

tor at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ,  as extracted by the Hough transform and a sub- 

sequent least squares tuning. 

r 1 

For the state vector a coordinate system has been placed in 

one of the corners of the room giving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = d ,  , y = d,  and 

e = -y , The constant (but uncertain) size of the room is used 

to replace the two remaining distances, x, = d ,  + d 3  and 

ys = d2 + d4 . This makes the time-varying pose of the robot 

and the constant size of the room explicit. For clarity of pre- 
sentation we assume that the door is on a wall parallel with the 
y-axis, giving the state vector: 
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--I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L. 

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7igure 6. The states of  the filter are the robot pose (w, y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 ) and the 
,ize of  the room zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ws, ys  ) . The observations extracted by the Hough 
ransfom are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(dl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2, d,, d4, y)  . To navigate through a door y d  is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ilso needed. c1 is the angle of the steering wheel. 

To summarize: the first three components in the state vector 

X( tk )  are the pose of the robot. One of the corners in the 

room is used to define the global reference frame. The last 

three components are the size xs , ys  of the room and the 

position y d  of the open door. These three state variables can 

be viewed as the “map” of the room. 

If the laser is located at (0,O ) on the robot we get the lin- 
ear observation model 

/“, : : : : :I (9) Z(tk)  = HX(tk) + w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,) where H = 

0 - 1 0 0 1 0  

10 -1 0 0 0  J 
During the experiments the laser was not mounted at  

( 0 , O  ) . Eq. (9) gives the principle but the actual observation 

function used in the system is nonlinear. 

A simpler system can be designed using only the position of 
the door relative to the robot (three parameters). The disadvan- 
tage of a simpler system is that the observation of the door is rath- 
er inaccurate compared to the observation of the room. By filter- 
ing several observations we can obtain avery good estimate of the 
door’s position relative to the walls of the room. By measuring the 
robot position relative to the walls during motion we can main- 
tain a good estimate of the robot position relative to the room, 
and indirectly the door. This allows the robot to pass through a 
door with 1 cm fluctuations even though the observation of the 
door position has at least a 2 cm uncertainty. 

Dead Reckoning 
The robot’s pose can be expressed in different frames. For 

t > tk the displacement of the robot since time tk is written as 

where { k }  is a frame defined by the pose of the robot at 

time tk - see Fig. 7. The superscript k denotes that the pose 

is expressed in the coordinate system of frame { k }  . The 

pose expressed in the  global reference i s  writ ten a s  
T 

W )  = [x(t) y ( t )  e(t)l . 
The pose of the robot at time t in the global reference 

frame can be expressed using the robot’s pose P(tk) at time tk 

and the displacement P(t) . k 

Also, (1 1) recursively updates the dead reckoning estimate 

of the  pose  P(tk)  of the  robot.  T h e  estimation e r ror  

P(t)  = P(t)  - P(t) propagates as 

+ R(e(tk)) P(tk + 1) 

k ,  
where P(tk + i i  the dead reckoning error between t k  and 

tk + 

is modelled as zero-mean Gaus- 
k 

sian with covariance matrix Q(tk + 1) . A linear approxima- 
tion of (1 3) valid for small errors 6 is 

. The error atk + 

where 

The approximation is used for updating the covariance 

matrix. 

To avoid large linearization and modelling errors the 
odometer estimate is updated with a higher frequency (50 Hz) 

than the Kalman filter (= 1 Hz). The higher frequency is also 

needed to supply the control law with up-to-date position esti- 
mates. 

Between the two range scans at time t ,  and tk + I the esti- 

k k 
mate of P(t)  and the covariance matrix Q(t) are updated at 

of the ro- f k ,  tk, *, . . ., tk + , ) . The displacement k’ $(tk, I +  
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k 
Y( 'k+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-.  . . . . 

/ 
/ 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

two processes active. The dead reckoning process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis sampling 
at  high frequency while the localization process operates in 
the background. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk&t) t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtk (17) 

Table 2 The Dead Reckoning and the Localization are 
Computed in Parallel as Two Separate Processes. 

Time Dead Reckoning Pro- Localization Process 
cess 

{ r, y} measured 
with laser. 

tk ' k ,o  k&tk,o) = 0 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q ( t , o )  0 

The displacement Extract the vector 

When, at time t, , a measurement scan is taken, the back- L " J  

ground process first extracts the observations from the mea- 

surements and then uses these observations i ( t k )  to filter the 

estimate i ( t k J t k -  1),  predicted at time t k ,  using an extended 

Kalman filter, [I]. The result is the filtered estimate i ( t k l t k ) .  

The time is now t k+  and the displacement P(tk+ 1) of the 

robot since tk has been computed by the dead reckoning pro- 

cess. This is used with ( 5 )  to compute the new prediction 

i ( t k +  Itk) and the associated covariance matrix Z( tk  + I f k )  . 

k ,  

The Control Law 

The position estimator introduced above makes a large va- 
riety of navigation tasks possible. Each of them require a good 
control law. The two most basic navigation tasks are position- 
ing and trajectory following. Several control laws have been 

studied (e.g. [ 121, [ 171 and [20]) and can be used in this navi- 
gation system. The control law used to evaluate the navigation 
in this paper is a control law for following straight lines adapt- 
ed to the task of passing through an open door. 

The control signal is the angle a of the steering wheel and 

the desired trajectory is a straight line parallel with the x-axis 

at y = y ,  , see Fig. 6. The chosen control law is given as 

By choosing the feedback constants k ,  and k ,  the amount 

of overshoot can be controlled. Note that the front wheel has 
to overshoot to properly align the rear wheels. Compare with 

Fig. 9. A preliminary gain scheduling was used for k , ,  k ,  . 

EXPERIMENTAL RESULTS 
The algorithms have been tested with the robot described 

in Fig. 1. A range scan taken by the laser is shown in Fig. 2. 
This section presents a number of experimental results and a 
discussion of error sources. The most serious errors are 

. (16) z ( t k + l I t k )  [o Fk O d z(t kl t k ) [ir] Fk O + 

+ [ R(6(tk l tk))  ] kQ(tk+ 1) [ K ( B ( k l t k ) j T  

Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&tklfk) is not available until f k +  due to the 

computational delay in the extraction. An estimate i( is caused by erroneous interpretation of the range d a h  

available to the control law whenever requested 
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Figure 8. The photograph shows the trajectories plotted on the floor 
just in front of the door. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA pen was mounted under the robot. The large 
initial maneuvers are completed, and the trajectories are now almost 
parallel. The visible part of the measuring rod zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis about IO cm. Plots 
similar to this, but with a finer pen, were used to evaluate the repeat- 
ability presented in Table 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Navigation in a Corridor 

The first tests of the algorithms were made in a long corri- 
dor. When navigating in a corridor there will be two distinct 
peaks in the Hough transform. The feedback law is designed 
such that the peaks are at equal distance and perpendicular to 
the heading of the robot. Thus the robot will move along the 
middle of the corridor. 

At the full speed, 0.8 m/s, of the robot the repeatability of 
the motion is better than +1 cm. Moreover, the laser was dis- 
turbed intentionally by flapping a paper close to the it without 
noticeable effect on the navigation. 

Navigation through an Open Door 

The robot autonomously finds the walls and doors of the 
room and, for passage, selects one door. It is capable of adapt- 
ing to new situations, and will stop and search for a new door 
if the door it is heading for is closed during the approach. 

Although the laser can measure eight full scans every second, 
the present computer is only capable of processing one scan per 
second. During a passage through the door at 0.5 m/s only about 
six to ten scans are used before the passage. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A pen is mounted under the robot fairly close to the mid- 

point between the front and rear wheels. Fig. 8 is a photo of 
eight trajectories plotted on the floor with this pen. In this 
case the speed was 0.2 m/s. The fluctuations of the plotted tra- 
jectories converges within 1 cm just before the robot passes 
through the door. Table 3 gives the result of a statistical anal- 
ysis for this type of ‘ground truth.’ The plotted lines were eval- 
uated using a measuring rod. The results will be compared and 
discussed below. 

During the tests, extracted wall coordinates, estimates of 

the state, etc. were recorded. The trajectories plotted in Fig. 9 

Table 3 Standard Deviations Showing the Repeatability during 
Tests at Two Speeds and with Different Starting Positions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- p  

0.5 d s  0.2 d s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“Easy” runs, from starting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPO- (3 = 0 . 5 ~ ~  (3 = 0 . 7 ~ ~  
sitions about three meters in 
front of the door and within 20 = 4mrad 
degrees. 

“Difficult” runs, from starting (3 = 0 . 9 ~ ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACJ = 1.2cm 

side of, the door (see Fig. 9). = IOrnrad = ‘mad 

y 
o0 = Smrad 

positions closer to, and to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY Y 

are the Kalman filter estimates of the robot’s position relative 
to the estimated position of the door. More precisely, the front 
wheel curves are 

Rear midpoint 
-~ 2 -  I 

1 5  I [ ‘ F I  I 

E 0 5  

I 

-1.5 

I 

-1.5 

12iyure Y. Ekprrirnentul trajdorics when darting from severul different 
st~~rting po.si1ion.i. The lower plol i.s the front wheel and the upper i.< thc 
reor midpoint. hbte thut fhe oitershoot oilhe front wheel is necessary 
to align the robot with the perpendicular o f  the door. The plotted trujec- 
1orip.i ure the Kulman filter estimutes of the robots position relative to 
thr door. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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where  the e s t ima tes  RfW,ijfw of the f ron t  whee l  are  

computed from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAij, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 in the Kalman filter. 

The curves in Fig. 9 show the transients. Although not plot- 
ted here, a zoom-in on the last 50 cm shows fluctuations very 
similar to the plots on the floor. 

Two elements in the state vector are the size of the room. A 

number of estimates are plotted in Fig. 10. Each point is from 
a complete scan obtained by a least squares fit initiated by the 
four peaks of the Hough transform. There are three categories 
of errors. Noisy measurements occur, giving a standard devia- 
tion of 0.3-1.2 cm depending, among other factors, on how 
long a segment of the wall is observed. A calibration error aris- 
es, giving a constant offset. The differences between A and H 
are interpreted as disturbance by the heating radiators on the 
wall. This type of disturbance is a typical association error and, 
if large, is the most serious as it cannot be compensated by ei- 
ther calibration or simple statistical methods. 

Erroneous Association and Conventional Error Sources 

During navigation one side of a corridor was actually a several 
meters long glass wall. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAframes of the glass panes gave a weak 
peak in the Hough transform, while the wall of the room behind the 
glass panes gave the strongest peak. This is a typical source of erro- 
neous associations. It zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be ‘resolved by sensor fusion (relative to 

the model classes in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181) or by using a detailed map. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Absolute errors: The position of the laser on the robot, an 

asymmetric laser beam and angular offset in the scanner give 
systematic errors in the measured range. Most of these errors 
can be reduced by calibration. 

Dynamic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAerrors: Timing uncertainties, such as exactly 
when the scan was taken, is a genuine noise source for the dy- 
namic behavior. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.4 ,-.--.J 
5.64 5.66 5.68 5.7 5.72 

5s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

5 4 4  I 5.42 

I 
- -  

i ‘’r , 
5 4 - 1 -  

5 6 4  566  5 6 8  5 7  5 7 2  

Figure 10. These two plots show the series o f  observations of the size o f  the 
room. Each point in the plot indicates the size given by one observation. 
The true size of the room is 5.45 by 5.64 meters. (Lefl) The plot shows how 
the measured size of the room varies as the robot moves. The Z,’ E’ and 
‘ H  plots are taken from trajectory Z, ’ ‘E’ and ‘H in Fig. 9 respectively. 
(Right) The distribution of size measurements when the robot is station- 
ary is shown with the robot at three different poses, the starting point of 

trajectory 2,’ ‘E’ and ‘ H  respectively. The symbol marks the actual 
size of the room. The differences between measurements taken at differ- 
ent angles and positions are probably due to association errors between 
the wall and the heating radiators mounted on it. 

Geometric errors and clutter: Many small objects like the 
28 legs of the Board of Graduate Research have little effect on 
the Hough transform and do not disturb the navigation of the 
robot. Two heating radiators 4 cm from one wall, which cov- 
ered 40% of the length of the wall, were more disturbing. It is 
hard to model the consequences on the trajectory caused by 
these types of correlated range noise. 

Geometrical ambiguities: When entering a new room of un- 
known size there might be some initial ambiguities. A large rect- 
angular object like a table might be interpreted as a wall and give 
rise to a ‘large false door.’ The robot will automatically correct it- 
self when it finds the true wall behind the ‘large false door.’ Also, 
non-parallel walls in a rectangular room might cause the associ- 
ation gates to fail. If the room is irregular the ambiguities when 
choosing the four walls have to be dealt with by both refining the 
models, and by trading performance for robustness. 

CONCLUSIONS, GENERA LlZA TlONS AND 
FUTURE WORK 

The problem studied was navigation in cluttered rooms us- 
ing a range-measuring laser as the geometrical sensor and the 
Hough transform to extract geometrical information. 

A robust algorithm was developed for simultaneous estima- 
tion of the robot’s pose in the room and the size of the room. 
Feedback laws were developed and tested for two cases, pas- 
sage through an open door and navigation in corridors. The 
fluctuations in the experimental trajectories were smaller 
than k l  cm and k0.6 degrees at 0.5 d s  for passage through a 
door. A corridor gave k l  cm at 0.8 d s .  

A detailed noise budget is complicated, since there are several 
non-negligible dependencies among the variables. The prelimi- 
nary conclusion is that, without any special compensations, it is 
possible to navigate within +1-2 cm and with variations of +1 cm. 
Sharp turns at maximum speed (0.8 d s )  will give larger errors. 

Most types of standard noise (electronic, dynamic, jitter, 
etc.) give a fairly predictable behavior of the robot. Also an 
analysis seems fairly straightforward using tools from auto- 
matic control and signal processing. However, the most seri- 
ous disturbances are erroneous geometrical interpretations 
giving association errors. This is an important topic for forth- 
coming studies, i.e methods and algorithms for combining 
multiple sensors, geometrical rules and maps without run- 
ning into combinatorial explosions. 

The model, algorithm and tests described above were re- 
stricted to one rectangular room. This introductory test can be 
generalized for an ‘entire building having a polygonal archi- 
tecture.’ For each visible wall in the building it is possible to 

extract the coordinates (a‘, y) with the Hough transform. The 

last three components in the state vector (8) are replaced with 
the coordinates of all the observed walls, compare with (6). 
The observation vector in (7) is replaced with the coordinates 

of all the walls that are extracted at time tk . This implies that 

the estimate of the state vector will be augmented with new 
states as new walls are observed by the moving robot. This 
generalized map-building and navigation system has recently 
been implemented on two new mobile robots, one of which is 

described in [ 141. Expanding the model from one room to two 
rooms and finally to an entire building introduces new prob- 
lems in that matching observations to landmarks becomes 
gradually more difficult and time-consuming. 
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