
Mobile Security with Smartcards

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades
eines Doktor-Ingenieurs (Dr.-Ing.)

von Diplom-Informatiker

Roger Kilian-Kehr

aus Marburg/Lahn

Referent: Prof. A. Buchmann, PhD, TU Darmstadt
Korreferent: Prof. Dr. F. Mattern, ETH Zürich

Tag der Einreichung: 08. April 2002
Tag der mündlichen Prüfung: 06. Mai 2002

Darmstädter Dissertationen D17

Summary

Mobility in conjunction with communication facilities in the form of mobile telephony seems to be
one of the major technology trends observed throughout the last decade. Many experts and analysts
expect that the arrival of mobile services such as mobile commerce, location-based services, multi-

media messaging, and mobile gaming in the third generation of mobile networks will be the next step
in this success story. However, protecting service providers from fraud and mobile users from new
threats such as identity theft or other attacks on privacy and security matters is equally challenging.

Historically, cryptography has been used to protect information in the digital world from eaves-
dropping or tampering. In future person-to-person and person-to-service interaction scenarios cryp-
tography will be of at least equal importance. However, the situation today is not people-centric

but more application-centric, i.e. for each application new security measures are defined and im-
plemented. As an example one may just consider that almost any access control in the Internet is
managed through simple account/password schemes different for each application. But passwords
are known to be a generally weak security measure in many practical settings (cf. [MT79]). From
the user perspective the account/password approach additionally leads to numerous login accounts an
individual has to manage – something which is inconvenient and as a consequence often error-prone.

Cryptographic measures can be applied but shifting towards such mechanisms especially in mo-
bile settings is often hard to implement since people cannot easily carry around their personal crypto-
graphic keys, let alone memorize them or input them when needed. Therefore, we believe that some
kind of personal security assistant or device is needed that safely keeps a user’s security-sensitive
data and enforces the user’s security-related interests. Otherwise, people will be forced to use tra-
ditional weak protection mechanisms that are applicable without strong cryptographic measures –
a situation we do not think is desirable in the digital age of tomorrow.

Smartcards are devices that could be used to solve at least some of the problems mentioned. They
are tamper-resistant, can safely store information, are able to perform unobserved (cryptographic)

operations, and can be conveniently carried around. As such they seem to be ideal candidates for
personal security modules. However, it is yet unclear how smartcards can be empowered to actually
play the role of true personal and ubiquitous security modules. Furthermore, the smartcard alone
is not sufficient to act as a security module since it lacks reasonable user interfaces such as a dis-
play and input facilities. Thus, suitable terminals are needed that allow users to communicate with
their smartcards, i.e. personal security modules are comprised of suitable terminals and personalized
smartcards that work together in order to fulfill the users’ needs.

i

Summary ii

Henceforth, this thesis will contribute approaches, architectures, protocols, and systems how
smartcards can be put in place to become true security modules for people in the digital age. The
most visible contributions of this thesis are as follows:

• The JiniCard framework for the integration of off-the-shelf smartcards into local environ-
ments. It enables smartcards that have traditionally played the role of passive servers to be-
come truely active entities after they are inserted into suitably configured card terminals. Users
could carry around their smartcard, insert them into available readers and make immediate use
of their security services. The approach is centered around the idea to dynamically instantiate
“software substitutes” for resource-limited devices such as smartcards.

• The so-called Personal Card Assistant approach solving the problem of smartcard usage in a
“hostile” environment. It is comprised of an off-the-shelf personalized user terminal – such as
a PDA – that cooperates with a personal smartcard. The personal terminal is used instead of
terminals considered to be public, i.e. it acts as a “trust amplifier” for its user. The advantage
is that mobile users communicate with their smartcard through their own mobile terminal
which they possibly consider much more trustworthy than other unknown components. The
personal terminal and the smartcard are linked together using cryptographic measures such
that no device is usable without the other.

• The WebSIM system that integrates into the Internet the SIM smartcards found in all GSM
mobile phones. In this approach people now can use mobile phones as “wireless smartcard
readers” which are reachable from the Internet by means of a small HTTP Web server imple-
mented in the SIM. This approach allows among others to perform security-critical operations
such as authentication to be initiated from a remote context, e.g. from an Internet shop. Hence,
smartcards become Internet nodes that encapsulate security services a mobile user offers to
peers.

• The SIMspeak platform allowing for the execution of mobile code within a smartcard. This
approach was motivated by the need for end-to-end secure communication between a service
provider and its customer and the ability to easily create electronic signatures on small devices.
It allows a service provider to “rent” persistent storage on a user’s personal smartcard, e.g. to
store cryptographic keys used to send end-to-end encrypted mobile code from the provider to
the user’s smartcard. The smartcard then becomes the most active component in a personal
security module and uses available terminals to communicate with its user. This approach
essentially shifts as much security-critical components and computations as possible from less
trustworthy components into the secure context of the smartcard. This approach leads to new
trust models for smartcard issuers which can be particularly well applied in the context of
electronic signature creation in mobile scenarios.

These results can be used independently from each other but equally well composed into more gen-
eral security solutions. As such they can be considered as building blocks enabling the composition
of suitable personal security modules meeting the personal security demands of the future.

Summing up, this thesis provides solutions to the question how smartcards can become true personal
security modules. It does this by proposing concrete architectures and protocols all of which have
been prototypically implemented to yield meaningful proofs-of-concepts.

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Zusammenfassung

Der ungeahnte Erfolg des Mobilfunks im letzten Jahrzehnt hat zu vielen Prognosen von Experten
und Analysten geführt, wie Menschen in der Zukunft miteinander und mit ihrer Umwelt kommu-
nizieren werden. Wichtig wird nach wie vor das Bedürfnis der Nutzer nach Sprachkommunikation
sein, jedoch hat der Erfolg des Short Messaging Service (SMS) gezeigt, dass auch andere Dien-
ste durchaus überraschende Nutzungsdimensionen aufweisen können. Für die dritte Generation der
Mobilfunknetze mit entsprechenden Basisdiensten zur Datenkommunikation wird daher erwartet,
dass ein Großteil der mobilen Kommunikation über Datendienste in den Bereichen M-Commerce,
lokations-basierte Dienste, Multi-Media Messaging und mobiles Spielen stattfindet.

Sicherheit in der digitalen Welt von heute und morgen

Notwendigerweise wird die Nutzung solcher und anderer Dienste entsprechende Maßnahmen zur
Zugangskontrolle, Authentifikation und auch der Abrechnung erfordern, die es Dienstanbietern erst
ermöglichen, Zugang zu Diensten zu kontrollieren und genügend Einnahmen für einen erfolgreichen
Betrieb zu erwirtschaften. Üblicherweise erfordert dies die Lösung einer Reihe von grundlegenden
Problemen wie z.B.

— Authentifikation als Basis zur Identifizierung von Kunden und zur Missbrauchsprävention,

— Nicht-Abstreitbarkeit zur rechtlich bindenden Vertragsgestaltung und für Einwilligungser-
klärungen und

— Verwaltung personenbezogener Daten zum Schutz der Nutzer vor diversen Gefahren des
Datenmissbrauchs.

Diese Liste kann in vielerlei Hinsicht erweitert werden und ist hier nur als exemplarisch anzusehen.
Technische Maßnahmen zur Umsetzung dieser Ziele sind Teil einer Gesamtlösung und müssen durch
entsprechende Geschäftsprozesse und -verträge ergänzt werden.

Traditionell werden insbesondere Maßnahmen wie Authentifikation, daran anschließende Zu-
griffskontrolle und insbesondere Nicht-Abstreitbarkeit mit Hilfe kryptografischer Algorithmen und
Protokolle implementiert. Dies bedeutet in der Praxis, dass darauf aufbauende Lösungen und Syste-
me die Möglichkeit haben müssen, kryptografische Berechnungen durchzuführen und dazugehörige
Schlüssel zu verwalten.

Chipkarten als Teil von universellen persönlichen Sicherheitsmodulen

Chipkarten sind prinzipiell in der Lage genau diese Anforderungen zu erfüllen. Sie sind resistent ge-
gen Manipulation, erlauben die sichere Hinterlegung von Daten, wie z.B. kryptografische Schlüssel,
und verbergen die Ausführung von Applikationen und Algorithmen auf der Karte. Diese Eigen-
schaften machen Chipkarten potenziell zu persönlichen Sicherheitsmodulen welche ihre Eigentümer
in ihrem täglichen Ablauf bei sicherheitsrelevanten Aktionen unterstützen könnten.

iii

Zusammenfassung iv

Zur Zeit werden Chipkarten allerdings weniger als persönliche Sicherheitsmodule verwendet,
sondern im Allgemeinen immer anwendungsspezifisch eingesetzt. Am Beispiel GSM dient die SIM
im engeren Sinne als Sicherheitsmodul des Betreibers und nicht des Nutzers. In einer zukünftigen
mobilen Welt werden die jetzigen Sicherheitslösungen in den anwendungszentrierten Ansätzen sehr
wahrscheinlich allein durch die Anzahl der Dienste und Anwendungen nicht geeignet skalieren.
Ein von vielen Diensten genutztes persönliches Sicherheitsmodul, welches universell einsetzbar ist,
könnte ein Ausweg aus diesem Dilemma sein. Dies zieht notwendigerweise eine Reihe von generel-
len Fragen nach sich:

• Wie muss ein persönliches Sicherheitsmodul für den mobilen Gebrauch auf der Basis einer
Chipkarte aussehen?

• Wie können “kleine” Geräte wie Chipkarten mit begrenzten Ressourcen in Bezug auf Rechen-
leistung und zur Verfügung stehender Kommunikationsbandbreite einfach in Umgebungen
integriert werden?

• Welche Sicherheitsanforderungen müssen von den Endgeräten erfüllt werden, damit Nutzer
diese zur Kommunikation mit der persönlichen Chipkarte verwenden können?

• Welche Sicherheitsniveaus können mit den vorgeschlagenen Lösungen erreicht werden?

Weiterhin können die hier aufgeworfenen Fragen nicht unabhängig voneinander beantwortet werden
und erfordern grundsätzlich einen umfassenderen Ansatz für den Problembereich der Mobilität und
Sicherheit mit Chipkarten. Diese Arbeit liefert daher Ergebnisse sowohl auf der Architekturebene
genauso wie Vorschläge für neue Interaktionsprotokolle und generell neue Aufgaben für Chipkarten.
Die einzelnen Ergebnisse können als Basis und Bausteine eines Rahmenwerks angesehen werden,
welches die Bedürfnisse vieler Nutzer nach sicherer Interaktion mit Partnern in mobilen Szenarien
befriedigt.

Ergebnisse dieser Arbeit

Die vorliegende Arbeit beginnt mit einer Analyse zukünftiger mobiler Szenarien in denen mobile
Nutzer Dienste “spontan” verwenden. In Zukunft werden Dienste in solchen Szenarien oftmals über
lokale Kommunikationsmedien wie Kurzstreckenfunknetze oder Infrarotkommunikation angeboten
werden. Es wird herausgearbeitet, dass die Spontaneität bei solchen Konstellationen üblicherweise
darin besteht, dass sich die Kommunikationspartner möglicherweise a priori nicht kennen und das
gegenseitige Kennenlernen erst bewerkstelligen müssen.

Als Beispiel für spontane Kommunikationsbeziehungen möge GSM im Falle des Roamings in
fremden Gastnetzen angesehen werden. Hierbei tauschen Mobiltelefon, SIM und Gastnetz Informa-
tionen untereinander aus, die es dem Gastnetz erlauben, das Heimatnetz des Teilnehmers zu kontak-
tieren, eine Authentifikation durchzuführen und den Zugang zu kontrollieren. Die Bequemlichkeit
für den Benutzer resultiert aus international festgelegten Standards, die über Jahre hinweg definiert
und gepflegt wurden.

Die Spontaneität der Interaktionen zwischen mobilen Nutzern, ihren Geräten und der Umwelt ist
eines der Grundprobleme einer neuen Ära in der Informationstechnik die mit den Begriffen Pervasive

und Ubiquitous Computing umschrieben wird.

Pervasive Computing, Ubiquitous Computing und Spontane Vernetzung

Die zukünftigen Szenarien der Dienstnutzung beschreibt IBM’s offizielle Definition des allgemein
verwendeten Begriffs Pervasive Computing mit “Convenient access, through a new class of app-

Zusammenfassung v

liances, to relevant information with the ability to easily take action on it when and where you need

to.”. Der noch weiter gefasste Begriff des Ubiquitous Computing geprägt durch Mark Weiser schließt
darüber hinaus auch die “unsichtbare” Integration von Computern in Alltagsgegenstände und Umge-
bungen mit ein, die den Menschen in seinem täglichen Lebensablauf mehr oder weniger unbemerkt
unterstützen.

Wesentlicher Bestandteil solcher Visionen ist die Annahme, dass Nutzer eigene mobile Geräte
als Werkzeug zur Kommunikation mit Diensten und anderen Geräten verwenden werden und in der
Lage sein müssen spontan Kommunikationsbeziehungen einzugehen. Technologien zur spontanen

Vernetzung, also zur Integration von Diensten und Geräten in Netzwerkumgebungen zum Zwecke
einer sofortigen Dienstverfügbarkeit ohne manuellen Eingriff, sind daher als elementarer Baustein
von Pervasive oder Ubiquitous Computing anzusehen.

Verschiedenste Technologien sind für diesen Zweck vorgeschlagen worden und exemplarisch
werden davon das Service Location Protocol (SLP) und Jini untersucht und gegenübergestellt. Beide
Technologien treffen keine grundlegenden Annahmen über die ihnen zugrunde liegenden Kommu-
nikationsmedien außer eines IP-basierten Netzwerks, über das Dienstanbieter Dienste anbieten und
Klienten diese ausfindig machen. Dieses schließt jedoch eine große Klasse von Geräten, die über
andere Kommunikationsmechanismen verfügen, von vorneherein aus und SLP und Jini sind damit
nicht für beliebige Anwendungsszenarien geeignet.

Ein Rahmenwerk zur Integration kleiner Geräte in lokale Infrastrukturen

Wesentliches Ergebnis der Gegenüberstellung der Technologien zur spontanen Vernetzung ist je-
doch die Tatsache, dass sie für die Integration “besonders kleiner” Geräte im lokale Umgebungen
nicht geeignet sind. Wir entwickeln daraus die generelle Prognose, dass eine geeignete Integrati-
onsunterstützung für diese Art von Geräten durch deren umgebende Infrastruktur immer nötig sein
wird. Auch wenn die aktuelle Generation von Geräten durch technologischen Fortschritt dem Be-
darf an Unterstützung durch die umgebende Infrastruktur entwächst, wird es neue Geräte geben, die
wiederum Unterstützung benötigen.

Aus dieser durchaus diskussionsfähigen Annahme heraus wird nachfolgend ein Rahmenwerk be-
stehend aus einer Architektur und geeigneten Interaktionsprotokollen zur Integration von besonders
kleinen Geräten in eine lokale Infrastruktur vorgeschlagen. Dem Rahmenwerk liegt die Idee zugrun-
de, dass man bei der Integration auf den untersten Ebenen einer Kommunikationshierarchie in der
Regel immer Informationen wie z.B. eindeutige Seriennummern, etc. für Kommunikationspartner
zugänglich sind. Mit Hilfe dieser Informationen kann die Umgebung über geeignete Protokolle ge-
rätespezifischen mobilen Code (sog. Device Proxy) laden, der die bis dato unbekannten Fähigkeiten
des Gerätes ermittelt. Dieser Device Proxy ist dann in der Lage, als Stellvertreter des Gerätes zu
agieren und weitere Schritte zur Integration des Gerätes in eine lokale Infrastruktur vorzunehmen.

Generell ermöglicht dieser Ansatz, kleine Geräte mit Hilfe von mobilem Code als “Software-
Stellvertreter” in lokale Umgebungen auf flexible Art und Weise zu integrieren und die im Gerät
verfügbare Funktionalität über externe Komponenten zu komplettieren. Der entwickelte Ansatz dient
später als Basis für die Integration von Chipkarten in lokale Umgebungen.

Das Spannungsfeld zwischen Chipkarte und Terminal

Im weiteren Verlauf der Arbeit wird analysiert, welche spezifischen Probleme die Integration von
Chipkarten in Umgebungen mit sich bringt. Zentral ist dabei insbesondere die Frage, welche Kom-
munikationswege benutzt werden, um mit der persönlichen Chipkarte zu kommunizieren, da diese
nicht über eigene Ein- und Ausgabemöglichkeiten wie Anzeigeeinheit oder Tastatur verfügt. Wie

Zusammenfassung vi

später noch dargelegt wird, lässt sich aus den Forschungsergebnissen der letzten Jahre grundsätzlich
ersehen, dass sich Chipkarten in einer komplett “feindlichen” Umgebung nur sehr schwer schützen
lassen, falls kein sicherer Kommunikationskanal zum Benutzer vorhanden ist. Ein vollständiges per-
sönliches Sicherheitsmodul umfasst aber immer sowohl die personalisierte Chipkarte als auch ein
geeignetes Terminal, mit dessen Hilfe der Benutzer mit der Karte kommuniziert.

Daher wird in der vorliegenden Arbeit eine Klassifikation des Spannungsfelds von Chipkarte und
Terminal vorgenommen, die auf den folgenden von uns identifizierten Kriterien beruht:

— Vertrauenswürdigkeit des Terminals: Dieses Kriterium definiert, als wie vertrauenswürdig
das Terminal aus Sicht des Nutzers eingeschätzt werden kann. Ein öffentliches Terminal wird
zum Beispiel mit hoher Wahrscheinlichkeit als weniger vertrauenswürdig eingeschätzt als ein
dem Nutzer gehörendes Endgerät, welches er oder sie prinzipiell ständig unter Kontrolle hat.

— Personalisierung des Terminals: Hierunter wird verstanden, dass neben der Chipkarte auch
das Terminal personalisiert ist. Üblicherweise impliziert ein personalisiertes Terminal auch
eine höhere Vertrauenswürdigkeit, so dass beide Kriterien in der Regel stark korrelieren und
aus Gründen der Einfachheit oft auch zusammen betrachtet werden können.

— Mobilität des Terminals: Die vom Nutzer verwendeten Terminals können mobil sein und
von diesem “herumgetragen” werden oder es werden lokal zur Verfügung stehende Terminals
verwendet, abhängig von der jeweiligen Umgebung, die der Nutzer vorfindet.

— Kommunikation zwischen Terminal und Chipkarte: Dieses Kriterium definiert, wie Karte
und Terminal miteinander gekoppelt sind. Mögliche Varianten sind unter anderem eine direkte
physische Kopplung oder eine Kommunikation über ein Netzwerk. Letzteres kann wiederum
einen “öffentlichen” Charakter haben, in dem die Kommunikation zwischen Karte und Termi-
nal geeignet geschützt werden muss, oder das Netzwerk kann als “privat” und damit vertrau-
enswürdig eingestuft werden, was möglicherweise keine besondere Sicherung der Kommuni-
kation erfordert.

— Anwendungskontrolle: Dieses Kriterium legt fest, wie die Verteilung der Realisierung einer
Anwendung auf Chipkarte und Terminal erfolgt. Grundsätzlich ergibt sich dabei ein Spektrum
von Anwendungen, die nahezu ausschließlich im Terminal ablaufen, bis zu Applikationen, die
bis auf Nutzerein- und -ausgaben vollständig in der Karte ablaufen.

Auf der Basis der vorgestellten Kriterien ergeben sich vier Problembereiche, die im Rahmen dieser
Arbeit untersucht wurden und für die Lösungen erarbeitet wurden. Für alle Problembereiche werden
in dieser Arbeit Lösungen vorgestellt, die in prototypischer Form umgesetzt und implementiert wur-
den. Diese Lösungen ergeben miteinander kombinierbare Grundbausteine für die Entwicklung von
persönlichen Sicherheitsmodulen. Die vier Ansätze werden nachfolgend kurz vorgestellt.

A1: Ein Rahmenwerk zur Spontanen Vernetzung von Chipkarten

Dieser Ansatz beruht auf der Problemstellung, dass ein Nutzer nicht über ein eigenes persönliches
Terminal verfügt, sondern gezwungen ist, seine personalisierte Chipkarte über lokal vorgefundene
Terminals zu nutzen.

Unsere JiniCard-Lösung besteht aus dem bereits vorgestellten Rahmenwerk zu Integration klei-
ner Geräte in lokale Umgebungen. Hierzu werden nach dem Einführen einer Chipkarte in ein ge-
eignetes Kartenterminal spezifische Informationen der Karte abgefragt, die als Schlüssel für die
Lokalisierung des zu der Karte passenden mobilen Stellvertreter-Objekts oder Proxy dienen. Der
entsprechende Karten-Proxy übernimmt dann die weitere Kommunikation mit der Karte und kann

Zusammenfassung vii

insbesondere auf der Karte befindliche Dienste ermitteln und für diese ebenfalls Dienst-Proxys in-
stanzieren. Der Nutzer kann dann das lokale Terminal verwenden, um mit der Karte zu kommuni-
zieren und sicherheitsrelevante Entscheidungen vornehmen.

Zusammenfassend kann der Ansatz als eine spezifische externe Ergänzung der auf der Karte
befindlichen Dienste verstanden werden. Dazu werden entsprechende Komponenten in Form von
mobilen Objekten aus dem Netz dynamisch geladen und der Umgebung komplettierend hinzugefügt.
Dies ermöglicht es Chipkarten, sich als aktive Komponenten mit Hilfe ihrer externen “Stellvertreter”
in Umgebungen transparent und spontan zu integrieren und ihre Dienste für potentielle Klienten
anzubieten.

A2: Ein personalisiertes und vertrauenswürdiges mobiles Terminal

Ansatz A2 beruht auf dem Problem, wie eine Chipkarte in einer für den Nutzer nicht vertrauenswür-
digen Umgebung trotzdem sicher eingesetzt werden kann.

Die erarbeitete Lösung namens Personal Card Assistant (PCA) schlägt vor, ein dem Benutzer
gehörendes mobiles Terminal, wie beispielsweise einen persönlichen digitalen Assistenten (PDA),
hinzuzuziehen, der als vertrauenswürdiges Instrument zur Kommunikation mit der Karte Verwen-
dung findet.

Hierbei gibt es grundsätzlich die Variante der direkten physischen Kopplung von Terminal und
Karte oder einer Kommunikation über einen potentiell nicht vertrauenswürdigen Kommunikations-
kanal. Eine sichere Kommunikation über einen unsicheren Kanal wird hierbei über die Personalisie-
rung des Terminals mit Hilfe kryptografischer Verfahren vorgenommen.

Konkret bedeutet dies, dass Terminal und Chipkarte im Besitz des öffentlichen Schlüssels des
jeweils anderen sind. Dieses Prinzip der Paarbildung ermöglicht es, einen authentisierten und ver-
schlüsselten Kommunikationskanal untereinander aufzubauen, der auch in einer unsicheren Umge-
bung eine sichere Nutzung der Chipkarte erlaubt. Diese Anordnung wird noch verbessert durch die
Tatsache, dass die Karte keinerlei Operationen durchführt, die nicht über einen vom Terminal auf-
gebauten Kommunikationskanal angefordert wurden. Umgekehrt ist das Terminal so ausgerichtet,
dass es alleine nicht in der Lage ist, sicherheitsrelevante Entscheidungen ohne die Karte vorzuneh-
men. Dies ergibt ein höheres Sicherheitsniveau, da nur beide Geräte zusammen eine funktionsfähige
Einheit bilden.

Dieses Prinzip der Nutzung eines vertrauenswürdigeren persönlichen Gerätes ist am Beispiel der
Erstellung von elektronischen Signaturen mit konkreten kryptografischen Protokollen umgesetzt und
implementiert worden und ist auf weitere Anwendungen beliebig ausdehnbar.

A3 Eine mobiles Terminal welches über einen drahtlosen mobilen
Kommunikationskanal verfügt

In vielen Situationen des täglichen Lebens, beispielsweise bei der Bestellung von Waren per Telefon,
ist eine geeignete Einbindung eines Sicherheitsmoduls in den eigentlichen Kommunikationsablauf
nötig. Im Beispiel der Telefonbestellung ist diese aber schon aus technischen Gründen nicht ge-
geben, der direkte Einsatz eines Sicherheitsmoduls “beim Telefonieren” also nicht ohne weiteres
möglich. Trotzdem ist es wünschenswert, auch hier ein Sicherheitsmodul flexibel und einfach mit
einbinden zu können und Verträge und Bezahlvorgänge mit kryptografischen Mechanismen einfach
und kostengünstig abzusichern.

Der WebSIM genannte Lösungsansatz besteht darin, das Terminal als einen “drahtlosen Chipkar-
tenleser” zu betreiben. Als idealer Untersuchungsgegenstand wurden GSM Mobiltelefone gewählt,
die in der Regel über eine universelle Erreichbarkeit zu jeder Zeit und an nahezu jedem Ort verfügen.

Zusammenfassung viii

Des Weiteren bieten GSM Mobiltelefone über das sog. SIM Application Toolkit den SIM Chipkarten
eine standardisierte Schnittstelle an, mit deren Hilfe eine SIM Interaktionen mit dem Nutzer durch-
führen kann. Die drahtlose Schnittstelle von GSM erlaubt es nun, Sicherheitsdienstleistungen der
Chipkarte, wie z.B. Authentifikation “per Handy” anzubieten.

Konkret wurde in dieser Arbeit eine Möglichkeit entwickelt und implementiert, welche die SIM
vom Internet aus per HTTP ansprechbar macht. Dies bedeutet, dass die Chipkarte als normaler
Internet-Knoten erreichbar ist und deren Dienste auch vom Internet aus angesprochen werden kön-
nen. Durch die weltweite Verbreitung von über 500 Millionen GSM SIMs hat die erarbeitete Lösung
potenziell eine hohe praktische Relevanz, auch wenn die neue Funktionalität der WebSIM erst mit
der Herausgabe neuer Karten erweitert werden kann.

A4: Eine personalisierte Chipkarte, die über eine Ausführungsplattform
für mobilen Code verfügt

Dieser Ansatz ergibt sich aus dem generellen Bedürfnis für Dienstanbieter eine Ende-zu-Ende si-
chere Kommunikationsmöglichkeit mit der Chipkarte des Nutzers zu schaffen, die im Ansatz A3
aus verschiedenen Gründen nicht gegeben ist.

In der konzipierten SIMspeak-Lösung verfügt die Chipkarte über einen Interpreter, der Program-
me in einer speziell für diesen Anwendungsbereich entworfenen Programmiersprache ausführen
kann. Dienstanbieter senden Programme in dieser Sprache zur Chipkarte, deren Interpreter diese
dann zur Ausführung bringt. Dabei profitieren die Programme von der sicheren Ausführungsum-
gebung in der Chipkarte und können auch auf “gemieteten” persistenten Speicher in der Karte zu-
rückgreifen. Grundprobleme dieses Ansatzes wie kontrollierte Terminierbarkeit von Anwendungen,
Typsicherheit auf der Basis geeigneter Code-Verifikation sind untersucht und Lösungen erarbeitet
worden. Insbesondere wird aufgezeigt, dass für den intendierten Anwendungsbereich auch das Pro-
blem von “böswilligem Code” kontrollierbar ist.

Dieser Ansatz ermöglicht es, komplette Anwendungen mit Nutzerinteraktion in einer Chipkar-
te ablaufen zu lassen und lediglich die Nutzerein- und -ausgaben über ein Terminal vornehmen zu
lassen. Alle sicherheitskritischen Abläufe werden von der Karte ausgeführt und kontrolliert. Dieser
Ansatz steht im Gegensatz zur bisherigen Praxis, Chipkarten nur als letztes Glied in einer Anwen-
dungshierarchie zu nutzen und rückt stattdessen Chipkarten als sichere persönliche Module in den
Mittelpunkt des Geschehens.

Ermöglicht durch den Ansatz der Plattform für mobilen Code wurden mehrere Protokolle im
Umfeld der Erstellung von elektronischen Signaturen entwickelt, die einerseits insbesondere für die
Nutzung in mobilen Szenarien geeignet sind und andererseits eine grundsätzliche Verbesserung der
Sicherheit bei der Erstellung von Signaturen darstellen.

Fazit

Die vorliegende Arbeit entwickelt auf der Basis eigener Einschätzungen und Annahmen, wie mobile
Nutzer in der Zukunft mit Diensten kommunizieren, die generelle These, dass auf den Nutzer per-
sonalisierte Chipkarten ideale Komponenten eines persönlichen Sicherheitsmoduls in Verbindung
mit einem geeigneten Terminal sind. Aus dieser These wird ein Entwurfsraum aufgezeigt, der die
besonderen Merkmale der Chipkarte und der Terminals strukturiert darlegt und Vergleiche unter-
schiedlicher Ansätze zulässt.

Auf der Basis dieses Designraums werden spezielle Kernprobleme identifiziert, für die jeweils
konkrete Lösungen entwickelt, vorgestellt, als Nachweis der Umsetzbarkeit implementiert und be-

Zusammenfassung ix

wertet werden. Diese Lösungen können als Standardlösungen und -bausteine eines Rahmenwerks
herangezogen werden, mit dessen Hilfe der Entwurf persönlicher Sicherheitsmodule unterstützt wer-
den kann.

Die verschiedenen Bausteine können darüber hinaus in verschiedenster Weise miteinander kom-
biniert werden, um für besondere Anwendungszwecke neue Lösungen zusammenzustellen. Weiter-
hin lässt sich über den aufgespannten Designraum nachweisen, dass die vorgestellten Lösungen in
Bereiche der Chipkartennutzung vordringen, die von “klassischen” Anwendungen nicht abgedeckt
werden und auch in dieser Hinsicht als neu betrachtet werden können.

Insgesamt werden alle wesentlichen Aspekte der Integration und des Einsatzes von Chipkarten als
persönliche Sicherheitsmodule vorgestellt. Aus dieser Arbeit ergeben sich daher grundlegend neue
Erkenntnisse und Richtlinien, wie zukünftige persönliche Sicherheitsmodule gestaltet werden soll-
ten.

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Acknowledgements

Performing a doctoral thesis while at the same time the Internet booms seems to be sort of a purely
idealistic effort since the seduction of big money in these times was definitively given. However,
being embedded in the academic world of a university and at the same time being a member of a
research department of a large telecommunication enterprise had the definitive advantage of “taking
best of both worlds” and it allowed me to act as a “bridge” between those two institutions and
communicating ideas from the academic world into the industry and vice versa. This, after all, was
one of the best experiences I’ve made throughout the course of my work and many people were part
of it.

First of all I’d like to thank my supervisors Alex Buchmann and Friedemann Mattern who gave
me the academic freedom vitally necessary to experiment with new ideas and backing me whenever
needed. Very special thanks go to Joachim Posegga who made it possible for me being hooked at
T-Nova, and who has been the best discussion partner about smartcards, telcos, and the GSM world
I can imagine.

The guy who I’ve most closely worked together in the course of this thesis is Andreas Zeidler
with whom I discussed ubiquitous computing all the way from top-down to bottom-up. Maybe the
most essential result of this was that “UbiComp” does not (yet) have a real business case, which is a
real pity.

Next is Harald Vogt, who taught me the basics of smartcards and formal methods and who left
us towards Zurich just because of chocolate and cheese, and cooking food with radio frequency
equipment. Then there is Michael Rohs, best diploma thesis worker I’ve ever had and who really did
extraordinarily well with the JiniCard framework except that he left us also for cooking food with
radio frequency.

Since individually listing more colleagues that influenced my work would span too many para-
graphs, I’d like to jointly thank my colleagues at the Databases and Distributed Systems Group

(DVS) and the PhD program Enabling Technologies for Electronic Commerce; furthermore the peo-
ple at the Information Technology Transfer Office (ITO), my colleagues at the Information Security

Department (ES2) at T-Nova, and the members of the EURESCOM Project P1005. Then I’d like to
thank Schlumberger who delivered some GSM SIMs for the WebSIM, the guys at Radiomobil, S.A.

in Prague who gave us two GSM IMSI/Ki pairs needed to make the WebSIM fly, and Jürgen Dethloff
for inventing the smartcard.

Special thanks to my proof readers starting with Felix Gärtner and Markus Schumacher who
also helped me to shape the most central parts of this thesis, and furthermore Thomas Ziegert and
Andreas Zeidler.

Zusammenfassung xi

Many, many thanks to my parents who supported me throughout the last three decades and who
always believed in me.

Lastly, but actually most importantly, I’d like to thank the most wonderful person in this world,
my wife Moni. She gave be the mental backing necessary to finish this work and she often motivated
me in the evenings to once more open my laptop to write down some more pages for my dissertation.

In retrospective this personal undertaking can be characterized as a continuum ranging from pure
fun to many moments when I was considering to just cancel all this. Keeping motivation steadily
up is maybe the most important single factor that eventually leads to a written down piece of paper
documenting the work done throughout the last couple of years.

Source of this motivation has been more than others my social environment: my family, my
friends, and my colleagues. Thank you all. . .

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Contents

Summary i

Zusammenfassung iii

List of Figures xv

List of Tables xvi

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of this Thesis . 4
1.3 Organization of this Thesis . 5

2 Connected Devices, Services, and their Users 7
2.1 Introduction . 7
2.2 On Ubiquitous and Pervasive Computing . 8
2.3 Issues in Spontaneous Networking . 9
2.4 A Brief Overview of Spontaneous Networking Technologies 11

2.4.1 Fundamental Concepts . 12
2.4.2 Case Studies . 12
2.4.3 Summary . 17

2.5 On the Necessity of Infrastructural Support for Small Devices 17
2.6 Summary . 19

3 Smartcards as Personal and Ubiquitous Security Modules 21
3.1 Introduction . 21
3.2 Smartcard Technology Overview . 22

3.2.1 A Brief History of Smartcards . 22
3.2.2 Micro Processor Cards – Essence and Applications 23
3.2.3 Standard Issuance Models for Smartcards 27

3.3 Smartcards in Hostile Environments . 28
3.4 Design Dimensions of Smartcards and Terminals 29

3.4.1 Mobility and Personalization of Terminal 31
3.4.2 Placement and Communication between Terminal and Smartcard 32
3.4.3 Application Control . 33

3.5 Design Options of Personal Security Modules . 33

xii

Contents xiii

3.6 Summary . 37

4 Integration of Smartcards into Networked Environments 39
4.1 Introduction . 39
4.2 Mobile Code as an Enabling Technology for Spontaneous Networking 41

4.2.1 The Memory Wallet Example . 41
4.2.2 A Bootstrapping Framework for Small Devices 42

4.3 Middleware for Smartcards . 46
4.3.1 Smartcard Terminal . 47
4.3.2 Characterization of Middleware Approaches 48
4.3.3 Design Choices for Smartcard Middleware 49
4.3.4 Middleware as an Execution Platform for Mobile Code 50

4.4 The JiniCard Framework . 51
4.4.1 The JiniCard Terminal Layer . 53
4.4.2 Smartcard Exploration Layer . 55
4.4.3 Smartcard Services Exploration Layer . 57

4.5 Related Work . 59
4.6 Security Aspects . 62

4.6.1 Smartcard Communication Assumptions 62
4.6.2 End-to-End Security Approaches . 63

4.7 Summary . 65

5 Personal Security Modules based on Mobile Personalized Terminals 67
5.1 Introduction . 67
5.2 Motivation: Electronic Signature Creation . 68
5.3 The Personal Card Assistant . 69

5.3.1 PCA Overview . 69
5.3.2 The Underlying Cryptographic Protocol . 71
5.3.3 Informal Threat Analysis . 73
5.3.4 Related Work on the Trustworthiness of Terminals 73

5.4 Design Issues for Personal Security Modules . 76
5.4.1 Personalization Enables Strong Cryptographic Binding 76
5.4.2 Replay Prevention . 77
5.4.3 Mutual Discovery . 77

5.5 Summary . 77

6 The WebSIM or How to implement a Web Server in a GSM SIM? 79
6.1 Introduction . 79
6.2 GSM Subscriber Identity Module . 80
6.3 SIM Application Toolkit . 81
6.4 The SIM as a Security Module in the Internet . 83

6.4.1 Security Status Quo in the Internet . 83
6.5 WebSIM – A Web Server in a GSM SIM . 84

6.5.1 Communication Protocols . 84
6.5.2 Architecture . 85
6.5.3 Command Set . 86
6.5.4 Implementation . 88

Contents xiv

6.6 Security Analysis . 88
6.7 Applications . 90

6.7.1 WebSIM-based Authentication in the Internet 90
6.7.2 Using WebSIMs as I/O Channels . 92

6.8 Related Work . 92
6.9 Summary . 94

7 Open and Secure Service Platforms for Smartcards 95
7.1 Introduction . 95
7.2 Principles and Concepts of Trusted Platforms . 97

7.2.1 Hardware Protection based on Tamper-Resistant Hardware 98
7.2.2 Software Protection . 98

7.3 Architecture . 100
7.3.1 Components Overview . 100
7.3.2 Role and Trust Model . 102

7.4 Programming Model and Language . 102
7.4.1 A Domain-specific Approach . 103
7.4.2 Virtual Machine Model and Instruction Set 104
7.4.3 Programming with a Platform . 105

7.5 Mobile Code Security . 107
7.5.1 Host Security . 107
7.5.2 Code Security or the Malicious Host Problem 111

7.6 Communication Protocols . 112
7.6.1 Verification and the End-to-End Argument 112
7.6.2 Communication Protocols . 113

7.7 Non-Repudiation and Electronic Signatures . 117
7.7.1 Motivation . 117
7.7.2 Electronic Signatures with On-Card Hash Computation 118
7.7.3 Electronic Signatures Assisted by a Trusted Third Party 119
7.7.4 Electronic Signatures with Recipient Addressing 119
7.7.5 Electronic Signatures with Samples . 120
7.7.6 Electronic Signatures on Interactions . 121

7.8 Application Scenarios . 123
7.9 Related Work . 124
7.10 Summary . 125

8 Conclusion 127
8.1 Results . 127
8.2 Future Work . 128

A Platform Specification 130
A.1 Prototypical Implementation of the Smartcard Platform 130
A.2 Language Primitives . 130
A.3 Grammar . 132

Bibliography 133

Curriculum Vitae 150

List of Figures

1.1 Dependency graph of the thesis’ chapters . 6

2.1 Service Location Protocol overview . 13
2.2 Jini protocols overview . 15
2.3 Mobile devices design space . 18

3.1 Components of a smartcard . 23
3.2 Structure of an application protocol data unit (APDU) 26
3.3 Design space of personal security modules . 34

4.1 Overview of the framework for the integration of small devices 43
4.2 Architecture of a generic smartcard terminal . 47
4.3 Components of the JiniCard framework . 52
4.4 Download and instantiation of card explorers for unknown smartcards 56
4.5 Download and instantiation of card services . 58

5.1 The PCA in the context of signing documents . 71
5.2 Cryptographic View of Information Flow . 72

6.1 GSM authentication overview . 80
6.2 SIM application toolkit architecture overview . 82
6.3 WebSIM communication stack . 85
6.4 WebSIM architecture overview . 86
6.5 Examples of WebSIM user interaction . 87

7.1 Overview of smartcard platform components . 101
7.2 Mobile auction client script . 106
7.3 Sample platform control flow . 110
7.4 Mobile auction client with interaction signatures . 122

A.1 BNF grammar and instruction set of the platform language 132

xv

List of Tables

3.1 Design options of terminal- and smartcard-based personal security modules 31

4.1 Comparison of remote and local device explorers 44

6.1 WebSIM command set supported in the URL interface 87

7.1 Compiler and verifier placement . 113

A.1 Smartcard platform primitives . 131

xvi

List of Acronyms

3GPP Third Generation Partnership Project

AUC GSM Authentication Center
APDU Application Protocol Data Unit
ATM Automated Teller Machine
ATR Answer to Reset

B2B Business-to-Business
B2E Business-to-Employee
BCV Byte-Code Verification

CAD Card Acceptance Device
CBC Cipher Block Chaining
CHV Card Holder Verification
CORBA Common Object Request Broker Architecture

DES Data Encryption Standard
DNS Domain Name Service
DTD Document Type Definition

EAL (Common Criteria) Evaluation Assurance Level
ECB Electronic Code Book
ETSI European Telecommunication Standards Institute

GPRS General Packet Radio Service
GSM Global System for Mobile Communication

IANA International Assigned Numbers Authority
IETF Internet Engineering Task Force
IMSI International Mobile Subscriber Identity
IrDA Infrared Data Association

JC Java Card
JCRE Java Card Runtime Environment
JCVM Java Card Virtual Machine
JVM Java Virtual Machine

MIME Multipurpose Internet Mail Extensions
MS GSM Mobile Station

OTA Over the Air
OCF OpenCard Framework

xvii

List of Acronyms xviii

PDA Personal Digital Assistant
PLMN Public Land Mobile Network
PSE Personal Security Environment

RF Radio Frequency
RFC (Internet) Request for Comments
RMI (Java) Remote Method Invocation
RPC Remote Procedure Call

SAT SIM Application Toolkit
SIM GSM Subscriber Identity Module
SLP Service Location Protocol
SMS GSM Short Message Service
SMSC GSM Short Message Service Center
SCA Signature Creation Application
SSCD Secure Signature Creation Device

TCB Trusted Computing Base
TOE Target of Evaluation

UMTS Universal Mobile Telecommunication System
URL Uniform Resource Locator
USB Universal Serial Bus
USAT UMTS SIM Application Toolkit
USIM UMTS SIM

VM Virtual Machine

WAP Wireless Application Protocol
WIM WAP Identity Module

XML Extensible Markup Language

Chapter 1

Introduction

Humans are incapable of securely storing high-quality cryptographic keys, and they have
unacceptable speed and accuracy when performing cryptographic operations.

(They are also large, expensive to maintain, difficult to manage, and they pollute the
environment. It is astonishing that these devices continue to be manufactured and deployed. But

they are sufficiently pervasive that we must design our protocols around their limitations.)

Kaufman, Perlman, and Speciner [KPS95]

1.1 Motivation

The tremendous success of mobile telephony in the last decade has inspired many people to think
of how users will communicate in the future with their social and physical environment. Much of
the inter-personal communication demand seems to be met by mobile telephony and related peer-
to-peer messaging services. For the third generation of mobile communication networks and their
built-in support for data services it is expected that users will additionally interact with and make
use of mobile services ranging from mobile commerce, location-based information services, and
multi-media messaging to mobile gaming.

Securing Cyberspace

In the business world of tomorrow, mobile service usage will typically require some kind of access

control and billing mechanism that enables service providers to control access to services and gain
sufficient revenue to successfully run their services. This requires to solve a number of security-
related problems of which the most relevant ones are:

— Authentication and authorization: How do users authenticate themselves before using a
service and how is access control implemented?

— Non-repudiation: How can users create legally-binding evidence of their participation in a
contract?

— Privacy management: How can users specify their privacy preferences for the interaction
with a service provider?

Usually, appropriate technical measures are only one part of a solution domain but have to be ac-
companied by legal directives, contracts, and inter-business rules of conduct.

1

1.1 Motivation 2

In the “real world”, there are standard solutions which all have their counterparts in the domain
of digital computers:

— Authentication: Traditionally, three different approaches are used for authentication purposes
[Amo94, Chap. 18]:

• Possession or something possessed: Something the person has, e.g. an identification
card or a ticket. In the digital world, however, pure possession of a digital item is not
sufficient, since digital data can be easily copied.

• Knowledge or something known: Something the person knows, e.g. user name, pass-
word, PIN number, etc. This is not different in the digital world as long as the person
does disclose this knowledge only to trusted components, e.g. trustworthy user terminals.

• Characteristic or something embodied: A physical characteristic of the person, e.g.
fingerprint, retina, speech and handwriting recognition, etc. Again the trustworthiness of
the device performing the “scanning process” is crucial in the digital world.

The security level obtained by these approaches depends on the likelihood that an attacker
is able to gain access to the assets that are used to perform the authentication with. Thus, if
an attacker manages to “steal” an item used to authenticate a user based on the possession of
that item, the authentication process is undermined. Similarly, if an attacker gains knowledge
of what a person knows or what a person is, attacks on authentication systems based on this
knowledge or characteristic become possible.

— Authorization: Authorization is often implemented using authentication to prove the client’s
identity in combination with some access control decision about who is allowed to perform
which operation. Another option which is in place in most of today’s non-digital world is
to directly use some kind of “ticket” – possessed by the owner – that directly represents the
permission to grant some kind of operation.

In the digital world, however, such digital tickets are potentially subject to theft and illegal
multiplication. This requires that upon usage of a ticket its holder additionally has to prove
correct ownership, often using cryptographic measures.

— Non-repudiation: Non-repudiation in the real world is usually enforced by the use of hand-
written signatures. The digital counterparts are usually based on cryptographic one-way func-
tions and public key cryptography, and thus are vitally dependent on cryptographic measures.

General problems in the context of non-repudiation are the necessity of suitable time stamps,
the settlement in case of conflicts, the provision of a trustworthy infrastructure based on public
key cryptography, etc.

Hence, in contrast to the real world, implementing security measures in the digital world requires
to a significant extent the capability to perform cryptographic computations. However, in practice
cryptography is still not widely used in the field of mobile services, especially not in the consumer
market. Hence, although the fundamental solutions are well-known the practical embedding into
these settings has yet to come. We think that the reason for this status quo is the lack of solutions for
the following set of general requirements:

• The pervasive availability of mobile devices that users can use to perform cryptographic oper-
ations and which easily integrate into a user’s communication environment.

1.1 Motivation 3

• The possibility for a user to safely carry around security-critical data such as cryptographic
keys. This is necessary since according to [Sch00, Chap. 9] users can hardly memorize cryp-
tographic keys of a length needed for a secure cryptographic system.

• The general reachability of a user to perform security-critical decisions anywhere and anytime.

This thesis proposes solutions to all of the above requirements based on smartcards as the core
components of a personal security module.

Towards Smartcards as Universal Personal Security Modules

Smartcards are tamper-resistant hardware modules that are able to securely store secret cryptographic
keys and perform unobservable execution of cryptographic algorithms. They can assist users in all of
the above mentioned activities. Hence, they are ideally suited to serve as personal security modules
especially in mobile scenarios.

Today smartcards are mostly used in an application-specific manner, i.e. for a particular applica-
tion there exists a particular smartcard acting as the application’s security module. In future mobile
service scenarios, however, this approach does not scale for the many services people might use. The
reason is simply that potentially for each of these applications a smartcard needs to be issued to a
user. This dilemma might lead to the general requirement that security modules are needed that are
universally usable in many different application scenarios.

Consider, for example, the scenario of a mobile user who has a daily subscription for a digi-
tal newspaper that can be downloaded as soon as the user enters the public transport system, e.g.
a bus. The user’s information appliance automatically integrates into the bus’ network by means
of spontaneous networking and searches for the subscription download server. Both establish a
cryptographically protected channel, the server challenges the appliance and after the user’s security
module could successfully reply with the correct response, download of the newspaper is started. For
means of simplicity the user’s subscription is not checked on-line but an authorization certificate is
used instead.

This example illustrates the role a user’s personal security module could play in future scenarios.
The module not only safely keeps the authorization certificate but also computes the response of the
server’s challenge. Generally, this raises several questions:

• How must a personal security environment based on smartcards look like in mobile scenarios?

• How can devices like smartcards with limited resources in terms of computational power and
communication bandwidth be efficiently integrated into such environments?

• What security characteristics have to be met by the appliances and terminals used to interact
with the personal smartcard?

• What level of security can be achieved in any of the proposed solutions?

The overall scope of the questions raised above is not focused on a single problem domain. There-
fore, a more holistic view of mobility and security is need. We adopt such a view in this thesis and
contribute novel solutions at the architectural level of mobile security and to the design of interaction
protocols in this area. All solutions can be characterized as extending the functionality of smartcards
in a flexible, but still secure way.

1.2 Contributions of this Thesis 4

1.2 Contributions of this Thesis

The starting point of this thesis is the vision of future mobile scenarios in which users are likely to
use services “spontaneously”, i.e. in an ad hoc manner. Location-dependent services, i.e. services
that are only available at a particular site will play a central role in such scenarios and service usage
will occur to a significant extent through mobile devices and appliances the users carry around.

Before service interaction actually takes place, however, enough information and communication
parameters must be obtained by a device and its user to allow for elementary communication with
an environment and its services. Subsequently, services can be located and relevant communication
parameters can be negotiated. In mobile scenarios such a priory knowledge is usually not available
since the peers do not know each other in advance. Spontaneous networking is a mechanism to make
this state transition as seamless as possible for a user by providing infrastructural support that enables
a device to explore the characteristics and services of an environment more or less automatically.
After services have been located, users need appropriate security modules to enable them to control
and enforce the security properties they desire in the communication with these services.

In this thesis we argue that a convenient way to implement such a security module is to use a smart-
card and a suitable terminal needed to access and control the smartcard. Such security modules can
be subject to a number of categorizations leading to a design space for these devices. We always
assume that the smartcard is personalized, i.e. that it contains information that is directly bound to
its owner.1 A typical example is a private key in a public key cryptography scheme that is bound to
the user’s identity. The terminal itself can also be personalized which usually implies that it is some-
how “owned” by a person. However, it is left open, whether it is personalized to the smartcard or its
owner, or both. Furthermore, it can be mobile, i.e. it is carried around by its user, or non-mobile, i.e.
located at particular sites and potentially used by many different users independently. Finally, the
card and the terminal can be co-located, i.e. they are physically attached to each other, or remotely

connected.
Based on this categorization we have identified four different fundamental problems that have

been solved using suitable approaches:

A1: A spontaneous networking framework for smartcards

This approach solves the problem of “spontaneously” integrating smartcards into a net-
worked environment. It consists of a framework that allows a smartcard to spontaneously
integrate itself into a local environment after insertion into a suitably equipped card termi-
nal. It builds upon the idea of using mobile code as an enabling technology to complement
the card-resident resources with off-card resources in a dynamic and flexible way.

A2: A personalized and trustworthy mobile terminal

This approach solves the problem how smartcards can be used in a so-called “hostile” en-
vironment. Such environments are characterized by the lack of confidence the user has into
the available terminals where the personal smartcard is to be used. The solution takes ad-
vantage of a personal terminal the user carries around such as a Personal Digital Assistant

(PDA) which is trusted by its owner. The PDA turns into a powerful front-end for the smart-
card and both, PDA and smartcard, are cryptographically bound together such that none of
the two devices can be used without the other.

1 In the rest of this thesis we will use the terms personalized and personal in a similar fashion since we consider anything
that is personalized to be personal to that user.

1.3 Organization of this Thesis 5

A3: A mobile terminal with a wireless mobile communication link

The third approach presents a solution to the problem how personal security modules can be
used virtually anywhere and anytime. Our WebSIM system builds upon the idea of a wire-
less smartcard reader in the form of a mobile phone. We have made smartcards reachable
from the Internet by means of an architecture that allows a the GSM SIM smartcard in the
mobile phone to appear as a Web server in the Internet. Other Internet nodes can connect
to the SIM using the HTTP protocol which is transparently forwarded the mobile phone the
SIM is attached to. Hence, the SIM as a personal security module of a user is accessible
from the Internet anytime and anywhere the user is located.

A4: A personalized smartcard that allows for the execution of mobile code supplied by a

service provider

The fourth approach solves the problem how the security context of a tamper-resistant
smartcard can be used to build value-added services on top of. The SIMspeak solution
consists of a card-resident runtime execution platform for mobile code, a program verifier,
and suitable mechanisms that allow a service provider to “rent” secure storage in a smart-
card. This platform can be used by service providers to send mobile code into a customer’s
smartcard (possibly over a wireless link). This opens up new application domains and leads
to improvements in the way how non-repudiation in the form of electronic signatures is
achieved.

Summing up, this thesis shows how to architect and build solutions for the personal security module
approach. It contributes to the overall understanding on the role smartcards can play as personal
security modules in future mobile communication and service usage scenarios and, therefore, rep-
resents a significant step towards meeting the security demands of the information society of the
future.

1.3 Organization of this Thesis

Figure 1.1 on the following page shows the overall structure of this thesis which is organized as
follows:

• Chapter 2 presents the basic motivation underlying this thesis by giving a vision of future
mobile scenarios and describes the setting in which subsequent solutions are located. In this
vision local and remote services will be used through suitable terminals. It is particularly fo-
cused on mobile devices and discusses the aspects of “spontaneously” integrating such devices
into local environments.

• Chapter 3 discusses which security problems exist in the presented settings and which solu-
tions are possible. In particular it considers and analyzes the design space of smartcards and
terminals as components of a personal security module. This leads to a categorization of the
different conceptual possibilities from which concrete approaches in the subsequent chapters
are derived.

The following chapters each discuss the approaches A1 through A4 presented in the previous section:

• Chapter 4 represents approach A1 by describing a framework for the integration of smartcards
into local environments. The solution essentially defines a framework that enables a smartcard

1.3 Organization of this Thesis 6

Chapter 1

Chapter 7

Chapter 6

Chapter 5

Chapter 4

Chapter 2

Chapter 3

Chapter 8

Figure 1.1: Dependency graph of the thesis’ chapters

to offer security-specific services in a network. These services can then be accessed from any
terminal attached to the network.

• Chapter 5 represents approach A2 in which a personalized and trustworthy terminal and a
smartcard together form a pair of devices that assist a user in performing security-critical
tasks. Both are linked together using cryptographic measures to prohibit the use of one device
without the presence of the other. To demonstrate the general usefulness we have applied this
approach to the problem of electronic signature creation in hostile environments.

• Chapter 6 represents approach A3 that comprises a personalized smartcard and a wireless
terminal. A GSM mobile phone was used as the mobile terminal and a GSM SIM smartcard
was chosen to implement the personalized security module. Due to the mostly-on aspects of
GSM mobile phones and SIMs and their pervasive use, both can play an important role as
security modules in future mobile service scenarios.

• Chapter 7 represents approach A4 focusing on the idea of a mobile code platform inside a
smartcard. Again we have chosen the combination of a GSM mobile phone and a SIM as our
target of evaluation since it seems to be optimally suited for this approach. The architecture
and relevant protocols are described and how this approach leads to several improvements
in the process of electronic signature creation such as on-card hash computation, recipient

addressing, third-party assisted signatures, samples, and signatures on interactions, especially
in mobile environments.

• Chapter 8 draws final conclusions and discusses future work.

Related work is discussed in each of these chapters individually.
�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Chapter 2

Connected Devices, Services, and their
Users

. . . a billion people interacting with million e-businesses
with a trillion intelligent devices interconnected. . .

Lou Gerstner, IBM Chairman and CEO

2.1 Introduction

According to Durlacher Research [Dur01] the mobile telecommunication sector has invested roughly
120.000.000.000 Euro in the years 2000/01 for the Universal Mobile Telecommunication Services1

(UMTS) licences in the Western European countries. Obviously, the telecommunication operators
are interested in turning this major investment into a success story. Key factor of UMTS is its
design to enable significantly improved data services and information delivery in the third generation
telecommunication networks. These features are considered to be key distinguishing factors between
the second generation systems, e.g. GSM, and the third generation systems (3G).

UMTS could indeed serve as one of the basic communication technologies of a new paradigm
of computing – often called ubiquitous or pervasive computing – in which numerous devices, infor-
mation appliances, and personal gadgets assist (mobile) users in their everyday life. This is likely to
be accompanied by new short-distance communication technologies such as Bluetooth [Blu01] and
Wireless LAN [IEEE802.11].

In the citation that precedes this chapter Lou Gerstner expresses his understanding of the notion
of pervasive computing. Another possible definition is given by IBM saying that pervasive comput-
ing is about

“[. . .] convenient access, through a new class of appliances, to relevant information with

the ability to easily take action on it when and where you need to.” [IBM01]

This chapter presents a vision of how computing will evolve in the future, what technological chal-
lenges arise from this vision, and what basic technologies are present today with which parts of this
vision can be tackled.

The rest of this chapter is organized as follows: In Sect. 2.2 we describe the pervasive and ubiquitous
computing paradigms that play a central role in our vision of future computing environments.

1 UMTS is currently being specified in the third generation partnership project (3GPP) at [3GPP01a].

7

2.2 On Ubiquitous and Pervasive Computing 8

A central technology is needed to turn this paradigm from a vision into reality: Spontaneous

networking. It essentially deals with the integration of people, devices, and services into networked
environments in a largely autonomous manner. In Sect. 2.3 we describe the fundamental problems
of spontaneous networking and give a definition of spontaneity and spontaneous networking which
can be essentially understood as the integration of services and devices into networked environments
without manual intervention.

An overview of current technologies that enable spontaneous networking is given in Sect. 2.4.
Two representatives, namely the Service Location Protocol and Jini have been selected among the
currently available approaches to study the common and distinguishing concepts of these technolo-
gies.

The comparison of spontaneous networking technologies leads to the observation that small
devices are currently not well supported by off-the-shelf technologies. Hence, the design space of
such devices is investigated in Sect. 2.5 leading to the observation that today and in the future there
will be always devices around that need special assistance from their surrounding infrastructure.

The chapter closes with a summary in Sect. 2.6.

2.2 On Ubiquitous and Pervasive Computing

The original idea of ubiquitous computing was created by Mark Weiser in his visionary paper “The

Computer for the 21st Century” [Wei91] commencing with the statement that

“The most profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it.”

According to Weiser, ubiquitous computing is driven by a new major trend in computing, character-
ized by the fact that users own, control, and use many different devices and appliances throughout
their daily life. This is in contrast to the mainframe era in which many people shared a single com-
puter, and the PC era in which a person exclusively uses one PC at a time.

Technological progress especially in the micro-electronics sector is considered to be one of the
major driving forces behind the possibility of implementing ubiquitous computing [Mat01]. Ex-
amples of such technologies are advances in the resolution and size of micro- and macro-displays,
short-range communication such as radio frequency tags (or smart labels) and the Bluetooth com-
munication standard, new global communication technologies such as UMTS, sensor technologies,
smartcards, power-based networks, e.g. body area networks, or smart paper paving the way for new
forms of computing.

Whereas the currently popular human-machine interaction paradigm is a mere one-to-one re-
lation, ubiquitous computing especially in the shape of calm or disappearing technology is about
hiding computers into the users’ environment, making them as invisible as possible, performing
their task often calmly and mostly unnoticed by the users [WB96]. Weiser’s vision is likely to re-
quire a complex infrastructure to surround users and it seems that his vision might require another
decade to become reality.

In contrast to Weiser’s vision, the industrial term pervasive computing does not directly address
the idea of calm computing but follows a more pragmatic approach in which users and their access to
information through suitable appliances are of primary concern. Revisiting the tremendous success
of mobile telephony in Europe in the last decade this might be a first indication that we are indeed
at the beginning of the pervasive computing era and mobile phones seem to be the initial enablers.

2.3 Issues in Spontaneous Networking 9

Personal digital assistants (PDAs) are also becoming more wide-spread and future information ap-
pliances seem to follow an evolutionary approach by merging the features of mobile phones and
PDAs into one device.

Regardless of whether the future will be termed pervasive or ubiquitous computing, it is unclear
how an information appliance will look like in three, five, or ten years from now, but people are likely
to continue to carry around some kind of “smart” gadget through which they communicate with their
physical and social environment. Thus, mobility is one concept that is of particular importance in
shaping the future of computer science.

2.3 Issues in Spontaneous Networking

Besides the mobility of users and their devices and the spirit of “computers everywhere”, pervasive-
ness also considers the idea that many interactions between users and their environment are location-
dependent. From a beverage vending machine in a public place, a cashier in a supermarket, and a
telematics application in the automotive sector to an access control barrier in a company building,
users are about to interact with other mobile or non-mobile devices to use or provide services.

Here, the term service should be considered as a very general concept covering all kinds of
“resources” a peer provides which is roughly captured by the following definition:

A service is a concept with arbitrary implementation which offers an interface that is

addressable and accessible from peer nodes.

Hence, it is not important whether the service is implemented as a CORBA object or a Web appli-
cation, but that it is addressable and accessible from clients. Furthermore, we assume that a service
can be described by means of a suitable service description, i.e. a formal representation that can be
used by a peer to learn about a service’s capabilities.

This raises new interesting questions, e.g. how can communication links between entities be
“spontaneously” established? A good example of spontaneous integration is GSM roaming in a for-
eign country when a mobile phone discovers the available public land mobile networks (PLMN) and
books into one of the accessible ones. Furthermore, it is of particular interest how such communica-
tion links can be kept static while being mobile. Again GSM is a nice example how communication
can continue although the mobile phone subsequently establishes new radio communication links
with so-called base transceiver stations (BTS) while moving. As such GSM is a tremendously com-
plex technical system that was specified and compiled into standards over a period of several years.

However, the time-frame for development and deployment of today’s information and telecom-
munication products often does not allow for such long standardization processes, and heterogeneous
environments and different technologies to solve the spontaneous networking problem are likely to
coexist in the future.

On Spontaneity

Since in ubiquitous and pervasive systems spontaneous interaction among devices, services, and
users is one of the fundamental operations we will now study the causes and effects of spontaneity in
such systems in more detail. Although there might be a vague common understanding of what spon-

taneous networking – or spontaneity for short – means in social terms, a more technical definition is
not widely accepted. A possible definition has been given in [PC99] as

2.3 Issues in Spontaneous Networking 10

“[. . .] spontaneous networking is [. . .] the integration of services and devices into net-

work environments with the objective of an instantaneous service availability without

any manual intervention.”

Put differently, the integration should be automatic and the necessary information required to interact
with other components and services in the environment is obtained through appropriate measures.
Thus, “spontaneous” is how this process of resolving the information gap appears to users.

This above definition tries to cover cases from GSM roaming and infrared beaming to plugging
an Ethernet cable from a laptop into a local area network. Spontaneous networking deals among
others with the following set of questions:

• How can devices physically interact with other nodes in a telecommunication or simple peer-
to-peer network?

• How can necessary communication parameters be probed or exchanged?

• How does advertising of services work and how can potential clients locate services and vice
versa?

• How can such devices be given access to services of peers?

Answers to these questions will given throughout the course of this thesis.

Layers of Spontaneous Interaction

The above questions must be answered at least at the following communication layers:

— Physical and link layer (OSI layers 1 and 2): Different technologies are available for inter-
connecting devices. Basically any technology currently found needs to offer some support for
spontaneity such that new communication partners are able to communicate with each other.
For mobile devices at least the following technologies may be of interest in the mid-term fu-
ture: Infrared, e.g. IrDA [IrD01], Bluetooth [Blu01], DECT, Ethernet, UMTS, Wireless LAN,
etc.

— Transport protocol(s) (OSI layers 3, 4, and 5): Different transport protocols are necessary
to communicate among devices, ranging from TCP/IP to lower-level protocols based on the
underlying link technology (e.g. the IrDA session protocols IrOBEX, IrLAN, etc.). It is impor-
tant to notice that the transport protocol should ensure that the device is somehow addressable
from the communication layer (e.g. by assigning an IP address). On top of the core transport
protocol other protocols such as SSL/TLS [RFC2246], HTTP, etc. could be used resulting in
a complete communication stack that links the communication partners.

— Infrastructure and service discovery (OSI layers 7 and above): This topic essentially ad-
dresses issues concerning the kind of middleware used for service description and discovery.
In a more general context it must be able for a pervasive device to explore its “environment”
and “find” services residing on peer nodes it can use. Examples of such service-trading mid-
dleware are the Service Location Protocol [RFC2165], Jini [Wal99; Sun99a], and Universal
Plug and Play [UPn99b]. Protocol gateways might be necessary to map between these dif-
ferent kinds of technologies. Beyond pure service-trading, the underlying communication
middleware such as RPC, CORBA, DCOM, or Java RMI adds another level of complexity for
solving the integration problem.

2.4 A Brief Overview of Spontaneous Networking Technologies 11

— Service interaction (beyond OSI model): After clients and services are connected to each
other there might be an additional phase needed to negotiate protocol versions and other pa-
rameters.

Summing up, spontaneous interaction usually happens at different layers in a communication hi-
erarchy. Hence, before the user of a pervasive device is able to use a service numerous different
spontaneous interactions take place at different levels of communication.

Spontaneity Caused by Mobility

The above investigation of spontaneous interaction allows us to more concretely define what the term
mobility means in conjunction with spontaneity. Hereafter, we define mobility as follows:

Mobility is the movement of an entity in the physical environment which leads to changes
in the digital representation of the entity’s world.

For all communication technologies generally considered to be short-range this means that an ex-
isting link is often lost after the range of the communication system is left. Typically, being away
more than ten meters from an Infrared receiver implies that communication is not possible anymore.
Therefore, a mobile device being confronted with a new physical network, e.g. a new Infrared link,
has to bootstrap the “spontaneous” communication stack from the bottom up to the higher levels.

Hence, mobility in conjunction with a short-range communication link implies spontaneity at the
very lowest level in the communication stack. The overall process can be considered as a transition
from a state with minimal a priori knowledge about the environment into a state where sufficient
information is available. The initial state itself is caused by the user’s mobility. The amount of
an entity’s a priori knowledge in the initial state generally includes information about the built-
in communication technologies and protocols supported by that entity. Furthermore, we assume
that the communication partners need to exchange information to learn of each others’ capabilities,
communication parameters, and environment information to reach a state of knowing each other’s
profile.

Spontaneity caused by Unknown Peers

In contrast to the form of spontaneity caused by mobility, we are also faced with the problem of
spontaneity caused by unknown peers at higher levels in the communication stack. Revisiting the
definition of spontaneity which defines the instantaneous use of services as one fundamental prin-
ciple, spontaneity also occurs when a Web browser contacts a Web server and tells it the browser’s
supported document or MIME types [RFC2045]. Another example is the handshake protocol run
during SSL/TLS session setup [RFC2246]. Many Internet protocols have some kind of negotiation
phase in which the peers exchange necessary information and parameters for further communication.
However, this is not caused by mobility and interaction at a lower level, but interaction at a higher
level in the communication stack.

2.4 A Brief Overview of Spontaneous Networking

Technologies

In the previous section it was identified that the infrastructure and service discovery problem is
central to the notion of spontaneous networking since it is where the actual service advertisement

2.4 A Brief Overview of Spontaneous Networking Technologies 12

and lookup takes place. In the sequel a brief overview of current technologies for service description
and discovery is given with a particular focus on the SLP [RFC2165] and Jini [Sun99a; Sun99b]
technologies.

2.4.1 Fundamental Concepts

Technologies that support spontaneous networking are centered around the following fundamental
tasks:

— Service advertisement: A component that wishes to offer a service to potential clients needs
a well-defined procedure to “register” the available services and make them accessible for
clients.

— Service lookup: A client that is in search of a suitable service needs a well-defined procedure
to locate potential service providers.

For the implementation of the advertisement and lookup a common framework is needed to de-
scribe and query services. A so-called service description is used to create a machine-processable
description of a service that is made available to potential clients.

The typical work-flow in a particular spontaneous networking technology usually follows some
generic pattern:

1. Service description creation: This is often done as part of the configuration of a service or
directly supplied by the service itself.

2. Service advertisement: This describes the process of making the service description available
to potential clients. This may include the transfer of the service description to a central author-
ity such as a service directory, etc. It often requires appropriate one-to-many communication
protocols such as broadcast or multicast to “find” such central authorities.

3. Client lookup: Clients in search of a particular service assemble some kind of service query

that is sent to the particular component(s) in charge of matching service descriptions with
corresponding queries. Similar to service advertisement this also might require the use of
appropriate multicast protocols to find the peers maintaining service description information.

4. Mutual binding: After clients have successfully found appropriate services both have to
connect to each other to enter the service usage phase.

The above tasks are to some extent independent from the underlying communication link except
for the possibly needed multicasting features which are usually highly dependent on the underlying
technology. More precisely, such systems usually require a fully functional communication stack
that is properly configured to perform their task. Any issues related to the configuration of this stack
are therefore beyond the scope of these technologies.

2.4.2 Case Studies

Based on the overview of the tasks a spontaneous networking technology has to support we in-
vestigate two representatives of the available systems in more detail, namely, the Service Location

Protocol and Jini.

2.4 A Brief Overview of Spontaneous Networking Technologies 13

a)

Service
Registration

6HUYLFH

6HUYLFH

$JHQW

8VHU

$JHQW

'LUHFWRU\

$JHQW

Directory Agent
Discovery

Directory
Agent
Query Service

Usage

Service Agent
Discovery / Query

6HUYLFH

6HUYLFH

$JHQW

8VHU

$JHQW

Service
Usage

b)

Figure 2.1: Service Location Protocol overview: a) with directory agent, b) without directory agent

2.4.2.1 SLP

The Service Location Protocol (SLP) [RFC2165] is a framework for spontaneous networking on
top of IP developed in an Internet Engineering Task Force (IETF) effort. SLP builds around the
following components:

— Service and service agent: A service agent is a component that offers services in a network.
It may implement the service itself or just offer it on behalf of the actual service.

— Directory agent: A directory agent is responsible for collecting all service descriptions from
service agents and offers a central repository for user agents searching for services.

— User agent: A user agent is a component that tries to find a particular service, i.e. it is a client.

User and service agents locate a directory agent using DHCP options [RFC2131] or IP multicast
messages. Service agents register their service descriptions with the directory agent which is able to
execute queries from clients against the registered services in the directory (see Fig. 2.1a).

However, SLP can also work without the presence of a central directory agent. This requires that
service agents are themselves able to answer the queries of user agents (see Fig. 2.1b). A user agent
then needs to wait for a certain period of time to collect all answers from service agents until it has
a clear picture where the services it desires are located.

Service descriptions in SLP consist of a time-to-live field denoting the validity period of the ser-
vice description, a service URL defining the type and location of the service, and a set of string-based
key/value-pairs describing the service’s attributes. Service agents have to refresh their registration
with the directory agent before the time-to-live runs out. Part of the service URL is the service’s
type denoted by a string and the host, port, and path information as known from Web addresses.
SLP suggests to register service names with the IANA organization [IAN01] to standardize popular
services.

2.4 A Brief Overview of Spontaneous Networking Technologies 14

Service requests sent by querying user agents may contain the desired service name and a
Boolean expression over the available key/value-pairs. This allows clients to send more complex
filters to the directory agent or service agent for evaluation.

Other features of SLP are so-called scopes which allow for grouping of services and mapping
of scopes to directory agents.2 Furthermore, SLP allows to electronically sign service descriptions
using so-called authentication blocks to provide for basic security in the registration process.

Summary

SLP was one of the first technologies addressing the problem of spontaneous networking. It has been
designed in the traditional Internet spirit to make things as small as possible and as a consequence
being easy to implement. As a result, besides a working TCP/UDP/IP stack SLP requires just basic
computational resources and may be easily implemented on small devices.

2.4.2.2 Jini

JiniTM [Sun99a; Wal99; Edw99] is a Java-based framework developed by Sun MicrosystemsTM and
is publicly available since January, 1999. Jini is built around the following components:

— Service: A Jini service is a network resource hosted on an arbitrary network node. Typically
a service is implemented as a Java object.

— Service proxy: The proxy is a so-called serialized Java object [Sun98] representing the ser-
vice. Jini uses Java’s mobile code facilities to transfer such a proxy object from the service to
the client as part of the service description.

— Lookup service: The lookup service [Sun99c] is the central directory where service providers
advertise their services. Services get in contact with the lookup service using IP multicast-
based discovery protocols [Sun99b] (see Fig. 2.2a). After a service provider has located a
lookup server it “uploads” the service proxies together with further service description infor-
mation in the format of serialized Java objects to the lookup server (see Fig. 2.2b). Technically,
this is achieved by first downloading a lookup service proxy object from the lookup server
which in turn is used to advertise the service (so-called join).

— Client: A client is an entity that uses services to perform a certain task. In Jini a client is
required to run a Java Virtual Machine (JVM) to be able to download and execute the service
proxy (see Fig. 2.2c). In contrast to the service, Jini is vitally dependent on the clients’ support
for executing the service proxy within a JVM.

Jini uses serialized Java objects to implement a service description. In particular the information sent
from the service provider to the lookup server – the so-called service item – is a set of serialized Java
objects including the service proxy which describe the service and its validity period. The lookup
server is able to use Java’s type system to match clients’ queries – called service templates – with
registered service types.

Besides the server-side registration of a service and the client-side queries the lookup service
also supports so-called distributed events that enable interested parties to subscribe with the lookup
service for the occurrence of particular events, such as, the appearance or disappearance of specific
services.

2 In SLP, scopes can be essentially considered as name spaces for services managed by directory agents.

2.4 A Brief Overview of Spontaneous Networking Technologies 15

a)
Server

Lookup Service

Discovery
Implementation

Download

Server

Lookup Service

Join

Service Proxy

Upload

Lookup Service

Proxy Download

b)

Request

ServerClient

Lookup Service

ProxyProxy

Proxy"

Proxy Download

c)

Figure 2.2: Jini protocols overview: a) discovery, b) join, and c) client-side proxy download

Lookup services can also be associated with service groups which allow to separate the respon-
sibility of lookup services to manage certain groups only. However, this feature in not a real group
concept, but rather a simple optimization scheme for managing work load.

Summary

All components in a Jini scenario require a working TCP/IP stack. Clients and servers locate the
lookup server using IP multicast packets that are sent to a well-known IP address and port num-
ber. This information is shared by all participants in advance to be able to find each other, further
communication is done through TCP.

As mentioned previously, all clients need a working Java VM and require a minimum Java API
to be able to successfully execute the service proxies downloaded from the lookup service. Jini
services require a JVM if they register through the lookup service’s proxy – which depends on
the particular lookup service implementation. Jini is a well-designed framework that tremendously
simplifies the implementation of spontaneous networking facilities. Furthermore, the concept of
proxies allows to run arbitrary protocols between the proxy and its service. This can heavily simplify
the implementation of a client for a particular service, since the client needs to know only a high-
level “Java interface” to talk to. Otherwise a low-level communication protocol would be needed if
it would directly talk to the service itself. This is actually the most interesting concept that has been

2.4 A Brief Overview of Spontaneous Networking Technologies 16

introduced by Jini.
However, Jini requires a significantly large infrastructure for both – clients and servers – to

successfully serve as a spontaneous networking technology and it always requires the presence of a
central registry – the lookup service. More precisely, it cannot be easily used in environments with
limited devices that are not able to run this infrastructure.

2.4.2.3 Related Technologies

Besides the two presented technologies numerous other systems and frameworks have been pro-
posed. In the following paragraphs we present some of the more interesting ones.

The Home Audio Video Interface (HAVi) [Con98] is an initiative targeting the spontaneous inte-
gration of audio and video devices. It builds upon the IEEE 1394 (FireWire) technology and offers
protocols and facilities for service registration and binding.

Salutation [Sal97] has focused on the integration of typical office devices such as printers and fax
devices. It builds upon Sun’s ONC RPC [RFC1057] protocol and defines entire device hierarchies
including their interfaces.

Universal Plug and Play (UPnP) [UPn99b; UPn99a] has been developed by MicrosoftTM and
Hewlett-PackardTM and beyond a pure framework for spontaneous networking it also defines a model
for devices and the services offered. The design of UPnP is largely influenced by SLP although
the protocols are largely based on HTTP for communication and XML for service description and
communication between clients and servers.

The Service Discovery Service (SDS) [CZH+99] was developed as part of Berkeley’s Iceberg
project [Ice99]. SDS servers are central authorities used to collect the service announcements sent by
services. Service announcements consist of XML documents describing services according to a cer-
tain XML Document Type Definition (DTD). Clients query SDS services using so-called templates

that are matched against the known service descriptions using a high-performance XML matching
engine. In contrast to most other systems, SDS is designed to support essential security mechanisms
such as encryption, integrity protection, and authentication.

The Intensional Naming System [ASBL99] is a service announcement framework combined with
an optimized routing scheme for service queries. Intermediate nodes in a network aggregate service
announcements and store “routes” to neighbour nodes closer to a service. This is possible since
the description of services is chosen in a way that eases the aggregation of service descriptions for
building compact routes.

DEAPspace [Nid99] is a technology for providing spontaneous networking facilities for ad-hoc

networks. The design of DEAPspace was heavily influenced by the demand for a fast service discov-
ery mechanism used in conjunction with mobile devices. Its outstanding feature is its collaborative
architecture in which all components together cache the announcements of services and serve clients’
queries. This leads to a generally very fast responsiveness especially useful in mobile scenarios.

Bluetooth/SDP [Blu01, Part E] is the service discovery part of the BluetoothTM protocol suite.
It exploits features of the underlying radio link and is optimized towards small bandwidths and fast
responsiveness. It is completely decentralized and offers only limited facilities for service descrip-
tion and matching, however, making it easily implementable on devices with limited computational
resources.

UDDI [UDDI01] stands for Universal Description, Discovery and Integration. The UDDI Project
is an industry initiative that is working to enable businesses to quickly, easily, and dynamically find
and transact with one another. UDDI enables a business to a) describe its business and its services, d)
discover other businesses that offer desired services, and c) integrate with these other businesses. In

2.5 On the Necessity of Infrastructural Support for Small Devices 17

contrast to most of the previously discussed approaches, UDDI is intended for locating services in a
wide-area environment like the Internet. As such, it does not include any multicast-based discovery
mechanisms but is based on a traditional client/server interaction model.

2.4.3 Summary

Several technologies have been proposed for approaching the spontaneous networking problem.
Their most relevant distinguishing parameters are:

— Design: As shown there exist purely centralized systems like Jini, others operate purely de-
centralized, and systems such as SLP offer hybrid schemes of operation.

— Service description richness: Each of the systems uses different techniques for representing
services. Some of the systems allow for rather complex matching algorithms comparing re-
quests with advertisements (e.g. SDS), others allow only for very limited service descriptions
(e.g. Bluetooth/SDP and DEAPspace).

— Performance: Some of the systems (e.g. DEAPspace, Bluetooth/SDP) are better suited for
mobile environments where responsiveness might be a critical issue.

— Scalability: Systems such as SDS and SLP are likely to scale better for large installations,
whereas others might be only suited for small installations in the home/office domain.

— Security: Besides the authentication features of SLP, only SDS offers built-in security for all
steps in the component interaction.

— Resource consumption: Several components, e.g. the Jini lookup service or the SDS XML
engine are rather complex systems requiring reasonable resources in the network. In contrast,
the peer-to-peer systems such as DEAPspace and Bluetooth/SDP have been optimized for
resource-limited systems sacrificing the abstraction layer introduced by the former systems.

Summing up, different application domains might have different requirements for a spontaneous
networking technology. There is often a certain trade-off between the distinguishing factors listed
above, making general statements about the usefulness of these technologies very difficult. Smart-
cards, for example, are not supported by any of the previously presented technologies.

We now sketch how such an infrastructure must look like in order to support very small and
resource-limited devices to properly integrate into an environment.

2.5 On the Necessity of Infrastructural Support for Small

Devices

The technologies for spontaneous networking presented in the previous section require a minimum
amount of computational resources not offered by many mobile devices. Figure 2.3 on the next page
shows the design space of such devices concerning their capabilities according to three different
dimensions.

• The first dimension denotes the amount of computational or processing power a device has.
Here we subsume the three main items CPU performance, memory size, and size of persistent

storage, into one singular dimension, since usually all three of them grow at similar rates as
devices get larger.

2.5 On the Necessity of Infrastructural Support for Small Devices 18

&RPSXWDWLRQDO�3RZHU

$ELOLW\�WR�FRPPXQLFDWH

$XWRQRP\
(w.r.t. Infrastructure)

autonomous

dependent
low

high

highlow

Figure 2.3: Mobile devices design space

• Along the second dimension we consider the ability to communicate as another relevant factor.
It includes bandwidth, the underlying communication technology, and discrete issues, such as
on- vs. off-line operation and support for uni- vs. bi-directional communication.

• The third dimension is autonomy, an indication of how dependent a device is on support of
its surrounding infrastructure. Usually, autonomy depends on the first two dimensions and is
therefore not truly orthogonal. The shaded regions are meant to indicate that the more powerful
a device is along the first two dimensions, the more the device is likely to be autonomous.

As an illustration of our design space certain device categories can be classified. This classification
gives a rough impression of the character of these devices and the kind of support they need from
the infrastructure for proper operation.

— Sensors: Sensor devices are equipped with only minimal computing power and memory size.
Their communication facilities are wire-based or wire-less, e.g. Infrared. These devices are
pure information sources, cannot be controlled or managed from outside, and thus have a
uni-directional link. Additionally, they may send their information in short time intervals in
contrast to continuous transmission.

Typical examples of such devices are the Infrared-emitters in the Active Badge location sys-
tem [WHFG92] or sensors in medical health-care systems such as the temperature sensing
device described in [SA99].

To make use of these devices, appropriate receivers must be installed at every location they
are to be used at. Information processing occurs outside the devices somewhere in the infras-
tructure and/or at the application level.

— Actuators: In contrast to simple sensors, these devices are able to receive commands that can
in turn control the device, or perform actions with the actuators. They implement a protocol

2.6 Summary 19

that can be used to adjust parameters such as rate of sensing, power management, etc. Typical
actuators are flow control devices, e.g. valves, that are opened or closed by the actuator. In
our design space these devices are probably located in the light grey shaded area of Fig. 2.3.
Many embedded systems probably fall into this category.

Since some of these devices may not be constantly on-line, e.g. for reasons of battery con-
sumption or aspects of mobility, interaction with these devices will mostly happen via a proxy
object for that device running somewhere on a network node. This proxy knows about the
on-line times of the device and exchanges data in both directions. The device proxy can be
constantly on-line and accepts commands for parameter changes. The proxy waits until the
next time the device is on-line and then transmits the control information to the device. It is
up to the proxy to implement a synchronous or asynchronous API for its clients.

— Information-processing devices: For devices of this category we can assume that they offer
enough computational power to perform most of the tasks including the integration into an
infrastructure on their own, though they still might lack enough memory or bandwidth to
perform resource-intensive tasks. The dark shaded area in Fig. 2.3 might be the place to find
devices of this category.

State-of-the-art handhelds and PDAs are likely to fall into this category.

Although the categorization performed is rather coarse-grained we consider it a valuable instrument
to roughly sketch the autonomy and dependability of a device from its surrounding infrastructure.

Prediction on the Integration of Small Devices

Usually, devices belonging to the sensors and actuators category require some kind of support from
their infrastructure to be spontaneously integratable into environments. More generally, one can ar-
gue that this is just a temporary problem that vanishes automatically when these devices are equipped
with more computational resources, an expectation that is met with most of today’s electronic arti-
facts.

However, as devices grow the desire increases to integrate other small devices that have pre-
viously not been considered as integratable. Hence, our fundamental prediction can be stated as
follows:

There will always be small devices with limited resources in terms of computational

power, memory, persistent storage, and energy consumption, that require special assis-

tance from their surrounding infrastructure.

The consequence of this statement is that the problem of integrating such small devices will always
be present and that generic solutions must be found.

2.6 Summary

In this chapter we have created a vision of how users will interact with devices and services in the
future. The most important keywords describing this vision are pervasive and ubiquitous computing.

We have introduced the concepts of spontaneous networking which is a special sub-problem of
the pervasive and ubiquitous computing paradigm. The Service Location Protocol and Jini have been
chosen as primary evaluation targets to study common and distinguishing factors of spontaneous net-
working technologies, such as, centralized or decentralized design, the service description richness,

2.6 Summary 20

performance, scalability, security, and resource consumption. Additionally, other technologies for
spontaneous networking have been briefly presented.

Based on the observation that the support for very small devices in the considered technologies
was not given, a characterization of the design space of small devices according to the dimensions of
the computational and processing power, the ability to communicate, and the somewhat correlating
dimension of autonomy of a device w.r.t. its surrounding infrastructure was undertaken. This design
space allows to roughly identify three different device categories which are sensors, actuators, and
information-processing devices.

Since many devices fall into device categories that require a significant support from their sur-
rounding environment to be spontaneously integratable, a general prediction was formulated saying
that there always will be a demand to integrate such small devices into local environments. This
issue will be further discussed in Chapter 4 considering the integration of smartcards into local en-
vironments.

The small devices’ design space has been presented in [KVZ99] together with a possible research
agenda towards solutions for the integration of small devices into local environments.

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Chapter 3

Smartcards as Personal and Ubiquitous
Security Modules

Boss (calling Dogbert’s Tech support): “My keyboard is broken.
It only types asterisks for passwords.”

Dogbert: “Try changing your password to five asterisks!”
Boss (to himself): “I hope I can remember it.”

Dilbert comic, by Scott Adams, 2001 1

3.1 Introduction

Although security practices are often comparable to the one illustrated in Scott Adams’ comic, the
plot that precedes this chapter is definitely something that under no circumstances should be consid-
ered as the standard means of security in pervasive computing environments. More concretely the
comic demonstrates several typical security problems:

• It illustrates the use of passwords that are considered to be a generally weak security mecha-

nism (cf. [And01, Chap. 3]).

• It demonstrates the harmful aspects of social engineering in a security-sensitive domain.

• It shows an example of human (mis-)behaviour w.r.t. security matters.

In Chapter 1 we have briefly motivated the need for reasonable protection in mobile service usage
scenarios of the future. Traditionally, many of the security measures in digital worlds are based
on cryptography. Thus, the computation of complex mathematical algorithms in combination with
secret and sometimes public keys will be fundamental concepts in the daily life of tomorrow. Al-
though many people think that most of the practically relevant problems have been solved, making
things practically usable and applicable, i.e. building an “interface to real life”, is of at least equal
importance.

The central theme of this thesis is to consider this aspect of computer security and as a con-
sequence we contribute with proposals and results at the level of components, architectures, and
protocols to face this problem. Hence, this chapter can be considered as the methodological core of
this thesis since the remaining chapters further elaborate ideas and approaches that are introduced
here.

1 Cited with kind permission from Mrs. Heike Schmeling, kipkakomiks GmbH, http://www.kipkakomiks.de.

21

3.2 Smartcard Technology Overview 22

This chapter is organized as follows: Section 3.2 gives an overview of the current state-of-the-art in
smartcard technology and considers typical application and trust models.

Section 3.3 considers an important issue which is the usage of smartcards in so-called “hostile”
environments by revisiting related work published throughout the last decade. Essentially, the results
suggest that currently there is still no practical method known, how users can safely interact with
smartcards in such environments.

In Sect. 3.4 five different dimensions of the design space of personal security modules are iden-
tified. We consider these to be (a) the mobility and (b) the personalization of the terminal, (c) the
co-located or remote positioning of the smartcard as another dimension, (d) the protection of the

communication link between the smartcard and the terminal, and finally (e) the degree of application

control exercised by smartcard and terminal as the last dimension.
Based on the design space opened up, four design options affecting the design of personal secu-

rity modules are identified in Sect. 3.5. In particular these are the solutions concerning

(1) the spontaneous networking capabilities of smartcards,

(2) the use of trustworthy terminals in hostile environments,

(3) the idea of a wireless smartcard terminal, and

(4) the concept of a mobile code platform for smartcards.

For each of these approaches we identify the part of the design space to which the particular solution
is applicable and compare it to more traditional smartcard usage scenarios. The comparison shows
that this thesis considers fundamentally new usage scenarios leading to truely personal security mod-
ule for smartcards.

Section 3.6 finally summarizes the current chapter and gives a brief overview of the remaining
parts of this thesis that provide an in-depth study of the problems, approaches, and solutions for each
of the four design options identified in this chapter.

3.2 Smartcard Technology Overview

Smartcards are the outcome of thorough research and engineering during the last three decades.
Basically, they can be perceived as small electronic “safes” for digital information implemented as a
tiny computer in the shape of a small hardware module.

This section gives a brief overview of the state of the art in current smartcard technology concen-
trating on the relevant aspects necessary for the remaining parts of this thesis. Further information
on these technological artifacts can be found in [RE97; Gut01].

3.2.1 A Brief History of Smartcards

The first plastic card for cash-less payments was issued by Diners ClubTM in 1950 and was accepted
by major hotels and restaurants at that time only. Later on VisaTM and MasterCardTM also issued
cards for payment services and credit cards became the components of a widely accepted payment
scheme. The security of these cards was based on the quality of the printing of logos, customers
name, and credit card number.

The next generation of identification cards introduced the magnetic stripe to electronically en-
code more customer’s data in a machine-readable form. Since magnetic stripes can be easily read
and overwritten they could not be used to store security-sensitive data and improved maintenance

3.2 Smartcard Technology Overview 23

RAM
128-4096 bytes

CPU
8-/16-/32-bit

ROM
6-128 kBytes

EEPROM
4-64 kBytes

I/O

CLK

RST

Vcc

GND

Figure 3.1: Components of a smartcard

and ease of use only. Therefore, most security-critical systems built around magnetic stripe cards use
the information on the card for creating an on-line connection to a backend system. Since on-line
connections are costly, secure off-line solutions were needed.

In the 1960ies the technological advances of micro electronics allowed for the integration of
memory and logic circuits on small silicon discs of a few square millimeters of size. The idea to
implant such an integrated circuit into an identification card was described in 1968 by the German
inventors Jürgen Dethloff and Helmut Gröttrup and applied for a patent [DG69] in Germany and
later in the U.S. [Det78]. A similar patent was applied for in Japan in 1970 by Kunitaka Arimura.
Later Roland Moreno applied for several patents in France starting from 1974 and the development
and deployment of integrated circuits of the necessary size for reasonable prices was possible.

The first major deployment of cards was undertaken in 1984 in France and later in Germany for a
new type of application – public phone cards. In the following years several million deployed cards
were in use. Today, an estimated number of 600 million smartcards have been issued in the GSM
world for securely authenticating mobile users.

3.2.2 Micro Processor Cards – Essence and Applications

In this section we give a brief overview of current micro processor smartcards.

3.2.2.1 Card Architecture

Smartcards are basically tiny computers. Figure 3.1 illustrates the components a smartcard com-
prises. In particular these are:

— CPU: The most important difference between a memory card and a smartcard is that the
latter has a programmable central processing unit. CPUs currently range from 8-bit micro
controllers with a few MHz of clock frequency to 32-bit RISC processors working at much
higher rates.

— ROM: ROM is non-volatile persistent memory that is usually cheap to implement and contains
the card operating system. Typical sizes range from 6 kB to 128 kB. Some modern cards use
FlashROM as a replacement of ROM for development purposes. The contents of FlashROM
memory can be updated by special loading protocols, e.g. to test new versions of a card
operating system. Memory sizes of FlashROM are usually comparable to ROM.

3.2 Smartcard Technology Overview 24

— RAM: Since RAM is rather expensive to manufacture and consumes a rather large portion of
silicon, typical sizes of modern smartcards range from 128 bytes to 4 kB. Access to RAM is
usually a magnitude faster than access to ROM or EEPROM. Therefore, RAM is used for the
runtime control and data stack. Since RAM is volatile storage it cannot be used for storing
persistent data.

— EEPROM: In contrast to ROM, EEPROM is persistent, but its content can be changed dur-
ing operation. It is mostly used for persistent but alterable data and dynamically installed
applications. Typical sizes range from 4 kB to 64 kB. Instead of EEPROM there have been
recently prototyped smartcards based on other memory technologies offering up to 1 MB of
space for applications and data. Hence, it is likely that new memory capacities are available
in a mid-term.

— I/O-Block: The I/O-Block offers serial communication with the outside world (I/O) and con-
tains other lines for external clock (CLK), card reset (RST), power supply (Vcc), and ground
(GND).2

The previous technical specifications cover standard smartcards which come in the form factor of a
credit card. Other smartcard-like devices such as the iButtonTM [Dal00] offer about 128 kB of battery-
powered RAM instead of EEPROM and a digital clock. The iButton comes in a variety of new form
factors such as buttons and rings which are necessary to meet the additional space requirement due
to the size of the battery. Another recently emerging type of smartcard-like device are Universal
Serial Bus (USB) tokens that are equipped with a USB interface to be attached to a PC. They have
different external links but most of them are otherwise comparable to smartcards.

3.2.2.2 Smartcard Essentials

Micro processor cards were first used in the French bank card starting in 1984. The possibility
to store keys secretly in the card and perform cryptographic algorithms lead to off-line payment
schemes with high-level security. Smartcards basically offer a combination of

• a secure and tamper-resistant storage for, e.g., cryptographic keys,

• the implementation of unobservable algorithms (in particular cryptographic algorithms), and

• mobility since smartcards can be easily carried around

that make smartcards an ideal device for off-line as well as on-line systems. Put in other words, a
smartcard allows to store a secret and perform computations with that secret without revealing it. For
good reasons the term tamper-proof has been avoided since several successful attacks on smartcards
such as differential power analysis have been reported in the past, e.g. [AK96; Koc96; AK97].
Design principles to avoid such attacks are, for example, described in [KK99]. An overview of the
notions of tamper-proofness and tamper-resistance is given in [Sch00, Chap. 14].

Current smartcards implement a number of cryptographic algorithms (cf. [Sch96; MOV97])
such as DES (ECB and CBC modes) and Triple-DES (3DES) that can be easily implemented for
the 8-bit micro controllers. Due to performance reasons RSA is usually available through an addi-
tional cryptographic coprocessor. Elliptic curve Cryptography is also said to be supported in future
smartcards since it is computationally less expensive than other public-key cryptographic algorithms.

2 The exact positions of these contacts on a plastic card are specified in ISO 7816-2 [ISO88].

3.2 Smartcard Technology Overview 25

Pseudo random number generators are available for computing cryptographic challenges, padding
data, etc. Furthermore, many modern cards also implement a message digest algorithm such as MD5
[RFC1321] or SHA-1 [FIPS95].

3.2.2.3 Smartcard Applications

Since secure and persistent storage on one hand, and crypto algorithms on the other hand are the key
benefits of smartcards, they are mostly used in security-critical application domains such as, but not
restricted to

• identity cards (personal information),

• access control (buildings, rooms, computers, mobile networks, services, etc.),

• secure data storage (medical information, cryptographic keys, etc.),

• electronic signatures, and

• electronic wallet and banking cards (monetary values, loyalty systems, etc.).

Today, smartcards have become small, but pervasive computers used all over the world. Furthermore,
the past has shown that the more smartcards are capable of, the more application domains have
emerged.

3.2.2.4 Card Operating System

Smartcard operating systems are responsible for the following tasks:

• Data transmission to and from smartcard,

• control of the execution of commands,

• file management, and

• management and execution of cryptographic algorithms.

Basically, smartcards operate as a server in a traditional client/server system as follows:

1. Request: A request containing a command to be executed is received by the I/O manager via
the serial interface. Error correction due to transmission failures are usually directly handled
by the I/O manager.

2. Processing: The card interprets and subsequently executes the received command. State tran-
sitions may occur during computation. A messaging manager is usually responsible for ap-
propriate de- and encoding of messages. A command interpreter decodes the commands and
triggers appropriate actions to perform the interpretation. The return code manager takes the
result of the interpreter’s computation and generates a corresponding return code.

3. Response: After the card has processed the command the return code and computed data are
returned to the outside client via the I/O manager.

Smartcard computations only occur synchronously after an appropriate request has been issued to a
card. Hence, smartcards are reactive devices that are not able to proactively initiate external activities
on their own.

3.2 Smartcard Technology Overview 26

Header
︷ ︸︸ ︷

Body
︷ ︸︸ ︷

CLA INS P1 P2 Lc Data field. . . Le

Figure 3.2: Structure of an application protocol data unit (APDU)

3.2.2.5 Smartcard Communication

We briefly introduce the most basic communication principles of ISO-compliant smartcards.

Transmission Protocols T=0 and T=1

Communication to and from the card to the terminal a smartcard is attached to occurs via the serial
interface. The electronic signals and transmission protocols (cf. OSI physical layer 1) of smart-
cards are standardized in ISO 7816-3 [ISO89]. It specifies basic electronic characteristics of inte-
grated circuit cards and power needed for data transfer. Furthermore, it specifies the structure of the
answer-to-reset (ATR) and describes the data transmission protocol T=0 (cf. OSI data link layer 2).
Amendment 1 [ISO92] of ISO 7816-3 describes the frequently used block transmission protocol
T=1.

Application Protocol Data Unit (APDU)

The entire data exchange between smartcard and terminal takes place using so called application

protocol data units (APDU) as specified in ISO 7816-4 [ISO94]. The structure of an APDU is shown
in Fig. 3.2. They consist of a so-called class byte (CLA), the instruction byte (INS), two parameter

bytes (P1, P2), a length field (Lc) of the data sent to the card, the data field, and a length field (Le) of
the data sent back from the card.

The data field of an APDU is often structured according to the abstract syntax notation (ASN.1)
as defined in [ISO90a] and [ISO90b]. This encoding is based on a triple (tag, length, value) or TLV
with tag specifying the type of data, length the length of the data, and value the actual data. With
different kinds of “container” tags, arbitrary nested data structures can be described.

Answer to Reset (ATR)

After booting the power supply, the clock and the reset signal, the smartcard sends out an answer

to reset (ATR) at the I/O pin. This data string, up to 33 bytes long, is always sent and contains
various data relevant to the transmission and to the card. An interesting portion of the ATR are the
historical characters or historicals. The historicals are not prescribed by any standard but mostly
they contain information about the smartcard, its operating system, version number, etc. Besides
the ATR, ISO 7816-4 [ISO94] defines an ATR file with the file ID ‘2F01’, that may contain further
information about the ATR.

The ATR and the ATR file play an important role for the integration of smartcards into local networks
which is the main theme of Chapter 4.

3.2 Smartcard Technology Overview 27

3.2.3 Standard Issuance Models for Smartcards

Most of the systems that make use of smartcards can be categorized as “single-application systems”.
This means that a dedicated application such as banking, electronic cash (cf. [Gen99]), electronic
signature creation, public transportation systems, etc. use a dedicated smartcard that is issued for
the sole purpose of implementing this application.

Issuance Players

The players involved in such a system are the following:

— Card manufacturer: The manufacturer3 usually implements the card operating system and
performs the packaging of a smartcard which usually includes

• embedding the core integrated circuit into plastic;
• loading the operating system into the ROM;
• loading the EEPROM with appropriate data, e.g. file system, etc.;

• optionally perform some personalization in cooperation with the card issuer such as key
installation and management.

The manufacturer is usually not further involved in the actual operation of the application
itself.

— Card issuer: The issuer is the operator of the system and the application the smartcard is a
component of. Typical examples are banks issuing banking and electronic cash cards, mobile
operators issuing GSM SIM cards, etc. They usually

• personalize the cards – sometimes in cooperation with the manufacturer,
• issue the cards to the subscribers and clients,
• operate the system and application, e.g. run the mobile network which includes tasks like

billing in case of the mobile operator.

The issuer usually has some kind of contract with the card holder that establishes a legal
relationship between both.

— Card holder: The card holder uses the card obtained from the issuer to participate in the
application or system, e.g. inserts the SIM card into the mobile phone to make phone calls
with.

Summing up, from the perspective of the card holder the smartcard essentially is the application

since a card is only used for one particular application. For each application a client obtains a
new card form the issuer running the application. The consequences for the holders are well-known:
Everybody carries around a significant number of cards and everybody wonders why the applications
in use cannot be integrated into only a small number of multi-application cards.

The reasons for this are manifold and (non-)experts in this area give several possible subjective
explanations:4

3 Some of the best known names here are GemplusTM , SchlumbergerTM , Giesecke & DevrientTM , OberthurTM , De la RueTM ,
OrgaTM , SetecTM , and SagemTM .

4 Further information on the smartcard business sector concerning some of these issues can be found in [Ovum99].

3.3 Smartcards in Hostile Environments 28

• Multi-application cards are expensive, and issuance can only be done if a critical amount of
applications is found to be loaded onto such a card.

• The application and trust management with multi-application cards is not easy to solve, espe-
cially the legal issues seem not to be easily solvable.

• Many companies are not interested in being “integrated” into a multi-application card due
to branding issues; they are interested that their customers carry a card with the companies’
logo.5

The trust models in systems using smartcards are basically such that the card holder trusts the issuer
to enforce a policy that is somehow part of the mutual contract between them. As an example a user
trusts her mobile operator to correctly perform the billing and not charge the user for phone calls
that were not made. Since there is no difference between the issuer and the application the situation
is quite simple.

In multi-application environments though, the situation becomes different. Since only one entity
is able to actually issue the card there must be relationships between an issuer and the other service
providers running applications in the card holder’s smartcard. We will come back to this problem in
Chapter 7.

3.3 Smartcards in Hostile Environments

As has been previously noted smartcards are currently used in conjunction with a particular applica-
tion only. This further implies that the card’s surrounding infrastructure is also reasonably trustwor-
thy. Consider, for example, the use of a smartcard in an ATM. From the bank’s perspective the ATM
is considered to be reasonably trustworthy and as long as the card is used in the context of an ATM
this is not a problem for the bank. Furthermore, the bank usually implements measures that do not
allow to make use of their smartcards in other contexts than the ATM.

If smartcards, however, are not bound to a particular application but instead are used at differ-
ent places in different situations the smartcard’s environment must be investigated under security
considerations. Several research groups have studied this problem of using smartcards in untrusted
environments during the last decade.

Abadi et al. [ABKL93] consider the lack of a clock in a smartcard as crucial shortcoming for the
creation of electronic signatures. They enumerate that “. . . the smart-card can no longer generate

secure timestamps for its certificates, and it cannot check that other certificates have not expired.”
Furthermore, they argue that “. . . a variety of replay attacks become possible unless that card can

obtain the time somehow.”6 They present different protocols for authentication and delegation based
on ideal smartcards containing a display and a keyboard. Additionally, they present the idea of
securely entering the PIN if the smartcard is in control of a secure display by the card showing a
one-time password that the users “modifies” into the PIN by entering a series of ‘+’ and ‘nextdigit’
operations via the (possibly untrusted) keyboard.

5 Other application areas such as e-government and health-care seem not to suffer from these problems. The European Com-
mission, for example, has started the eEurope initiative [Zob01; CEC00] aiming at the “harmonization of smartcard-based

infrastructures across sectors by building a consensus for compatibility”, and “stimulating inter-sector cooperation to en-

courage interoperability”. The Commission’s initiative seems to pave the way for other attempts driven by governments,
e.g. Austria’s Bürgerkarte [Ott01].

6 They do not further consider that the lack of a clock also implies that it is not possible to perform useful differential timing
measurements needed to detect artificial slow-down in the delivery of messages from a timestamping service.

3.4 Design Dimensions of Smartcards and Terminals 29

Yee and Tygar [Yee94; YT95] more precisely sketch the general problem of the private commu-
nication path between a secure coprocessor – such as a smartcard – and the user without, however,
offering new solutions.

Gobioff et al. [GSTY96] further investigate the direct communication problem due to the smart-
card’s lack of user I/O and propose schemes to substitute secure input (to enter a shared secret into
a smartcard) with secure output (to communicate shared secrets from the card to the user) and vice
versa. However, their schemes are not applicable for practical use since they require the user to
perform manual computations to communicate with the card using a shared secret.

Stabell-Kulø [SK00] considers the problem of smartcards in hostile environments with a spe-
cial focus on electronic signature creation. He states that the basic problem of smartcards is that
there is no secure channel between the smartcard and the user since all messages pass through some
(potentially malicious) machinery. Basically, data integrity is the core of the problem that either
requires authenticated channels or secret information. The approach considered comprises an ad-
ditional trusted third party supporting the user and his smartcard that signs a statement that it has
verified a signature it received from the user’s card. Furthermore, it sends a transformation of the
signed text (some kind of message authentication code) to the user who can then manually verify that
the card actually signed the data intended. Subsequently the user discloses a secret that is necessary
to unwrap the signature and make it available for the recipient. Similar to Gobioff et al. his solution
requires the user to perform manual computations and is applicable for small texts only with a small
number of symbols in the document’s alphabet.

Summing up, it seems that until now there does not exist a practical solution to this problem. There-
fore, the trustworthiness of the critical path between the user terminal and the smartcard is of vital
importance to any security mechanism based on smartcards. Otherwise, exactly this link becomes
one of the most vulnerable parts of the whole system that might be the first target for a potential
attacker.

3.4 Design Dimensions of Smartcards and Terminals

Apart from the hostile environment problem, smartcards seem to be ideally suited to become per-
sonal security modules of the future. They can be used as safe containers for security-sensitive
cryptographic key material and can be carried around for the users’ convenience.

Trustworthiness of Smartcards

The most fundamental assumptions of the idea of a personal security environment is the trustworthi-
ness of the smartcard. This trustworthiness is based on several issues:

— Tamper-resistant design: The tamper-resistance of a smartcard must be guaranteed by the
card’s design. This includes the non-observability of the memory cells, on-chip bus systems,
CPU, etc. Furthermore, the implemented algorithms should be unobservable and the smartcard
should be in possession of an unpredictable random number generator implementation.

— Card production process: The card production process must meet the tamper-resistance
design goals and avoid the introduction of any kind of trap-doors.

— Card-resident applications: Besides the hardware and the card’s operating system all card-
resident applications must be subjected to a careful software engineering process. This process

3.4 Design Dimensions of Smartcards and Terminals 30

sometimes even requires the (formal) verification of the applications to prove certain security
properties.

— Card issuance: The card issuance process must guarantee that no manipulation of a card
can occur until the card is delivered to the end user. This includes also a proper and secured
personalization process – possibly at a point of sale – that must guarantee that only certified
applications and data are brought into the card.

— User diligence: The user is responsible to appropriately care for the device, e.g. avoiding
access by other people, or passing authorization information such as PIN numbers.

The above requirements have to be met by all smartcards that are to be used within the context of a
personal security module. However, these requirements should be considered beyond the scope of
this thesis since they are mostly enforced today.

Smartcard Personalization

The smartcard acts as a personal security module if one or more of the following criteria are met:

• It contains one or more private keys in a public key crypto-system that are bound to the user’s
identity.

• It contains one or more shared secret keys in a symmetric crypto-system.

• It contains public key certificates of peers (persons, hosts, services, etc.) that are considered
to be trusted.

• It contains other secret information not intended for public use such as electronic tickets, e.g.
in the form of authorization certificates or capabilities.

One typical personalization of a smartcard is that the card is a tamper-proof container for its owner’s
secret key in a public key crypto-system.

Although ideally suited for personalization, it has been observed that smartcards alone are not
sufficient from a security perspective since they lack reasonable user interfaces. There is some
research and development going on to equip smartcards with small displays, clocks, and keypads but
for many application domains this will not be sufficient for at least the following reasons:

• The amount of information to display will not fit on the small displays provided by such
“super”-smartcards.

• The display and keyboard mounted most likely will be less tamper-resistant than the integrated
circuit itself and thus be subject to attacks.

• Some smartcards such as plug-in cards like GSM SIMs are embedded into another device and
not directly exposed to a user. Hence, there is no opportunity for equipping such cards with
some input and output facilities.

Hence, for practical use, suitable terminals must be used in order to properly “control” and make
use of smartcards. A personal security module therefore comprises a personalized smartcard and
a terminal. Furthermore, the overall security of a system consisting of these two components will
always have to take the security and trustworthiness of the terminal into account.

In our approach personalization is defined as follows:

Personalization is a process during which information is brought into a device. This

information makes a statement about a device’s peer or is actually property of the peer.

3.4 Design Dimensions of Smartcards and Terminals 31

Dimension Domain

(a) Mobility of terminal {mobile, non-mobile}

(b) Personalization of terminal {personalized, non-personalized}

(c) Placement terminal/card {co-located, remote}

(d) Communication protection {unprotected, protected}

(e) Application control terminal. . . card

Table 3.1: Design options of terminal- and smartcard-based personal security modules

Basically, it depends on the information brought into the device that decides about the relation be-
tween the device and its corresponding peer. Think of a user’s credit card number that is safely kept
in a smartcard and only given to other trustworthy parties such as shops. In this particular example
the user is the smartcard’s peer.

Since we are interested in how personal and ubiquitous security modules should be designed we
separately consider the issues as listed in Tab. 3.1.

Our methodological approach considers these issues as fundamental dimensions spanning the de-
sign space of personal security modules based on smartcards. Each of these “axes” is now discussed
throughout the following sections.

3.4.1 Mobility and Personalization of Terminal

In contrast to smartcards, terminals are not considered to be tamper-resistant. Whereas the smart-
cards available today have demonstrated that it is indeed possible to protect a small integrated circuit
to a reasonable degree, the protection of a “larger” device with input and output facilities is still
beyond today’s engineering practice for the mass market. Thus the trustworthiness of the terminal
as part of a personal security module is critical for the overall security of such a system and assumed
to be given for any terminal used to access a personalized smartcard.

Furthermore, depending on the concrete capabilities, the price of off-the-shelf smartcards with
cryptographic support is somewhat around a few Euro to a few tens of Euro. Terminals, however,
are still devices that are at least one order of magnitude more expensive than smartcards. Thus, a
personal security module’s price mostly will depend on the cost of the terminal and not the cost of
the smartcard. Our working hypothesis is as follows:

The relationship of roughly one order of magnitude between the price of smartcards and

terminals will not change significantly in the mid-term future.

As a consequence, we believe for practical and economic reasons that any approach and proposal
for a personal security module must take into account that off-the-shelf devices such as informa-
tion appliances like personal digital assistants, mobile phones, etc. or public terminals such as Web
browsers will be used as terminals.

Basically, we can distinguish between mobile and non-mobile terminals, both of which will be
considered as front-ends to personalized smartcards in the course of this thesis.

3.4 Design Dimensions of Smartcards and Terminals 32

Mobile Terminals

People get more and more used to carry around mobile appliances such as mobile phones and PDAs.
Thus, it can be safely assumed that many mobile users could potentially use such a device as a
terminal for their security module – the smartcard. A further assumption with mobile terminals is
that they are somehow owned or even personalized by the user and that they are to some degree
trustworthy devices. This requires appropriate user diligence and physical control over the device to
avoid tampering.

Estimating the trustworthiness of mobile terminals is generally a hard problem. However, there
exist studies investigating the security features of current operating systems for PDAs. For example,
Eckert [Eck01] analyses the security features of the PalmOSTM, Windows CETM, and EPOC R5TM

operating systems and concludes that authentication and access control implemented in these targets
of evaluation are poorly implemented or even non-existing.

Mobile phones on the other hand have been until recently based on closed proprietary operating
systems. These systems often did not offer any direct access to applications and data available in the
device. However, this is also about to change since newer mobile phones offer application platforms
based on the Java environment. Thus, it is likely that mobile phones will soon reach a development
step that makes them as vulnerable as PDAs or computers are today to different sorts of attacks such
as viruses and manipulation.

Non-Mobile Terminals

Another option is to use non-mobile terminals for accessing the card. Users do not carry their own
terminal around, but rather use the terminals available at a particular site where they are about to
perform a security-critical decision. This is similar to the “hostile environment” problem previously
discussed in Sect. 3.3. However, there might be situations in which the user has some confidence in
the terminal depending on the importance of the decision to be made. For example, it might well be
the case that a user performs a high-volume stock transaction from a terminal at her home but not
from a publicly available terminal in a shopping mall.

Depending on the security characteristics of the terminal and the multi-user aspects, non-mobile
terminals are probably less often personalized than mobile terminals.

3.4.2 Placement and Communication between Terminal and
Smartcard

Communication between the terminal and the smartcard can be subject to protection based on two
different approaches:

— Physical co-location: In this case the terminal and card are directly attached to each other
without any intermediate party. Typical examples are a GSM SIM inserted into a mobile
phone or a smartcard inserted into an ATM.

— Remote location: In this case the terminal and card communicate over a potentially insecure
communication channel. This type of operation is usually not found today in combination
with a user terminal. However, a nice example of communicating with a remote smartcard are
the mobile operators’ over-the-air services that often use cryptographic measures to yield an
end-to-end secure communication channel between the operators’ network elements – though
not counting as a user terminal – and their SIMs.

3.5 Design Options of Personal Security Modules 33

In the former case the physical protection of the link must be guaranteed, whereas in the latter case
appropriate communication protection, e.g. based on cryptography, should be used.

We present approaches for both options in the course of this thesis.

3.4.3 Application Control

Since the security module of interest comprises two components – terminal and card – both of which
are tiny computers, each of them could be the device “running” and “driving” the application. Distin-
guishing these cases may seem strange since both can be considered as devices acting concurrently
and exchanging messages with each other. The standard usage pattern, however, is that the appli-
cation is hosted in the terminal or even a further component and that the smartcard performs some
computation in response to a particular request.

Hence, the card can be considered as being more “active” if the actual messages exchanged result
in a communication link that is end-to-end secured between an external party and the smartcard.
If the smartcard then uses a particular terminal as its input and output device only, the card can
be considered to “conduct” the interaction. Thus, the relationship between the terminal and the
smartcard can be characterized depending on the actual placement of functionality, i.e. card-resident

or terminal-resident. For example, the creation of an electronic signature is divided into several
sub-tasks:

(a) fetching the document to sign,

(b) displaying the document,

(c) user interaction to accept to sign the document,

(d) computing the hash of the document,

(e) electronically signing the document’s hash, and

(f) returning the electronic signature.

In this example tasks (b) and (c) have to be performed by the terminal since it is the only component
suited for I/O, and task (e) has for legal issues to be done by the smartcard. Tasks (a), (d), and (f)
can be arbitrarily shifted between the terminal and the smartcard. Thus, if these steps are done in the
terminal the card appears to be controlled by the terminal, whereas in the other case the terminal is
controlled by the card.

Most of the smartcard applications in use today follow the paradigm of a more “passive” card and a
more “active” terminal. One of the contributions of this thesis is to investigate how smartcards can
be made more active and what the security implications of such an approach are.

3.5 Design Options of Personal Security Modules

This section discusses the different design options that have been identified as central to the problem
of architecting personal security modules for mobile users.

In the previous section we have characterized the relevant dimensions of a design space for
personal security modules based on the distinction between a smartcard and its terminal(s).

These dimensions have guided our analysis as to which design options are needed to architect
personal security modules for mobile users. Essentially, each design option provides a solution to

3.5 Design Options of Personal Security Modules 34

;;;;unprotected

$�$�9�$�9�$�protected

77$�$�9�unprotected

77$�9�$�9�protected

non-
personalized

personalized
non-

personalized
personalized

mobile non-mobile

co
-lo

ca
te

d
re

m
ot

e

7

6 �
�D�

�E�

�G��F�

Figure 3.3: Design space of personal security modules according to Tab. 3.1 on page 31: (a) mobility
and (b) personalization of terminal, (c) placement of terminal and smartcard, and (d)
communication protection between terminal and smartcard.

a general problem in the design of a personal security module. Each of these solutions which have
already been briefly introduced in Chapter 1 is now discussed individually based on

• a problem description,

• a solution description,

• an indication to which sub-space of the overall design space the solution is applicable to, and

• which particular design area the prototype matches.

We refer to the overall design space depicted in Fig. 3.3 to identify the area in the design space each
solution and its particular prototype can be found.

Design Space Considerations

We do not consider the part of the design space that is characterized as remote and unprotected (see
lower row in Fig. 3.3 denoted with ‘

�
’). The reason is that using smartcards remotely from a terminal

without any protection mechanisms is considered unsafe. It is impossible to achieve any benefits in
terms of security and therefore this case is not further investigated.

The upper right corner of co-located and non-mobile terminals denoted with ‘ ✁ ’ covers the more
“traditional” type of smartcard usage. Examples of such usage scenarios are a bank’s ATM, a home
banking scenario with a PC and an attached smartcard reader, a Eurocheque or cash card terminal at
a particular point of sale.

3.5 Design Options of Personal Security Modules 35

A1: A Spontaneous Networking Framework for Smartcards

Problem: The problem underlying this approach is motivated by the use case that a mobile user is
only in possession of a smartcard without any terminal. To be able to communicate with the personal
card the user has to make use of terminals available at a particular site. However, the user is faced
with a general usage dilemma due to the fact that either the local terminal knows how to talk to the
smartcard on the level of smartcard APDUs, or the card is able to offer its services at a reasonably
high level to potential applications.

The former approach is in our opinion not very interesting, however, the latter is faced with a
particular problem: Since smartcards are very limited devices in terms of computational power and
communication bandwidth they need sufficient support from their infrastructure to allow for their
spontaneous integration.

Solution: The resulting JiniCard framework presented in Chapter 4 comprises an architecture and
suitable protocols to bootstrap the smartcard after insertion into a specially equipped so-called card

terminal.
The solution builds upon the idea of using mobile code as an enabling technology to comple-

ment the card-resident resources with off-card resources in a dynamic way. Upon insertion of the
smartcard the surrounding infrastructure enables the smartcard to bootstrap mobile objects that rep-
resent the card and its services. Thus, the framework essentially defines a spontaneous networking
technology ideally suited for smartcards.

Application: Approach A1 is essentially a design option applicable to the mobile and non-mobile
terminal variants of the design space. It solves the problem of a remote card providing services on
a network. Hence, the user accesses a local and non-mobile terminal through which communication
with the smartcard occurs. The terminal and the smartcard do not need to be physically attached to
each other. This fact is indicated by cell A1 and its variant A1V1 considering the special case of a
personalized terminal.

JiniCard can also be used in a co-located constellation of the user’s terminal and the smartcard.
However, this region is already covered by the “traditional” type of smartcard usage at non-mobile
and co-located terminals such as a bank’s ATM, a home banking scenario with a PC and an attached
smartcard reader, a Eurocheque or cash card terminal at a particular point of sale. Hence, the figure
illustrates that the design options of a personal security module somehow “leave” the traditional area
of smartcard usage.

A2: A Personalized and Trustworthy Mobile Terminal

Problem: The general problem solved by this approach is how smartcards can be used in hostile en-
vironments where the user does not trust any of the terminals that are locally available at a particular
site.

Solution: The Personal Card Assistant (PCA) presented in Chapter 5 demonstrates how PDAs can
be used as trustworthy mobile terminals to access the security services of a smartcard. Hence, the
basic idea is that the users carry and use their own personal trustworthy terminals instead of the
locally available ones.

Furthermore, terminal and smartcard are cryptographically linked together using suitable proto-
cols such that no component can be used without the other to perform a security-sensitive operation.
Put differently, the PDA is the smartcard’s peer and the card is personalized with the PDA’s public
key and vice versa.

3.5 Design Options of Personal Security Modules 36

Application: The trustworthiness aspect of the PCA is not directly presentable in the design space
depicted in Fig. 3.3 on page 34. Besides this shortcoming, the card may be co-located (see A2V1)
but the presented solution is designed for the more general case if the smartcard is inserted into a
public card acceptance device and the PDA performs remote control of the card. Thus, approach A2
actually solves the communication problem in the presence of a personalized and highly trustworthy
terminal.

The related variant A2V2 considers the unpaired version of A2 that does not cryptographically
bind the terminal and the smartcard together, i.e. A2 without pairing.

A3: A Mobile Terminal with a Wireless Mobile Communication Link

Problem: The third approach is a solution to the problem how personal security modules can be
used virtually anywhere and anytime. Some interaction between the user and a service provider, for
example via phone or when interacting with an Internet shop, might not allow for a direct communi-
cation link to the security module.

Solution: The WebSIM solution (Chapter 6) builds upon the idea of a wireless smartcard reader
in the shape of a mobile phone. A GSM phone, for example, can be considered as mostly on-
line and it already contains a smartcard – the Subscriber Identity Module (SIM). More concretely,
we have made smartcards reachable from the Internet by means of a suitable architecture and the
implementation of a tiny Web server in a SIM. This allows a SIM to appear as an ordinary Web
server on the Internet. Other Internet nodes can connect to the WebSIM using the HTTP protocol
which is transparently forwarded to the SIM of a mobile user. It can among others act as a security
server that brings the security infrastructure of the GSM world into the Internet. Hence, the personal
security module of a user is accessible from the Internet anytime and anywhere the user is currently
located.

Application: The approach is applicable to mobile terminals with a wireless link that do not need
to be personalized. Furthermore the solution is particularly useful with co-located smartcards, i.e.
smartcard and terminal are directly attached to each other.

Variants of approach A3 can also be identified in Fig. 3.3 on page 34. Approach A3V1 is a
WebSIM that has a co-located and additionally protected communication link between terminal and
smartcard. Variant A3V2 additionally uses a personalized terminal – which today’s mobile phones
are already to a certain degree.

A4: A Personalized Smartcard that allows for the Execution of Mobile Code
supplied by a Service Provider

Problem: Approach A4 steps outside the boundaries drawn for the design space of Fig. 3.3 on
page 34. Essentially, it is orthogonal to the other approaches and can be applied to all of them
individually. Therefore, it is not shown in the corresponding figure. A4 is the result of an attempt to
correct two drawbacks in the WebSIM design. In particular these are the missing features for end-
to-end security, transactional behaviour on the mobile device, and better support for non-repudiation
on mobile devices. Approaches A1–A3 are based on the concept of a smartcard that executes code
on behalf of its user. However, value-added services can additionally benefit from a smartcard’s
security context if the smartcard contains an execution platform for mobile code originating from a
service provider.

Solution: The SIMspeak platform (Chapter 7) demonstrates a platform for the execution of mobile
code within a smartcard with a particular focus on GSM SIMs. The approach comprises a runtime

3.6 Summary 37

execution platform for mobile code, a program verifier, and suitable mechanisms that allow a service
provider to “rent” secure storage in a smartcard. It introduces a new trust model since both the user
and the service provider must have sufficient confidence into correct implementation of the card’s
execution platform and runtime environment.

Application: This platform elaborates the idea of shifting as much functionality as possible into a
smartcard by providing a platform that allows a card to “conduct” the applications. Basically, this
opens up new application domains and leads to improvements in the way how non-repudiation in the
form of electronic signatures is achieved. In particular these are

• card-controlled document presentation and hash computation,

• recipient-based signature computation,

• trusted third party assisted electronic signatures,

• signatures with samples, and

• electronic signatures on user interactions.

The relevant architecture and involved protocols of this approach are presented. In particular,
this chapter presents some new approaches for the creation of electronic signatures based on this
paradigm.

Its most promising application domain is the same as for approach A3 and our particular proto-
typical implementation is actually built upon the WebSIM approach.

3.6 Summary

In this section we have described how smartcards can be used as the central component of a personal
security module consisting of a user terminal and a personalized smartcard. We have begun with a
brief overview of the history and current state-of-the-art of smartcard technology covering technical
issues as well as deployment and trust models for smartcards.

After identifying the role of terminals in a personal security module we have revisited the perti-
nent literature about the problem of using smartcards in so-called “hostile environments” leading to
the observation that currently there is still no practical method known for users it interact safely with
smartcards under such circumstances.

Subsequently, we have identified five different dimensions that span the design space of personal
security modules based on a smartcard and a terminal. In particular we consider the mobility and
the personalization of the terminal as two dimensions, the co-located or remote positioning of the
smartcard as another dimension, the protection of the communication link between the smartcard
and the terminal, and finally the degree of application control exercised by smartcard and terminal as
the remaining dimensions. On top of these dimensions other factors such as wireless communication
capabilities are of further interest.

Based on the design space opened up in this analysis we have identified four design options that
affect the design of personal security modules. Each of the problems concerning the spontaneous
networking capabilities of smartcards, the use of trustworthy terminals in hostile environments, the
idea of a wireless smartcard terminal, and the concept of a mobile code platform for smartcards has
been tackled by a particular approach. Each of the approaches leads to a solution of the problem that
is applicable in a certain sub-space of the overall design space.

3.6 Summary 38

The design space allows to compare the different approaches with each other and the more tra-
ditional usage scenarios of smartcards. It shows that this thesis considers fundamentally new ap-
proaches towards a truely personal security module for smartcards.

The design options identified in this chapter will be subject to a more detailed discussion through-
out the remaining parts of this thesis.

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Chapter 4

Integration of Smartcards into
Networked Environments

The historical bytes tell the outside world how to use the card. . .

ISO/IEC 7816-4, Section 8

4.1 Introduction

As already described in Sect. 3.2 smartcards are tiny devices that communicate with their environ-
ment through a device called a card reader or reader for short, sometimes also referred to as a card

accepting device (CAD). Card readers are usually either connected to a PC or workstation or part of
a special device such as an automated teller machine (ATM).

Smartcard Integration Issues

Since a smartcard needs appropriate terminals to communicate with its user, a number of functional
requirements on the integration of smartcards exist:

• The smartcard must be able to communicate with and possibly control other components that
are part of the security module. There must exist mechanisms for the smartcard to control a
display and keyboard. Furthermore, the card must be able to communicate with other compo-
nents outside the security module.

• Although smartcards are servers in the traditional sense, mechanisms are needed to enable
smartcards to explore their environment and act upon the components and services discovered,
i.e. being proactive.

• The card must be able to describe its card-resident services and both export and announce

them to the environment through its communication links.

Comparing the previously listed requirements with the actual capabilities of smartcards deployed in
the market, today’s smartcards can be considered to be rather inflexible devices. We see three main
practical reasons for the relative inflexibility of smartcards.

• Smartcard interaction is standardized on a per-application basis. Institutional standards exist
for (simple) applications in a variety of domains, e.g. banking, transportation, and mobile

39

4.1 Introduction 40

telephony (cf. [MP92; GSM11.11]). Standards for more sophisticated applications, such as
digital signatures, have just recently begun to show up [PKCS#11]. But standards guarantee
interoperability only to a limited degree, as marketing needs require certain variability and
proprietary extensions.

• The second reason is that smartcards have very limited resources in terms of memory size,
computing power, and communication bandwidth. This limits their range of applicability and
makes them extremely dependent on their environments. Without an appropriate card reader
and a software package, it is impossible for a user to access a smartcard’s functionality.

• Furthermore, such smartcard environments are often highly proprietary, thus further restrict-
ing interoperability. Applications in such environments usually work only with specifically
configured smartcards and refuse to interact with third party cards.1

This analysis mirrors the market structure: Usually, smartcards are distributed in large quantities
and applications are implemented by tight interaction between card manufacturers and card issuers.
Hence, these partnerships tend to be very strong and long-lasting, which opposes open architectures.

Smartcards in Networked Environments

In networked systems, though, devices and applications are working together on different levels.
On the network level, protocols are used to facilitate the exchange of data, e.g. TCP/IP. On top of
the networking level, protocols such as HTTP allow for peer-to-peer communication upon which
services can be implemented. On the service level a server provides services to other clients and/or
users.

Integrating smartcards on the service level requires the description of smartcard services, their
announcement in a service-trading environment, and the establishment of links between clients and
services. These are generic tasks that are usually facilitated by suitable middleware systems such
as the ones presented in Sect. 2.4. Such systems provide frameworks for the description and stan-
dardization of services. Lower-level details are hidden in such descriptions, thus standardization can
focus on the service descriptions themselves without referring to technical details. Service manage-
ment is carried out by standard application level services, while communication is performed over
standard protocols. This makes access to smartcard services transparent w.r.t. their location and the
card’s communication features.

Furthermore, smartcards are devices that are temporarily accessible. Their availability usually
corresponds to the physical presence of their users. This requires transparent and quick integration
of smartcards into the local environment. Additionally, applications must be designed to handle
abrupt disconnections smoothly. Therefore, appropriate middleware that offers means to address
these requirements is needed.

A Spontaneous Networking Framework for Smartcards

This chapter presents solutions to the above mentioned problems based on a framework for the
integration of smartcards into local environments. The framework can be considered as spontaneous
networking middleware for smartcards that allows to dynamically integrate smartcards into local
environments. Upon insertion into a suitably equipped card terminal the card-resident portions of
a smartcard’s services are complemented by dynamically loaded mobile code running on a network

1 A prominent example are payment transactions with the German “Geldkarte” (cash card, cf. [Gen99]) that are only possible
at particular terminals.

4.2 Mobile Code as an Enabling Technology for Spontaneous Networking 41

node. It enables smartcards that have traditionally played the role of pure servers to overcome
their passive role and enables them to proactively explore their environment. Special attention has
been payed to the integration of “legacy” smartcards which is also often a problem in deploying
new technologies in the smartcard sector. Thus, it can be considered as a spontaneous networking
framework for smartcards representing approach A1 as introduced in Sect. 3.5.

Organization of this Chapter

The rest of this chapter is organized as follows: Section 4.2 presents a generic bootstrapping frame-
work for the integration of small devices into a local infrastructure. This framework is directly
inspired by the statement made in Sect. 2.5 that there will be always small devices around that need
special assistance from their surrounding infrastructure.

Section 4.3 performs a requirements analysis of how a suitable middleware for smartcards could
look like in principle and which advantages and disadvantages each of these general approaches
presents. It essentially leads to the observation that the spontaneous networking framework intro-
duced in Sect. 4.2 is a good candidate to build a particular solution on top of.

The JiniCard framework presented in Sect. 4.4 describes the developed framework in detail. It
essentially consists of two layers: The smartcard exploration layer responsible for exploring the
smartcard and the smartcard services exploration layer that deals with the exploration and instanti-
ation of the services residing on a smartcard. Essentially, it achieves the spontaneous integration of
smartcards as envisioned in the introduction of this chapter.

Related work concerning other approaches aiming at a more convenient integration of smartcards
into networked environments is presented in Sect. 4.5. Security aspects of the JiniCard framework
are considered in Sect. 4.6 where some possible solutions are presented.

The chapter ends with a summary in Sect. 4.7.

4.2 Mobile Code as an Enabling Technology for

Spontaneous Networking

In Chapter 2 it was identified that small devices need special assistance from their environment to
properly take part in a spontaneous networking scenario. Smartcards as devices belonging to a cate-
gory that need such special assistance are of our primary concern. However, before we concentrate
on smartcards, we take a more generic viewpoint on the integration of small devices and provide a
rather generic solution which in turn is then later applied to smartcards in Sect. 4.3.

4.2.1 The Memory Wallet Example

As a running example we consider a fictitious device equipped with a wireless communication
link based on transponder technology [Fin99] at reasonable bandwidth that offers persistent stor-
age (EEPROM) for data exchange. This memory wallet constantly tries to spontaneously connect to
its surrounding environment to offer its service as soon as it is within the magneto-electrical field of
a corresponding reader. The device offers the following operations:

— � ✁ ✂☎✄✝✆✟✞ : Lists the names of all items stored on the device.

— ✂☎✄✡✠☞☛✍✌✎✆ name, item ✞ : Store an item in the wallet’s memory.

— ✌✎☛✍✏✑✂✒✌✑✆ name ✞ : Erases the named item from the memory.

4.2 Mobile Code as an Enabling Technology for Spontaneous Networking 42

— � ✌✝✄✂✁ ✏☎✄✝✆ ✆✟✞ : Fetch the current random value from the wallet.

Since the device is of limited computational resources it offers only basic security features, i.e. in
our case it is only able to compute a cryptographic hash of a set of data. Furthermore it owns a
random number generator that can be used to generate fresh random numbers which can be read
with the � ✌✝✄✂✁ ✏☎✄✝✆ command. Random values are used to prevent replay attacks and guarantee the
“freshness” of the operations performed on the device. Finally, it is in possession of a secret user-
definable password. Together these can be used to provide integrity and authenticity of the operations
performed on the wallet in the following manner:

• Before an operation can be performed a new fresh random has to be obtained from the wallet
using � ✌ ✄✞✁ ✏✟✄✝✆ .

• The operations � ✁ ✂☎✄ , ✂✟✄✡✠☞☛✍✌ , and ✌✎☛✍✏✑✂✡✌ have to be electronically signed using the cryptographic
hash s = h(c, d, n, p), with c being the command, d the command data, n the fresh random
number previously obtained, p the shared secret password between the user and the wallet,
and h a suitable one-way hash function.

• Upon receipt of a command, the wallet can verify the signature using the secret p and the
current random value n and grant or reject access. After a command has been finished, a new
random number is computed.

This offers simple though sufficient protection in most cases making the wallet a quite useful device
if it existed.

Obviously, the wallet needs sufficient communication bandwidth for exchanging data, but in
terms of computational resources such as RAM and CPU speed it can be considered as a relatively
small device. Thus, it does not need a working IP stack for operation. However, the applications that
make use of the wallet might be located somewhere in a desktop environment where a user simply
wants to “mount” the wallet allowing to manipulate the wallet’s content.

4.2.2 A Bootstrapping Framework for Small Devices

We now describe how our framework for the integration of small devices into a local infrastructure
could look like in general by referring to the memory wallet example presented previously. The
framework considers and distinguishes between

(1) device detection,

(2) detection event compilation,

(3) device explorer lookup,

(4) device exploration,

(5) service proxy lookup,

(6) service proxy instantiation, and

(7) service integration.

An overview of the involved components and their interactions is given in Fig. 4.1 on the following
page. In the sequel we describe the different parts of the framework.

4.2 Mobile Code as an Enabling Technology for Spontaneous Networking 43

Detector

Explorer
Host

Resolver

,QWHUQHWClients

Detection

Event

Figure 4.1: Overview of the framework for the integration of small devices

4.2.2.1 The Initial Detection Event

After a small device such as the wallet has entered an environment it must be “detected”. In the wallet
example the radio frequency (RF) reader is the only device in the infrastructure that is able to notice
the detected device, i.e. the wallet, after it is within the reader’s range. Depending on the lower-
level communication protocols, certain information about the device can be gathered. Very often
a device is able to disclose information such as manufacturer, type identification, version number,
serial number, date of production, etc.

Upon detection the detector compiles a so-called initial detection event which should consist of
at least the following information:

• The detected device information as described above.

• Information about the detector itself: manufacturer, model, etc.

• A link identifier that can be used to address the detected device relative to the detector which
might be needed for further communication with the detected device.

The detector sends this event to a so-called resolver which is responsible for finding a device-specific

explorer.

4.2.2.2 Device Exploration

At this stage the type of the detected device is known and communication at the link layer is possible.
The next step is to somehow communicate with the device at a higher, more device-specific level.
The general thesis is that the missing knowledge about the protocols supported by the device can
be obtained by some device-specific interrogation. However, since the environment does not know
more about the device than is available from the initial detection event this interrogation must either

4.2 Mobile Code as an Enabling Technology for Spontaneous Networking 44

Remote device explorer

• Requires active network component to
perform exploration (could be potential
bottleneck, if may devices are explored).

• Requires remote exploration protocol
standardization.

• Discloses privacy information, i.e.
location and details of device usage.

Local device explorer

• Only requires passive components to
perform explorer delivery (e.g. Web
server).

• Requires standardization of mobile code
platform(s) for explorer execution.

• Only local communication needed, i.e.
less disclosure of usage information.

Table 4.1: Comparison of remote and local device explorers

be delegated to another more knowledgeable component or the environment must be appropriately
extended to include this knowledge:

— Delegation: This approach requires the resolver to find a suitable resource in the net that is
capable of communicating with the device. Such a remote device explorer is searched for
using the information from the initial event and the resolver could play the role of a relay

that provides for a direct link between the remote explorer and the device until the explorer
provides further information about the device.

— Environment extension: Another option is to find a so-called device explorer in the form of
mobile code that can be downloaded into the local environment. Upon instantiation of such a
device explorer “agent” it can locally talk to the device and perform the actual exploration.

In the wallet example it might well be the case that the information provided by the wallet does
include the type of device but not its version number. Thus, the explorer’s task is to figure out
the wallet’s version number and subsequently the protocol it supports. This information might be
accessible through a command only known by the explorer, but which is not known by the detector.
Thus, the explorer is responsible for obtaining as much information from the device as possible by
exploiting the device-specific knowledge it already possesses. Obviously, each of the two approaches
has different advantages and disadvantages as briefly summarized in Table 4.1.

4.2.2.3 Explorer Lookup

The most crucial problem with the explorer approach is how to find a suitable explorer? In either case
– the remote explorer or the mobile code explorer approach – suitable network resources must be
found to answer a resolver’s query appropriately. The following two approaches could be generally
thought of:

— Search engine: The most obvious way of implementing the search for the correct network
resource is the use of a suitable search engine. In contrast to the Web search engines used
today a more machine-friendly version should be used. In particular this means that all queries
are based on a standardized query form, e.g. in the form of a well-known URL such as

4.2 Mobile Code as an Enabling Technology for Spontaneous Networking 45

�✂✁✄✁✆☎✞✝✠✟☛✡✄✡✆☞✍✌✏✎✒✑✆✓✕✔✗✖✙✘✛✚✏✘✠✔☛✜✒✑✙✢✣✡✒☞✂✤✂✝✙✎✒✑✍✚✏✜✒✥✄✦✞✧✩★✄✪✍✫✭✬✂✮✒✯✆✰✄✱✄✘✍✲✏✳✍✴✂✎✙✵
✶✒✷ ✘✍✚✄✌✂✵✭✘✭✳✛✁✆✌✂✑✭✎✒✑✄✥✒✸✣✘✆✹✄✹✄✎✛✁✻✺✭✜✒✑✒☎
✶✄✼ ✎✒✑✏✝✄✖✙✜✍✚✭✥✽✧✾✔✿★✄★

In this example the search engine is hosted by some international authority such as the In-
ternational Assigned Numbers Authority (IANA) [IAN01]. All device manufacturers have to
register their device information that is part of an initial event and supply a corresponding
explorer that is returned as the result of the query submitted to IANA.2

— Domain Name Service (DNS) extension: Another option is to use the pervasively available
Domain Name Service (DNS) [RFC1034]. Among others, DNS provides for a distributed
database that maps Internet hostnames to IP numbers. However, this can be easily extented to
provide a mapping from serial numbers of devices to hosts. For example, most Ethernet net-
work cards have a built-in 48 bit MAC address that is unique for each device. Manufacturers
have their own “address space” of numbers which can be easily exploited to provide a DNS
mapping as follows:

• A a new top-level domain at ARPA such as ‘
✔❀✴✭✎ ✼❂❁ ✝✙✎✒✑✒✚✏✜❃✔✿✘✒✑✒☎✏✘

’ is defined.
• The next level domain indicates the type of serial number, e.g. an IEEE 802 Ethernet

card number as ’
✔❄✖✙✎✄✎✆✎✆✰✄✦✄★❅✔❀✴✭✎ ✼❂❁ ✝✙✎✒✑✙✚✏✜✠✔☛✘✒✑✍☎✏✘

’.
• The full MAC address is then put in front of the serial number domain. For example,

if the Ethernet MAC address is
✦✄✦❅✔✿✦✙✫✕✔✿✯✂✮❃✔❆✫✭✦❅✔❈❇✂✦❃✔✿✰✙✫

, then it could be represented as
the DNS name ‘

✰✒✫❉✔❈❇✂✦❅✔❀✫✂✦❅✔✿✯✂✮❃✔❈✦✒✫✕✔❈✦✆✦❃✔❄✖✛✎✄✎✄✎✒✰✆✦✆★❅✔❈✴✄✎ ✼✞❁ ✝✒✎✙✑✒✚✭✜❃✔✿✘✙✑✒☎✣✘
’, i.e. using reverse

order to comply with DNS standards.
• If a resolver queries DNS for this name the Ethernet card manufacturer could be respon-

sible for serving address space of, e.g. ‘
✔✿✯✂✮❊✔✿✦✒✫✕✔✿✦✆✦❅✔❄✖✙✎✄✎✆✎✆✰✄✦✆★❃✔❀✴✭✎ ✼✏❁ ✝✙✎✙✑✒✚✣✜❃✔❈✘✒✑✒☎✭✘

’. Thus
the implementation of the DNS server for the above domain could use the additional data
to perform a precise lookup of the “best” explorer for the given device and return an IP
number of the hosts that hosts this explorer.

Obviously, the DNS approach might not be sufficient to find the best explorer since it makes a
decision only on the serial number and not on additional information available in the initial event.
Likely, the DNS approach can be further extended to provide for a more precise search, but it might
be even more useful for running a hybrid approach in conjuction with the search engine. The DNS
extension could be used to find more specific search engines for a detected device based on its serial
number which is likely to scale much better than a central search engine. Furthermore, it should be
obvious that the information queried must be treated as confidential and the answers obtained must
be authentic.3

Summing up, from a purely technical point of view there are easy approaches how to set up a
central or distributed directory for mappings from the information available in the initial event to
some Internet resource. However, it is clear that the provision of a global infrastructure for this kind
of mapping tasks requires enormous effort and involves many different players ranging from vendors
to standardization organizations. Hence, a simple, practical, and inexpensive solution is yet still to
be found.

2 Obviously, a XML-based encoding of the data could provide even better results, if the initial event data are highly struc-
tured.

3 In particular this could mean that a secure version of DNS [RFC2535] is used for the DNS infrastructure.

4.3 Middleware for Smartcards 46

4.2.2.4 Service Integration

After the explorer has – remotely or locally – explored the device, more information is available that
should allow for the integration of the device into the local infrastructure. In contrast to the remote
device exploration a “remote device usage”, i.e. the usage of a device “through” another remote
authority is prohibitive for reasons of responsiveness, scalability, and privacy. Thus, the only real
option is to use the mobile code approach to somehow “install” a local driver for the device into the
infrastructure that complements the device-resident portion of the service implementation.

Technically, this means that the device explorer comes up with more information about the de-
vice of which the most important ones are a list of the services that reside on the device and the
corresponding mobile code objects – service proxies – that represent each service. In case of the
wallet there would be only one service object that implements the wallet’s interface at the service
level.

Since each service proxy is implemented in a particular piece of mobile code there is a need to
standardize a platform in which this proxy can live. Basically, any kind of mobile code platform that
offers enough flexibility can be used for that purpose. A very promising candidate for this purpose
might be Java [GJS96] since in its Java 2 Microedition variant it offers different so-called configu-

rations and profiles that define building blocks for different device categories that can be easily used
to describe the properties of a particular platform available in the infrastructure. Furthermore, Java
allows for fine-grained security policies monitoring the execution of mobile code that can be used to
protect the infrastructure from malicious service proxies.

Based on the platform the service proxies can now use any technology for spontaneous network-
ing to advertise and offer the services that live on the device. Thus, the wallet proxy could use SLP
or Jini or one of the other technologies presented in Sect. 2.4 to advertise the wallet service to po-
tential clients. Obviously, the device explorer should be given information about the spontaneous
networking technologies supported by the local environment to come up with a reasonable service
proxy. Hence, the service proxy integrates with the surrounding infrastructure and service usage can
begin.

Summing up, the bootstrapping framework presented in the previous sections gives a more structured
view of the overall integration problem. It identifies components, structures, and interactions that
together represent a solution to the underlying problem domain at a reasonable level of abstraction.
As such it forms the basis for solving the integration problem for another kind of small devices:
Smartcards.

4.3 Middleware for Smartcards

Until recently, smartcards and their applications were tightly coupled, resulting in the card being
useful for one application only. But the idea of viewing a smartcard as a mere platform is widespread.
Increasingly, applications show up that try to use smartcards already in the field for new applications,
e.g. electronic ticketing combined with cash cards [Blu00a]. This is possible if the specifications
allow for third party access which, however, is usually hampered by strict regulations of the card
issuers.

The most through step in this direction is the emergence of execution environments for smart-
cards, such as Java Card [Sun00a; Sun00b; Che00; HNSS99], and Windows for Smartcards [Mic00].
This increases extensibility and flexibility and opens up the smartcard market to independent appli-
cation providers. As smartcards are becoming increasingly open, their role as a software platform

4.3 Middleware for Smartcards 47

Intra-/Internet

Smartcard Terminal

Network Client

Smartcard
with Services

Network-
Layer

Service-
Layer

Card-
reader

APDU-
Layer

Terminal-
Middleware

Figure 4.2: Architecture of a generic smartcard terminal

gains importance and the smartcard paradigm changes, since the separation of cards and applications
becomes possible. A card issuer is then able to “buy” independent smartcard applications that are
loaded onto the issuer’s cards. A market for smartcard applications becomes potentially possible
since the shift towards the platform paradigm is accompanied by a simplification of software devel-
opment. This is achieved by bringing high-level, standard programming languages to smartcards,
e.g. Java [GJS96] or Visual Basic [Mic01], opening up smartcard programming to a new class of
developers. Similarly, access to smart cards from applications is unified by architectures like the
OpenCard Framework [OCF99] and PC/SC [PCS00], that integrate the card reader infrastructure
into operating systems and programming languages. However, integrating smartcards into networks
by means of suitable middleware is a challenge that has not yet been discussed in the past.

The goal is to design middleware architectures and systems that facilitate smartcard integration
into service federations as much as possible. In the sequel we discuss general design issues of
middleware systems leading to our proposed architecture for a smartcard middleware. We start
by defining the concept of a smartcard terminal, a component that offers network connectivity for
smartcards. We continue by comparing different design paradigms for the middleware implemented
in such a terminal using the requirements listed in Section 4.1. In Sect. 4.2 a generic framework
for the integration of small devices into local environments based on the mobile code paradigm was
presented. Based on the results of this framework this section discusses a particular instance of this
generic framework which integrates smartcards into local networked environments.

4.3.1 Smartcard Terminal

Services implemented in the smartcard must be able to offer their interfaces to the network the smart-
card terminal is attached to. Figure 4.2 illustrates the role of the terminal in a smartcard middleware
architecture. A smartcard terminal could be partitioned into the following components:

— Card reader and APDU layer: The card reader component provides access to the smartcard
based on standardized protocols such as ISO 7816 [ISO89; ISO94]. Essentially, it handles
communication between the smartcard and the terminal by exchanging APDUs.

— Network layer: This layer provides basic terminal connectivity to the network. In case of IP
this layer would implement an IP stack.

4.3 Middleware for Smartcards 48

— Service layer: This layer presents smartcard services to the network in any suitable form. A
number of technologies such as CORBA [OMG00], Java/Jini [Sun99a; Wal99], or DCOM
[Mic96] might be used to make the smartcard services accessible from arbitrary network
clients. The actual technology chosen for representing smartcard services should be inde-
pendent of the scope of the concrete middleware component. Hence, the component should
be able to support any of those technologies.

— Terminal middleware: The terminal middleware has to perform a number of tasks which are
comparable to the bootstrapping framework for small devices introduced in Sect. 4.2.2:

• It explores the services and applications on a smartcard as it gets inserted into the card
reader.

• Based on the service information found it informs the service layer about the interface
of the smartcard applications exported to potential clients.

• It acts as a gateway for incoming requests from network clients that access the smartcard
services via the service layer and forward requests to the APDU layer back and forth.

As such the terminal middleware represents the “glue” between the externally offered network
services of the card and the communication layer connected with the smartcard.

The card terminal seems to be an ideal candidate for implementing at least some of the middleware
needed.

4.3.2 Characterization of Middleware Approaches

Middleware can be designed in various ways that can be characterized according to the kind of
“agreement” between the involved components. In the sequel we briefly compare pure protocol-

based approaches with more platform-based approaches. This differentiation is useful for defining
criteria under which different approaches can be valuated.

Protocol Standardization

Protocols define the structure of communication according to various rules the communication part-
ners must follow in order to successfully communicate with each other. Protocol standardization
means that a standardization body is formed to bring companies and organizations together that
are interested in the goal of standardizing the communication between such components. Typical
examples are the protocols specified in ISO 7816 [ISO89; ISO94].

Unfortunately, standards in the domain of smartcards have shown to become mature only after a
considerable amount of time, often several years, since the development and deployment is a rather
complicated process compared to a software update in the desktop computer world. Compared to
the growth of the Internet and the protocols developed and used there, the smartcard world basically
has not evolved since the ISO protocols from the early nineties.4

Coming back to our problem domain this would mean to standardize the communication pro-
tocols between the smartcard and all its surrounding components. Furthermore, all communication
between the environment and the smartcard itself must be standardized. Since software updates for
smartcards are notoriously problematic and security-sensitive it is not easy to adapt already deployed
cards to new communication facilities and environments.

4 Consider for example that ISO 7816-4 was standardized in 1994, just before the Internet took off.

4.3 Middleware for Smartcards 49

Platform Standardization

In contrast to pure protocol standardization, platforms are intended to serve as runtime environments
that can be used by applications to perform computations. A typical platform is for example the Java
virtual machine and the runtime environment comprises the available packages, classes, and native
method implementations (cf. [GJS96]).

Bringing the platform idea to our problem domain, the basic idea is to move any higher-level
protocol engines that would deal with the communication between the card and its surrounding
components from the card into the outer platform. Within the platform mobile code is executed
that implements the necessary adapters and proxies between the smartcard and the various other
components. The clear advantage is that all “technology”-dependent pieces such as communication
protocol engines are implemented as mobile code which is much easier to adapt to new middleware
technologies (e.g. Jini). Hence, changes in the middleware are likely not to affect the operating
system and applications within the smartcard but can be reflected in the mobile code running in the
platform.

4.3.3 Design Choices for Smartcard Middleware

Various implementation strategies can be envisioned for the smartcard terminal as outlined above.
We describe some possible approaches and compare their strengths and weaknesses w.r.t. the criteria

• simplicity,

• flexibility, and

• standardization effort.

These criteria are discussed from the perspective of service and application developers on the one
hand and middleware implementors on the other hand.

Middleware as an APDU Gateway

This approach can be described as a simple gateway for APDU-requests to the smartcard. Clients
send packets to the service-layer of the smartcard terminal containing APDUs that are routed via
the APDU-layer to the card reader. Hence, there is no real abstraction above APDUs, and the
middleware would be responsible only for multiplexing communication between arbitrary clients
and smartcard services.

The interfaces at the service layer would therefore offer methods such as sendAPDU, enterMutex

and leaveMutex (needed for locking access to the card for a certain period of time), etc. From the
perspective of the middleware implementor this is a rather simple middleware, easy to implement
and flexible, since it offloads all the complexity on the service developer. Services operate at the
same level of abstraction as before, but with the intricacies of distributed application programming
such as partial failures.

Middleware as Request Broker

With this approach the middleware first explores the services available on the card. This requires
an enormous standardization effort since apart from detecting the correct type of card, there must
be a standardized way to perform this exploration. This could be achieved by the definition of new
class and instruction bytes in the line of ISO 7816 that return descriptions of the services available
on the card. Usually, service descriptions consist of interface descriptions, additional information

4.3 Middleware for Smartcards 50

and annotation blocks, and addressing information, e.g. application identifiers, needed to address the
service from a smartcard client. This information could come in a variety of formats ranging from
binary encoded descriptions to IDL- or XML-based documents.

The middleware could implement a generic server that is capable of processing incoming re-
quests from clients and transforming them into appropriate sequences of APDUs. As an example
one could imagine a CORBA IDL description [OMG00, Chap. 3] that describes a smartcard service
that can be used to automatically generate server skeleton code, bind a CORBA object with an ob-

ject request broker running in the smartcard terminal and register the object with a CORBA naming
service. In addition to a pure interface description the mapping of method invocations to sequences
of APDUs sent to a smartcard needs to be defined.

The request broker middleware operates at a much higher level of abstraction than the APDU
gateway. For clients, the smartcard services appear as objects or services in a distributed system such
as CORBA, Java/RMI, etc. Service implementors only need to provide an interface definition and ap-
propriate APDU-mappings to integrate legacy applications into the sketched middleware. However,
a major drawback from the perspective of the middleware implementor is that numerous standardiza-
tion steps have to be taken first: exploration of service descriptions, format of descriptions, mapping
to distributed object system of choice, service publication, to name a few. This approach though be-
ing promising in general suffers from the amount of standardization steps necessary for real-world
deployment.

Summing up, both the APDU gateway and the request broker approaches are instances of the proto-
col standardization approach introduced in Section 4.3.2 which has already been identified as rather
inflexible and we concentrate further on the platform paradigm.

4.3.4 Middleware as an Execution Platform for Mobile Code

The middleware architecture presented in this subsection tries to circumvent most of the drawbacks
of the previous approaches by completely reconsidering the underlying middleware paradigm. The
middleware is not only “glue” code such as the APDU gateway and broker between components but
a platform for the execution of dynamically downloaded mobile code. This can be illustrated with
the following scenario:

• The smartcard gets inserted into the terminal and the answer-to-reset (ATR) identification
string is read.

• The ATR is used to fetch a component that acts as a card manager from a well-known set of
Web sites hosting such proxies. These proxies are implemented in a mobile code programming
language such as Java. The smartcard terminal provides an execution platform such as a Java
virtual machine (JVM). The service proxy consist of an appropriate Java archive (JAR) file that
is downloaded to the terminal and executed in its JVM. In the basic scenario this card manager
itself could now register as a service representing the card to the network environment.

• In a more advanced scenario the card manager explores the contents of the smartcard in search
for smartcard services. This is possible if we assume the implementation of the card manager
knows about the particular kind of card that triggered its activation. Hence, it knows how to
actually explore the card and find its available services. Each service found may consist of a
URL pointing to a service manager that in turn can be fetched and instantiated in the execution
platform and offer its particular service to the environment.

4.4 The JiniCard Framework 51

This approach essentially defines

• an execution platform for mobile code,

• a well-defined process to fetch a card manager from the network, and

• some API or protocol for the manager to access the smartcard and the network.

Compared to broker-based middleware much less standardization is needed, though the overall flex-
ibility has even increased, since the card and service manager are active components that not only
act as services but can also proactively be clients to other services. The most significant drawback
with this approach is the fact that the complexity is mostly shifted to the implementors of card and
service managers and the proper definition of an execution platform.

4.4 The JiniCard Framework

We have found the idea of using an execution platform for the integration of smartcards into net-
worked environments sufficiently appealing to investigate and prototype such a system. This section
presents the result of the chosen approach, the JiniCard framework.5

As previously outlined, smartcards are temporary devices. Consequently, the availability of the
services that they offer is short-term and volatile in nature. Smartcards, and hence their services, can
appear and disappear without prior notice, i.e. spontaneously. Smartcards are physically portable
and can easily be carried into unknown environments6. Yet smart cards are utterly dependent on
their environment to be useful, as they generally lack any input or output facilities for their users.
On all dimensions, smartcards rank at the lower end, which means that they are very dependent on
proper support from their environments’ infrastructure. These usage characteristics call for a seam-
less integration into different environments that do not require any setup or configuration. Service
discovery and integration must take place spontaneously.

The architecture is named JiniCard to emphasize the fact that it makes card services available
as Jini services, independent of the type of smartcard used. It was a key design objective to support
a wide variety of smartcards by imposing only a minimal set of requirements on the smartcard’s
side. Basically, the only requirement is that the card adheres to the ISO 7816 standard, i.e. that it
communicates by exchanging APDUs, as the vast majority of smartcards does.

Impromptu Service Integration

One of the main issues that we encountered was how to deal with smartcards that are completely
unknown to an environment, given the extremely limited amount of information that can be extracted
from a card of which one might only know that it adheres to ISO 7816. A related issue was how to
dynamically instantiate card services that are not yet present in the environment at the time of card
insertion.

Smartcard users are not interested in physical smart cards themselves, but in the services they
provide. Therefore, the main goal was to make these services available without much effort on the
user’s side. Ideally, card services should become part of the infrastructure as soon as the card that
carries them is inserted into a card terminal. This should be possible even if there is no a priori

5 In the sequel the actual Java interface specifications have been omitted for reasons of simplicity. For the interested reader
more detailed versions are available in [Roh00; KRV00b].

6 Examples are public and semi-public places like offices, meeting-rooms, banks, post offices, and shops, in which smart-
cards act as user agents.

4.4 The JiniCard Framework 52

Lo
w

er
 L

ay
er

Jini enabled smart card terminal

Terminal SmartCard

CardExplorerManager
www.atr.net

ATRMapper

CardExplorer1 CardExplorern

FooCardService

BarCardService

www.fooservice.com

www.barservice.com

(physical)
Smartcard

U
pp

er
 L

ay
er

JiniCard services and their originsSmart card exploration mechanism

(p
hy

si
ca

l)
T

er
m

in
al

...

Figure 4.3: Components of the JiniCard framework

knowledge of the services that are contained on a particular smart card. Another desirable feature,
especially if one takes on a more net-centric perspective, is to have these services available not
only locally, but as part of a local or wide-area network. Therefore, the goal can be described as
making instances of smartcard services immediately available in a network environment, as a result
of inserting a card into a card reader.

The Card Terminal as a Network Component

We think that the design of current card readers and their device drivers is unsatisfactory to meet
these goals. They are usually not self-contained, but attached to a general-purpose PC to function.
We propose to view a card terminal as a self-contained entity that provides access to smartcards from
a whole network infrastructure. The ultimate vision is to build the JiniCard terminal as a physical
device that contains a Java VM, can be plugged into a network, and does not need any additional
hardware. To make the card terminal available as a network-wide resource, we decided to model it
as a Jini service. This has the following benefits:

• The terminal is modeled as a Java interface which means that low level technical details of the
implementation of the terminal are abstracted from and are no longer important.

• The terminal is seamlessly integrated into an infrastructure and can be used by any client,
without any knowledge of the concrete underlying terminal technology.

• The client may be located anywhere in the environment.

4.4 The JiniCard Framework 53

The JiniCard framework consists of three categories of components that can conceptually be divided
into two layers. The lower layer provides the abstraction of a card terminal as a Jini service and
serves as a common base for the other components of the framework. The upper layer consists
of a mechanism to explore smartcards to identify services that are contained on them. The actual
card services can also be seen as part of this layer. Card services get instantiated as the result of an
exploration process. Figure 4.3 on the preceding page gives a simplified layout of the architecture.

4.4.1 The JiniCard Terminal Layer

Card services are meant to be downloaded into many different settings. This requires a well-defined
environment, consisting of well-known interfaces, into which these services can be embedded. One
way to provide this foundation is by modeling a card terminal as a network component that provides
a standard means of remote access to a smartcard.

Accessing Smartcards Remotely

The purpose of the lower layer of the JiniCard framework is to provide a uniform and simple way to
access smartcards remotely. With regard to uniform access, motivations similar to those that led to
the development of the Opencard Framework (OCF) [OCF99; OCF00] apply here. OCF is a Java-
based framework that provides a uniform application interface for building smartcard applications.
A major difference to OCF is that the JiniCard terminal is designed to be used remotely and is not
restricted to be used by a single Java VM. This means that remote mutual exclusion of access to a
smartcard has to be considered.

We have modeled the JiniCard terminal as an ordinary Jini service with the Java interface � ✌✎☛✂✁
✄ ✁ ✄✑✏☞� (see 4.3 on the page before). It becomes part of the local Jini federation by finding lookup
services and performing the service registration process also known as discovery and join [Sun99b].

The ☎ ✄ ✏ ☛ ✄✝✆ ✏ ☛ ✆ interface7 provides a uniform and easy to use abstraction for all kinds of smart-
cards, but it does not change the basic principles of interaction with a smartcard. The APDU as the
low level protocol unit is visible in the interface. A step in the protocol still consists in the exchange
of a pair of APDUs – a command APDU followed by a response APDU. This makes the interface
very flexible and does not constrain its applicability to certain kinds of smartcards.

Mutually Exclusive Access to a Smartcard

Multiple clients of a single JiniCard terminal can hold a reference to the current smartcard simulta-
neously. Interactions with a smartcard often require the atomic exchange of multiple APDU pairs,
e.g. to navigate through a file system hierarchy. During this process state transitions may occur in
the card. This means that APDUs are not independent of one another, but depend on earlier APDUs.
It is not possible to provide transparent scheduling of access to a smartcard, because it is unknown
what state was established by one card client, and how to reestablish that state, after another client
has been using the card in between. This fact, and the fact that multiple clients can hold references
to the same smartcard, requires some kind of mutual exclusion mechanism that is exposed in the
interface. This is achieved through the methods ✞ ✌✂�☞✁ ✄✠✟☛✡ ✄✡✌✝☞ and ✌ ✄✝✆✌✟✍✡ ✄✒✌✝☞ available in the ☎ ✄ ✏ ☛ ✄✎✆ ✏ ☛ ✆
interface. They provide mutual exclusion between distributed clients of a smartcard. A potential
drawback is that a client can effectively block a smartcard if it does not relinquish control of the
smartcard once it has acquired exclusive access to it.

7 Subsequently, we will denote Java class names with the following typographic face: ✏✒✑✔✓✎✑✝✕✗✖ ✑✎✘✙✘✒✚✛✑✢✜✤✣✝✥✧✦✝✑✢✜✩★✪✖ ✣ .

4.4 The JiniCard Framework 54

Possible reactions to this problem are (1) to ignore it, (2) to use a fixed maximum amount of
time that a client is allowed to access a smartcard, (3) to let the client specify in advance (on calling
✞ ✌✂� ✁ ✄✠✟☛✡ ✄✡✌✝☞) how long it needs the card, and (4) to use a fixed maximum inactivity time after which
the card is revoked from the client. However, none of these approaches is without disadvantages as
it represents a general distributed resource allocation problem.

A client of the smartcard interface should access a smartcard exclusively only during a single
atomic sequence of APDU pairs. Exclusive access should be held as shortly as possible, to give
other clients a chance to obtain access to the card. The actual means to talk to the card is to send
command APDUs and to receive response APDUs. JiniCard is fully transparent in this respect. A
service implementor can be sure that JiniCard will not change the content of the exchange of APDU
messages. This has the advantage that JiniCard works with all ISO/IEC 7816 compliant cards that
rely on exchanging APDUs to communicate.

Answer-to-Reset

Immediately after reset, smartcards issue a short sequence of bytes, called the answer-to-reset (ATR)
as introduced in Section 3.2. It contains information about low level communication protocol param-
eters. Furthermore, it contains up to fifteen so called historical characters that are used in different
ways by different vendors. ISO 7816-3 [ISO89] basically states that

“[. . .] the historical characters designate general information, for example, the card

manufacturer, the chip inserted in the card, the masked ROM in the chip, the state of the

life of the card.”,

and furthermore

“The specification of the historical characters falls outside the scope of this part of

ISO/IEC 7816.”,

and finally in ISO 7816-4, Sect. 8 [ISO94]

“The historical bytes tell the outside world how to use the card.”

Although these quotes seem to be contradictory at first, in practice the ATRs reported by off-the-
shelf smartcards reveal sufficient information about the manufacturer, the card type, and operating
system such that the ATR can be used as a key to obtain further information about the card.

In terms of implementation, the ATRs of a card are obtained by invoking the � ✌✝✄✁� � ✁ ✂ method.
It returns an array of ATRs to reflect the fact that some smartcards have several different ATRs. By
consecutively resetting a card, it is possible to cycle through the set of ATRs of such cards.

Service Trading on Top of Jini

A JiniCard ✄✡✌✎☛ ✄ ✁ ✄✑✏ � service together with the ☎ ✄ ✏ ☛ ✄✝✆ ✏ ☛ ✆ it manages provides an effective abstraction
of the underlying card reader technology. It makes the card terminal and an inserted smartcard part of
the network infrastructure. By modeling the terminal and smartcard as Java interfaces they become
easy to use. Clients just need to know the � ✌✎☛ ✄ ✁ ✄✑✏☞� and ☎ ✄ ✏ ☛ ✄✝✆ ✏ ☛ ✆ interfaces and how to look up a
card terminal in a Jini environment. Details related to remote communication are hidden by Jini and
RMI. Details concerning the interaction with the physical terminal are hidden by JiniCard. Mutual
exclusion allows multiple applications at different locations to act as clients of a single smartcard in
an ordered manner. Keeping the exchange of APDUs as the basic means of communication retains
the flexibility that is needed to use a wide variety of different smartcards.

4.4 The JiniCard Framework 55

As such, the lower layer of JiniCard is an instance of the APDU-gateway middleware described
in Section 4.3.3 and provides an API for the upper layer of the JiniCard framework to access the
smartcard.

4.4.2 Smartcard Exploration Layer

The components described previously provide a uniform way to access smartcards as network com-
ponents. But they are not sufficient to achieve our goal to integrate effortlessly the services that
a smartcard offers into a networked environment. To reach this goal, we propose an exploration
mechanism to identify the services that are contained on a smartcard and to make them available
in the environment. Our approach to achieve the goal of card service integration includes the dy-
namic download of exploration components as well as card-external parts of card services. As such
the smartcard exploration represents an instance of the generic bootstrapping framework for small
devices as introduced in Sect. 4.2.2.

As our target environment we have again chosen Jini that serves as a platform that represents
all system entities as services. Similarly, we represent all applications contained on a smartcard as
Jini services. This places services that are offered by smartcards on an equal footing with other Jini
services. In the following sections, we describe the steps that the card exploration mechanism takes.

Smartcard Insertion

The exploration process is triggered by the insertion of a smartcard into a JiniCard terminal. This
causes the terminal to distribute a remote event (cf. initial detection event in Sect. 4.2.2) to all listen-
ers (cf. resolvers) that previously registered for such events (see Step 1 in Fig. 4.4 on the following
page). The event contains the ATRs of the card to allow listeners to decide early on, if they are
interested in the event and wish to respond to it. The set of ATRs is the only information that can be
obtained from a card if there is no a priori knowledge about it.

Card Exploration with the Card Explorer Manager

The component that controls the card exploration process is known as the ✆ ✏ ☛ ✆✁� ☞✄✂☞� ✠☞☛✍✌✎☛ ✟ ✏☎✄✑✏ � ✌✎☛ .
This component is registered at the card terminal as an event listener. The card explorer manager
manages a set of ✆ ✏ ☛ ✆✁� ☞✄✂☞� ✠ ☛✍✌✎☛ ✂ . Card explorers carry out the actual work of exploring a certain kind of
smartcards to identify the services contained on them. Card explorers are dynamically loaded into the
Java virtual machine of the card explorer manager, if an unknown kind of smartcard is encountered.
As explained before, the only information that is available after a card is inserted are its ATRs. The
card explorer manager passes this information together with a reference to the smartcard to its card
explorers and asks them to explore the card (Step 2). The result of this exploration process is an
instance of class � ☞✄✂☞� ✠ ☛✍✏ ✄ ✁ ✠ ✄☎✁ ✌ ✂✢✡☞� ✄ (Step 3), that contains a set of ☎ ✌✎☛✆☎ ✁ ✝ ✌✟✞ ✄✡✠ ✠ objects or an indication
that the card explorer could not handle the card. A ☎ ✌✎☛✆☎ ✁ ✝ ✌✟✞ ✄✡✠ ✠ object describes a single service and
provides enough information to engage in the service instantiation process.

The Role of Manifest Files

What happens if the card explorer manager did not find a card explorer in the set of known card
explorers that could handle the card? In this case the card explorer manager contacts a special, well-
known Web server. For the following assume that this server is named www.atr.net8 and hosts card

8 www.atr.net is just used for illustrative purposes here, so don’t worry if it doesn’t actually contain card explorers.

4.4 The JiniCard Framework 56

Terminal

ATRs

JAR file
names /
entry class
names

HTTP
Request JAR files /

class files

www.atr.net
CardExplorer JAR files

ATRMapper

Terminal-
Event

ExplorationResult

exploreCard

1

2
3

4
6

5

7

8SmartCard

CardExplorerManager

CardExplorer1 CardExplorern...

Figure 4.4: Download and instantiation of card explorers for unknown smartcards

explorers for many types of smartcards. These card explorers are made available as Java archive
(JAR) files. A single JAR file aggregates multiple Java class files and other relevant files. An
important part of a JAR file is its manifest file [Sun96] that contains information about the archived
files. An example manifest file could look as follows:

�✂✁☎✄✝✆✟✞✂✠☛✡☎☞✍✌✏✎✑✠☎✒✑✡✂✆☎✓☎✄✕✔✗✖✙✘✛✚
�✂✁✑✆✏✄✝✌✢✜✤✣✥✁✤✡☛✡✦✔★✧✑✆✩✄✝✆✫✪✥✁✫✒☛✬✭✘✮✧☛✁✫✯✤✁✤✪✥✁✫✒✤✬☛✠✫✰✥✱✲✣✥✓☎✒✂✠✫✒✕✘✴✳✢✁✫✯✂✁✥✜✂✁✫✒☛✬✥✵✤✰✥✱✲✣✥✓☎✒✑✠✫✒
✜✫✒✂✠☛✁✫☞✂✠✫✬✲✌✟✶☛✷✕✔✸✖✙✘✛✹✺✘✮✹✼✻✾✽✢✿☛✄❀�✝✆✫✪✢✒✂✓✤✡☎✷✑✡✢☞✂✠✢❁✍✡❃❂✏✄✲✪❄✘✴❅
✽✟❁✲✁✫✒☛☞✤✜☛✁✫✒✤✬✲✌✟❆✥❇✥❈❉✔★❊✥❋☛●✫❈☛❆✥�✤❆✂❍☎�☛✞✂■✫✵✫❏✲✚✲✖✩❆✫❏✍✣✥❍☎❑✂❍☛✚✫▲✤▼☎❈✑✽✫❆☛✰✤◆✂✧☎▲✥❖✤P✑❍✥◗☛◗

JAR files for card explorers contain two special entries in their ✄ ✌✝✄✒✏ ✁ ✄✡✠❙❘ ✄ ✏☎✄ ✁ ✠ ✌ ✂☎✄✩❚ ✄ ✠ files. The first
special entry is the ❯ ✘✣✖ ✚ ❁ ✺✭✹✄✘✂✝✄✝ attribute that was introduced with the Java 2 platform. It allows
to designate the class that serves as the entry point into the card explorer. It refers to a class that
implements the ✆ ✏ ☛ ✆✁� ☞✄✂☞� ✠☞☛✍✌✎☛ interface. The example manifest file refers to a card explorer that is
able to explore Java Cards. The second special entry is named ❱ ✷ ✘✒✑✒✁✂✺✭✘✒✑✄✴ ❁☛❲✝❳✝❨ . Its value is a set of
Base 64-encoded ATRs.9 This set determines the set of cards that the explorer is willing to handle.
The example shows the Base 64-encoded ATR of a Java Card.10 This mechanism can be extended
by using regular expressions to gain more flexibility.

ATR Mapper

A component called � � ✁✩✟ ✏✄✂ ✂ ✌✎☛ (see Fig. 4.4) inspects all card explorer JAR files that are stored on
www.atr.net, in order to establish a mapping from a set of ATRs to a set of names of card explorer
JAR files. A card explorer manager that was not able to find a suitable card explorer for a particular

9 Base 64 encoding is specified in [RFC2045] and allows to encode 8 bit data with 6 bit symbols. The ATRs have to be
Base 64 encoded, because the manifest file specification does not allow for arbitrary 8 bit entries.

10 Identifying the type of card used in the implementation phase can be left as a task to the interested reader.

4.4 The JiniCard Framework 57

card locally, contacts the ATR mapper available on www.atr.net (see Step 4) The result is (hopefully)
the name of a suitable card explorer (see Step 5) that the manager can then use for download (see
Steps 6 and 7) and instantiation (see Step 8) by using a custom class loader. This newly instantiated
card explorer is then in charge of exploring the card in question. Alternatively, the ATR mapper
could return the actual implementation directly instead of a URL.

Service Information Objects

The result of a successful smartcard exploration process is an object of type � ☞✄✂☞� ✠ ☛✍✏ ✄ ✁ ✠ ✄☎✁ ✌ ✂✢✡☞� ✄ that
contains a set of ☎ ✌✎☛✆☎ ✁ ✝ ✌ ✞ ✄✡✠ ✠ objects – one for each service. An � ☞✄✂☞� ✠ ☛✍✏ ✄ ✁ ✠ ✄☎✁ ✌ ✂✪✡☞� ✄ object is what
is handed back from a card explorer to the card explorer manager, to enable it to instantiate card
services as the final step. A ☎ ✌✑☛ ☎ ✁ ✝ ✌ ✞ ✄✡✠ ✠ object contains Jini related information, such as the ser-

vice identifier, codebase information and entry point information. The service identifier is used to
uniquely identify the card service as a Jini service instance. The groups array specifies names of
service categories that the service belongs to. Name and comment are user editable descriptions of
a service. The locators attribute explicitly specifies lookup services that the service has to connect
to once it gets initiated. The Jini specification prescribes that these service attributes (service ID,
groups, attributes, and lookup locators) are stored persistently. Once a Jini service gets a service
identifier assigned to it, it should remember that identifier and use it in all future interactions with
lookup services and other Jini services. To comply with the Jini specification Jini related information
is stored on the smartcard whenever possible.

4.4.3 Smartcard Services Exploration Layer

To enable the card explorer manager to retrieve the actual card service code, the codebase and entry
point information are essential. The service URL refers to a site that contains the code of the card
service described (named www.service.com in Fig. 4.5 on the following page). The service class

name denotes a class that implements the interface ✆ ✏ ☛ ✆ ☎ ✌✎☛✆☎ ✁ ✝ ✌ or one of its subclasses (e.g. � ✆ ✄ ✁ ✄ ✁ ✂ ✁
✄✝☛ ✏ ✞☞� ✌ ✆ ✏ ☛ ✆ ☎ ✌✎☛✆☎ ✁ ✝ ✌). With this information the card explorer manager is able to dynamically download
the card service code and create an instance by using a custom class loader.

To be useful, a card service must have access to its card-resident counterpart and therefore to
the physical smartcard. This is achieved by using the ☎ ✄ ✏ ☛ ✄✝✆ ✏ ☛ ✆ interface that the JiniCard terminal
provides. The JiniCard framework passes the corresponding object to the card service by calling the
✂✒✌ ✄✝✆ ✏ ☛ ✆ method (see Step 5) with a remote reference to the smartcard object.

The � ✌✝✄ � ✄☎✄✝☛ ✁✂✞ ✡ ✄✒✌ ☎ ✌✝✄✡✂ method returns Jini attribute sets that are immutable and that do not depend
on the specific service instance. Vendor information, for example, fits into this category of attribute
sets. The � ✌✝✄✁� ☛ ✠ ☞✄✂ method returns the proxy object that will (in serialized form) be uploaded (Step 6)
to the Jini lookup service (abbreviated as LUS in Fig. 4.5 on the next page), where it can be down-
loaded by clients. No restrictions are imposed on the proxy object other than that it is serializable.

Implementing a Card Explorer

If a card service is to be written for a smartcard type of which a card explorer does not yet exist, then
the developer has to provide an implementation of the ✆ ✏ ☛ ✆✁� ☞✄✂☞� ✠☞☛ ✌✑☛ interface. This interface has just
a single method, named ✌✝☞✄✂☞� ✠ ☛✍✌ ✆ ✏ ☛ ✆ , that takes a ☎ ✄ ✏ ☛ ✄✝✆ ✏ ☛ ✆ object as an argument. The card explorer
must find a way to explore the set of cards that it is wishes to handle. This can be done by using an
on-card directory, that is particularly useful, if multi-application Java Cards are used. Another way

4.4 The JiniCard Framework 58

LUS

HTTP request
using serviceURL&
serviceClassName

JAR files /
class files

www.service.com
CardService JAR files

ExplorationResult

exploreCard

6

1 2

3

4

5

CardExplorerManager

CardExploreri CardService

setCard

getAttributeSets

getProxy

card
service
proxy

Figure 4.5: Download and instantiation of card services

to explore a card may be to simply probe the card by using some selection APDUs and by examining
if the card generates the expected responses.

As described above, the result of the exploration process is a set of ☎ ✌✎☛✆☎ ✁ ✝ ✌ ✞ ✄✡✠ ✠ objects that pro-
vide information about a service and also describe how to instantiate them. There are two different
possibilities to instantiate card services: One is to provide a URL from which the service imple-
mentation can be downloaded (called serviceURL), the other is to provide a reference to the card
service that the card explorer is able to instantiate by itself. The method � ✌ ✄✔☎ ✌✑☛ ☎ ✁ ✝ ✌ is intended to
get a reference to a card service that was instantiated this way. The JiniCard framework first tests
if � ✌ ✄✔☎ ✌✑☛ ☎ ✁ ✝ ✌ returns a valid (i.e. non- ✄ ✡☞� �) reference. If it does not, the ☎ ✌✎☛✆☎ ✁ ✝ ✌ ✞ ✄✡✠ ✠ object must give
a service URL to download the code from. The first approach might be useful if the set of services
for a given card is fixed. This allows to store the service implementation together with card explorer
implementation. Also, if the card-external code of a smartcard application is stored on the card it-
self, instead of being stored on a Web server, this might be advantageous as has been successfully
demonstrated in [EUR01].

The reason for making the card-external part of a smartcard application available on a Web
server, instead of storing it on the card itself, is the limited amount of memory that is available on
current smartcards. The card-external part of a card application in fact may be orders of magnitude
larger than what current smartcards are able to provide. It may, for example, contain a graphical user
interface that often needs large amounts of code.

To install a card explorer, all class files that are related to it have to be stored in a JAR file.
Its ✄ ✌✝✄✡✏ ✁ ✄✡✠ ❘ ✄ ✏✟✄ ✁ ✠ ✌ ✂✟✄✏❚ ✄ ✠ file has to contain the ATRs that are to be handled by the card explorer as
well as the name of the implementation’s entry class. Finally, the JAR file has to be uploaded to a
well-known Web server, like www.atr.net, where it can be inspected by an ATR-mapper.

Implementing a Card Service

To implement a card service that the JiniCard framework can handle, the following steps must be
taken: First, the interface ✆ ✏ ☛ ✆ ☎ ✌✎☛✆☎ ✁ ✝ ✌ (or its sub-interface � ✆ ✄ ✁ ✄ ✁ ✂☎✄✝☛✍✏✛✞☞� ✌✧✆ ✏ ☛ ✆ ☎ ✌✎☛✆☎ ✁ ✝ ✌) has to be imple-

4.5 Related Work 59

mented. Apart from implementing the interface methods, this means implementing the actual service
methods. The service uses the ☎ ✄ ✏ ☛ ✄✝✆ ✏ ☛ ✆ interface to talk to the card. At runtime, an object imple-
menting this interface will be provided through the ✂✒✌✝✄✎✆ ✏ ☛ ✆ method. It is important to emphasize that
the JiniCard framework does not define the way in which the card-external part of an application
talks to its card-resident counterpart. Both parts have to agree upon a proprietary protocol, i.e. a
set of APDUs and their meaning. The developer is free to define this private protocol, using AP-
DUs. The developer is also free to design the card-resident part of the application in any way that
he or she deems appropriate. This flexibility allows for the integration of cards that provide a fixed
APDU protocol such as GSM SIM smartcards that use a standardized APDU protocol that is defined
in [GSM11.11]. In that case the card-resident part, and therefore the APDU protocol was fixed, and
our task was to write a card-external part that integrates a service for GSM cards into the JiniCard
framework.

The service related class files have to be packaged as a JAR file and have to be made accessible
to an HTTP server. If such a JAR file is small enough, it may also be stored on the card. In any case,
the card explorer that explores the card must be able to examine the service information and to find
a way to acquire access to the service code.

If a card service implementation is installed on a multi application card, then its existence has to
be announced. This can be done by storing service information in some kind of on-card directory.
Card explorers examine this directory to learn about services that are available from the card.

Summary

The JiniCard framework described in detail in the previous sections, though reasonably complex, has
been prototypically implemented. Our prototype provides a solution to the problem of integrating
smartcards into networked environments. It does this by providing a platform onto which the off-card
counterparts of card-resident services can be dynamically downloaded and instantiated. Together,
the card-resident and off-card components tightly co-operate using the platform’s resources.

The framework can be considered as very flexible since it allows for the integration of all types
of smartcards that comply with the named ISO standards. It facilitates smartcard integration and
enables smartcards to become true active network nodes. This has been demonstrated by the rapid
implementation of smartcard services on top of the JiniCard framework and has shown that the
abstractions represented in the framework are useful.

4.5 Related Work

Recently, the integration of smartcards into networked environments has become more and more
attractive to both academia and industry. In the sequel we briefly discuss the most important projects
relevant to this problem domain and draw some comparisons to the JiniCard approach.

OpenCard Framework

Closely related to our approach of smartcard integration is the OpenCard Framework [OCF00;
HH98; OCF99]. Originally, OCF was designed to run within a single Java VM which would block
card readers to other applications. OCF uses an “application driven” paradigm. An application, that
runs in the same Java VM as OCF itself, asks for a particular card service and waits until a card
implementing that card service arrives. The card remains passive and does not get a chance to an-

4.5 Related Work 60

nounce its capabilities and available services. To achieve this goal, a proactive paradigm is needed,
in which the card is asked for its services that are then made available to the environment.

OCF also has no support for remote smartcard access. The proxy concept is used to hide the
protocol to the service implementation on the smartcard. Similar to our approach is the use of so-
called CardServiceFactory objects that produce Java objects through which card resident services
can be accessed.

Although OCF defines interfaces and classes for application and card management, they are
realized only rudimentary. In particular, the mapping from service descriptions to service instances is
not defined. OCF is a statically configured framework, where all available services must be registered
in a configuration file. However, this does not meet the requirement of spontaneous integration that
we identified as an important issue in smartcard middleware.

CITI TCP/IP Stack

Webcard [RH99; RH00] is an implementation of a stripped-down Web server on a Java smartcard.
The implementation consists of a card-resident Java applet that implements a subset of the TCP/IP
stack that is necessary to implement a HTTP Web server. Several assumptions such as one TCP
connection at a time, the HTTP request must fit into a single packet, etc., have been made for the
particular implementation. Furthermore, only a subset of the HTTP/1.0 protocol has been imple-
mented. The host PC routes incoming packets to the card’s IP address through a serial interface to
the card reader and finally to the card. Packets in the reverse direction are fetched from the PC from
the card and further dropped onto the network.

CITI’s Webcard server is to our knowledge the first attempt to integrate smartcards at the IP level.
Although the first implementation does not implement a complete TCP/IP stack it demonstrates the
general feasibility of this approach. With future smartcards with more computational resources it
is possible to implement more complete networking stacks allowing for transparent integration of
smartcards into the Internet. However, it does not provide a spontaneous networking framework for
the integration of smartcards but instead focuses on the integration on the IP layer only.

The Internet Draft “IP and ARP over ISO 7816” [GM01a] that has its origins in the Webcard
project mentioned previously describes the transport of IP datagrams over the asynchronous, half-
duplex link layer protocols found on ISO 7816 compliant integrated circuit cards. This memo pro-
poses a standard for communicating with cards using Internet protocols, thus connecting smartcards
directly to the Internet and thereby lowering the barrier of integrating smartcards into Internet appli-
cations.

The ISO 7816 link layer protocols are half-duplex with the terminal always initiating the commu-
nication. In order to enable IP packets to flow from the ICC to the terminal, the draft specifies that the
terminal may regularly poll the card sending it appropriate polling requests. This enables a card to
also initiate communication. Another draft specification [GM01b] further concentrates on transport
of TCP and UDP packets on this network layer with particular attention to header compression.

Currently, the only implementation said to be almost compatible with the first draft is CITI’s
UDP and TCP/IP stack.

ETSI Smartcard Platform Proposal

Lamotte [Lam01] has proposed a communication protocol between a terminal and a smartcard based
on the Point-to-Point Protocol (PPP) [RFC1661]. The proposal considers a long-term effort to bring
IP capabilities to smartcards. The approach uses standard Internet framing protocols to provide a

4.5 Related Work 61

layer upon which IP packets can be exchanged. At the time of this writing, however, no actual im-
plementation is available, yet, and the paper should be viewed as a stimulus for providing strategic
directions on how such integration can be achieved with a particular focus on the long-term devel-
opment and deployment issues in the smartcard sector.

Bull Internet Card

Internet Card [Uri00; UST00; Uri01a] is an approach developed at the CP8 smartcard research labs
of Bull. Their architecture comprises host-resident agents that are responsible for routing between
the host’s IP stack and card-resident agents. Beyond IP and UDP they are also capable of managing
TCP sessions between a network node and the smartcard. Communication between the host and card
agents is achieved by means of an asynchronous protocol called SmartTP comparable to a simplified
version of TCP. The agents transfer the TCP or UDP packet payload, e.g. HTTP stream enclosed
in SmartTP packets between host and card. On top of this system a card-resident Web server and a
so-called trusted proxy have been implemented.

At present the architecture and protocols have been submitted to the Java Card Forum [JCF01]
as a proposal for smartcard integration into networks [Uri01b].

Gemplus DMI

In contrast to the IP-based integration of smartcards, [VV98] describes an approach aiming at an
RPC-like model of communication with Java smartcard applets. The basic idea is to apply the
programming model of distributed applications to smartcards. This is achieved by an interface de-
scription language being a subset of the Java Card language from which stub and skeleton code
are generated, similar to the CORBA programming model. Whereas in CORBA the IIOP “wire”
protocol between object has been standardized, in this approach a protocol called Direct Method

Invocation (DMI) has been introduced that can be viewed as a generic applet invocation protocol
running on top of standard APDUs. The advantages of this approach that has been incorporated into
Gemplus’ development environments are similar to those usually listed for distributed programming,
namely the higher level of abstraction of the communication model between clients and servers.

The DMI approach does not offer further abstractions such as service description, etc., targets
simplified smartcard application development only.

CORBA Integration done at Darmstadt University of Technology

Similar to the DMI approach presented previously, [FMM99] describes a prototypical implementa-
tion of a CORBA-based architecture for the integration of smartcards. Here, different ORB models
are discussed that separate the functionality between the card terminal and the card. The proto-
type targets GSM SIMs and uses a mobile phone simulator that can be used by the card-resident
application to perform user interactions.

Gemplus Jini Surrogate Project

Gemplus is currently implementing a smartcard integration based on the Surrogate community
project at Jini.org [Sun01b]. The Surrogate project aims to extend the Jini technology with an ar-
chitecture that allows services with limited resources to participate in a Jini federation. Hence, the
Surrogate project shares similar ideas with our approach supporting the thesis that there is demand
for the integration of small devices into local environments.

4.6 Security Aspects 62

Surrogate is closely related with Jini since it offers devices with limited resources a platform
into which those devices can “inject” mobile code. This idea is comparable to the approach in the
JiniCard framework where the card terminal offers an execution platform for the mobile code that
can be used by the smartcard to offer its services to other clients in a network. Prior to the launch
of the Surrogate project an active discussion about possible architectures and approaches for the
integration of small devices took place on Sun’s Jini-Users mailing list.

Similar to the “IP Interconnect Specification” [Sun01a] Gemplus intends to provide an inter-
connect specification [Sur01] defining the integration smartcards into the Surrogate framework. At
the time of this writing, no specification or implementation is available to the public. However, the
authors have announced to release a version in the future for public review which would enable a
more thorough comparison with the JiniCard approach.

Summary

The integration of smartcards into networked environments is a hot topic these days and quite dif-
ferent approaches have been proposed and some of them implemented. They can be roughly catego-
rized according to the level of integration provided. Approaches such as CITI’s Webcard and Bull’s
SmartTP focus on the integration at the IP layer or one level above. Lamotte’s proposal goes down
even further by proposing PPP as a communication protocol much at the link layer. In contrast, other
approaches such as the Gemplus’ Jini Surrogate approach and JiniCard focus on solutions at a much
higher level of abstraction.

Due to the different nature of these approaches comparisons are largely depending on the appli-
cation context such solutions are used for. Anyhow, it seems that the integration of smartcards has
finally gained attention not only in the academic world but also in industry.

4.6 Security Aspects

The JiniCard framework allows smartcards to offer services in a network by means of a proactive
exploration mechanism initiated by the card terminal. Clients access these card services through Jini
service proxies that use the basic interface methods of the card terminal to communicate with the
card-resident portion of the service. The most obvious problem with such an approach is the secure
access from remote clients to the card, and the problem of the card holder verification procedure
(CHV).

4.6.1 Smartcard Communication Assumptions

The CHV problem does not only arise in the context of JiniCard but equally well applies to the other
integration approaches if remote access to the smartcard is considered. In traditional architectures
the underlying assumptions of smartcard usage are that

a) communication between the card terminal and the card is trustworthy,

b) communication between the application and the terminal is trustworthy, and

c) communication between the input and output devices of the application is trustworthy.

Most often card readers are attached to terminals with which the card holder performs CHV to unlock
the card for security-sensitive operations. This can be the PIN typed into an ATM, or the PIN entered
into a GSM handset to activate the network authentication procedure.

4.6 Security Aspects 63

Hence, the underlying assumption with this approach is that the communication link between
the pinpad or keyboard and the smartcard is secure and cannot be eavesdropped or tampered with.
For most of the practical application scenarios smartcards are used in, this assumption sounds quite
reasonable. In scenarios based on remote usage of smartcards though, the link between the client
and the smartcard must potentially be considered as untrusted and insecure, and special precautions
have to be taken, i.e. the hostile environment problem has to be solved.

4.6.2 End-to-End Security Approaches

This section discusses some of the approaches that implement various degrees of end-to-end security
with smartcards.

Secure Messaging

The ultimate solution to this problem would be to completely encrypt all data exchanged between
the client and the smartcard, i.e. achieve end-to-end security. This would imply that the traditional
ISO 7816 interface based on APDUs cannot be used any longer since it assumes the exchange of
unencrypted APDUs. However, secure messaging as specified in [ISO94, Sect. 5.6] can be used

“[. . .] to protect [part of] the messages to and from a card by ensuring two basic security

functions: data authentication and data confidentiality. Secure messaging is achieved

by applying one or more security mechanisms. Each security mechanism involves an

algorithm, a key, an argument, and often, initial data.”

Basically, secure messaging offers a standardized framework for the encryption of the payload parts
of APDUs. Unfortunately, for this to work the problem of key distribution must be solved. This
basically means that the smartcard’s remote client must be configured with the appropriate secret
key(s) first before communication can take place. In a real distributed setting this would mean that
the user has to somehow type in the shared key used for the session which is rather awkward and not
suitable for practical use.

SSL/TLS Communication

A better solution would be to use protocols similar to the Internet’s de facto standards SSL and TLS
[RFC2246] that use public-key encryption to agree on a shared session key between a client and a
server used for confidentiality and integrity of communication. Furthermore, the protocol allows for
mutual authentication that might be necessary to not leak confidential information such as the card’s
CHV through a man-in-the-middle attack.

In [Tab00] we have performed an analysis and evaluation of the feasibility of a server-side imple-
mentation of the TLS protocol. The scenario comprises a TLS-enabled server hosted on a smartcard
and an anonymous client, i.e. without TLS client authentication which is the standard case in the
Internet today. Our analysis has led to the following essential observations:

• Several steps of the protocol are optional and can be omitted but the number of messages in
the protocol after handshake cannot be reduced.

• Only the client has to perform computationally expensive operations during the handshake.
On the server side, only the master secret has to be calculated but needs a random number
generator to send its ServerHello message. Most smartcards with cryptographic features are
today equipped with such random number generators.

4.6 Security Aspects 64

• The largest amount of data exchanged is the server’s certificate that is roughly about 1–2 kB
in size.

• The server portion of the protocol is computationally less expensive than the client side, since
parsing and signature verification of the certificate is necessary on the client side only.

• Session recovery could be used to reduce the handshake if repeated connections to the card
occur.

• Current smartcards with cryptographic coprocessors might be able to offer a few TLS cipher
suites matching most of the potential clients’ cipher suites.

• Support for 32 bit arithmetics on the card is important for achieving reasonable performance.

Although we have not actually tried an implementation ourselves, the theoretical analysis reveals
that an implementation would be possible with current smartcards, though not without a fair amount
of effort.

CITI Secure Internet Smartcard

Instead of using Internet standard protocols, the implementation described in [IFH00] uses the
SPEKE protocol [Jab96] for establishing a session key for channel encryption and at the same time
authenticating the card and its remote user with a shared secret. SPEKE is a protocol achieving the
same objectives as the EKE protocol [BM92] but is better suited for a smartcard implementation.
SPEKE is based on the Diffie-Hellman protocol [DH76] and additionally achieves authenticity, thus
avoiding man-in-the-middle attacks.

The authors describe how their implementation has been integrated into both SSH [YKS+01]
and Kerberos [NT94] client applications. The SSH client uses the smartcard to electronically sign a
challenge presented by the SSH server. The Kerberos client uses the remote card to unseal a DES-
encrypted ticket granting ticket. They report a number of timing measurements that demonstrate that
a secure channel using SPEKE can be established in the order of several seconds of which most of
the time is spent executing the cryptographic operations in the smartcard.

Since research and formal underpinning of authenticated key exchange protocols has been un-
dertaken (cf. [BPR00]), we think that remote smartcard usage is possible with suitable transparency
from the user’s perspective using the presented approach.

Compared to the TLS approach the advantage of these kind of protocols is that proving authen-
ticity of the peer is done through the peer’s knowledge of the password. In contrast, the drawback
of using TLS is that a user at a terminal has to achieve and verify the authenticity of the remote TLS
server in the card based on the server’s certificate which is usually not the most user-friendly option.

Swisscom CASTING Protocols

SwisscomTM has applied for a patent [Swi00] for the SECTUS protocols developed in the CASTING

research project. The basic problem is the remote usage of a smartcard from a PC over an untrusted
wireless link, e.g. Infrared [IrD01] or Bluetooth [Blu01; HNI+98]. The basic approach taken is to
involve the user into the protocols let him securely transmit secrets from the card to the PC or vice
versa. In this scenario the card is inserted into a card reader equipped with input and output facilities.
In a prototypical implementation described in [RV01] a mobile phone was used as the wireless card
reader and demonstrated the integration of a RSA-enabled GSM SIM smartcard over an Infrared link
as the security module for client-side authentication of a TLS-protected [RFC2246] HTTP session.

4.7 Summary 65

Essentially, the user acts as a trusted third party between two devices and has to read a secret from
a display and enter it into another device. Obviously, this might be inconvenient and error-prone but
if used correctly provides a reasonable solution to the remote smartcard problem.

4.7 Summary

In Sect. 2.5 we formulated the statement that there will always be a demand to integrate very small
devices into local environments. In this chapter we have presented a generic framework that provides
a solution to the question how small devices can be integrated into such environments. It is based on
the mobile code paradigm and distinguishes between device detection, detection event compilation,
device explorer lookup, device exploration, service proxy lookup, service proxy instantiation, and
service integration. Furthermore, it makes proposals how the building blocks and protocols could
look like and how the problem of finding suitable device explorers and service proxies could be
solved. Since the overall problem depends to a reasonable degree on the underlying link layer
technologies and device characteristics, a framework was chosen that allows for its instantiation into
more concrete domain- and device-specific versions as needed.

Smartcards highly depend on their environments to provide useful services. Given these charac-
teristics we have identified four key areas, that need to be taken into account by middleware for the
spontaneous integration of smartcards. These are

• spontaneous integration into (networked) environments,

• transparent usage of card services,

• remote access to card services, and

• security that is effectively controllable and observable by the card’s owner.

In this chapter a middleware for the integration of smartcards into networked systems has been pre-
sented. Our middleware comprises an execution platform for mobile code in a card terminal and a
well-defined process of how appropriate mobile code is transferred to the terminal as smartcards are
inserted into the terminal’s card reader. We think that our approach outperforms other approaches
w.r.t. flexibility and effort of standardization, which we generally consider a crucial point in propos-
ing new middleware. The approach is easily extensible by uploading new card explorers to a well
known Web server and by providing card service implementations. It also handles mutual exclusion
of multiple clients that try to use a card concurrently. The independence of applets on Java cards
seems to make a relatively transparent scheduling approach possible. The Jini network infrastruc-
ture has been used both as the trading platform for services offered by smartcards and as a means to
implement the JiniCard framework as a set of cooperating network services. We have found Jini to
be particularly well-suited for this purpose since it builds upon mobile code, which nicely fits into
the paradigm of our proposed middleware.

Accessing smartcards remotely poses new security issues. In particular, the assumption that the
communication between clients and card services is confidential no longer holds. Communication
between clients somewhere in a network and smartcard services can potentially be eavesdropped
and even tampered with. Approaches such as the SPEKE protocol to solve this problem have been
presented that make the remote usage of smartcards possible as envisioned in this chapter. However,
these security mechanisms have not been implemented in JiniCard since they are highly card- and
application-specific and therefore belong into the card explorer and service proxy components.

4.7 Summary 66

In general we can conclude that the presented approach is well-suited to allow for the integration
of smartcards into networked environments. Furthermore, there exist means to make the cards re-
motely and securely accessible within (partially) hostile environments from a reasonably trustworthy
user terminal.

The basic approach of mapping device and object identifiers to executable proxy objects in the
manner presented here was originally presented in [ADH+99]. There it was applied to the domain
of the management of networked objects and the notion of “nannies” was introduced, i.e. mobile
objects that represent and care for real-world devices.

The approach taken by JiniCard presented in this chapter was initially described in [KPV00]
and has been further explored and fully implemented in the diploma thesis of M. Rohs [Roh00].
The analysis of the card-resident server-side implementation of TLS was undertaken in the diploma
thesis of H. Taborda [Tab00].

An overview of this work focusing on middleware for smartcards was published in [KRV00b].
An abridged version discussing some of the security aspects considered in Section 4.6.2 was pre-
sented in [KRV00a].

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Chapter 5

Personal Security Modules based on
Mobile Personalized Terminals

There are no systems that remain trustworthy when exposed to normal consumer Internet use
and software acquisition. There are research projects trying to create so-called ”trusted

computing bases,” but none has succeeded. Some systems are shipped today with the label
”trusted,” but none could protect a consumer’s data and software in such an environment.

J. K. Winn and C. Ellison [WE99]

5.1 Introduction

The fundamental problem underlying this chapter is raised by the question how smartcards can be
used in so-called “hostile environments”. In Sect. 3.3 pertinent literature discussing various aspects
of this problem was presented, however, currently it seems that secure communication between
a user and a personalized smartcards in hostile environments is only possible through reasonably
trustworthy terminals and appropriate protocols.

This chapter discusses another building block of personal security modules by proposing the use
of a mobile and trustworthy terminal to access a user’s personalized smartcard in a hostile environ-
ment. More precisely it builds upon the general assumption that a user is likely to trust a personal
device more than a public terminal that is not under his or her direct control. Thus, a user takes
advantage of his or her personal device to perform security critical decisions in a potentially hostile
environment.

Furthermore, the terminal and the smartcard are coupled in a way that prevents usage of one of
the devices without the other. Hence, the smartcard performs only those actions that the terminal
has been previously accepted and the terminal is not capable of performing security-critical actions
without the smartcard.

The rest of this chapter is organized as follows: Section 5.2 begins with a common example that
exemplifies the general problem domain: The creation of electronic signatures with smartcards and
suitable terminals. It outlines the legal frameworks underlying this application and discusses security
issues in the signature creation process.

In Sect. 5.3 we present the Personal Card Assistant (PCA), which is a personalized security
module based on an off-the-shelf PDA and a smartcard. The PDA acts as a mobile terminal used
to communicate with the smartcard. Since it is assumed to be under the user’s control, it might be

67

5.2 Motivation: Electronic Signature Creation 68

much more trustworthy from the user’s perspective than other non-mobile devices. We describe the
general setting of the PCA, the involved communication protocols, and the underlying cryptographic
protection. Furthermore, related work on the trustworthiness of terminals is discussed focusing on
approaches that also consider PDAs as trustworthy terminals, trustworthy operating systems, and
trustworthy document presentation.

Some technical opinions on the approach presented are discussed in Sect. 5.4 focusing on the
pairing of the terminal and smartcard, i.e. the cryptographic binding of both devices.

The chapter ends with a summary in Sect. 5.5.

5.2 Motivation: Electronic Signature Creation

Cryptography can provide security services based on well-founded mathematics. A key problem
with applying cryptography to real-world problems is, however, the interface to real life. In this
chapter we first investigate an application area where this problem is very evident, i.e. the presenta-
tion of a document that is to be electronically signed.

According to the directive of the European Parliament [EUP99, Article 2.2] an advanced elec-
tronic signature means an electronic signature that meets the following requirements:

a) it is uniquely linked to the signatory;

b) it is capable of identifying the signatory;

c) it is created using means that the signatory can maintain under his sole control, and

d) it is linked to the data to which it relates in such a manner that any subsequent change of the
data is detectable.

Based on this definition a working group of the European Electronic Signature Standardization

Initiative (EESSI) specifies so-called secure signature creation devices (SSCD) [CEN01a] as a pro-

tection profile (PP) according to the Evaluation Criteria for IT Security [ISO99a; ISO99b; ISO99c].1

It provides standards for the high security requirements found in electronic commerce and e-govern-
ment scenarios.

Some countries have already embedded electronic signatures into legal frameworks, the most
prominent example being the German electronic signature law “Signaturgesetz” [SigG97; SigV97].
This law requires (among other things) the following evaluation criteria levels for a system used for
dealing with electronic signatures:

• the secure signature creation device (usually a smartcard) must meet the criteria of the Evalu-

ation Assurance Level 4 (EAL 4).

• the other components, e.g. for presenting a document (document viewer) must meet EAL 2.

Both requirements form the basis for electronic signatures that are legally binding under this law.
When considering this legal framework from a technological perspective, it is evident that one of

the weakest components is in practice a document viewer running on a PC with a standard operating
system like Windows: Even if evaluated at EAL 2, the PC Software offers little protection against
manipulation by malicious software such as viruses or Trojan horses.

1 Also known as Common Criteria (CC).

5.3 The Personal Card Assistant 69

In contrast to this, a smartcard is a (comparably) tamper-proof device that offers cryptographic
and other functions that can be accessed over a simple I/O interface. For performing critical func-
tions, it is required that the legitimate user is authorized against the card by entering a PIN code
(often referred to as card holder verification, CHV). As has been discussed earlier, a smartcard has
no interface to interact directly with a human being, all communication is done via a card reader
using a keyboard and screen that is either built into the reader or is attached to a computer (cf. 3.3).

In the protection profile [CEN01a, Annex, Sect. 3.1] which also refers to the signature creation

application (SCA) proposal [CEN01b], for example, some general assumptions are listed of which
one states that

“The signatory uses only a trustworthy SCA [signature creation application, ed.]. The

SCA generates and sends the DTBS-representation [data to be signed, ed.] of data

the signatory wishes to sign in a form appropriate for signing by the TOE [target of
evaluation, ed.].”

This is in particular problematic if the platform used for viewing such a document is not “under
control” of the electronically signing party, but belongs to the other party that wants someone to sign
a document: It is fairly trivial to manipulate such a system, so a person signing a contract or a money
order in an unknown, untrusted environment cannot be sure what her smartcard actually signs. This
could turn out to be a major obstacle against the wide-spread use of electronic signatures in practice.

This problem is, in principle, easy to solve: Raise the security level and require a closed, trust-
worthy system for applying electronic signatures. Unfortunately, this solution is extremely hard to
put into practice, both because it is expensive and since dedicated hardware, that would be required,
simply does not fit into today’s computing world.

Summing up, applications based on smartcards rely upon the trustworthiness of the environment the
card is working in. However, this trustworthiness is not given in many settings smartcards are used
in.

5.3 The Personal Card Assistant

In this section we present the Personal Card Assistant (PCA), a scenario that brings together PDAs
and smartcards. The underlying idea is that a PDA acts as a personal device for controlling a smart-
card attached to it using an asymmetric key pair. We describe how such an approach can be used for
creating electronic signatures: in particular, we can circumvent the problems involved with untrusted
document viewers in this context.2

5.3.1 PCA Overview

We propose a pragmatic approach that reduces the risks of using electronic signatures by integrating
a customer’s PDA into the creation of electronic signatures: The PDA is used as a document viewer
and it controls the smartcard by unlocking the card’s signing function using cryptographic means.
We refer to this approach as the personal card assistant. A PCA does not increase security per se,
since a PDA can be attacked similarly to a PC. However, as we assume that a PDA belongs to and

2 Hence, the main goal is to have a WYSIWYG (what you see is what you get) system and not a WYSIAWYG (What You
See Is Almost What You Get) or a WYSIMOLWYG (What You See Is More or Less What You Get) style of presentation
that, from a security perspective, should be avoided under all circumstances.

5.3 The Personal Card Assistant 70

therefore is under the control of a person who wishes to apply an electronic signature, such a device
will in practice be more trustworthy for that person than, for instance, a vendor’s PC, and thus is
better suited for use in hostile environments than a smartcard alone.

Therefore, the approach can be regarded as pragmatically more secure, making users of elec-
tronic signatures feel more comfortable with the technology. The notion “trust amplifier” for such a
PCA covers this quite precisely.

The PCA aims at improving this situation: It consists of a secure core component, the smartcard,
and a conventional, personal computing device, the PDA. Both can either be tightly coupled by
integrating the card into the PDA, or communication between the PDA and the smartcard is over a
possibly untrusted network. This leads to the general design option whether the card is co-located
with the terminal or remotely connected (cf. Sect. 3.4).

We consider the latter, more difficult case, in which the coupling is achieved by the fact that each
component knows the public key of the other one. Key exchange takes place in a secure environment,
e.g. when the smartcard is personalized or purchased. In the PCA scenario, the role of the smartcard
is to provide both secure storage and a trusted platform for cryptographic computations, and the
PDA provides a user interface, computing power, and additional storage. The sharing of public keys
enables both to establish a secure communication channel even if they are physically separated.

An application will typically run on the PDA, making use of its I/O capabilities, and access the
smartcard for cryptographic functions. Thus in terms of our framework the PDA is considered to
be the “active” component whereas the card is rather “passive”. But it is also possible to run the
application on the smartcard and use the PDA simply as a supplementary I/O device – an approach
further discussed in Chapters 6 and 7.

A PDA is open to attacks similar to those applicable to a PC. However, it is likely that the PDA
owner accepts a much more restrictive security policy on her PDA than on her workstation, e.g.
concerning the download and execution of unknown software. It is also realistic to set a separate
PDA aside for performing critical transactions such as electronic signatures.

From a pragmatic viewpoint, one may accept the PCA as a “trust amplifier” due to its nature of
being directly associated with a person. To its owner, it is much more trustworthy than an unknown
terminal, controlled by strangers, located in an untrusted environment.

The PCA for Electronic Signatures

To better motivate the PCA a scenario is presented where the use of the PCA can enhance the process
of creating an electronic signature. The example describes a setting where a document created by
one party, e.g. a contract offered by a vendor, is to be signed by a second party, the customer. This
approach involves the following components:

• A PC or workstation that is used to create a document to be signed. This could be a vendor’s
terminal.

• A smartcard reader, either connected to this PC or being a separate device.

• A PDA that belongs to the person who wants to sign a document.

• A smartcard for signing a document by encrypting a hash value.

This requires that both the PDA and the smartcard have the public key of the other one stored,
i.e. they together constitute a PCA. We assume that components can communicate over arbitrary
communication channels; as an example one can imagine using the PDA’s infrared interface.

5.3 The Personal Card Assistant 71

SONY

webtv

SMART CARD

2) Transfer

document

3) a) Check document

b) Compute document hash

c) Sign with PDA’s secret key

4) Transfer signature to

smart card

5) a) Check PDA’s signature

b) Extract document hash

c) Sign with card’s secret

key

1) Document to be signed

(in PDA-viewable format)

Figure 5.1: The PCA in the context of signing documents

A Bird’s Eye View of the Scenario

Figure 5.1 outlines the interworking of the components of this approach:

• A document to be signed is created on the PC, and this document is stored in a format that can
be displayed on the PDA.

• The document is transferred to the PDA.

• The user checks the document on the PDA and approves it by signing the document’s hash
with the PDA’s secret key.

• The document hash is transferred to the smartcard, that extracts the document’s hash value
again and creates the final signature.

This procedure differs from the standard approach to using electronic signatures in two important
points: First, the document is “routed” over the PDA for being checked by the signing person;
second, it assumes that the smartcard of the signing person and the PDA form a pair, tied together
by their public keys. In particular, the card will not sign any data unless these data were “approved”
by the PDA’s secret key. We shall elaborate the concrete procedure for this subsequently.

5.3.2 The Underlying Cryptographic Protocol

Hereafter, the identifiers ECrd and DCrd are used for denoting the smartcard’s public and private
keys respectively, and similarly EPDA and DPDA for the PDA. The application of a key K to a
message M , e.g. encrypting the message, will be denoted by K(M).

5.3 The Personal Card Assistant 72

SONY

webtv

SMART CARD

D

D
Crd

(h)

h := hash(D);
Enter PIN

h,PIN := E
PDA

(D
Crd

(M));

PIN OK?

M = E
Crd

(D
PDA

(h, PIN))

Figure 5.2: Cryptographic View of Information Flow

Figure 5.2 visualizes the communication between the PCA components:

— PC→ PDA: The PC sends a document D to the PDA.

— PDA: The PDA displays the document D and computes h = hash(D). If the user wishes to
sign the document, she approves it. We propose to implement this by having the user enter the
card’s PIN, which has the side-effect that the PDA is used as a PIN pad.3

— PDA → Smartcard: The PDA sends the message M = ECrd
(
DPDA(h, PIN)

)
to the card.

Thus, the PDA signs the document hash h and the PIN with its private key and encrypts the re-
sulting data with the card’s public key. Note, that the contents of M can only be reconstructed
with the secret key DCrd matching ECrd.

— Card: The card deciphers the message using (h, PIN) = EPDA
(
DCrd(M)

)
, i.e. the card

extracts the PIN and the hash h from the message M using its own private and the PDA’s
public key. The procedure aborts if verification of the PIN fails.

— Card→ PC: The card sends DCrd(h) to the PC, which is the document hash signed with the
card’s secret key. This constitutes the final signature.

By signing the data sent to the card, the PDA assures the authenticity of the data. This is necessary
since the smartcard will only sign a hash value that originates from the PDA. By the PDA’s signature,
separate steps for authentication and key exchange are avoided.

3 The scenario and the subsequent protocol can be easily modified to allow a user to enter the PIN using a (secure) PIN pad
attached to the card reader. In this case, the user’s approval shall be implemented by other appropriate means, like pressing
an “OK”-button.

5.3 The Personal Card Assistant 73

Entering the PIN ensures that the signing process is authorized by the owner of the PCA. This
addresses the issue that PDA’s are not very well protected against unauthorized use. To protect the
PIN from attackers intercepting the message to the card, the message is encrypted with the card’s
public key.

5.3.3 Informal Threat Analysis

Under the assumption that the PDA and the card of the scenario described in Section 5.3.2 are
trustworthy, the protocol can only be attacked by manipulating data sent between the components:

— PC → PDA: An attacker does not gain anything from manipulating D since the document
will be checked by the signer. Neither does replaying this message, or preventing it from
arriving offer any advantage to attackers.

— PDA→ Card: Under the assumption of secure cryptographic algorithms and sufficient key
lengths, the contents of the message M is not reconstructable4.

Since the range of the PIN is restricted, there is a slight chance that a forged message gets
signed by the card, even if DPDA is not known. However, the signature produced will surely
not be valid for any document, as the hash value reconstructed by the card will be totally
random and not correspond to any meaningful document.

A replay of this message to the card would create only duplicates of the signature computed
by the card, which is acceptable. Blocking the communication between the PDA and the card
prevents only the generation of signatures.

— Card→ PC: Since only the completely generated signature is transmitted, there is no mean-
ingful attack left. The signature can be easily verified by interested parties.

Note that the assumption about the PDA’s trustworthiness made above is not necessarily justified: A
PDA is usually not a secure system and is, in principle, as easy to manipulate as a PC if an attacker
can temporarily control the device. However, in practice it is certainly more difficult to attack such
a mobile device than a PC.

5.3.4 Related Work on the Trustworthiness of Terminals

Besides the communication path between the user and the smartcard also the trustworthiness of the
terminal itself is crucial in a signature scenario. Already Gasser [Gas88] has discussed the design of
secure computer and operating systems and proposed how a trusted computing base (TCB) can be
integrated in such systems. He has, for example, proposed to use a LED to inform the user about an
interaction that originates from the TCB. This LED is not controllable from non-trusted components
to avoid fake dialog attacks.

Trustworthy Terminals based on PDAs

The following systems use dedicated hardware such as PDAs acting as “trustworthy” end-user ter-
minals.

4 Note that encrypting the PIN alone without the hash h or suitable padding schemes changes this situation: Since usually
only 10

|PIN| values for PIN exist, a brute force attack by enumerating possible PINs would be possible. The attached
hash value h – though known – prevents such attacks, since the contents of the encrypted message becomes too long for
being enumerated.

5.3 The Personal Card Assistant 74

Balfanz and Felten [BF99] present a PKCS #11 [PKCS#11]5 compatible library implementation
on a PC that delegates cryptographic operations on a PDA. Their work is based on the observation
that normal personal computers should not be trusted to perform cryptographic operations at all.
Similar to the PCA approach is that the PDA is used to enter the PIN code which controls access to
the cryptographic keys – both therefore never leave the PDA. However, as they admit their solution
is not secure because the document is displayed and hashed on the still insecure PC – which has been
solved with the PCA. The PDA acts only as a smartcard with a secure keyboard but does not provide
for more security at the application level, in this case the electronic signature process. Furthermore,
in comparison to a smartcard a PDA cannot be considered as being tamper-resistant.

Daswani and Boneh [DB99] describe a personal security environment built on a Palm PDA. It
can be used as an electronic wallet that is capable of producing electronic signatures as part of their
wallet protocol. They discuss in depth different implementations and performance measurements
of cryptographic algorithms such as RSA and ECC on the Palm PDA, however, without taking a
smartcard into consideration.

Freudenthal et al. [FHW00] have implemented a system on a Palm PDA that enables them to sign
documents that are accessible on the PDA through its Memopad application. They have essentially
implemented a PKCS #11 library that is used to control a smartcard inserted in a reader attached
to the PDA. Thus they rely on the PDA as the trusted component for document presentation and
hash computation. The major drawback in comparison to the PCA, however, is that there is no
direct coupling between the PDA and the card. Hence, their approach is only suitable for usage in
co-located scenarios of terminal and smartcard (cf. Sect. 3.4).

Blumert [Blu00b] gives a good overview of the problems around electronic signature creation
in the context of German signature laws. Furthermore, he has implemented an electronic signature
system including a document viewer on a Palm PDA. His work is comparable to Freudenthal et

al. and the PCA approach without, however, integrating a smartcard into the signature application,
although he proposes this in his future work section.

The ESPRIT Project CAFE [BBC+94] have proposed an off-line digital payment scheme using
two kinds of devices: so-called wallets and guardians. Wallets are devices that contain a screen
and some sort of keyboard and thus are comparable to PDAs. Guardians are smartcards that store
financial information. Payment information is communicated to the guardian through the wallet
which asks the user to confirm that this information is correct. Since the wallet is under the user’s
control it prevents fake terminal attacks where the payment terminal shows one amount on the screen
but deducts a completely different amount from the user’s card. The PCA shares basic ideas with
the CAFE wallets and guardians, however, it aims at a more general binding between both kinds of
devices by means of a cryptographic coupling in which smartcards can be used remotely from the
PDA.

Personal Trusted Computing Bases

Secure operating systems have already been investigated back in the sixties with the MULTICS op-
erating system [CV65]; numerous other research efforts have been undertaken meanwhile. With the
advent of PDAs, trusted computing bases for personal use have been investigated in several research
projects during the last decade of which we briefly discuss some of the more recent activities.

Eckert [Eck00; Eck01; BE01] observes that PDAs might offer great opportunities to become
trusted personal security modules to enhance the security of distributed and mobile computing.
However, the devices itself must be reasonably secure if they are used to perform security-critical

5 Also known as the cryptoki or cryptographic token interface standard.

5.3 The Personal Card Assistant 75

transactions. In the sequel she performs a risk analysis of current PDA operating systems6 focusing
on operating system security and availability of cryptographic functionality. She concludes that “due

to the lack of appropriate authentication and access control measures mobile devices are to a great

extend exposed to unauthorized access and information disclosure.”
Pfitzmann et. al. [PPSW95] discuss portable end-user devices (POBs) and security modules

and define a number of requirements to be made for such devices. They observe and conclude
that “[. . .] No mobile user devices currently available are tamper-resistant in all their parts, so it

is reasonable to supplement less secure devices available from many manufacturers with security

modules. Providers can concentrate on developing protocols for security applications that can run in

any device, from mobile phones to personal digital assistants.” In [PPSW96] they further distinguish
between different types of trust in a mobile user device:

— Personal agent trust: The trust of mobile users that their devices act according to their wishes.

— Captured agent trust: The trust that the mobile device protects its user even if it is lost or
stolen.

— Undercover agent trust: The trust of third parties relying on the mobile device to protect
them from the user.

In particular they consider a combination of a tamper-resistant device such as a smartcard in combi-
nation with a user terminal, e.g. a PDA. In particular they focus on the design, production, shipment,
and personalization of mobile user devices, each of which should be reasonably trustworthy to obtain
an end-system that is also trustworthy. Our work is therefore motivated by similar considerations as
brought up by Pfitzmann et al. and further emphasizes the role that personal terminals could play in
future mobile scenarios.

Stüble et al. [Stü00; PRS+01] are currently implementing a secure operating system called
PERSEUS based on a micro-kernel architecture. Their observation is that commercial off-the-shelf

(COTS) operating systems for mobile devices will probably not be made sufficiently secure in the
near future for various reasons, mainly commercial aspects. Therefore, they propose to run such
COTS systems on top of a secure trusted operating system kernel. The kernel provides core facili-
ties, such as, trusted communication channels between a security module, e.g. a smartcard, and the
display and keyboard. These can be used to perform security-critical operations, such as, digital
signature creation. They have implemented parts of their system on top of the FIASCO µ-kernel
[Hoh98b]. Their goal is to come up with a kernel sufficiently compact that an evaluation according
to the Common Criteria [ISO99a] is feasible.

Trustworthy Document Presentation

Scheibelhofer [Sch01] has addressed the separation of a document’s content and its presentation that
is to be signed. He discusses the problem of presentation of a document on different devices using
different markup languages. His approach is built on top of XML [W3C00] for encoding the data to
be signed according to XML schema descriptions [W3C01] that could be signed by a legal authority.
Furthermore, this authority could also sign style sheet transformation descriptions such as XSLT
[W3C99] for explicitly defining the presentation of the content on different presentation engines
such as HTML or WML [WAP99a] browsers. He also introduces the concept of transformation

filters performing transformations during presentation, e.g. a terminal could read a document to a
deaf user.

6 PalmOS 3.x, EPOC R5 and Windows CE.

5.4 Design Issues for Personal Security Modules 76

Although the approach is very generic, we consider his work as a first step towards a framework
for the trustworthy adaptation of content to be signed on different devices and media channels.

5.4 Design Issues for Personal Security Modules

Throughout the previous sections we have described research efforts focusing on the design and
implementation of personal security modules. Since the problem of a trusted communication path
between a tamper-resistant trustworthy device and its user cannot be considered as solved in practice,
any attempt has to consider the trustworthiness of the terminal. The PCA approach presented takes
this into account and tries to shift critical computations from non-trustworthy components towards
more trustworthy ones.

5.4.1 Personalization Enables Strong Cryptographic Binding

One of the most significant contribution of the PCA is the cryptographic binding introduced between
a reasonably trustworthy terminal – the PDA – and the core security module – the smartcard. In the
PCA approach, both know each other’s public key and the protocol is considered to be strong w.r.t.
the cryptographic security implemented. However, using public key cryptography requires

• the knowledge of a rather “large” amount of cryptographic key material – up to several thou-
sand bits (two private keys plus two public keys),

• reasonably sized storage to safely keep this key material, and

• the ability of smartcard and personalized terminal to find and make use of each other.

The advantages of this effort are

• shifting of critical computations from less trustworthy towards more trustworthy components,

• tight coupling between personalized terminal and security module, i.e. both are not usable
without each other, and

• more flexibility since potentially, several different terminals can be used depending on the
concrete application and users’ needs.

Compared to non-personalized and co-located terminals a coupling between terminal and smartcard
is much harder to achieve. For example, the SPEKE protocol used in CITI’s Secure Internet Smart-
card (cf. [IFH00], Sect. 4.6.2) uses a shared secret between the user and the smartcard to achieve
both – authentication and symmetric session key agreement – using a password. The advantage is
that a non-personalized terminal can be used for that purpose, but with the disadvantage that the
password must contain sufficient bits to avoid brute-force attacks and that it might be eavesdropped
at the terminal.

Hence, in general some kind of cryptographic binding as presented in our approach seems to be
advantageous over password-based approaches but comes at a certain cost in terms of implementa-
tion. The actual protocols between the terminal and the smartcard, however, seem to get simpler.

5.5 Summary 77

5.4.2 Replay Prevention

Another problem with smartcards that has been already mentioned is the lack of clocks in current
off-the-shelf smartcards. Although more advanced security modules such as the JavaRingTM [Dal00]
and some newer USB tokens have a built-in clock, this has the general drawback of an increased
form factor introduced by the needed battery that is more vulnerable to physical attacks.

As a consequence, if a smartcard is used as a security module within a binding relationship, the
card is generally vulnerable to replay attacks, if no additional measures are taken. A straightforward
approach is to introduce a shared unguessable counter between both devices that can be easily im-
plemented using a reasonably good random number implementation shared by both devices. This
makes guessing the “next” value in a sequence rather problematic for an intruder.

Thus, prior to usage of the smartcard from a terminal, both devices have to be suitably paired.
Pairing as known from Bluetooth [Blu01] considers the process of establishing a mutual state in
two devices that can be used to perform mutual authentication and possibly allows for shared secret
generation. Pairing in the form of imprinting has been successively studied by Anderson and Stajano
in [SA99] where different aspects of the life-time of such paired relationships have been studied. For
security reasons, pairing has to take place in a secured context, i.e. where unobserved exchange of a
secret can take place.

If a security module is used in conjunction with several terminals simultaneously, pairwise coun-
ters can be used for each pair of terminal and smartcard. Furthermore, if the message exchange
between the terminal and the smartcard is not reliable enough suitable “sliding window” schemes on
the counter sequence can be used resulting in a certain degree of resistance against lost messages.

5.4.3 Mutual Discovery

Besides the choice and implementation of the communication protocols between the smartcard and
its terminal(s), the mutual service discovery is important if flexible use is considered. Thus, terminal
and smartcard can be subject to spontaneous networking as introduced in the chapters presented
previously. For example, in our working implementation of the PCA we used Jini as the spontaneous
networking middleware. More precisely, the PDA offers a ☎ ✁ � ✄✑✏ ✄✢✡☞☛✍✌ ☎ ✌✎☛✆☎ ✁ ✝ ✌ to electronically sign
documents that are sent through the service’s interface from clients. In turn its implementation
uses the ✆ ✏ ☛ ✆ ☎ ✁ � ✄✑✏ ✄✪✡☞☛ ✌✢☎ ✌✎☛✆☎ ✁ ✝ ✌ implemented by the smartcard to perform the final and legally binding
encryption of the document hash.

Here, we can easily see how the idea of a smartcard offering services in the spirit of the JiniCard
framework nicely fits with the personalized terminal approach as introduced with the PCA. The
advantage is that decoupling smartcard and terminals generally offers more flexibility and thus might
allow for a more differentiated use of a smartcard as a security module in different usage contexts.

5.5 Summary

Electronic signature creation is an ideal application to demonstrate the general problems of smart-
cards in hostile environments. We have presented the PCA approach substituting a “trustworthy”
PDA for an “untrusted” terminal in order to create electronic signatures with a smartcard. The card
and the PDA are tightly bound together through a pair of cryptographic keys. This is the main dif-
ference to the work presented by Freudenthal et al. [FHW00] who have not further coupled the PDA
and the signature card.

5.5 Summary 78

The PCA was implemented on a Palm PDA using a standard Java smartcard to implement the
signature card. The card was inserted into a card reader at a vendor’s terminal simulated by a PC
preparing the document to be signed. Communication from the vendor’s terminal to the PDA was
done using the IrDA IrOBEX protocols [IrD01] used for object exchange. Jini [Sun99a] was used as
spontaneous networking technology for dynamically discovering services in such an environment.
The card reader and the PDA’s signature service were implemented as Jini services registering with
a vendor’s lookup service. We have used the RSA algorithm for the public key encryption and our
measurements on a PalmTM III PDA showed that RSA encryption of a 512 bit block (64 bytes) on
the PDA requires roughly 12 seconds. These numbers are comparable to the measurements made in
[DB99].

Although the work presented in this chapter is explicitly targeted towards the use case of elec-
tronically signing a document it is by no means restricted to this application domain. Which data
are transferred between the terminal and the smartcard is actually application-specific. Hence, the
cryptographic protocols that provide some kind of secure envelope for data can be easily extended
for other applications without requiring completely new solutions.

The PCA could be a first step towards practically usable personal security modules and the flex-
ibility it provides is likely to be needed in future scenarios. In combination with the JiniCard frame-
work it might be one example of a more flexible system for the integration of a set of user terminals
implementing different degrees of trustworthiness that are under control of a central trustworthy
component – a smartcard.

The PCA was initially described in [KPV99b] and later published in [KPV99a].

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Chapter 6

The WebSIM or How to implement a
Web Server in a GSM SIM?

A mobile phone is a disposable, wireless smartcard reader which can be used
to make phone calls with. . .

Bertrand Du Castel, Java Card Workshop, Cannes, September 2000

6.1 Introduction

GSM [MP92] is currently the largest mobile telephony system with roughly 500 Mio. subscribers
run by more than 200 mobile operators in the world.1 Each GSM mobile phone is required to
contain a smartcard – the so-called GSM Subscriber Identity Module (SIM) [GSM11.11] whose
most important task is the authentication of the mobile operators’ subscribers.

From a different viewpoint that has been nicely pointed out by du Castel in the citation that
precedes this chapter, the mobile phone essentially can be seen as a wireless smartcard reader for the
SIM card. Consequently, this chapter describes an approach to integrate the SIM smartcards used in
GSM mobile phones into the Internet.

Our WebSIM system described in the sequel provides an HTTP-based interface to the Internet
that can be used to access services in a customer’s SIM. This communication channel can be used in
various ways to implement security protocols significantly improving secure electronic and mobile
commerce. The WebSIM represents approach A3 which is about a mobile terminal that is in posses-
sion of a wireless communication link as identified in Sect. 3.5. It essentially turns the mobile phone
into a mobile terminal used to offer and access the security services residing in a user’s SIM.

The rest of this chapter is organized as follows: Section 6.2 briefly introduces the SIM and the role
it plays in the GSM authentication protocol. In Sect. 6.3 we present the SIM application toolkit
which is the core technology layer on top of which the SIM can perform interactions with its user
and communicate with the rest of the world.

The current state of security practices found in the Internet today is briefly summarized in
Sect. 6.4. It basically leads to the observation that the idea of bringing the GSM security infras-
tructure into the Internet is a promising approach that should be further investigated. Section 6.5
describes the WebSIM protocols, architecture, and proof-of-concept implementation that is part of

1 The actual numbers differ quite substantially so we just give a rough number here.

79

6.2 GSM Subscriber Identity Module 80

HLR/AUCMS Radio Link

Ki
RAND(j)

=
SRES´

yes/no?

Ki

IMSI
IMSI

SRES

A3

MSC/VLR

9LVLWHG�1HWZRUN +RPH�1HWZRUN

A3

Generate
RAND(1,..,n)

Authentication Vector

<RAND, SRES, Kc>

Figure 6.1: GSM authentication overview

this thesis. It demonstrates that such a system can be set up in realistic scenarios and that it really
contributes technical solutions to today’s Internet security problems.

Security aspects of the WebSIM approach are discussed in Sect. 6.6 leading to the general obser-
vation that although the WebSIM provides interesting security features these might not be sufficient
for all application domains. The most important drawback is the lack of end-to-end security between
a WebSIM client and the SIM, an issue further discussed in Chapter 7.

Section 6.7 describes a number of possible applications that can be built on top of the WebSIM. It
illustrates that the WebSIM is a technology layer forming the basis of other security-related services.

Related work is discussed in Sect. 6.8 and a summary in Sect. 6.9 completes this chapter.

6.2 GSM Subscriber Identity Module

A GSM SIM is an operator-trusted security server in GSM, performing computations on behalf
of the GSM subscriber. The SIM is issued by a mobile operator to its customers as part of their
contract. The main purpose of the SIM is to authenticate a subscriber to the GSM network which
is vitally necessary for access control and billing. As a side effect it is used to establish shared
secrets between the mobile phone and the GSM network used for encrypting the over-the-air voice
traffic. The GSM security architecture is specified in [GSM03.20]. Figure 6.1 gives a simplified
overview of the GSM authentication protocol illustrated by the example of roaming users. After the
mobile station (MS) is switched on, the mobile requires the user to enter the card holder verification

(CHV, aka. PIN) of the SIM and upon successful verification by the SIM has access to the so-called
International Mobile Subscriber Identity (IMSI), a globally unique subscriber number stored in a
special file on the card. This IMSI is sent in plain text to the visited mobile network and comprises,

6.3 SIM Application Toolkit 81

among others, the identifiers of the mobile switching center (MSC) and the visitor location register

(VLR). Based on the IMSI they infer the identity of the home network of the subscriber to obtain
a so-called authentication vector. This vector is compiled by the home network by computing so-
called authentication triplets:

AUT =
(
RAND, SRES = A3(RAND, Ki), Kc = A8(RAND, Ki)

)
.

Here, Ki denotes the shared secret key between the customer’s SIM and authentication center (AUC)
of its home network. Furthermore, A3 and A8 are proprietary algorithms implemented in the SIM
and its AUC only.

A number of such triplets are sent back from the corresponding home network to the visited
network which then arbitrarily chooses a triplet and sends the challenge RAND via the mobile to the
SIM which in turn computes SRES’ = A3(RAND, Ki) using the local implementation of A3 and the
secret key Ki.2

The network then grants access based on whether SRES equals SRES’, or not. Then the network
knows to which home network accumulated billing records must be sent. Encryption of the wireless
link between the MS and the network is performed through a standardized algorithm A5 (not shown)
using the corresponding key Kc.

Summing up, the protocol the SIM participates in, achieves authentication of a subscriber as the
fundamental security-related operation in GSM. The SIM therefore provides a security service to the
mobile network and the mobile phone.

6.3 SIM Application Toolkit

The SIM Application Toolkit (SAT) [GSM11.14]3 is an interface implemented by GSM mobile
phones offering among others the following services to the GSM SIM:

— � ✁ ✂ ✂☞� ✏ ✂ � ✌✝☞ ✄ ✆ text ✞ : Displays the supplied text on the display of the mobile phone.

— ✁ ✌ ✄ ✞ ✄ ✂ ✡ ✄ ✆ [title],[type] ✞ : Displays an optional title text and queries the user for input. Several
syntactic categories such as digits, hidden input, etc. are supported. The text entered by the
user is returned to the SIM.

— ☎ ✌✎� ✌ ✝✝✄ ✞ ✄✒✌ ✄ ✆ [title],{item. . . } ✞ : Displays an optional title and a number of items among which
the user can chose. The number of the chosen item is returned to the SIM.

— � ☛ ✠✟☎ ✁ ✆☞✌✄✂✑✠✄✝ ✏☞� ✞ ✄✡✠ ✠☞☛ ✄ ✏ ✄ ✁ ✠ ✄☞✆ type ✞ : Return localization and network measurement results depend-
ing on the given type selector. In particular it can be used to yield the network cell identifier

and location area information enabling the rough localization of the user’s current position.

— ☎ ✌ ✄✝✆ ☎✆☎ ✠ ☛ ✄ ✟ ✌ ✂☎✂✒✏✝� ✌✎✆ [title],dest,payload ✞ : Sends a short message with the given payload to the
destination.

Figure 6.2 on the next page gives an overview of the SIM toolkit architecture. The lower part
shows the APDU interface to the mobile phone (MS). The middle block represents the SIM API
framework that contains mechanisms for applet triggering, e.g. after receiving a so-called envelope.
Furthermore, it implements mechanisms for applet installation and de-installation.

Central to the toolkit is the so-called proactive command manager which is responsible for man-
aging a proactive session. Such a session can be initiated by an applet wishing, for example, to

2 Although the most widely used implementations of A3, COMP128, has shown some weaknesses (cf. [BGW98]) the
algorithm seems to be reasonably resistant against feasible on-line attacks.

3 The API [GSM02.19] describes how SAT services can be used from on-card applications. A Java Card binding is specified
in [GSM03.19].

6.3 SIM Application Toolkit 82

*60�6,0�.HUQHO

6,0�$3,�)UDPHZRUN

Applet

install/uninstall

Proactive Command

Manager
Applet Triggering

Applet

Security Manager
Security

Policy

APDU06�,QWHUIDFH

Files

file

access

proactive polling, 91XX

proactive commands,

terminal response

APDU,

e.g. envelope

activation,

responses

proactive

commands

file

access

6,0�$3,
install/

uninstal

applets

$SSOHW

Figure 6.2: SIM application toolkit architecture (SAT) overview

execute the toolkit command ☎ ✌✎� ✌ ✝✝✄ ✞ ✄✒✌ ✄ . The applet invokes the appropriate method in the SIM API
that in turn activates the proactive command manager who sends a response APDU to the mobile
phone in the form of a status word (SW1/SW2) = (91, len). This response code indicates to the MS
that the SIM wishes to start a proactive session. The MS then fetches the next command with the
given length that contains the proactive command which in our example contains the items the user
has to select from. It then decodes the proactive command contained in the response APDU and
in case of a ☎ ✌✑� ✌ ✝✝✄ ✞ ✄✡✌ ✄ displays the menu items on the screen. After the user has selected an item,
the MS compiles a so-called terminal response APDU that contains among other information the
number of the item the user has selected. This response is now intercepted by the proactive com-
mand manager who in turn resumes the applet and passes the users selection back to the SIM toolkit
application.

Besides the commands listed above, the SIM toolkit further supports a number of mechanisms
for registering timers that can be used to wake up an applet at regular intervals, registering for certain
types of events such as the arrival of a SMS [GSM03.40] or a change in the current network cell.
The most important triggering mechanisms are the arrival of a SMS and the selection of the applet
in the phones SIM-specific menu.

Summing up, the SIM application toolkit allows to temporarily exchange the role of client (which is
now the SIM) and server (which is the MS offering services to the SIM). It can be seen as a platform
on top of which card-resident applications can be implemented that have access to an API that allows
to perform user interaction and communication.

6.4 The SIM as a Security Module in the Internet 83

6.4 The SIM as a Security Module in the Internet

As mentioned previously, the GSM system can be characterized as the largest security infrastructure
the world has seen so far. Interestingly enough this infrastructure has been set up for the sole purpose
of making phone calls with. The central theme of this chapter is to exploit this existing pervasively
distributed infrastructure to provide additional security services.

6.4.1 Security Status Quo in the Internet

A security infrastructure comparable to GSM is still missing in today’s Internet. The most successful
security infrastructure currently available is the SSL/TLS suite of protocols [RFC2246] in combina-
tion with a public key infrastructure (PKI). TLS allows for peer-to-peer authentication of clients and
servers by means of certificates and is used to securely transmit a shared secret from the client to the
server on top of which a session key for symmetric encryption of the communication session is de-
rived. Off-the-shelf browsers come with an installed base of root certificates of vendors offering PKI
services. A Web site wishing to participate in the PKI buys a certificate from one of those vendors
which is signed by the vendor’s private root key. The client connecting to a TLS server downloads
the server’s certificate and checks whether it is signed by one of the locally installed root certificates.
It subsequently computes a so-called pre-master secret consisting of a random string which is then
encrypted with the server’s public key stored in the server’s certificate and transmitted to the server.
Both client and server then compute the so-called master secret which is then used to derive further
session keys. If both simultaneously switch to encrypted communication, the client can be sure the
server is the one as claimed in the certificate.

However, in practice only the server authenticates to the client. Authenticating the client to the
server would require that the client is in possession of a certificate which is linked to a public key
infrastructure. Today such infrastructures only exist for the Web servers but not for ordinary users.
The reasons are manifold:

• Today certificates are still expensive for end users.

• There is no commonly accepted standard for certificates resulting in numerous interoperability
problems.

• Reasonably secure approaches should rely on smartcards issued by the vendors to end users
which contain the certificate and the private key. Such a solution is expensive and requires
the integration of card readers into standard operating systems and the necessary plug-ins for
Internet browsers – a task that is still burdensome for inexperienced users.

As a consequence, only in certain niches of the general consumer market client certificates are used,
whereas in the enterprise domain they are found much more often.

Account Verification Practices

At the moment best practice is that users register a login and a password at every site they want to
have access to. Usually, the registration process is different for each site. Some typical approaches
are:

• No further verification of the account data. The service provider simply trusts the client that
the submitted data are correct.

6.5 WebSIM – A Web Server in a GSM SIM 84

• Verification of the user’s email address by sending a one-time password that must be used
to complete the registration process. A variant of this is that the service provider sends the
one-time password by postal service.

• Verification of the account data with the help of another authority, e.g. by requesting the user to
present his/her identification card to this authority. This is often required for on-line banking
and brokerage services, e.g. in Germany the Deutsche Post offers such a service at its postal
offices.

Hence, service providers of more security-sensitive services often rely on other parties such as the
postal service to implicitly establish confidence in the correctness of the user’s account data.

Bringing the GSM Security Infrastructure into the Internet

The large number of deployed and used SIM cards is based on a contract between the subscriber and
the mobile operator.4 Furthermore, a mobile subscriber already has a unique user name which is his
or her mobile phone number. This leads us to the central goal of this chapter, namely

to bring the security infrastructure in GSM namely the SIM and the contract between

the mobile operator and the subscriber into the Internet,

or put in another way

several hundred million GSM subscribers carry powerful smartcards around in wireless

card readers, i.e. mobile phones – why not use these cards to secure Internet transac-

tions?

Hence, if it could be achieved that transactions of an Internet user can be confirmed with the help of
a mobile operator, substantial progress towards Internet security could be achieved.

6.5 WebSIM – A Web Server in a GSM SIM

In this section we describe the WebSIM system that is an implementation of a small stripped-down
Web server in a GSM SIM that integrates a user’s SIM into the Internet.

6.5.1 Communication Protocols

The general idea of the WebSIM is to allow for a communication channel from the Internet to a
subscriber’s GSM SIM. Thus, one part of the communication must use standard Internet protocols,
whereas the second part must deal with the protocols spoken in the GSM world. Currently, the only
practically useful communication path to a SIM is the short message service (SMS) [GSM03.40].
As noted in Sect. 6.3, SIM application toolkit applications can be triggered upon arrival of short
messages. Furthermore the SIM toolkit allows for SAT applications to send short messages to any
destination. The SIM is therefore able to receive requests, process them, and return responses based
on SMS as the communication protocol. Missing is still a component bridging the Internet world
with the GSM world.

4 For a moment we do not consider the fact that a substantial number of issued cards are so-called pre-paid cards where the
operator is not always in the possession of the subscriber’s personal information.

6.5 WebSIM – A Web Server in a GSM SIM 85

Protocols
ISO/OSI Layer Internet WebSIM

7 Application HTTP embedded HTTP request URL

5 Session SSL/TLS WebSIM-specific message frame
4 Transport TCP/UDP GSM 03.48 security envelope
3 Network IP SMS, i.e. GSM 03.40 message

Figure 6.3: WebSIM communication stack

Since SMS is used as the bearer technology in GSM it must be considered that the maximum

transfer unit (MTU) of SMS is currently 140 bytes. Furthermore, most of the GSM SIM cards
we know of use the GSM security mechanisms for the SIM application toolkit as specified in
[GSM03.48] for securely transmitting SMS. This mechanism needs at least 27 bytes for encoding se-
curity transmission parameters, key addressing, and payload description, leaving at most 113 bytes.5

Furthermore, depending on the technical realization in the GSM infrastructure, SMS delivery times
range from a few seconds to sometimes several tens of seconds. This is mainly because mobile
operators do not yet offer enough time-critical services over SMS. Technically, there is no problem
to provide a transmission time of two to five seconds. Anyhow, the number of exchanged messages
must be minimized in order to have a reasonable and acceptable immediacy and round-trip time.

In Sect. 4.5 we have briefly described CITI’s Web server implementation on a Java Card. The
implementation included a partial TCP/IP stack that is responsible for some of the TCP session setup
and acknowledgments (cf. [RFC0761]). For each request sent to the card-resident Web server several
messages have to be exchanged in order to establish a TCP session and subsequently implement
packet transport.

This is clearly not acceptable for an implementation on a GSM SIM due to the number of packets
needed to establish a single connection without exchanging any user data. The approach taken in
the WebSIM is to define a new protocol that is better suited for transmission on top of SMS. The
resulting communication stack is depicted in Fig. 6.3. The underlying network layer comparable
to IP is SMS. As transport layer we use the security envelope from [GSM03.48]. In the payload
of this envelope the WebSIM message frame containing further information such as magic bytes,
the session identifier, and sequence number are encoded. The remaining payload is occupied by the
URL of the initial HTTP request from the client.

6.5.2 Architecture

The overall architecture of the WebSIM is shown in Fig. 6.4 on the next page. The core component
is the WebSIM proxy that is basically a Web server connected to the Internet. The TCP/IP communi-
cation is handled by the proxy’s network stack. HTTP [RFC1945] or HTTPS can be used to connect
from the Internet to the proxy. The proxy understands HTTP requests of the form

�✂✁✍❳ ✡☎✄
phone

✡✭✝✛✁✭✡
cmd

✥✝✆
parameters ✞

5 Other implementations might leave more, but the MTU is always bound to at most 140 bytes.

6.5 WebSIM – A Web Server in a GSM SIM 86

S
M

S
H

T
T

P

Standard ME

SIM Toolkit
Framework

:HE6,0

Web

Server

Applet

,17(51(7

ME for sending

SMS, or direct

access to SMSC

HTTP SMS HTTP

6,0

3UR[\

HTTP over

SMS

tunnelling

HTTP

*60

HTTP

tunnelling

HTTP

Server

HTTP

Figure 6.4: WebSIM architecture overview

The URL is prefixed by the phone number of the destination SIM. The proxy only extracts the
request URL omitting other HTTP header fields such as � ✝✒✎✒✑ ❁✥❲ ✢✣✎✍✚✂✁ ,

❲ ✌✂✁✆�✣✜✒✑✞✖✂✁✭✘✍✁❂✖✙✜✍✚
, etc. which

are not used by the WebSIM. The substring “
✡✭✝✛✁✭✡

” stands for “SIM toolkit” and prefixes the specific
commands implemented in the WebSIM. This request is embedded into a short message conforming
to [GSM03.40] and sent to the destination SIM.

Upon arrival in the mobile phone, the SMS is immediately delivered to the SIM due to certain
type information in the SMS header. The SIM passes the SMS to the Web server Java Card applet and
launches it. The applet parses the URL in the request and triggers any commands encoded. Some
of the commands invoke SIM toolkit commands starting a toolkit session with the mobile phone.
After the session has finished, e.g. the user has typed in a number or selected an item from a menu,
the response is sent back as an SMS to the proxy. A separate process running on the proxy checks
the incoming messages at regular intervals and decodes newly arriving SMS. Based on the header
information in the SMS it is able to correctly forward the response from the SIM to the pending
HTTP request and thus it sends the response back to the Internet client.

6.5.3 Command Set

The SIM-resident stripped-down Web server does only support the HTTP
�✂✁✝❳

request. It implements
the commands listed in Tab. 6.1 on the following page. Most of the commands are based on the
available commands in the SIM toolkit (cf. Sect. 6.3). Sample user sessions based on the ☎ ✌✎� ✌ ✝✝✄ ✞ ✄✒✌ ✄
command are shown in Fig. 6.5 on the next page.

The
✝✂✖ ✢✒✚

command has been implemented to allow for the creation of electronic signatures on
the SIM. Due to the lack of a SIM capable of running cryptographic algorithms we have used a
simple XOR algorithm to just simulate the presence of strong cryptography.

6.5 WebSIM – A Web Server in a GSM SIM 87

URL Description
✡✒✴✆✁✂✥ ✆

text to display ✞ Invokes the SAT command � ✁ ✂ ✂☞� ✏ ✂ � ✌✝☞ ✄ to display the
given text on the mobile phone. No response is returned
to the client.

✡✙✢❂✖✛✥ ✆
title ✞ Presents an alphanumeric input form to the user based on

the SAT command ✁ ✌ ✄ ✞ ✄ ✂ ✡ ✄ titled with the given title. The
text entered by the user is returned as the HTTP response.

✡✙✢✆✚✭✥ ✆
title ✞ Similar to

✡✙✢❂✖
, but accepts only numeric input.

✡✙✢✆☎✭✥ ✆
title ✞ Similar to

✡✙✢✆✚
, but display stars ‘ � ’ while typing. Conve-

nient for entering passwords or PINs.
✡✭✝✂✖ ✁✄✥✝✆

title, item1, . . . , itemn ✞ Displays a menu with the given items by invoking the
SAT ☎ ✌✎� ✌ ✝✝✄ ✞ ✄✒✌ ✄ command. The user can select one of the
items that is then returned back to the Internet client.

✡✭✝✂✖ ✢✒✚✭✥✝✆
text ✞ Displays text and asks the user for confirmation, whether

it should be electronically signed. The signed data is re-
turned to the client.

✡✣✖✩✚✭✵✂✜
Returns information about the current location of the mo-
bile phone. It uses the SAT � ☛✍✠ ☎ ✁ ✆☞✌✄✂✑✠✄✝ ✏☞� ✞ ✄✡✠ ✠☞☛ ✄ ✏ ✄ ✁ ✠ ✄ com-
mand to query the mobile for the mobile country code

(MCC), mobile network code (MNC), location area in-

formation (LAI), and cell identity.

Table 6.1: WebSIM command set supported in the URL interface

Figure 6.5: Examples of WebSIM user interaction. The pictures show how the ☎ ✌✎� ✌ ✝ ✄ ✞ ✄✒✌ ✄ command
is used to perform user interaction in an m-commerce setting.

6.6 Security Analysis 88

6.5.4 Implementation

The implementation of the WebSIM comprises the following components:

— Proxy: The proxy is a laptop running Linux directly connected to the Internet.6 It runs an
Apache Web server that is configured to launch a Perl CGI script when a URL of the pattern
/+phone/. . . is requested. The script extracts the HTTP

�✂✁✍❳
request and spools the request

into a SMS spooling system.

— SMS spooler: The spooling system is implemented in Perl and is responsible for encod-
ing and decoding short messages conforming to the [GSM03.40] and [GSM03.48] standards.
Attached to the laptop via a serial link is a mobile phone implementing the AT command
sets [GSM07.05; GSM07.07] for sending and receiving short messages via a mobile phone.7

The spooler uses these commands to send the SMS to the destination phone and perform a
blocking-wait for the response that is returned to the waiting CGI script upon reception.

— Mobile phone: Any mobile phone compliant to Phase 2+ of the GSM standards implementing
the SIM toolkit can potentially be used as terminal device.

— GSM SIM: The SIM is a Schlumberger SimeraTM GSM SIM [SLB00] implementing Java
Card 2.0 and the card-side portion of SIM toolkit. It has 32 kB of EEPROM of which roughly
23 kB are free for applets. Triggering of applets occurs via the [GSM03.48] toolkit application

reference (TAR) fields, i.e. that the SMS contains information about the application identifier

(AID) of the Web server applet processing the embedded request.

— Web server applet: The Web server applet has a card-resident size of roughly 10 kB. No
space and performance optimizations have been implemented yet.

The WebSIM system went on-line in February 2000 and was fully operational until December 2001.

6.6 Security Analysis

In the previous sections we described the WebSIM architecture and its implementation based on the
core components proxy and SIM-resident Web server. This section focuses on the security properties
integrity, confidentiality, authenticity, and non-repudiation of the WebSIM approach in general and
our particular implementation.

Integrity and Confidentiality

The WebSIM system consists of basically three communication links that handle the integrity and
confidentiality of the exchanged data:

1. Client→ Proxy: HTTP or HTTPS is used as the communication protocol between client and
proxy. HTTP which is implemented over a TCP connection does not offer means for integrity
and confidentiality. HTTPS which is HTTP over SSL/TLS can guarantee both integrity and
confidentiality provided by the underlying TLS layer.

6 The server is connected to Deutsche Telekom Research Department (DTRD); DNS host name: �✂✁ ✄✆☎✞✝✠✟☛✡✌☞✎✍✑✏✒☞✓✡✌☞ ✁ .
7 Another option would be to directly connect to a mobile operators’ short message service center (SMSC) which is the

central SMS store-and-forward node in an operator’s infrastructure.

6.6 Security Analysis 89

2. Proxy→ ME: SMS are transferred over the GSM signaling channel which is encrypted by
the A5 encryption algorithm. Although attacks against this algorithm have been published in
the past, such attacks seem not to be feasible for on-line exploitation. However, integrity of the
signaling channel is not implemented in GSM at the moment, but will be available in future
UMTS systems. Furthermore, there exist attacks where the complete encryption between the
ME and the base transceiver station (BTS) is turned off using a so-called IMSI catcher (cf.
[Fox97]).8 Hence, this channel can be considered secure only to a certain degree.

The general solution to this problem is to protect the SMS with a security envelope such
as standardized in [GSM03.48] that provides confidentiality and integrity of the message.
Furthermore, this standards defines replay counters to protect from replay attacks.

3. ME→ SIM: The communication between the ME and the SIM is done over the built-in card
reader and not encrypted or protected otherwise.

4. SIM↔ME (SAT session): The communication link between the SIM and the mobile phone
during the SIM toolkit session is unprotected, i.e. both devices are physically co-located. This
is the reason, why the WebSIM approach does not fall into the remote communication category
identified in Sect. 3.5.

Thus, the WebSIM system guarantees under normal circumstances “node-by-node” confidential
transmission of data. Integrity is not achieved on the over-the-air link. Furthermore, there exist
attacks, although hard to mount, that allow potential eavesdroppers to intercept the over-the-air
communication. With additional security measures such as the secure SMS envelopes, however,
a reasonably secure system for many applications can be obtained.

Authenticity

Authenticity of the exchanged messages is the subject of the following analysis:

1. Client→ Proxy: Authenticity of the proxy and the client could potentially be provided again
by TLS. Here, server authenticity is of major importance to the client. Client authentication
could be necessary for the server in order to implement access control mechanisms, e.g. for
billing purposes.

2. Proxy→ SIM: SMS are exchanged via a short message service center (SMSC) which is the
store-and-forward node in a mobile operator’s infrastructure. Today, many service providers
have direct connection to an SMSC for sending and receiving SMS. Since some of the systems
are allowed to send arbitrary messages to destination SIMs, the originating address (OA) of a
SMS cannot be used to prove the authenticity of the sender of a message, i.e. the SIM cannot
be sure that the proxy sent the request. This problem can equally well be solved by using the
security envelope of [GSM03.48].

Summing up, authenticity is not guaranteed on the over-the-air by default. However, security en-
velopes can be used to overcome this drawback. Nonetheless, end-to-end authenticity cannot be
guaranteed with the WebSIM system as it stands.

Non-Repudiation

Non-repudiation on the SIM-side is available with the
✝✂✖ ✢✆✚

command only. No public key signature
is available due to the lack of a smartcard capable of public key routines. Client-side non-repudiation
is not supported. Further non-repudiation issues are discussed in Chapter 7.

8 Such systems are available for roughly e 20k.

6.7 Applications 90

Summary

The WebSIM as it is, does not provide end-to-end security between the service provider and the
SIM. This results from the fact that the proxy has to perform a protocol translation from the Internet
to the GSM world back and forth. Hence, the architecture shares some similarity with the WAP 1.2
security model (cf. [WAP98b; WAP99b]) which has the WAP gateway as its protocol translation
engine in between.

Although the underlying GSM system has certain weaknesses, a secure channel between the
Internet client and the proxy on the one hand, and between the proxy and the SIM on the other hand
can be established resulting in a reasonably secure architecture for many application domains.

6.7 Applications

The previous section analyzed the security context of the WebSIM which is the technological basis
of the sample applications presented in this section.

6.7.1 WebSIM-based Authentication in the Internet

Internet service or application providers such as online book stores, Web shops, or banks need secure
identification of customers, i.e. authentication. Today, on-line orders are usually placed via Web
forms or call centers and authentication takes place in various forms, e.g. using password-based
authentication schemes.

In the course of this section S is a service provider, P is the WebSIM proxy, W is the WebSIM,
M is the mobile operator of P , resp. W , and U is the user.

GSM-based Authentication

Involving the WebSIM into the authentication of Internet users allows for more elegant solutions that
can take advantage of secure cryptographic keys, like the subscriber’s individual key Ki based on the
following protocol:

a) S →W : RAND

b) W : ☎ ✌✎� ✌ ✝✝✄ ✞ ✄✒✌ ✄ ✆ ✝✝✠ ✄ ✂ ✡ ✄✒✌ �✂✁ ✂ ✌✝✂ ✁ ✄ ✠☞✞☎✄ SRES = f(Ki,RAND)
c) W → S →M : {RAND,SRES}
d) M : SRES’ = f(Ki,RAND)
e) M → S : SRES = SRES’ ?

(6.1)

a) An Internet application requiring a user authentication sends a random challenge RAND to a
server-side application within the WebSIM.

b) The WebSIM server-side application asks the subscriber via SIM toolkit to authorize the com-
putation of a response f(Ki,RAND).

c) Then f(Ki,RAND) is returned to the originator of the request.

d) The ISP passes RAND and f(Ki,RAND) to the card issuer (resp. the party that knows Ki and f)
who can verify the result.

e) The result of the verification is sent back to the service provider.

6.7 Applications 91

This is a classical challenge/response authentication protocol that can be applied to many other
scenarios, e.g. home banking and access control. Analogously it can be adapted to provide, for
instance, a session key for other purposes. The function f can be based upon encryption algorithms
(like Triple-DES or RSA) or hash functions (such as SHA-1 [FIPS95] or MD5 [RFC1321]) and keys
other than Ki.

The scenario can also be extended to sign transactions (like on-line payments). Here it might
be of importance, that the incoming SMS that carries the HTTP-request contains a (reasonably)
trustworthy time stamp originating from the short message center (SMSC) that was involved. Fur-
thermore, subscriber-individual IDs like the IMSI are available in the SIM.

Provision of One-Time Passwords

One-time passwords for login procedures or transaction numbers (TAN) for bank transactions can
be queried over WebSIM requests. We consider on-line shopping as an example:

a) U → S : Pho

b) S → U : RAND

c) S →W : ✁ ✌✝✄✁� ✡ ✄ ✞ ✌✎☛
d) W → S : RAND’

e) S : RAND = RAND’ ?

(6.2)

a) A user subscribes to a service on the Internet and tells her mobile phone number.

b) The user compiles a shopping list in an Internet shop and orders by submitting the list. The
Internet shop’s Web server sends a one-time password via a Web page to the customer.

c) Simultaneously, the Web server issues a WebSIM request to the customer’s SIM asking to
enter the one time password on the mobile phone. The WebSIM issues an appropriate SAT
command such as ✁ ✌✝✄✁� ✡ ✄ ✞ ✌✑☛ to the mobile phone, prompting the user for the one-time pass-
word.

d) The user enters the one-time password, that is sent back to the Web server, possibly over an
encrypted communication channel.

e) The Web server of the shop checks whether the entered one-time password is correct, and if
so, it acknowledges the purchase.

The advantage is that an authentic channel (GSM) is used to verify the identity of the customer.
Another, reversed variant of this might be as follows:

b) S → U : send Web form
c) S →W : � ✁ ✂ ✂☞� ✏ ✂ � ✌✝☞ ✄✝✆ RAND ✞
d) U → S : RAND’

e) S : RAND = RAND’ ?

(6.3)

b) After submitting the shopping list, the Web server generates an input form where the user has
to enter a one-time password.

c) The server sends the one-time password to the WebSIM, that is displayed on the mobile phone.

d) The user enters the one-time password that is displayed by the WebSIM dialog on the mobile
into the Web form and sends it to the server.

6.8 Related Work 92

e) The Web server checks the one-time password and accepts submission.

Note, that similar one-time password schemes can be implemented by sending a password over a text
SMS to a mobile phone user. The difference to a WebSIM-based approach is that text SMS is just a
(non-interactive) messaging service that is not protected beyond the standard GSM mechanisms.

6.7.2 Using WebSIMs as I/O Channels

The WebSIM can also be used as a pure I/O channel to a mobile user as follows:

Secure User Interaction

A person holding a mobile phone with a WebSIM is standing in front of an ATM, and calls a tele-
phone number displayed on the ATM. The ATM system knows the Web address of the WebSIM
(from CLIP signaling [ETSI00]) and can run several subsequent SAT commands in the WebSIM to
authenticate the transaction, choose the amount of cash to be issued, etc. Essentially the GSM phone
has become the human interface to the ATM and one can imagine ATMs that do not have complex
and expensive human interface hardware but are just a telephone number sign and a cash-dispensing
slot.

Analogously, one can implement online payments, access control, ticket vending, etc. Note that
cryptographic means to secure the result of the user interaction (the input, or the user’s choice) are
easily available inside the SIM.

Push-based Internet Applications

The WebSIM allows to implement push-based Internet applications that push content and interaction
from an Internet node to a mobile user. As an example, consider on-line Internet auctions in which
a mobile user participates by regularly checking for newly placed bids. If a pull-based model is
used, e.g. based on polling the new status using HTTP or the Wireless Application Protocol (WAP)
[WAP98b], this would not only be annoying for potential users but also slow and expensive. Using
the WebSIM one can implement a push-based client that behaves as follows:

a) After registration for a certain item in an auction, a user delegates auction interaction to the
WebSIM by providing the mobile phone number to the auction company.

b) Each time a higher bid is placed – other invocation schemes can be easily thought of – the
auction sends a request to the WebSIM that informs the mobile user about the currently active
highest bid and asks for entering a new, higher bid.

c) The user can then decide to decline or to increase and enter the new bid that is then sent back
to the auction house that places the bid.

Together, besides being a personal security module the WebSIM is a communication module with
important features such as user interaction, mobility, i.e. anytime and anywhere, and push-enabled.

6.8 Related Work

Recently, numerous systems have been proposed and implemented to offer, e.g. mobile payments
and mobile signatures that are considered the enablers of successful m-Commerce. A more general
overview of systems in the area of mobile commerce can be found in [Dur99] and [WSZ01]. In

6.8 Related Work 93

this section we present some of the more interesting initiatives that share some similarities with the
WebSIM approach although none of them provides a technology layer other applications can be built
on top of.

Mobile Operator’s OTA Services

Many GSM SIM smartcard manufacturers implement proprietary over-the-air message interfaces in
the card’s operating system. This interface is usually based on point-to-point short messages that can
be used by mobile operators to trigger certain predefined applications on a SIM. Often the messages
are protected by an appropriate envelope (cf. [GSM03.48]) and used for remote maintenance of
the SIM. Some of the implementations also offer means to trigger certain SAT commands such as

☎ ✌✎� ✌ ✝✝✄ ✞ ✄✒✌ ✄ or ✁ ✌✝✄ ✞ ✄ ✂ ✡ ✄ .
The main drawback still is that mobile operators either do not allow for any kind of access from

the Internet to a customer’s SIM, or they offer this service only in a highly proprietary manner which
is in contrast to the Internet “philosophy” presented in this work.

Paybox

PayboxTM [Pay01] is a payment system that is offered in Germany to allow for mobile payments. A
service provider, e.g. an Internet shop or a taxi issues a payment request to Paybox which forwards
the request to the mobile phone of the user. A voice-box reads the amount of money to be confirmed
and the user then enters her Paybox PIN via dial-tone on the mobile’s keyboard. This confirms the
transaction and Paybox transfers the requested amount to the service provider on behalf of the client.

Currently, Paybox offers only voice-based payment and does not allow for user interaction in
the fashion of the WebSIM. Furthermore, it does not benefit from the SIM as a smartcard, e.g. for
providing electronically signed documents.

mSign Consortium

The mSign consortium is in the process of standardizing an interface how service providers can
obtain electronically signed documents from mobile users to enable secure mobile commerce.9 The
specification [mSi00] says that the consortium

“[. . .] has specified a protocol between a primary service provider, e.g. a merchant or

a bank, and a mobile service provider. The goal is to provide a standardized interface

for the primary service provider to request [electronic, ed.] signatures from an end-user

through a mobile service provider.”

How the particular electronic signature is obtained from the end user is beyond the scope of the
specification and left for implementation by the mobile service provider. A mobile operator could,
for example, implement the mSign specification on top of the WebSIM.

mSign distinguishes between three different levels of security of which only the third one has
end-to-end security features. The first and second are based on signature creation by the mobile
service provider. In both cases the creation of a signature can be considered as remote-controlled by
the user, hence the user is not in the possession and control of its signing key directly.

The way mSign tries to bring electronic signatures into play is actually constrained by the lim-
itations of the SIMs already deployed in the market. Only recently, SIMs capable of public key
encryption are used in the market which would allow for end-to-end digital signatures.

9 The initiative was lead by Brokat Informationssysteme GmbH which holds a patent [Bro97] covering several aspects of
the creation of electronic signatures on mobile phones.

6.9 Summary 94

Other Approaches

There exist other applications based on the SIM toolkit offering dedicated solutions for security
problems. Examples are products for Single Sign-On applications, dedicated authentication systems
for remote login, etc. However, none of the systems and products we know of offers a technology
layer comparable to the WebSIM approach.

6.9 Summary

In this chapter a system was presented that integrates the existing GSM security infrastructure de-
ployed in the shape of several hundred million GSM SIM cards into the Internet. The realization
basically consists of a component that bridges the gap between the Internet and the GSM world
allowing for transparent interaction between an Internet host and a GSM SIM. HTTP was chosen
as the connection protocol since it is de-facto standard in the Internet today for client/server com-
munication and E-commerce applications. The interface can be used by anybody with reasonable
knowledge of Internet technology and hides the complexity of all the lower-level protocols.

To the best of our knowledge the WebSIM is the first attempt to implement a stripped-down Web
server in a GSM SIM. Therefore, there is no direct related work except the Webcard server developed
at CITI presented in Sect. 4.5. Most likely the reason is that GSM SIMs and the SIM application
toolkit are – though an interesting technology – not easily accessible by the academic world, if at all.

Within the overall security framework as presented in Sect. 3.5 the WebSIM shifts more func-
tionality from the terminal to the card, since the SIM uses the mobile phone just for user interaction
and communication made available by the SIM application toolkit. The rest of the processing is
completely done within the card. The number of application domains this model is applicable to
suggests that the idea of a more card-centric view of a security module which uses available termi-
nals for user interaction seems appealing. Open with the WebSIM approach as already mentioned is
the problem of end-to-end security and non-repudiation features. These issues are further discussed
in the next chapter.

Most of the ideas presented in this chapter are published in [GKP00]. A preliminary version appeared
in [GKPV00] and some of the possible application scenarios have been described in [KPSW01].
The system has been in practical use by different research groups of European telecommunication
operators participating in the EURESCOM Project P1005 [EUR01] since February 2000.

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Chapter 7

Open and Secure Service Platforms for
Smartcards

DSLs [Domain Specific Languages, ed.] automatically provide programmers with strong
guarantees of correctness, performance, and security which are hard to achieve with

general-purpose languages such as C, C++, or Java (think of Yacc and SQL). . .

Thomas Ball, Bell Labs, Lucent Technologies, 1999

7.1 Introduction

In the previous chapter we have shown that integrating GSM SIMs into the Internet can provide a
substantial benefit to Internet security both in terms of usability and simplicity. However, one of the
major open problems not solved by the WebSIM approach is the lack of

• end-to-end security mechanisms, and

• non-repudiation.

In this chapter we propose an architecture based on an open service platform for smartcards that
allows for the execution of mobile code written in a domain-specific language. The approach offers
substantial advantages in the way service providers might interact with customers or employees in
the foreseeable future. Furthermore, the security-critical process of creating electronic signatures
on mobile terminals can be improved by shifting most of the critical parts involved in the signature
creation process into a smartcard with the additional benefit of improved usability.

The WebSIM Revisited

The WebSIM as introduced in the previous chapter basically allows for running a synchronous in-
teraction in a client/server fashion between an Internet client and a mobile user.

• The protocol is synchronous due to the HTTP communication based on request and response
pairs. This is somewhat problematic, if latency on the SMS link is high.

• It allows for invocation of at most one SIM toolkit command at a time. However, simple
sequencing of commands could be added rather easily.

95

7.1 Introduction 96

• There is no end-to-end security between the Internet client and the SIM, since the WebSIM
proxy has to recode the request in order to forward it to the SIM and vice versa. This problem
is comparable to the end-to-end security breach known from the WAP 1.2 gateway architecture
[WAP98a].

• As a consequence, atomicity of a sequence of user interactions is not provided.

• The WebSIM does not provide persistent storage on the card for potential services, e.g. loyalty
points applications, or electronic ticketing.

Hence, the WebSIM is quite useful in a number of application scenarios but has certain drawbacks
that should be corrected in order to become a flexible security module for Internet use.

Towards an Open and Secure Smartcard Platform

To overcome the limitations enumerated previously we propose to implement an open and secure
platform for the execution of mobile code in a smartcard that functions as follows:

• The smartcard implements an interpreter for mobile code written in a domain-specific lan-
guage optimally supporting the intended application domain.

• An Internet client sends either synchronous requests or asynchronous messages containing
so-called scripts written in the domain-specific language the card-resident interpreter under-
stands.

• The card’s runtime platform executes the script, handles user interaction, and sends back the
responses (synchronous- or asynchronously) to the client.

• The platform implements key management facilities in order to provide end-to-end security
between the Internet client and the smartcard.

The platform is open in the sense that virtually anybody on the Internet should be able to send such
scripts to a mobile user.

The platform is secure in the sense that neither the mobile code nor the user is able to harm the
platform’s integrity. Furthermore, the platform gives certain guarantees to both – code and user –
that the scripts are executed as intended and no information leakage or secret storage manipulation
can occur by malicious code or an external attacker.

Thus, the platform acts as a trusted computing base running in a tamper-resistant device pro-
tecting the user from the code and vice versa. As such it implements all three types of trust –
personal agent trust, captured agent trust, and undercover agent trust – as defined by [PPSW96]
(cf. Sect. 5.3.4).

Hence, this chapter discusses approach A4 as introduced in Sect. 3.5 focusing on mobility, and
card-driven control of applications. It provides solutions to the above mentioned problems and gives
new insights into the way smartcards can be used as active components in security infrastructures.

The rest of this chapter is organized as follows: Section 7.2 describes the general principles of a
trusted computing base and gives a brief introduction into hardware and software protection ap-
proaches used to yield such a trusted computing base.

The overall architecture of our smartcard platform is presented in Sect. 7.3. It describes the
platform’s components and the platform’s role and trust model, thus introducing the fundamental
ideas of our approach.

7.2 Principles and Concepts of Trusted Platforms 97

Section 7.4 describes in more detail the programming model and language that underlies our
platform. More concretely, it describes the chosen domain-specific approach, the machine model,
and gives a taste of programming with such a platform.

Security issues of our platform are raised in Sect. 7.5 where the pertinent literature on host

security and code security is revisited. This allows to characterize our approach in the design space
defined by the criteria found in the literature. Furthermore, the core design decisions w.r.t. security
issues in our platform are motivated and their solutions are presented.

Section 7.6 concentrates on the communication protocols between a potential client and the plat-
form. Since end-to-end security is a desirable feature, its impacts on the platform, i.e. its interpreter,
code, and data verifier are closely examined. Based on the results different cryptographic protocols
are presented how end-to-end secure communication can be achieved and how key management is
solved in these approaches.

Non-repudiation and the creation of electronic signatures are extensively elaborated in Sect. 7.7.
The results are five different protocols how non-repudiation can be implemented with such a plat-
form, what security risks still exist, and which benefits the solutions give over traditional electronic
signature creation protocols.

Section 7.8 presents a number of sample application scenarios if the platform approach is realized
in combination with a wireless terminal.

Related work is discussed in Sect. 7.9 and the chapter is finished with a summary in Sect. 7.10.
Appendix A presents more technical information on the prototypical implementation undertaken,

a brief listing of the platform’s language primitives, and the language grammar.

7.2 Principles and Concepts of Trusted Platforms

The Orange Book [DoD85, Sect. 6.3] defines a trusted computing base as follows:

“[. . .] The heart of a trusted computer system is the Trusted Computing Base (TCB)

which contains all of the elements of the system responsible for supporting the security

policy and supporting the isolation of objects (code and data) on which the protection

is based.

[. . .] Thus, the TCB includes hardware, firmware, and software critical to protection

and must be designed and implemented such that system elements excluded from it need

not be trusted to maintain protection.

[. . .] The TCB will necessarily include all those portions of the operating system and

application software essential to the support of the policy. Note that, as the amount of

code in the TCB increases, it becomes harder to be confident that the TCB enforces the

reference monitor requirements under all circumstances.”

A trusted computing base is usually implemented using a mix of the following approaches:

— Hardware protection: This can obviously be achieved by physically restricting the access to
the device and the use of tamper-resistant hardware.

— Software protection: This includes e.g. operating system support and language-based pro-
tection.

In the sequel we briefly discuss examples of each of these categories.

7.2 Principles and Concepts of Trusted Platforms 98

7.2.1 Hardware Protection based on Tamper-Resistant Hardware

A trusted computing base that depends on the tamper-resistance of the hardware it is running on
has been described extensively in Yee’s thesis [Yee94] on secure coprocessors and subsequent work
published be Yee et al. in [YT95]. The basic idea is that the data available in the tamper-resistant
security module is not directly accessible but protected by the applications running in the module.
Thus, the underlying assumption is that the hardware operates in a relatively untrusted environment
and must be appropriately protected. Yee et al. give a number of possible application areas for such
devices, in particular these are copy protection for software, electronic cash (monetary values are
kept in the module), electronic contracts (allowing for advanced reselling mechanisms for electronic
goods), and secure postage (electronic stamps).

Smith [Smi96] further categorizes different architectures that consist of a secure data storage in
the trusted computing base and an off-processor host into five different flavours as follows:

— Generalized access which uses the computational ability of the coprocessor to enforce non-
trivial access rules;

— Generalized revelation which uses the computational ability of the coprocessor to transform
the accessed data, depending on the context of the access;

— Autonomous auditing which uses the computational ability of the coprocessor to autono-
mously extract and archive audit data;

— Trusted execution application model which uses the computational ability of the coprocessor
to carry out execution without manipulation by an adversary; and

— Hidden execution application model which uses the computational ability of the coprocessor
to carry out execution whose details are hidden from an adversary.

Usually more than one style is applied in a particular system, e.g. the German “Geldkarte” (cash

card, cf. [Gen99]) uses generalized access and revelation for controlling access and modification of
the electronic cash stored in the card. Furthermore trusted and hidden execution are used to avoid the
observation and manipulation of the algorithms manipulating the amount of electronic cash available
on the card.

Typical examples of tamper-resistant hardware are smartcards. Other systems based on PC plug-
in cards have been described in [Yee94].

7.2.2 Software Protection

After discussing hardware protection, we briefly give an overview of secure operating systems and
language-based protection of which the latter will be used as a basis for the design of the smartcard
platform.

Secure Operating Systems

Many implementations of a trusted computing base build upon the security of the underlying operat-
ing system. Systems such as MULTICS [CV65] have been designed according to particular security
demands. In contrast to tamper-resistant hardware, however, the assumption is that the environment
the system is hosted by is much more trusted, and physical access to the system is usually not given.
Hence, the operating systems is often designed to survive attacks from a network or – in the context

7.2 Principles and Concepts of Trusted Platforms 99

of a multi-user system – from its users. In the sequel we briefly describe examples of systems aiming
at a trusted operating system using different and somehow complementary approaches.

Shapiro et al. have implemented a capability-based operating system called EROS [SSF99]. In
EROS a capability is a pair (object identifier, {authorized operations. . . }), i.e. access to each ob-
ject in the operating system such as processes, nodes, and pages are controlled by such capabilities.
Applications execute within so-called protection domains that are essentially composed of sets of ca-
pabilities to which these applications have access. Although an implementation of EROS on current
mobile devices is not feasible, it demonstrates that low-level security in operating systems might be
an interesting approach to build trusted operating systems on top of which trusted applications can
be implemented.

Stüble et al. [Stü00; PRS+01] (cf. Sect. 5.3.4) are currently implementing a secure operating
system called PERSEUS based on a micro-kernel architecture. This operating system can be used
as a trusted layer on top of which different “untrusted” components, e.g. commercial off-the-shelf
operating systems for mobile devices, can be run. Their approach is primarily motivated by the
pragmatic observation that new solutions cannot be built without considering market facts.

Besides pure research projects today also a number of commercial systems exist that either pro-
vide their own operating system or offer add-ons and modifications to commercial off-the-shelf
products. One such system is the PITBULL operating system add-on by Argus Systems that is avail-
able for LINUX and Sun Microsystems’s SOLARIS 8. Essentially, PITBULL comprises patches to the
COTS operating system that modify kernel data structures, file system layout, and system utilities
to implement fine-grained access control and protection mechanisms. It further defines so-called
compartments that implement new protection domains in the operating system to further control
communication between processes and resources.

The Trusted Computing Platform Alliance (TCPA) [TCPA00] is an industry initiative defining
a so-called trusted subsystem of a computer system. This is achieved by a trusted platform module

(TPM) based on a secure coprocessor that is involved in the secure booting of the operating system.
During boot it checks the integrity of the BIOS, subsequently the operating system’s boot loader and
finally the operating system kernel. Essentially, it builds up a cryptographically protected chain of
trust into the different components involved in the booting phase. The main purpose of this approach
is that the TPM can be externally challenged to verify whether the system is in an expected state after
booting. Thus, it can be checked, whether the system has been tampered with, e.g. new software has
been installed. This is to gain confidence and establish trust into the integrity of the system.

Summing up, there are several approaches to implement trusted systems: tamper-resistant devices
and coprocessors, secure operating system design, secure microkernel systems, compartmentaliza-
tion, and secure booting with the help of additional hardware. Since these approaches are to a large
extent orthogonal, combined usage of these concepts could also be envisioned.

Essentially, the use of tamper-resistant hardware is recommended in environments where the
system cannot be physically protected from an adversary. Thus, secure operating systems can only
work when a potential attacker is subject to all security measures implemented by the system itself.
A tamper-resistant device, though, might give advanced protection even in an hostile environment as
discussed in Sect. 3.3 as long as the terminal the device is attached to is reasonably trustworthy.

Language-based Protection

Language-based protection enforces security policies at the level of programming language objects
in contrast to the resource-centric protection at the operating system level. As defined in [HvE98],
language-based protection

7.3 Architecture 100

“[. . .] rests on the safety of a language’s type system [. . .]

Type safety means that a program can only perform operations on instances of a type

that the language deems sensible for that type. [. . .]

On top of type-safety, the language must also provide some form of access control for

the object [. . .]”

The Java virtual machine, for example, implements language-based protection using its run-time
environment in combination with the byte-code verifier (BCV) [LY99]. Both guarantee that the lan-
guage protection semantics such as object encapsulation are preserved and objects cannot circumvent
encapsulation to get access to otherwise protected information.

The basic ideas of language-based protection will be brought into the design of the smartcard
platform envisioned.

7.3 Architecture

In the previous section we have briefly examined state-of-the-art in trusted platform design and
implementation. For our approach we have identified smartcards already as one component in our
security device. Essentially, we are interested in the answer to the question

How much in terms of security can be obtained, if as much functionality as possible is

shifted from untrusted components into a trustworthy platform available in a tamper-

resistant device?

This section describes a system, its architecture, and properties that is built around this idea.

7.3.1 Components Overview

The overall architecture of our system is depicted in Fig. 7.1 on the following page. We identify the
following components:

— Smartcard: The smartcard is the tamper-resistant device hosting the platform. It is connected
to a terminal that provides input and output facilities to communicate with a user via a trust-
worthy terminal.

— Platform: The card-resident platform is an implementation of a virtual machine responsible
for the execution of mobile code and a management unit for persistent storage.

• Security manager: The security manager is responsible for the correct decoding of any
downloaded code. It checks any electronic signatures, decodes the payload according to
the information given in the header, and loads the code into the proper compartment.

• Service compartments: The service compartment can be considered as a secure con-
tainer for code and data. Based on the identity of the code sender the code is put into the
appropriate compartment or the so-called public compartment otherwise. A compart-
ment contains a service-specific key ring that is used to store keys owned by the service
provider.

• Verifier: The verifier is the component that checks whether all security-relevant proper-
ties are satisfied by the code. This is to ensure that no security violations occur during
execution and that the code can be safely run.

7.3 Architecture 101

Verifier

Security
Manager

&

Key Ring

Data Store

Script

Log
Policy

I/O

&

UI API

7

6

,

Figure 7.1: Overview of smartcard platform components

• Interpreter: After successful verification the code is executed by the interpreter that per-
forms a simple fetch-decode-execute-cycle. The interpreter follows a traditional stack-
and register-based model and implements an instruction set optimized for the intended
application domain.

• User key ring: The user key ring contains all relevant secret cryptographic keys and
certificates needed for operation.

• Policy database: The policy database is owned by the user and contains policies that
guide the interpreter at run-time.

• Audit log: The audit log is persistent storage that is used to record so-called traces

generated by the interpreter during execution.

— Terminal: The terminal provides trustworthy input and output channels to the user and pro-
vides general communication facilities.

— Compiler: The compiler is a component outside the security module that generates code for
execution by the platform.

Although the general architecture is straightforward, the integration of all the security-relevant com-
ponents in combination with the components providing for the execution of mobile code into a
smartcard that essentially controls the terminal is to our knowledge a novel approach not yet found
in the literature.

7.4 Programming Model and Language 102

7.3.2 Role and Trust Model

One of the main issues in an open and secure platform for smartcards is the underlying role and trust
model. We can identify at least the following roles:

— Platform operator/issuer: After issuance, the platform operator is a trusted third party re-
sponsible for the integrity of the platform during operation. Thus the operator guarantees that
the platform

• adheres to a particular specification defining its behaviour,
• does not tamper with the code during execution,
• does not leak sensitive data such as cryptographic keys or other confidential data of both,

platform user and service provider,
• correctly implements any kind of authentication and access control.

Essentially, the platform provider is responsible for giving guarantees to both – platform user
and service provider – that their policies are enforced.

— Platform user: The platform user is the owner of the security module and uses it to perform
security-critical operations such as electronic signatures or authentication.

— Service provider: The provider is the originator of the mobile code sent to the platform for
execution.

Essentially, the trust model is as follows:

— Service provider→Operator: The provider trusts the operator that the code is correctly
executed and cannot be observed during execution. Furthermore, no secret information owned
by the provider may leak from the platform, in particular it must be possible to guarantee the
confidential transmission of data between the provider and the platform.

— Platform user→Operator: Similarly, the user also trusts the operator that the code is cor-
rectly executed, no secret information is leaked, and that any operations authorized by the user
are performed as desired.

Basically, the platform implements a well-defined intermediate entity between provider and user that
both trust.

7.4 Programming Model and Language

The first component of interest in our architecture is the compiler that is responsible for transforming
a human-readable input language into a form understandable by the interpreter. The general concepts
of compiler construction are well-known (cf. [ASU86]) and numerous compiler construction tools
are available today. More interesting, however, is the design of the language itself, an issue that is to
be discussed throughout this section.

7.4 Programming Model and Language 103

7.4.1 A Domain-specific Approach

The general idea of the platform is to provide an execution environment for mobile code, resp. script,
that is sent from service providers to users. Compared to a general-purpose language the application
domain of our language requires at least support for operations such as

• user interaction,

• communication,

• cryptographic operations,

• persistent storage, and

• key management.

Hence, the focus of our language is rather domain-specific and concentrates on user interaction and
cryptographic operations in contrast to a general-purpose programming language.

The very nature of domain-specific programming languages is well expressed in the following
quote from Thomas Ball:1

“Domain-specific languages (DSLs) have had a substantial impact on how software is

created, maintained and modified. Prototypical examples of DSLs are YACC, SQL,

spreadsheets and HTML. These languages exemplify many of the unique attributes of

DSLs:

1. DSLs automatically provide programmers with strong guarantees of correctness,

performance, and security which are hard to achieve with general-purpose lan-

guages such as C, C++, or Java (think of Yacc and SQL);

2. DSLs allow non-programmers to program (think of spreadsheets);

3. DSLs, by providing high-level abstractions tailored to the problem domain, allow

programmers with general skills to program in a new domain without having to

know platform details (think of HTML and Web services).”

Using a domain-specific language that optimally supports the intended application domain of run-
ning applications in a smartcard seems to be appealing for at least two reasons:

• An efficient interpreter can be implemented more easily for a domain-specific language since
any necessary primitives and types can be efficiently encoded into suitable runtime data struc-
tures.

• The complexity of the verifier increases with the complexity of the language in which the
programs are written. Furthermore, knowledge about the application domain is a necessary
precondition to be able to perform a verification process. Hence, a small domain-specific
language might be easier to verify than a general purpose language – an issue elaborated
further in Section 7.5.

Summing up, a domain-specific approach avoids complexity where possible by concentrating on the
necessary functionality. Especially, the implementation of a verifier and an interpreter on-card is a
challenge that seems to be realizable for a restricted problem domain only.

1 Taken from the introduction to the Proceedings of the second conference on Domain-Specific Languages (DSL’99), Octo-
ber 3–5, Austin, Texas, ACM Press, page 5.

7.4 Programming Model and Language 104

7.4.2 Virtual Machine Model and Instruction Set

Virtual machines and interpreters are known since the early sixties. The basic concepts are well-
understood and our concrete implementation is inspired by two modern interpreted languages –
Forth [ISO97] and the Java VM instruction set [LY99].

In this section we just briefly list the minimal set of commands a platform should at least support.
A more detailed listing of the commands is given in Appendix A.

Type System

Based on the general functionality needed at least the following data types are mandatory:

• Strings, i.e. concatenated arrays of characters

• Integer numbers

• Booleans

• Cryptographic keys

Hence, no higher data structures are available. Although this seems rather restrictive we have found
these primitives to be sufficient for our application domain.

Data Stack

The virtual machine uses a simple stack for computations. Primitive operations essentially operate
on the operands available on the stack. Typical operations are

☎✄✌❂✝ �
,
☎✏✜✛☎

,
✝✁�✏✘✍☎

,
✴✙✌✄☎

,
✑✭✜✙✁

, etc. as
known from Forth. The stack size is fixed and any stack over- and underflow must be detectable by
the verifier prior to execution.

Registers

Registers are used as volatile or persistent storage for intermediate or persistent data. Registers are
accessed simply by their address. Primitives operating on registers are

✹✄✜✄✘✙✴
and

✝✛✁✣✜✙✑✭✎
, transferring

data from a register onto the stack and vice versa.

Key Store

Keys are sensitive cryptographic data that must be protected from leakage. Therefore, we introduce
an elementary type key, and operations using keys are specially type-checked to avoid leakage. Keys
are organized in a key store that is essentially organized as an array being a container for the keys.
Keys can be installed by a service provider to allow for confidentiality and authentication of trans-
mitted scripts. In contrast to registers, the key store is addressed using the primitives

✂✭✹✄✜✄✘✒✴
and

✂✞✝ ✁✣✜✒✑✭✎
.

Transactions

Atomic updates of persistent data on the card should be possible in general. We follow a straightfor-
ward approach for transactions based on logging storage updates from the execution of the primitive✲✏✎✍✢❂✖✩✚

until one of the primitives
✳✒✜ ✷✄✷ ✖ ✁

or
✑✭✜✆✹✄✹✍✲✏✘✭✳✁✂

is encountered in which case the temporary
changes are ultimately committed or discarded. No nested transactions are supported due to the
complexity for an on-card implementation and the questionable need of such functionality.

7.4 Programming Model and Language 105

User Interaction

User interaction plays a central role in our personal security module. The card must be able to
connect to a suitable terminal as defined by the user in an appropriate policy description and config-
uration. From a language perspective this is not subject of control, since applications written by a
service provider have no knowledge about a user’s terminals.

Hence, the platform must offer suitable primitives that allow running scripts to interact with the
user through the user’s preferred terminal. Although a diversity of user interaction models could
be considered, we concentrate on a small set of core user interaction primitives that are necessary
to cover most of the possible interactions needed for our application domain and which are imple-
mented by small terminals such as mobile phones. Therefore, we start with the primitives

☎✏✹✆✘✙✓✄✁✣✜✍✚✣✎
,✴✞✖✒✝ ☎✏✹✄✘✙✓

,
✖✩✚✄☎✄✌✄✁

, and
✝✒✎✆✹✄✎✭✳✛✁

only.
Besides user interaction primitives there exist mechanisms to create a log of user interactions

that can be considered as first class objects. This issue is further discussed in Sect. 7.7.6.

Communication Primitives

Besides user interaction primitives, other means for communication are needed. Essentially, facil-
ities for sending messages to other communication partners are needed. Furthermore, is should be
possible for scripts to register for the reception of incoming messages. We use the concept of chan-

nels as a communication link abstraction. Each script has access to a standard channel, that is the
link the script was received from. This allows a script to communicate without further knowledge
about its environment with its originator using the primitive

✑✂✎✭✝ ☎✏✜✍✚✞✝✒✎
.

Control Flow Primitives

Obviously, control flow is a central issue in any programming language. Although
✢✣✜✙✁✣✜

’s are con-
sidered harmful [Dij68], at the level of a simple stack-oriented programming language they have
clear benefits. Hence, the platform supports unconditional and conditional branches in the form of
‘
✢✣✜✙✁✣✜

label’ and ‘
✖✛✵

condition
✢✣✜✙✁✣✜

label’. Program termination is indicated by the primitive
✎✁�❂✖✩✁

.

Boolean Predicates

Boolean predicates are needed to allow for arbitrary control-flow decisions. The usual set of opera-
tors for the different data types are needed such as

✘✛✚✭✴
,
✜✒✑

,
✚✏✜✙✁

,
✎✆☞

,
✚✏✎✆☞

,
✹✙✁

,
✢✄✁

,
✹✄✎

,
✢✣✎

, etc.

Arithmetic Primitives

Integer arithmetics can be performed using the standard operations
✘✒✴✄✴

,
✝ ✌✄✲

,
✷ ✌✣✹

,
✴✞✖ ✼

, and
✷ ✜✒✴

.

Summing up, we follow a minimal approach by just adding the core set of primitives that is in our
opinion necessary to allow for useful applications. Further extensions are possible, but the overall
security of the platform must always be guaranteed.

7.4.3 Programming with a Platform

As intended, the platform presented previously is programmable, i.e. it can be used to execute pro-
grams or scripts written in our domain-specific language. Basically, this eliminates the problem that
user interaction is restricted to one instruction only as it was the case in our WebSIM implementa-
tion. Instead, the outlined set of primitives defines a language suitable for implementing basic user
interaction combined with cryptographic operations.

7.4 Programming Model and Language 106

1
☎✁�✑✏ ✝✄✂ ✍✆☎

2

3
✂✆✏✞✝✠✟ ✝ ☞ ✁ ✏☛✡ ✄ ✝ ☞✎✄ ✝✌☞ ✡✍�✁✝ ✟✎✡✑✏

4 ✒✔✓ ✟ ✁ ✡ ✄ ✝ ☞✎✄ ✝✌☞✖✕ ✓✘✗ �✑✍ ✝✘✝ ✒ ✕✖�✁✙✆✝ ✁✘✒ ✍✚✡✑✏
5

✝✎☞ ✡✄✛✢✜✁✜✔✣✢✣✌✛✢✛✁✤✢✥✁✛✠✦✞✤✁✧✢★✑✡✎✏
6

7
✝ ✟✁✂✔✙ ✁ ✟ ✁✩✒ ✍ ✓ ✍ ✝✘✝ ✒ ☎

8
✂✪✙ ✓✬✫ ✍✖✝ ✒ ✁ ✏

9
✂ ✗ ☎✌✭✯✮✩✡✌✰ ✁✎� ☎✠✕✢✱✞✏✖✝ ✟✔✕✑✄ ✝ ☞✑✄ ✝✌☞ ✡✲�✠✝ ✟✴✳✶✵ ✒

10 ✷ ✝ ☞ ✝ ✒✸✓✩✗ �✎✍ ✝✘✝ ✒✸✹ ✤✢✧✁✺✢★✻✮✽✼ ✒ ✍ ✝✘✾ ✗ ✁ �✖✓ ✍✖�✌✭✎✿✎✳❁❀✢❂✢❃✆★✁✤ ✡✌✡✬✿❄✏
11

☞ ✝✒☎✌✂✪✙ ✓✬✫ ✏
12

13
✂ ✗ ☎✌✭✯✮ ✟ ✓ ✏✠❅❆✿❄✏ // mark following entries on stack

14
✂ ✗ ☎✌✭✯✮✩✡✄❇✖✙ ✓ � ✁ ✕ ✒ ✁✎� ✕✑✄ ✝ ☞✖❈✔✡✁✿❄✏ // this is the title of the menu

15
✂ ✗ ☎✌✭✯✮✩✡✌✰ ✁✎� ✕✒✄ ✝ ☞ ✡✞✡✂✡❉✡✁✿❄✏ // first item

16
✂ ✗ ☎✌✭✯✮✩✡✩❊ ✓✩✒ � ✁ ✙❄✡✁✿❄✏ // second item

17
☎ ✁ ✙ ✁ �✑✍✯✏ // pushes number of selected item onto stack

18

19
✂ ✗ ☎✌✭❋✮●✛✆✿❆✏

// number of choice of interest
20 ✁ ✾✖❈✎✏ // check for selected item == #2
21

✝✌✱☛✮ ✍✞✏ ✗ ✁ ✿■❍✞✝✑✍✖✝ ✁✩✒ ☞❏✏ // branch to end if selected "Cancel"
22

23 ✁✩✒ ✍ ✁ ✏✯✳
24

✂ ✗ ☎✌✭✯✮✩✡✄❀ ✒ ✍ ✁ ✏✖✕ ✒ ✁✎� ✕✑✄ ✝ ☞✞✕✎✮✽❑✠✕✁❀✁❂✢❃✪✕✞★✬✦✔✿✎✳❉✡✁✿❄✏
25

✝ ✒ ✂ ✗ ✍❋✳ ✝ ✒ ✍▲✏ // require user to enter numeric amount
26

☞ ✗ ✂▲✮✌✿❄✏ // duplicate entered amount
27

✂ ✗ ☎✌✭❋✮✲★✠✦✔✿❄✏ // push 64
28

✙ ✁ ❈✎✏ // check, if it is less or equal
29

✝✌✱☛✮ ✍✞✏ ✗ ✁ ✿■❍✞✝✑✍✖✝▼✝✘❅◆✳
// then continue

30
✂✪✙ ✓✬✫ ✍✖✝ ✒ ✁ ✏ // indicate that higher amount is needed

31
✂ ✗ ☎✌✭✯✮✩✡✄❇✖✙ ✁✢✓ ☎ ✁ ✕ ✁✩✒ ✍ ✁ ✏✞✕ ✓ ✕✒✄ ✝✎☞✁✕✢❍✞✏ ✁✢✓ ✍ ✁ ✏✪✕✞✍✠✭ ✓✩✒ ✕✁❀✁❂✢❃✖✕✢★✠✦☛✡✄✡✠✿❆✏

32
☞ ✝✒☎✌✂✪✙ ✓✬✫ ✏

33
❍✞✝✒✍✞✝ ✁✘✒ ✍ ✁ ✏❖✏ // repeat input

34

35
✝✘❅❋✳ ☎✎✍✖✝✑✏ ✁ ✮✩✣✠✿❄✏ // store amount in register #1

36
✂ ✗ ☎✌✭✯✮ ✟ ✓ ✏✠❅❆✿❄✏ // push marker on stack

37
✂ ✗ ☎✌✭✯✮✩✡✌✼✖�✎✍ ✝✘✝ ✒ ✳✶✕✠❇✪✙ ✓ � ✁ ✕ ✒ ✁✎� ✕✑✄ ✝ ☞✢✵ ✒ ✡✁✿❄✏

38
✂ ✗ ☎✌✭✯✮✩✡✌✼ ✗ �✑✍ ✝✬✝ ✒ ✳P✕ ✹ ✤✢✧✢★✠✺✞✵ ✒ ✡✁✿❄✏

39
✂ ✗ ☎✌✭✯✮✩✡ ✷ ✝ ☞✞✕ ✓ ✟✪✝ ✗✁✒ ✍❋✳✶✕✬❀✢❂✢❃✖✕✑✡✁✿❄✏

40
✙✁✝ ✓ ☞❖✮✌✣✁✿❄✏

41
☎ ✝✩❍ ✒ ✮✄✿❆✏ // create signature

42

43
✏ ✁ ☎✌✂✪✝ ✒ ☎ ✁ ✮✄✿❄✏ // send signed data back to bidbiz

44 ✁✩✒ ☞▲✳ ✁✬◗ ✝ ✍▲✏
45 ❘
46 ❘

Figure 7.2: Mobile auction client script

Mobile Auction Client

The example in Figure 7.2 is an implementation of a script that notifies mobile auction participants
about the current highest bid in an auction and enables them to instantly place a new bid.

A script starts with header information about the name of the script and its provider (lines 3–5).
The

✖ ✷ ☎✏✹✄✎ ✷ ✎✍✚✂✁✣✘✙✁✞✖✙✜✍✚
part (line 7) contains the actual program.

Lines 9–10 demonstrate how to display an initial message about the latest news of the online
auction. Lines 13–17 show how the arguments for a

✝✙✎✄✹✄✎✭✳✛✁
are pushed onto the stack marked by

the initial marker set in line 13. After the selection has been performed the arguments including
mark are removed from the stack and the number of the selected item is available on the stack.

Lines 19–21 check, whether the subscriber selected item no. 2 (i.e. “Cancel”) in which case a
jump to the label at the end is performed. Otherwise an input dialog is opened in lines 24–25 and
the input from the subscriber is returned on the topmost stack position and duplicated in line 26.

7.5 Mobile Code Security 107

Then the entered amount is checked in lines 27–29, whether its is greater than 64. Otherwise a text
is displayed in lines 30–32 and execution resumes to the input dialogue.

Finally a return token is compiled onto the stack and the response containing all elements includ-
ing the amount entered are sent back through the input channel to the script originator.

This example illustrates how programming with our platform actually looks like and user interaction
and communication takes place. The next section focuses on the security problems inherited by such
a mobile code platform approach and describes appropriate countermeasures.

7.5 Mobile Code Security

According to Carzaniga et al. [CPV97] the mobile code model that has been chosen for the smartcard
platform belongs to the remote evaluation category of mobile code systems that is characterized by
a client sending code to a server for evaluation. Mobile agents extend this model by integrating state
that is migrated to a remote host offering additional means for the agent’s itinerary. One of the most
problematic issues with mobile code in any form is the overall issue of security which is traditionally
characterized by two different objectives:

— Host security: The protection of the platform from the mobile code.

— Code security: The protection of the mobile code from the platform.

Each of these will now be considered in more detail.

7.5.1 Host Security

A good overview of techniques for implementing host security is given by Fong [Fon98]. Following
his categorization host security can be achieved by several different approaches discussed in the
sequel.

Discretion

This approach refers “to the human judgement of the level of trust to be granted to mobile code units.”
Technically, this approach is implemented by electronic signatures as visible in many industrial-
strength systems such as Java [KG98; Oak98] or ActiveX [Cha96]. However, the general problems
with such electronically signed code are twofold:

• First is the semantics of the signature itself which can be formulated also as “what essentially

does the signature state?” Such an electronic signature is meant to establish trust into the
issuer of the mobile code but this process is not only a technical problem as has been discussed
earlier in this thesis.

• Second, the access to the signer’s key might be compromised.2 This effectively renders any
signature based on this key meaningless.

In the open platform we have in mind code signing is not applicable for at least two reasons:

2 For example, in March 2001 is was reported [Sla01] that a person was able to “steal” several certificates issued by Verisign,

Inc. intended for signing code issued by Microsoft Corp.

7.5 Mobile Code Security 108

• Potentially, every Internet client should be able to send code to a user’s platform. Thus, there
would be as many code signers as potential clients which also is counter-productive to the
user’s problem of establishing trust into a signature.

• This problem can be circumvented by a trusted third party that checks the code and issues
certificates for any mobile code sent for evaluation. Unfortunately, this breaks any end-to-end
security which has been considered as a fundamental requirement of our approach.

Summing up, any form of electronic signature intended to certify the code is not applicable in our
system.

Transformation

Transformation relies on the observation that many mobile code languages use different representa-
tions for the input language and the shipped code (cf. Java source-code and virtual machine byte-
code). Thus shipping the source-code in which no unsafe behaviour can be expressed might have
several advantages over shipping a potentially unsafe language.

Transformation then deals with the transformation of the safe language into an executable, but
possibly unsafe one, with a suitable compiler under the control of the target platform.

Although appealing, we do not further follow this approach since any form of transformation can
be considered as resource-intensive which should be avoided for smartcards.

Arbitration

Arbitration is based on the idea to “[. . .] protect a host from ‘direct’ contact with untrusted execution

units.” The most common approach of this kind is abstract interpretation found in Java or Safe Tcl
[OLW97]. It avoids that critical resources such as memory and communication links can be directly
controlled by the executed mobile code. Instead, any computation is done by an interpreter that is
able to perform any suitable security checks prior to execution. The security manager known from
Java is an example of such a security layer.

Clearly, our approach follows the arbitration approach since we use an intermediate byte-code
representation that is to be interpreted by the on-card interpreter.

Verification

Verifiers are generally considered as programs that check other programs for particular security
properties. In the context of object-oriented languages security properties are often expressed by
object encapsulation which is often achieved through a suitable type system. Thus, type checking of
programs is vitally necessary to guarantee these security properties. Java uses its byte-code verifier
to check code loaded into the JVM for a number of security properties, among others:

— Stack over- and underflow checks guarantee that at no point of execution a state is reached
in which computation cannot continue due to stack errors.

— Type-correctness guarantees that at no point of execution a JVM byte-code instruction finds
stack operands of illegal type.

These kind of properties can be checked prior to execution or at runtime. The latter approach usually
results in higher execution costs and should generally be avoided.

7.5 Mobile Code Security 109

Other verification approaches, e.g. proof-carrying code [NL96] and byte-code verification based
on model checking [PV98], have been proposed as formal verification techniques, neither of them is
currently applicable in the context of smartcards due to resource limitations.

For our platform we think that the verifier approach prior to execution has the general benefit that
users are not bothered with applications that fail during execution for reasons that could be checked
prior to execution. Thus, a malformed applet is not executed at all and user acceptance is likely to
be much higher if script execution cannot fail because of such kind of programming errors.

Besides the stack and typing properties we also consider a problem which is of particular impor-
tance with smartcards: termination.

7.5.1.1 Verification of Termination Properties

Technically, smartcards operate as servers in a client/server-model. Requests are sent to the card,
the card performs its operation, and after computation results are passed back to the client. Unfor-
tunately, smartcards performing a long-running computation are not under the control of an external
device. Thus, it is generally unclear in which state the computation is without interrupting the com-
putation. Furthermore, this means that it is not easily possible to interrupt an on-card computation
without resetting the card, i.e. to bring it into a well-defined initial state.

Towards a Non-Turing-Complete Language

Resetting the card is not acceptable for our platform and special precautions must be taken to avoid
such situations. To solve this problem we start with the observation that it is not necessary that
our domain-specific language supports long-running computations based on appropriate control-
flow primitives. Instead, as the name suggests, a script is much more comparable to a language for
advanced user interaction. Thus, constraining the language in a way that it is not Turing-complete

anymore is worth further discussion.
Considering the control-flow graph of a program, any acyclic graph obviously leads to guar-

anteed termination as long as all instructions terminate. However, this might be too restrictive for
practical use. A relaxation on the other hand could be achieved by taking into account the user in-
teraction occurring during execution. Since we expect an application to perform some kind of user
interaction at regular intervals it can be left to the user to decide about termination of a script. Each
time the smartcard performs input and output with the user control leaves the smartcard and is given
back to the terminal. Thus, at any user interaction taking place a script is potentially interruptible by
the user.

Control flow primitives are available with the
✢✭✜✙✁✣✜

statements and
✎✁�❂✖ ✁

manipulating the control
stack. We place the following restrictions on the control-flow graph of an application:

(a) Each possible path of execution in a script must pass an
✎✁�❂✖ ✁

statement. This ensures proper
termination of the program.

(b) The control-flow graph of the application may have cycles, if and only if along each cycle
there exists at least one call to an interruptible interaction primitive. Currently, those are the
user interaction primitives

✴✞✖✆✝✩☎✏✹✄✘✙✓
,
✝✙✎✄✹✄✎✭✳✛✁

,
✖✩✚✄☎✄✌✂✁

, and
✑✭✎✂✝ ☎✏✜✍✚❂✝✙✎

. This ensures that an
application cannot loop without user’s notice.

Figure 7.3 on the next page illustrates the last property. It shows an example of a legal jump (in-
dicated by an arrow) in the control-flow graph. Numbers indicate maximum distance to end of

7.5 Mobile Code Security 110

c=

=n
User

Interaction

End Node

Start Node

Backwards
Jump

Figure 7.3: Sample platform control flow

application (bottom-most node). Jump of interest is from node c to node n and is allowed since all
possible paths from n to c pass a user interaction (node 2).

These restrictions yield a constrained domain-specific language that does not allow for, e.g. iter-
ation over a fixed set of numbers without subscriber interaction. Furthermore, there is no support for
dynamic data structures such as sets or lists. Despite these limitations we have found the resulting
language very flexible for our application domain and we are still looking for interesting examples
that cannot be encoded with the current set of language primitives and control flow restrictions and
therefore would need further support from the platform.

Rudys et al. [RCW01] also consider the problem of termination of possibly untrusted applica-
tions. Their soft termination approach is based on runtime language support of the mobile code
language objects, e.g. threads, that is subject to potential termination by an administrator or system
resource monitor. They have prototyped an implementation in Java that uses byte-code instrumen-

tation to insert additional termination checks into the byte-code. Their approach is generally appli-
cable to our problem domain, but would not contribute any improvements. Further work concerning
termination can also be found in the same paper.

7.5.1.2 On Illegal Data Flow

Another issue that is subsumed by the notion of host security is the problem of information leakage

or illegal data flow. This problem has received attention in a number of recent publications [VSI96;
Mye99; BCM+00]. However, since scripts run in a safe compartment the only data objects they are
in charge of are

— the script’s state,

— the persistent state found in the compartment within the platform at the time of a script’s
arrival, and

— the input received from the user during execution.

Thus, a script cannot obtain any information to which it has no direct access. Further constraints,
e.g. controlling whether the security-sensitive information, such as, service provider keys are leaked

7.5 Mobile Code Security 111

could be implemented, but does in our opinion not really contribute to the overall security. Basically,
the script is free to do whatever it wants with its own information and the information leakage
problem does not exist in our domain-specific environment.

7.5.2 Code Security or the Malicious Host Problem

In the previous sections we have extensively discussed the host security issues of mobile code. In
contrast, code security considers the problem of the security of mobile code from a potentially mali-
cious platform. This problem has been extensively studied in the mobile agents community over the
last years and it has been shown to be hard to tackle. Since the literature is exhaustive we only list
some of the published approaches:

— Trustworthy tamper-resistant hardware such as smartcards have been proposed by Wilhelm
et al. [WBS98; Wil99], Yee [Yee99], Fünfrocken [Fün99], Pagnia et al. [PVGW00], Karjoth
[Kar00], and Loureiro et al. [LM00] based on the concept of a (mobile agent) platform imple-
mented in tamper-resistant hardware.

— Encrypted functions as proposed by Sander and Tschudin [ST98b; ST98a], Loureiro et

al. [LM99], and Algesheimer et al. [ACCK00] operate on encrypted data and produce a result
in encrypted form, thus the data is not exposed to the platform. Although encrypted functions
are a nice idea this concept is not yet powerful enough to be applied to the kind of applications
we consider.

— Cryptographic traces have been proposed by Vigna [Vig98] to capture and sign a trace of
the execution of a mobile agent on a platform which can be verified afterwards. Such kind
of traces will be subject to electronic signature creation described later in the course of this
chapter.

— Code obfuscation and encryption has been proposed by Hohl [Hoh98a] to prevent the in-
spection of a mobile agent by a malicious host for a certain period of time. However, this
approach is also not applicable to our system.

In mobile agent systems the basic scenario is that itinerant agents hop from platform to platform
to perform specific tasks such as buying goods, etc. They interact with the platform, often orga-
nized as a kind of electronic market, or other agents. In contrast, our scripts are not itinerant and
communication occurs between scripts, the platform, and the user only.

Thus, the only code security mechanism that is left is therefore the trustworthy tamper-resistant
approach. This means that a script’s security could be directly subverted from the following entities:

— The platform, but this is eliminated by the fact that our fundamental assumption is that the
platform is trustworthy and hence is considered not to be malicious (cf. Sect. 7.3.2).

— The user, who has no access to the internals of the platform which is implemented in a tamper-
resistant device.

— Some malicious code, e.g. viruses that have access to the interface between platform and user.

Thus, the only problem is malicious code that might be able to control the human-device interface.
This issue equals the problem of smartcards in hostile environments (cf. Sect. 3.3) and is not directly
related to the problem of host and code security.

Nevertheless, this problem is further discussed in Sections 7.6 and 7.7.5 and attacks and possible
countermeasures are presented there.

7.6 Communication Protocols 112

Summing up our approach can be characterized as resting on

• tamper-resistant hardware and an appropriate trust model to solve the malicious host problem,
and

• language-based protection and user diligence to solve the malicious code problem.

Hence, both problems have been suitably covered and solutions have been presented.

7.6 Communication Protocols

In the previous sections we have described how the platform is designed according to the mobile code
paradigm and what are the fundamental principles on top of which host and code security are built.
This section now considers the problem of end-to-end security that deals with the cryptographic
protocols used for communication and especially discusses the role of the verifier in such scenarios.

7.6.1 Verification and the End-to-End Argument

End-to-end security of a system is commonly understood as a property of the communication channel
between the endpoints of a multi-tier system. Thus, if a communication channel is established
among the nodes n1, . . . ni, . . . , nm, then we say that the communication between n1 and nm is
end-to-end secure, if none of the intermediate transport nodes n2, . . . , nm−1 is able to eavesdrop the
communication or tamper with messages without being detected. Usually, the intermediate nodes
only transmit data whereas the endpoints produce and consume messages.

For the design of a system this means that no intermediate node is able to view or change the
contents of the messages without subverting the end-to-end security property. This implicitly means
that any architecture providing end-to-end security cannot use content-recoding at some intermediate
node. Both, the WebSIM approach presented in the previous chapter and the WAP 1.2 architecture
relies on some “gateway” to perform recodings. Such encodings on the other hand can be performed
on basically two different categories of information a program consists of: the code and the data on
which the code operates.

This implies, that from an architectural point of view we have to consider the following compo-
nents:

— Compiler: The compiler C compiles programs into a code section C and data section D.

— Code verifier: A code verifier Vc is responsible for verifying that the code section of a pro-
gram matches the needed properties, e.g. stack behaviour. Thus, Vc is basically a predicate
vC(C). In this case the code C contains references to data elements in the corresponding data
section D and a natural outcome of the type-checking process is some kind of typing pred-

icate t that checks, whether the data section matches the requirements from the code to be
valid.

— Data verifier: A data verifier Vd checks that the data matches the code, e.g. checks for proper
data typing and usage. Essentially, this means that besides checking for the integrity of the
data it needs to know the typing predicate t to check, whether D satisfies t or not, i.e. Vd is a
predicate vD(D, t) that among others computes t(D).

Table 7.1 on the following page illustrates the most interesting placements for compiler C and the
verifiers Vc and Vd.

7.6 Communication Protocols 113

(1) (2) (3) (4)

Provider – C C C

Operator C,Vc,Vd Vc,Vd Vc –
Platform – – Vd Vc,Vd

Table 7.1: Compiler and verifier placement

Basically, we have the following placement options:

(1) Here, the operator hosts and operates all components. Hence, service provider and platform
have to trust the operator and no end-to-end security features are available.

(2) This option does not change the situation from a security perspective since the verifiers hosted
by the operator have unrestricted access to the code to be verified.

(3) Data confidentiality can be achieved if the compiler generates an encrypted data pool that is
only verified by Vd in the platform after decryption of the end-to-end securely transmitted
data has taken place. This is a general improvement over options (1) and (2) if the data portion
of a script is considered to be much more security-sensitive than the corresponding program
portion.3

(4) Code and data confidentiality can be achieved if not only the data verifier Vd is placed in the
platform as in option (3), but also the code verifier Vc. Such an approach is necessary, if the
program itself, i.e. the fact that something is reported at all, might be of high confidentiality.

Obviously, the placement of the two verifiers for code and data are critical for the overall end-to-end
security guarantees. Depending on the desired level of confidentiality, option (3) or even (4) must be
considered.

7.6.2 Communication Protocols

In the previous section we have investigated the different options of placing a verifier for code and
data at particular locations. Consequently, appropriate protocols have to be considered to provide
the necessary end-to-end security for code and/or data.

End-to-end security requires that messages are encrypted either by a symmetric encryption us-
ing a shared secret, e.g. DES, Triple-DES, IDEA, etc., or public key cryptography, e.g. using RSA.
Generally, it makes sense to agree on a shared secret to avoid the necessity to extensively use com-
putationally expensive public key algorithms. Several approaches to the exchange of a shared secret
could be considered:

(a) Each platform C owns a platform public key pair (SC , PC). This can be used as follows:

• Transmit a persistent shared secret from the service provider to the platform using the
public key SC . This shared secret would then be used for all subsequent communication.

3 We argue that this assumption might be true for a reasonable number of applications. Consider for example sales figures
reported to the CEO of a global company. Here the fact that a sales figure is reported in the form of a script is of less
importance than the actual sales figure numbers.

7.6 Communication Protocols 114

• Transmit a temporary shared secret for every transmission of a script implying each
time the use of public key encryption.

(b) Use another secure communication channel between the service provider and the platform.
This could easily be achieved with the help of the platform user as an intermediate node.

A scenario would be that the user is running a Web session over HTTPS with the service
provider’s Web site S. This session is used to securely transmit a secret to the user U who
then types in the secret using a generic application on the platform that transforms the key
into an appropriate cryptographic key. For a key of 128 bits of size one could use an alphabet
that comprises the symbols {

❲
– � ,

✦
–

✱
}, i.e. roughly 5 bits per symbol. Thus a secret of about

25 characters of length could be used to transfer a highly secure key. A service provider then
can decide upon the necessary security level by transmitting a shorter secret, if desired.

After deciding the general way how key exchange should be performed the resulting protocols can be
developed. We consider both cases in more detail and especially discuss authenticity, confidentiality,
and integrity.

7.6.2.1 Public Key Communication Protocols

In the sequel we describe, how communication protocols based on public keys can be used to estab-
lish secure communication between service provider and platform.

Public Key Pair

Each platform C owns a secret K shared with the platform operator, an identity id S , and a public
key platform key pair (SC , PC). This key pair can be installed in the platform at time of issuance by
operator M , or later by on-card key generation. In the latter case a user can trigger the key generation
and the mobile operator could use the shared secret K , and a random value n to securely obtain the
public key PC from the card and at the same time verify its authenticity as follows:

C →M : sigK(idC , PC , n). (7.1)

The platform operator makes the public key PC of the platform available as certificate in a central
directory, e.g. Web or LDAP server. Hence, the directory provides a mapping id c → PC from the
platform identity idC to the platform’s public key PC .

Secret Key Installation

The platform offers each service provider S mechanisms to install a secret symmetric key KS into
the platform. Each provider generates a unique key for each individual platform. This would enable
confidentiality of communication S → C but is not sufficient to prove the authenticity of the sender
S that installs a secret key KS. In the Internet this is basically solved with the use of server certifi-
cates used in SSL, i.e. the client verifies that the sender is actually in possession of the secret key
belonging to the certificate of the sender. Since the verification process is a rather complex process
(challenge-response authentication, certificate revocation list checking, etc.) for practical reasons it
should be performed off-card. This implies that another trusted party performs the authentication
of the service provider at secret key installation time. In the following protocols we follow this

7.6 Communication Protocols 115

argument and embrace the platform operator M into the installation process.4

S →M :
{
idC , encPC

(KS , k, i, n)
}
,

M → C :
{
encPC

(KS , k, i, n), idS , m, Σ
}
,

with Σ = sigK

(
encPC

(KS , k, i, n), idS , m
)
.

(7.2)

First, the service provider sends to the operator the identifier idC of the target platform, the secret key
KS along with a sequence number i for replay prevention, a key store number k, and a random value
n, all encrypted with PC . The operator completes the message with the identity idS of the service
provider obtained from running a suitable challenge-response protocol with S and a random value
m, and signs it appropriately with the shared secret K . Here, idS could contain some information
about the service provider, e.g. its name, address, etc. for information purposes. The message and its
signature are then sent to the platform and after signature verification, KS can be safely stored into
the service provider’s key store at position k. If necessary, a new compartment for is S is created.

This protocol enables a service provider to upload shared secrets KS into the platform using
public key cryptography. General assumption is that the operator or platform provider has no means
to access the service provider’s secret keys KS or the secret key SC of the card. Otherwise, the
whole chain of trust would be compromised.

Secure End-to-End Communication

Upon successful installation of the service provider’s key KS , the service provider communicates
with the platform as follows:

S → C : {idS , k, encKS
(prog , i, n)}, (7.3)

i.e. S encrypts its data with KS and annotates its identity idS for correct decoding. The platform
decrypts the message with the secret key KS stored in a key table indexed by (idS , k). This step not
only decrypts the message but also achieves provider authentication, since the successful decryption
of the message through the platform proves the authenticity of the sender.

One drawback of this protocol, however, is that it does not prevent any sort of replay attack.
Replay prevention can be easily solved by sequence number schemes that apply a FIFO-order on
the messages transmitted over the channel S → C which works well, if the channel is sufficiently
reliable.

Communication in the opposite direction is performed through the following protocol:

C → S : {idC , k, encKS
(E)}, (7.4)

i.e. data E is simply encrypted with KS. The platform identifier idC and k are used to look up the
appropriate key for decryption. But this can be equally well left to the script itself, if it contains
a fresh secret key that is used to protect the communication back to the provider. Encryption can
be achieved with the interpreter operation

✎✛✚❂✳✍✑✆✓✆☎✄✁
that performs encryption of the topmost stack

elements up to the
✷ ✘✒✑ ✂

with a key from the key store. Obviously, such temporary key management
involves a significant amount of house-keeping on the service provider’s side. However, since one
of our major requirements is to make such security properties subject of the applications and scripts
we consider it as an actual advantage over more fixed security frameworks.

4 Here again, n and m are random values.

7.6 Communication Protocols 116

Secure End-to-End Communication without Key Installation

If no persistent secret key installation is performed, each time a new script is sent to the platform
the trusted third party has to authenticate the service provider and sign the script accordingly. The
resulting protocol is similar to 7.2:

S →M :
{
encPC

(KS , i, k, n), encKS
(prog)

}
,

M → C :
{
encPC

(KS , i, k, n), encKS
(prog), Σ

}
,

with Σ← sigK

(
encPC

(KS, i, k, n), encKS
(prog), idS , m

)
.

(7.5)

Basically, the protocol is adapted to transport the program prog in addition to the key KS.
Communication in the direction C → S is achieved with protocol 7.4.

7.6.2.2 User Channel Communication Protocols

In contrast to the public key protocols for shared secret exchange, we already mentioned that the
platform user could participate in the transfer of the secret from the provider to the card.

Secret key installation

We use the following protocol to transfer the secret KS from the provider S to the platform C:

S : W ← f(idS , k, KS),
S → U : {W}, over a secure channel,
U → C : {W}, user input,

C : (idS , k, KS)← f−1(W).

(7.6)

Here, f is the transformation of the key into the alphabet {
❲

– � ,
✦
–

✱
}. Hence, this protocol agrees

upon a shared secret that can be used for confidential communication. However, the identity id S

of the provider is not verified by the platform. Again we use the help of the platform provider or
another trusted third party to verify the authenticity of the key as follows:

S : res← encKS
(rand),

S →M : {idS , k, idC , rand, res},
M → C : {idS , k, rand, res, n, Σ},

with Σ← sigK(idS , k, rand, res, n),
C : res′ ← encKS

(rand), res′ = res?

(7.7)

First, S generates a challenge rand and encrypts it using KS yielding res. The challenge, the re-
sponse, the identifier idS , key store number k, and the platform identifier idC are then sent to the
platform provider M over an encrypted and authenticated channel. M signs the data to be for-
warded adding a random value n. In the platform, the signature is verified and then the challenge
is encrypted with KS yielding res’. If res and res’ are equal, the key can be considered as authenti-
cated, the corresponding compartment can be activated, and the key is registered in the key store of
the compartment of provider idS .

Secure End-to-End Communication

Subsequent communication between the service provider and the platform occurs with the proto-
cols 7.3 and 7.4.

7.7 Non-Repudiation and Electronic Signatures 117

7.6.2.3 Further Protocol Options

In the previous sections we have outlined the basic protocols how end-to-end security between a
service provider and the platform can be achieved. More protocols for other purposes can be easily
developed based on the presented ones, such as non end-to-end protocols. This communication
pattern could be used to transport a script from the service provider to the platform provider if no
on-card code verification is available. This corresponds to option (3) in Table 7.1 on page 113.
The complete protocol would then use a mixture of the end-to-end protocols presented previously to
transport the data section, and verify the script at the operator who then appropriately signs the code
after verification.

More generally, the actual protocols can be adapted, to perform suitable key scheduling and
dynamization based on additional random values transported in each message to generate temporary
session keys derived from master session keys.

Summing up, a diversity of different options for establishing secure communication channels be-
tween the service provider and the platform can be established. In particular the difficult case of
end-to-end security can be achieved with reasonable protocol overhead and on-card resources.

7.7 Non-Repudiation and Electronic Signatures

In the previous sections we have outlined the architecture of our platform, its language and runtime
environment with a focus on the platform security issues, and the end-to-end secure communication
protocols.

For business-critical applications, however, end-to-end security is not the only important factor.
The problem of non-repudiation in the form of electronic signatures is of similar importance, in
particular, if legal issues have to be considered.

7.7.1 Motivation

We have motivated the platform approach by a general demand that a service provider should be
able to implement application-specific security properties. In a typical business-to-employee (B2E)
scenario this could mean that the enterprise security policy states that it is not necessary to use
legally-binding highly secure electronic signature systems under all circumstances. In particular
this means that a signature based on a shared secret key system might be sufficient, if the signature
creation device is considered to be trusted.

The tamper-resistance of the smartcard and the trusted platform approach we target could be an
ideal platform for such shared secret signature systems since it offers means for a service provider
to manage its own keys appropriately.

A significant number of issues related to the creation of electronic signatures have been raised
and solutions to them have been patented in [Bro97]. However, our approach does not target mobile
phones only, but can be used in a variety of possible end-user terminals supporting a smartcard as
security module, e.g. the PCA as presented in Sect. 5.3.

Basic Electronic Signature Protocol

Traditionally, in scenarios for electronic signature creation the most important roles as introduced
in Sect. 5.2 are the signer S owning a public key pair (SS , PS), the document to be signed D, the

7.7 Non-Repudiation and Electronic Signatures 118

signature creation application A, a document viewer V interacting with the signer, a smartcard C,
the originator of the document O and the document D. The basic protocol is as follows:

O → A : {D}, document transfer,
A→ V, S : {D}, document presentation,
S, V → A : accept/reject , user choice,

A→ C : {h(D)}, hash computation,
C → A→ O : {sigSS

(
h(D)

)
}, signing.

(7.8)

Based on the above protocol we describe further improvements on the overall security of the elec-
tronic signature creation process on top of our platform.

7.7.2 Electronic Signatures with On-Card Hash Computation

With the PCA we have demonstrated how the presentation of a document to be signed and the
hash computation can be performed on a device that is more trustworthy than a vendor’s terminal.
Performing the hash computation on a trusted device such as a smartcard itself might be even more
secure than other approaches. However, it is important how the document presentation and hash
computation is done in the overall signature protocol. Consider for example the following case:

A→ C : {D}, document transfer to card,
C → A : {sigSS

(
h(D)

)
}, document signing.

(7.9)

From a security point of view an intruder I who is in control of A can easily exchange document
D with another document D′ that is subsequently hashed, sent to the card, and signed. Hence,
compared with the basic protocol, no additional benefit can be gained.

On-Card Hash Computation Protocol

Assuming a scenario in which the signature creation application A is located in the security module
C, and the viewer in the (less trustworthy) terminal the protocol is as follows:

O → A : {D}, document transfer to card,
A→ V, S : {D}, document presentation,
S, V → A : accept/reject ,
C, A→ O : {sigSS

(
h(D)

)
}, hash and signature computation in card,

(7.10)

Assuming end-to-end secure communication between O and A/C, an intruder is not able to control
the hash computation anymore. Only the document presentation and the user’s accept/response could
be manipulated, although the intruder controlling V cannot gain anything from such manipulation,
except by mounting the attack presented in the next section.

A Conspiracy Attack on On-Card Hash Computation

A successful attack can be mounted in the above scenario as follows:

• The intruder I and the originator O cooperate.

• O sends the document D′ that is the document which the attackers want to be signed by S.

• Upon invocation of V , I presents a fake document D, which S might accept for signing.

7.7 Non-Repudiation and Electronic Signatures 119

• In the card, D′ is signed and sent back to O.

Hence, an attack is still possible, if the intruder subverting V and the originator O of the document
directly cooperate. Although this attack is of general importance, practically, it means that it is
not anymore sufficient to attack the user’s terminal only, but also manage to actively send a faked
document to the user for signing. Furthermore, possible countermeasures are sketched in Sect. 7.7.5.

As a consequence, we think that shifting the hash computation in the above manner to a tamper-
resistant device yields reasonable improvement in the overall security.

7.7.3 Electronic Signatures Assisted by a Trusted Third Party

If on-card hash computation is not feasible, this process can also be delegated to a trusted third party
T as the following protocol outlines. It uses the URL urlD to denote some identifier where D can
be fetched from. The trusted third party T computes D’s hash on behalf of A and signs it. A just
forwards the URL to the document viewer V . The remaining protocol steps are the same as in the
on-card hash computation protocol (cf. 7.10).

O → A : {urlD}, transmit URL to sign,
A→ T : {urlD}, send URL to TTP,
T → A : {sigT

(
h(D)

)
}, fetch document from URL, compute hash,

A→ V, S : {urlD}, document presentation,
S, V → A : accept/reject ,

A→ C : {sigT

(
h(D)

)
}, signature verification and signing,

C → A→ O : {sigSS

(
h(D)

)
}, final computation of signature.

(7.11)

Similar to the on-card hash computation protocol, it is vulnerable to the conspiracy attack.

7.7.4 Electronic Signatures with Recipient Addressing

Looking at the traditional signature creation protocol it becomes obvious that the authenticity of
the document sender is not of particular concern. In electronic business processes, signatures are
often used to provide the technical basis for contracts between two parties. Although the identi-
ties of the contract partners are usually somehow denoted in the document D, this is by no means
cryptographically protected.

To improve the signature process we propose to include the cryptographic identity of the peer
into the signature process. In particular we propose the following protocol that is based on the
on-card hash computation protocol 7.10 and the public key pair (SO, PO) of the originator O:

O → A : {D, sigSO
(D)}, send document and signature,

A→ V, S : {D, idO}, show document and identity of O,
S, V → A : accept/reject ,
C, A→ O : {sigSS

(
h(D), sigSO

(D)
)
}, hash and signature computation in card.

(7.12)

This protocol now achieves that an electronic signature is created over both – the cryptographic hash
of the document and the identity of the recipient or originator of the signature.

To assess the advantages of this approach we consider that in a traditional signature attack sce-
nario an intruder could “hijack” the signing process of an arbitrary document DO with its intended
recipient O to infiltrate another document D′ to be signed. The intruder I could then claim that

7.7 Non-Repudiation and Electronic Signatures 120

the user has signed this document which is likely of advantage to the intruder. In the above proto-
col, however, the intruder I is not able to generate a signature sigSS

(
h(D′), sigSI

(D′)
)

since the
signature sigSI

(D′) cannot be generated. At best sigSS

(
h(D′), sigSO

(D′)
)

could be obtained, but
leading to a contradiction between the information available in D′ denoting I as the recipient and
the envelope signature sigSO

. Therefore, we argue that linking the document and the recipient in the
signature gives advantages to standard electronic signature creation.

A Possible Attack on Recipient Addressing

Basically, the same conspiracy attack presented in the on-card hash computation in Section 7.7.2 can
be mounted in the recipient addressing scheme. Again, if originator O and intruder I cooperate, the
user is not able to distinguish that signature creation occurs with a document that she does not intend
to sign. Possible countermeasures are presented in the next section.

7.7.5 Electronic Signatures with Samples

In the previous sections we have proposed on-card hash computation and recipient addressing as
possible approaches to improve the security of the electronic signature creation process. However,
both suffer from the conspiracy attack described in Section 7.7.2. The underlying assumption of
this attack is that the document viewer component V might be vulnerable to different manipulation
attacks. Typical examples of this assumption might be that the viewer is running on top of a general-
purpose operating system onto which a user can install arbitrary software.

This situation can be corrected with the help of an additional security module V ′ that is not an
open platform, but rather a dedicated device that has a secure link to the platform. This device is
used for input and output of only a limited amount of information, e.g. in textual form that can be
used as a secondary device to implement the two-eye principle for signing data. The overall protocol
is as follows:

O → A : {D}, document reception,
A→ V, S : {D}, document presentation,
S, V → A : {accept/reject , {s0, . . . , sn}}, set of sample selections,

A→ V ′, S : {s0(D), . . . , sn(D)}, presentation of samples,
S, V ′ → A : accept/reject ,
C, A→ O : {sigSS

(
h(D)

)
}.

(7.13)

The basic difference to protocol 7.10 is as follows:

i. The less trusted viewer V is not only used to display the document and return the user’s
response but also offers means to enable the user to select arbitrary samples s0, . . . , sn of the
document D that are send back to A.

ii. Based on the samples obtained from the first viewer the signing application A extracts the
corresponding parts from document D, i.e. s0(D), . . . , sn(D), and sends them to the more

trusted viewer V ′ that ultimately decides upon whether the document should be signed or
not.

Basically, this approach has the general drawback that a user needs to perform a two-step approach
to signing. Furthermore, the first viewer V must offer suitable facilities to enable a user to make
arbitrary selections, and finally, it does not give ultimate security about whether the document has
been tampered with.

7.7 Non-Repudiation and Electronic Signatures 121

However, in practice we think that this approach can improve the security of the signature cre-
ation process in hostile environments to a certain degree if we assume that there exist some parts of a
document that are more important than others. Consider, for example, a bill with several information
about the items to buy. Nonetheless, the amount a to pay is most likely the most important infor-
mation on the bill and the user could decide to sample the amount in the bill using an appropriate
selection si(D) = “ . . . , a, . . . ” covering the amount. If later the trusted viewer V ′ displays the
same amount the user can be sure that the untrusted viewer V ′ is at least not able to forge this part
of the document and change the amount.

The essence of sampling the data to be signed is the fact that an intruder in control of a document
viewer cannot make any assumption, whether or how the sampling information is actually used.
Obviously, the intruder knows about the selections performed by the user and could, e.g. change the
amount of money in the bill, if no appropriate sample was taken. However, it could be left to the
signing application A to decide, how the set of samples {s0, . . . , sn} is to be interpreted. Possible
interpretations could be to take the samples as indexes into the document creating intervals of the
form {[s0, s1], . . . , [s2i, s2i+1]} that are used to extract the appropriate parts from the document.
Equally well a projection of the form {[s0, s0+x], . . . , [si, si+x]} with a fixed length x could be
made. Hence, it is up to the application A and the user to interpret {s0, . . . , sn}, something that can
be used to make attacks arbitrarily hard.

Although signing with samples might not be a solution which is generally applicable to all elec-
tronic signature schemes, we consider it a valuable addition to the overall security of a signature
scheme in resource-restricted environments, where the presentation of the complete document must
be delegated to a less trusted component, e.g. a vendor’s terminal, whereas a certain security-critical
subset of the whole document can be viewed on a more trusted component.

7.7.6 Electronic Signatures on Interactions

One of the most problematic issues with electronic signatures on mobile devices is the fact that such
signatures can be only computed over documents. In particular this means that according to current
signature laws, cf. Germany, the document must be presented to the user who then either accepts
or rejects the subsequent signature creation. Hence, a document to be signed must be presented
as a whole in a suitably rendered form. This problem of encoding and subsequently displaying
a document in a reproducible and standardized way has been extensively discussed by Scheibel-
hofer [Sch01].5

To approach this presentation problem which becomes especially crucial on small terminals we
consider not only the presentation of a document but also the way the document is created. We
argue that a document is often the result of some kind of interaction between a service provider, e.g.
who offers goods, and a client, e.g. selecting goods to buy. Finally, after all selections are made, a
document containing the complete list of goods is presented and signed accordingly.

However, the platform approach offers advanced options to create such a signature in a much
more user-friendly way. If a document is encoded as a script, the execution of the script is deter-

ministic as long as all non-deterministic input that is received from “outside” the script such as user
input, random number generator, persistent variables, etc. is recorded. A “document” over which the
signature is computed then consists of

(a) the script,

5 In his approach he uses XML style sheets defining mappings to a possibly certified rendering engine.

7.7 Non-Repudiation and Electronic Signatures 122

1
☎✁�✑✏ ✝✄✂ ✍✆☎

2

3
✂✆✏✞✝✠✟ ✝ ☞ ✁ ✏☛✡ ✄ ✝ ☞✎✄ ✝✌☞ ✡✍�✁✝ ✟✎✡✑✏

4 ✒✔✓ ✟ ✁ ✡ ✄ ✝ ☞✎✄ ✝✌☞✖✕ ✓✘✗ �✑✍ ✝✘✝ ✒ ✕✖�✁✙✆✝ ✁✘✒ ✍✚✡✑✏
5

✝✎☞ ✡✄✛✢✜✁✜✔✣✢✣✌✛✢✛✁✤✢✥✁✛✠✦✞✤✁✧✁✺❄✡✎✏
6

✝✘✂ ✍ ✝✘✝ ✒ ☎ ☎ ✝✌❍ ✒ ✁ ☞✁� ✝ ✒ ✍ ✁ ✏ ✓ �✑✍ ✝✬✝ ✒ ✏
7

8
✝ ✟✁✂✔✙ ✁ ✟ ✁✩✒ ✍ ✓ ✍ ✝✘✝ ✒ ☎

9
✂✪✙ ✓✬✫ ✍✖✝ ✒ ✁ ✏

10
✂ ✗ ☎✌✭✯✮✩✡✌✰ ✁✎� ☎✠✕✢✱✞✏✖✝ ✟✔✕✑✄ ✝ ☞✑✄ ✝✌☞ ✡✲�✠✝ ✟✴✳✶✵ ✒

11 ✷ ✝ ☞ ✝ ✒✸✓✩✗ �✎✍ ✝✘✝ ✒✸✹ ✤✢✧✁✺✢★✻✮✽✼ ✒ ✍ ✝✘✾ ✗ ✁ �✖✓ ✍✖�✌✭✎✿✎✳❁❀✢❂✢❃✆★✁✤ ✡✌✡✬✿❄✏
12

☞ ✝✒☎✌✂✪✙ ✓✬✫ ✏
13

14
✂ ✗ ☎✌✭✯✮ ✟ ✓ ✏✠❅❆✿❄✏

15
✂ ✗ ☎✌✭✯✮✩✡✄❇✖✙ ✓ � ✁ ✕ ✒ ✁✎� ✕✑✄ ✝ ☞✖❈✔✡✠✿❄✏

16
✂ ✗ ☎✌✭✯✮✩✡✌✰ ✁✎� ✕✒✄ ✝ ☞ ✡✞✡✂✡❉✡✁✿❄✏

17
✂ ✗ ☎✌✭✯✮✩✡✩❊ ✓✩✒ � ✁ ✙❄✡✠✿❄✏

18
☎ ✁ ✙ ✁ �✑✍✯✏ ←− User selects option

✝ ✒ ✍❏✳ ‘ ✣ ’
19

20
✂ ✗ ☎✌✭❋✮●✛✆✿❆✏

21 ✁ ✾✖❈✎✏
22

✝✌✱☛✮ ✍✞✏ ✗ ✁ ✿■❍✞✝✑✍✖✝ ✁✩✒ ☞❏✏
23

24 ✁✩✒ ✍ ✁ ✏✯✳
25

✂ ✗ ☎✌✭✯✮✩✡✄❀ ✒ ✍ ✁ ✏✖✕ ✒ ✁✎� ✕✑✄ ✝ ☞✞✕✎✮✽❑✬❀✢❂✢❃✖✕✢★✬✦✑✿✚✳✄✡✁✿❆✏
26

✝ ✒ ✂ ✗ ✍✯✏ ←− User inputs new bid amount: (
☎ ✍✑✏✆✝ ✒ ❍ ,‘

✺✬✜
’)

27
☞ ✗ ✂▲✮✌✿❄✏

28
✂ ✗ ☎✌✭❋✮✲★✠✦✔✿❄✏

29
✙ ✁ ❈✎✏

30
✝✌✱☛✮ ✍✞✏ ✗ ✁ ✿■❍✞✝✑✍✖✝ ✁✩✒ ☞▲✳

31
✂✪✙ ✓✬✫ ✍✖✝ ✒ ✁ ✏

32
✂ ✗ ☎✌✭✯✮✩✡✄❇✖✙ ✁✢✓ ☎ ✁ ✕ ✁✩✒ ✍ ✁ ✏✞✕ ✓ ✕✒✄ ✝✎☞✁✕✢❍✞✏ ✁✢✓ ✍ ✁ ✏✪✕✞✍✠✭ ✓✩✒ ✕✄✂✁★✬✦ ✡❉✡✠✿❄✏

33
☞ ✝✒☎✌✂✪✙ ✓✬✫ ✏

34
❍✞✝✒✍✞✝ ✁✘✒ ✍ ✁ ✏❖✏

35

36 ✁✩✒ ☞▲✳ ☎ ✝✩❍ ✒ �✂✝ ✒ ✍ ✁ ✏ ✓ �✎✍ ✝✬✝ ✒ ✏
37

✏ ✁ ☎✌✂✪✝ ✒ ☎ ✁ ✏
38 ✁✬◗ ✝ ✍▲✏
39 ❘
40 ❘

Figure 7.4: Mobile auction client with interaction signatures

(b) the persistent state used during the computation,

(c) all user input,

(d) all messages received from other communication channels,

(e) the current time and progress of execution,

(f) some platform characteristics such as version numbers, serial numbers, etc.

The signature can be easily verified by executing the script in a simulated environment using the
recorded and signed input values. Thus, a signed document is not intended to be human-readable,
but rather meant to record and log the interaction that happened between a service provider and a
client.

For illustration purposes we provide the mobile auction example introduced in Fig. 7.2 on
page 106 in a version that uses our interaction signatures instead of explicit signing. This modified
version is listed in Fig. 7.4 and we show the contents of a sample interaction with all corresponding
log information on the right.

7.8 Application Scenarios 123

The only information available in the log is the menu selection the user performed (option no. 1)
and the new amount entered (e 70). The differences to the original version are as follows:

• The script has an additional mode (line 6) indicating with the additional option
✝✂✖ ✢✒✚✏✎✒✴ ❁

✖✩✚✂✁✣✎✒✑✂✘✭✳✛✁❂✖✙✜✛✚
that the script execution should be recorded.

• Upon execution of the primitive
✝✄✖ ✢✆✚ ❁ ✖ ✚✂✁✣✎✒✑✭✘✂✳✛✁❂✖✙✜✍✚

(line 36) the execution record is signed
and pushed onto the stack as a stack object that can be further encrypted or otherwise protected.

• The signed interaction object is then sent back to the originator using the primitive
✑✭✎✭✝ ☎✣✜✍✚❂✝✒✎

(line 37).

During execution the runtime environment collects the non-deterministic input from the various
sources into a log L = {i1, . . . , in} of inputs ij . In the above example execution thus yields

L = {(
✖✩✚✂✁

, ‘
✧
’), (

✝✛✁✂✑✞✖✩✚✄✢
, ‘
✯✄✦

’)},

i.e. for each input we record the type information and the data. The overall interactive log of an
execution of script P with the identifier idP is computed and returned to the original sender S as
follows:

C → S :
{
idP , L, sigSC

(
hash(idP , P, L)

)}
. (7.14)

The receiver must be able to verify the authenticity of the signature by simulating the execution of
the script according to the log L. Based on this simulation, the interaction of the script and the user
can be replayed and the user’s choices and inputs can be examined to take appropriate action.

Summary

Runtime execution monitoring using an execution log has been investigated by Vigna as a means to
protect the execution of mobile agents in hostile environments [Vig98]. The sender of a mobile agent
can verify whether the agent has been tampered with while executing on a remote agent platform.

Using signatures on runtime execution audits combined with the recording of user interactions as
a means to implement non-repudiation, however, is to the best of our knowledge a novel approach.
We consider this approach particularly useful for our application domain for the following reasons:

• Due to the lack of user input and output facilities, performing all possible executions within
the trust domain of the smartcard is from a security point of view desirable.

• Interactions that leave the trust boundary of the smartcard are reduced to the bare minimum,
i.e. to user interactions only.

• The approach is very flexible, since it offers scripts a full control over the way signatures are
built, how encryption is performed, and how interaction takes place. As such it is able to offer
applications means to implement security policies as needed.

Thus, our approach allows service providers to take full advantage of the smartcard as an open
platform for running security-critical applications in the tamper-resistant context of the physical
device.

7.8 Application Scenarios

As motivated already with the WebSIM, the smartcard platform presented in this chapter must be
considered as a mere platform for third-party providers such as Internet shops, banks, etc. Ideally,

7.9 Related Work 124

such a platform would be again hosted by a GSM SIM or another smartcard embedded in a wireless
card reader. This would offer secure interaction of service providers with their customers in a push-
based style of communication over a wireless communication link such as GSM.

The following are examples of the types of applications that could be thought of in such a setting:

— Push-based mobile auction client: This application is extensively described in Section 7.4.3.

— Push-based brokerage, stock trading: A broker application is similar to the auction client.
The subscriber could be informed about new stock watch-points that could be used in addition
to stop-loss. It could provide more subscriber feedback on what is going on at the stock market
and provide means to react to current trends in a matter of seconds.

— Internet-based authentication: Possibly one of the most interesting classes of applications
is authentication of mobile subscribers to the Internet. Currently, Internet servers accessed by
HTTPS/SSL authenticate themselves via certificates whereas in practice client authentication
is not used due to the lack of a global PKI infrastructure. Detailed protocols and approaches
to achieve this goal based on the technology presented in this thesis are described in [GKP00]
and [KPSW01].

— Interactive SMS: This real killer means that subscribers can send each other (predefined)
interactive messages – mobile originated, or from the Internet.6 How would you like the
interactive message “Hey honey! Do you want to drink a coffee with me at 15:00 at the

Bizarre’s?; Yes,No”

— Loyalty-points application: Smartcards offer secure persistent storage that could be used
by loyalty point systems that manage the bonus points via GSM. This would provide a com-
plete off-line light-weight loyalty system that uses the distributed secure storage of SIMs for
management.

— Electronic ticketing: Electronic tickets ordered over the Internet could be downloaded over
the air and stored securely in the SIM. At a site’s entrance, e.g. the opera, subscribers could
show the ticket by browsing the appropriate ticket containing unique identifiers or offer access
to the ticket by means of IrDA or Bluetooth in the future.

— Secure enterprise applications: Enterprises with a strong demand for secure and application-
specific mobile transactions are likely to invest into customizable solutions. Especially flexible
mechanisms for end-to-end secure communication between an enterprise and its mobile em-
ployees could be of particular importance.

Summing up, the architecture provides an open and secure platform on top of which various other
applications can be built.

7.9 Related Work

WAP Push [WAP99c] defines the architecture underlying the push-based technology in the WAP
protocol family. Content is pushed via an appropriate gateway to a WAP Push-enabled terminal.

6 We are sure that this application is much more attractive than the boring security stuff described previously.

7.10 Summary 125

However, it is not targeted towards pushing active content from a provider into a smartcard and thus
not comparable to the platform approach presented here.

SIM toolkit browsers [SAT00] provide a browsing technology on top of the SIM application
toolkit. Applications are driven by a gateway usually hosted by a mobile operator. It also offers
means for end-to-end encryption of confidential data between the service provider and the SIM. In
contrast, our platform approach does not focus on a browsing-like type of interaction but more on
a push-based style of communication driven by an Internet client also aiming at true end-to-end
security of transmitted scripts.

The specification of the 3GPP USAT interpreter [3GPP01b; 3GPP01c] under development of the
corresponding working group comes most close to our envisioned platform. This group defines the
USAT interpreter that makes use of the SIM toolkit commands available in the future UMTS SIM.
It does not only define a browser-based model but also allows for push-style communication from
the gateway, which in turn can be triggered from the Internet. The byte-codes used there reflect
the group’s idea of a page-based style of user interaction similar to the SIM toolkit browsers. As
such they support pages as the elementary containers that can be linked by a web of anchors for
navigation. Within a page, variables can be used to store page-local information and exchange data
between different pages. Contained in a page are USAT commands encoded as tag-length-value data
(TLV) structures providing a generic approach to subscriber and handset interaction.

Interestingly, the architectural descriptions for the USAT interpreter also include true end-to-end
security between a service provider and the SIM. Hence, it seems that the general ideas presented
in this thesis concerning the smartcard platform are actually considered in the smartcard and telco
industry, yet in a completely different manner in terms of protocols and language model. However,
we consider the platform model in this thesis as still more flexible and open for future applications.

7.10 Summary

In this chapter we have described what additional role a smartcard can play as personal security
module. More precisely, we have shown how an open application platform that is programmable in
a domain-specific language can be used to allow for end-to-end secure communication between a
service provider and its customer. In the sequel we revisit the main contributions of this chapter.

Platform Approach

Considering the numerous security problems known from mobile agent systems for both – host and
agent security – it is at first irritating to provide a security infrastructure on top of a mobile code
platform. In contrast to more general-purpose approaches, however, the open platform presented
here follows a domain-specific design paradigm starting with a top-down approach identifying the
functionality desired and offering a framework that provides solutions to this problem only.

A question that often had to be answered is why not use Java Card for this purpose? Basi-
cally, the research community in JavaCard currently tries to formalize a complex language trying to
eventually prove certain properties of applications using suitable theorem provers or model check-
ers (cf. [Ber97; PV98; BCM+00; PvdBJ00]), tools that are currently applicable only in an off-card
setting.

The work presented here, tries to follow a top-down approach, i.e. starting from a particular
application domain and trying to find a solution that fits the requirements without struggling with
unnecessary features. This approach has been proven to be especially suitable for finding solutions
to the security problems encountered in our application domain.

7.10 Summary 126

End-to-End Security

End-to-end security requires that information is transmitted confidentially and authentic using ap-
propriate cryptographic keys and algorithms. In the context of our personal security module this
results in the following fundamental problems:

— Key management: Since extensive use of public key cryptography should at least for the
near future be restricted to the non-avoidable cases. Thus, we propose to use public key cryp-
tography for key management only, and further communicate using appropriate symmetric
cryptographic algorithms.

— On-card verification: Verification of code and data comes into play as a result of end-to-
end security that does not allow for a third party assisted verification step. Although data
verification might be considered as more security critical, though easier to implement in a
smartcard, ultimately code and data verification must be envisioned. This has resulted in the
identification of security properties to be verified on-card. Some of the properties are well-
known from the Java byte-code verification, however, new properties such as the control-flow
constraints have been identified and suitable algorithms have been presented.

Thus, adding end-to-end security to this problem domain has resulted in much more complexity on
the platform’s side, since it alone is responsible for guaranteeing correct behaviour.

Non-Repudiation

The third major contribution of this chapter is the domain of non-repudiation, i.e. the generation of
electronic signatures on-card. Basically, we have distinguished two different mechanisms:

— Application-driven signatures: This is the traditional method of implementing some kind of✝✂✖ ✢✆✚
primitive that presents to the user some data to be signed.

— Interactive signatures: This novel approach represents some kind of implicit signing of the
whole execution of an application in the platform. This relieves the application from explicitly
requesting the user to sign a specific piece of data and instead relies upon the implicit signature
creation using the logging mechanisms in the platform. Signature verification can be easily
achieved by a simulated execution of the script that is then fed with the information from the
log.

Besides mechanisms for non-repudiation, possible attacks on the platform have been described of
which the so-called conspiracy attack is rather critical. From a general point of view protecting from
this attack, which requires a malicious script and an intruder’s access to the interface between card
and terminal, is hard to achieve. However, in certain contexts the use of samples that delegate the
document viewing and accepting process to an even more secured environment might help.

The platform approach described in this chapter has been published in [KM01]. The electronic
signature creation based on runtime execution and interaction is further described in [KP01].

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Chapter 8

Conclusion

As foreseen by many researchers and analysts, the mobile user of tomorrow will live and move in
a world of many digital services available as part of a larger pervasive and ubiquitous computing
environment. In this scenery personalized terminals will play a significant role – be it a device
similar to today’s mobile phone or something that comes into completely new form factors in the
spirit of the “disappearing computer”. Acting in this environment and accessing different services
at any time and any place most likely requires fundamental security operations to protect both – the
mobile user and the provider of a service.

In the information age cryptography has proven to be at the core of many protection mechanisms
implemented in many different applications all over. From a human’s perspective, however, cryp-
tography has the fundamental drawback that it cannot be done without suitable security modules
performing cryptographic operations on possibly large – and therefore non-memorizable – crypto-
graphic data. As a consequence, users need cryptographic support in different shapes.

Smartcards have proven to be such well-suited devices that solve some of the essential problems,
i.e. they are tamper-resistant, can perform cryptographic operations, and they are not observable
during computation. However, a fundamental problem is their lack of suitable input and output
facilities to communicate with their holder.

The underlying idea of this thesis was to find some answers to the general problem of “how can

smartcards become truely personal and ubiquitous security modules?” Especially, how it can be
achieved to make them usable at any time at any place, a question which obviously has a very
technical focus. In line with this idea is the paradigm shift to view the smartcard as the central
security component around which other components have to be arranged. Thus, the question is also
more “how to find suitable terminals for my smartcards?” than vice versa.

8.1 Results

This thesis shows in general that small devices require special assistance from their infrastructure.
Smartcards are an incarnation of small devices that are particularly interesting because of their
widespread use and limited functionality. One of the first results presented in Chapter 4 is a general
framework for the integration of such devices that subsequently has been applied to smartcards as
a special instance of this category of devices. The approach presented allows a formerly “passive”
smartcard that is inserted into a suitably equipped reader to “actively” offer services towards poten-
tial clients. As a consequence, the smartcard is actually able to actively search reasonably “secure”
terminals for its user through which further interaction can take place.

127

8.2 Future Work 128

The most obvious problem with smartcards is that they are vitally dependent on the trustworthi-
ness of the terminal that is used to interact with the card. In Chapter 5 an approach was presented
that tries to bring personal terminals such as a user’s PDA into the scene. The underlying idea is
that of a “trust amplification”, i.e. a user is likely to trust his or her “own” device more than others’
and thus a pragmatically more secure environment can be created. The PCA essentially consists of
a pair of devices – a terminal and a smartcard – that are cryptographically linked to each other. The
net side effect of this is that they can only be used together and that none of the two devices is usable
without the other. This general theme could be applied to many security-related contexts to make
users more comfortable and increase the overall security of a system.

Whereas the two former approaches concentrated more on the usage of the smartcard in a local
environment, the WebSIM presented in Chapter 6 follows a completely different approach. It es-
sentially builds upon the metaphor of a “wireless smartcard reader” through which a user’s security
module can be accessed from anywhere in the Internet using HTTP, i.e. “the” Internet protocol of
today. The advantage of this approach is that users can request services through virtually any com-
munication link, though still performing their security-related action through their personal wireless
card reader. The advantage of the proposal is that it builds upon an already deployed infrastructure –
the existing GSM and future UMTS telecommunication networks – making it a promising candidate
for future security architectures.

One of the most urgent problems with electronic businesses is the need for end-to-end confi-
dential transmission of data and the creation of electronic signatures. In Chapter 7 the idea of a
“autonomously” acting smartcard was investigated further and the vision of an application platform
for mobile code inside a smartcard was created. As a consequence, the tamper-resistant container
offered by smartcards cannot only be exploited by the applications brought into the card at issuance
time but also by applications wishing to interact with customers. In this model, service providers
can build small applications written in a domain-specific programming language tailored for this
particular application domain and send them using end-to-end secure communication to the smart-
card. Upon receipt, a verifier can check the code whether it fulfills the security properties that allow
for safe execution in the target platform. The advantages of this approach are that especially in the
context of mobile scenarios significant advantages can be given to both – service provider and user
– to securely perform interaction. Although the general problem of the trustworthiness of the users’
terminals cannot be solved from a theoretical point of view, new protocols for the creation of elec-
tronic signatures have been presented by which significant “practical” security advantages can be
gained.

Summing up, this thesis presents new design options that can be used independently or in com-
bination to create new security interfaces for smartcards assisting their mobile users in their daily
routine. As smartcards can be expected to continue their growth in terms of memory and computa-
tional power, this thesis has hopefully demonstrated that truely personal security modules are ready
for implementation.

8.2 Future Work

Obviously, a number of issues has not been further discussed in this thesis and thus can be the subject
of future investigation.

8.2 Future Work 129

The first issue is related to the JiniCard framework considering the problem of mapping device-
related identifiers as introduced in the detection event with suitable mobile code objects controlling
further interaction with the device. From a privacy perspective this mapping discloses a number
of information that can be considered as “private” and thus should not be given away imprudently.
First steps towards an anonymization scheme based on devices that are able to perform crypto-
graphic operations have been investigated in [Mol00] where different anonymization protocols have
been developed and prototypically implemented on cryptographic devices. However, a scalable and
especially secure infrastructure is needed for the mapping from real-world objects to virtual objects,
an issue that has not yet been discussed too much in the research community.

Recently, security problems such as global user authentication have been in the focus by different
players in the industry aiming at services that are hosting and managing a user’s digital identity. New
kinds of attacks such as “identity theft” (cf. [US01]) exploiting weaknesses in those technologies are
likely to emerge. The work presented here offers countermeasures by the use of strong cryptography
based on smartcards. An open research topic is henceforth the investigation how both approaches
could benefit from each other and how the smartcard way of thinking can be integrated into such
systems to avoid pure software solutions in these security-critical technologies.

Another research topic in conjunction with the smartcard platform approach presented in this
thesis is the problem of on-card verification of security properties of mobile code. The formal meth-
ods research community is in possession of the relevant technologies needed to solve the problems
outlined. Although a true on-card implementation has not been undertaken in the course of this work,
a smartcard platform implementation that offers such mechanisms should be the next step towards
this direction.

A related issue with the smartcard platform is the question whether the termination problem in
the smartcard platform can be solved more elegantly. However, the interaction invariant used to
decide upon the execution of the application is a good starting point, improving this mechanism
maybe in conjunction with resource control should be tried.

Although the work in this thesis has concentrated on the “classical” smartcards and has to some
extend neglected newer devices such as USB tokens these should be taken into future consideration
since changes in underlying assumptions, e.g. missing clock, often lead to new design options.

Hence, this thesis has brought smartcards into a new setting and many different aspects related to
these settings can be considered as future targets of investigation.

�✁�✁�✁�✂�✁�✁�✁�✄�✁�✁�✁�

Appendix A

Platform Specification

A.1 Prototypical Implementation of the Smartcard

Platform

Based on the conceptual approach presented in Chapter 7 we have prototypically implemented most
of the presented concepts to demonstrate the feasibility of our approach in the context of GSM SIM
smartcards.

— Compiler: The implementation of the compiler was done in Java 2 based on the parser gen-
erator toolkit JAVACC [Met01]. It basically takes an script and compiles it into the bytecode
form understood by the verifier and interpreter. The compiler consists of roughly 7.000 lines
of code (LoC) of which a substantial amount is automatically generated by the parser toolkit.

— Verifier: We have implemented an off-card version of the verifier in Java 2. It performs the
basic checks for correct typing, stack over- and underflow, and checks for the control flow
constraints discussed in Section 7.5.1.1. The implementation is currently about 5.000 LoC.

— Interpreter: We have implemented the platform and interpreter in a Java 2 off-card version
consisting of roughly 4.000 LoC. An on-card implementation was partially performed on a
Bull SIM’n RockTM GSM SIM JavaCard 2.1 card, which did offer only about 9 kB of EEPROM
which was not sufficient for a complete implementation of the interpreter.

Although a Java Card implementation of an interpreter is for performance reasons not comparable
to a native implementation on the card’s processor, it can be estimated that a native implementation
of our platform seems to be possible with the 64 kB EEPROM smartcard generation likely to enter
the market in 2002.

Leroy [Ler01] has recently presented first results of an algorithm that facilitates the implementa-
tion of a Java byte-code verifier on a smartcard. Since this problem can be considered to be at least
as complex as the verifier needed for our platform and the expected growth of smartcard resources
in the next years we believe that the overall approach can be considered as reasonably feasible in the
near future.

A.2 Language Primitives

For the description of the primitives we denote stack effects in the usual form (operation, before

stack — after stack). We use the notation “!” to indicate a special stack element called marker that

130

A.2 Language Primitives 131

Primitive Before — After Description

push(z) x y — z x y

pop x y z — y z

swap x y z — y x z

dup x y — x x y

rot x y z — z x y

add, sub, mul, div, mod x y — z z = x ◦ y

not x y — z y z = ¬x
and, or x y — z z = x ◦ y
eq, neq, le, lt, ge, gt x y — z z = x ◦ y
null? x — z z = true if x is null, else false
mark? x — z z = true if x is mark, else false

load r z — w z w = reg[z]
store v r z — z reg[r]← v

kload k z — w z w = key[k]
kstore v k z — z key[r]← v

encrypt k x. . . y ! z — w z w = enck(x| . . . |y)
decrypt k x. . . y ! z — w z w = deck(x| . . . |y)
digest x. . . y ! z — w z w = digest(x| . . . |y)
sign x. . . y ! z — w z w = sign(x| . . . |y)
sign-interaction z — w z w = signed interaction

display x. . . y ! z — z

input x. . . y ! z — w z w = input(x . . . y)
select x. . . y ! z — w z w = select(x . . . y)
response x. . . y ! z — z

Table A.1: Smartcard platform primitives

is pushed onto the stack with ‘
☎✄✌❂✝ � ✆ ✷ ✘✒✑ ✂ ✞ ’. It can be used to denote the end of a variable length

number of arguments of a primitive which is denoted in the form ‘x . . . y’. For convenience, if there
is no mark on the stack, the number of arguments on the stack used for a particular command is
automatically inferred depending on the concrete command.

Furthermore, the set of registers is denoted in the form ‘reg[i]’ and the keys available in the key
store are denoted in the form ‘key[i]’. Bindings for variables are denoted using ‘=’ and assignments
are denoted using ‘←’.

The description of the behaviour of the platform primitives manipulating the data stack are listed
in Table A.1.

A.3 Grammar 132

〈script〉 ::= ‘
✡☛✪☎✒✲✆✏✱✤☞

’ ‘ � ’ 〈header〉 〈impl〉 ‘ ✁ ’

〈header〉 ::= (‘
✱☛✒✂✓✫✯✍✆✢✬☛✠✫✒

’ 〈STRING〉 ‘ ✂ ’ | ‘
✡☛✪☎✒✍✆✏✱☛☞✥✄✑✁✢❁✲✠

’ 〈STRING〉 ‘ ✂ ’
| ‘

✆✢✬
’ 〈STRING〉 | ‘

✓☎✱✤☞✍✆☎✓✢✄✲✡
’ 〈option〉 ✄) ✄

〈options〉 ::= (‘
✡✂✆✏❑✥✄✑✠✥✬✲✌✥✆✏✄✤☞✂✠☎✒✂✁✤✪☎☞✍✆✢✓☎✄

’)

〈impl〉 ::= ‘
✆✩❁✤✱✑✣✥✠✢❁✲✠☎✄☛☞✂✁✫☞✍✆☎✓✢✄

’ ‘ � ’ ([〈label〉 ‘
✔
’] 〈stmt〉 ‘ ✂ ’) ✄ ‘ ✁ ’

〈stmt〉 ::= 〈smpl stmt〉 [‘
✻
’ ‘
❅
’] | 〈cplx stmt〉 | 〈flow stmt〉 | 〈ui cmd〉

〈smpl stmt〉 ::= ‘
✄✑✓✢✱

’ | ‘
✠☎✰✍✆✟☞

’ | ‘
✱✑✓☎✱

’ | ‘
✬✫✿☛✱

’ | ‘
✡✢P✑✁✢✱

’ | ‘
✒✤✓✫☞

’ |
| ‘

✁☎✄✂✬
’ | ‘

✓✫✒
’ | ‘

✄✑✓✫☞
’

| ‘
✠✆☎

’ | ‘
✄✑✠✆☎

’ | ‘
❑☛☞

’ | ‘
✣☎☞

’ | ‘
❑✂✠

’ | ‘
✣✫✠

’ | ‘
✄✥✿✲✣☛✣✆✝

’ | ‘
❁✲✁✫✒✆✞✟✝

’
| ‘

✁✥✬☛✬
’ | ‘

✡✢✿✡✠
’ | ‘

❁✤✿✑✣
’ | ‘

✬✑✆✟✯
’ | ‘

❁✲✓✥✬
’

| ‘
✣✥✓☛✁✫✬

’ | ‘
✡☎☞✤✓✫✒✂✠

’ | ‘
✞✑✣✥✓☛✁✥✬

’ | ‘
✞✑✡✢☞✂✓✫✒✂✠

’
| ‘

✠☎✄✲✪✢✒☛✷✥✱✤☞
’ | ‘

✬✤✠✤✪☎✒☛✷✫✱✤☞
’ | ‘

✡✤✆✟❑✥✄
’ | ‘

✬✲✆✟❑✂✠☛✡☎☞
’

| ‘
✡✂✆✟❑✫✄✝✌☛✆✏✄✤☞✤✠✫✒✂✁✤✪☎☞✲✆☎✓☎✄

’
| ‘

✠✑✠✫❑✲✆✏✄
’ | ‘

✪✥✓✟❁☛❁ ✆✟☞
’ | ‘

✒✂✓✤✣✥✣☛✠✑✁✤✪☞✞
’

〈ui cmd〉 ::= ‘
✬✲✆☎✡✢✱✲✣✥✁✫✷

’ | ‘
✱✲✣✥✁✫✷✥☞✂✓☎✄✑✠

’ | ‘
✡✥✠✤✣✥✠☛✪☎☞

’
| ‘

✆✏✄☛✱✥✿✤☞
’ ‘

✔
’ (‘

✆✏✄✤☞
’ | ‘

✡☎☞✥✒✍✆✏✄✤❑
’ | ‘

✠✑✓☛✓☛✣
’)

| ‘
✒✂✠✤✡✟✱✑✓☎✄✲✡✥✠

’

〈cplx stmt〉 ::= ‘
✱☛✿✑✡☛✌

’ ‘
✻
’ 〈push args〉 ‘

❅
’

〈flow stmt〉 ::= ‘
❑✂✓✫☞✤✓

’ 〈label〉 | ‘
✆✟✞

’ ‘
✻
’ (‘

☞✥✒✥✿✑✠
’ | ‘

✞✂✁✤✣☛✡✥✠
’) ‘

❅
’ ‘
❑✂✓✫☞✂✓

’ 〈label〉

〈label〉 ::= 〈IDENTIFIER〉

〈push args〉 ::= 〈STRING〉 | 〈INT〉 | ‘
✄☛✿✲✣✥✣

’ | ‘
❁✑✁✫✒✡✞

’

Figure A.1: BNF grammar and instruction set of the platform language

A.3 Grammar

The grammar of the platform language is shown in Figure A.1.

Bibliography

[3GPP01a] 3GPP: Third Generation Partnership Web site. http://www.3gpp.org, 2001.

[3GPP01b] 3rd Generation Partnership Project. 3GPP TS 31.112 V5.0.0 (2001-09) Technical

Specification 3rd Generation Partnership Project; Technical Specification Group

Terminals; USIM Application Toolkit (USAT) Interpreter Architecture Description

(Release 5), September 2001. Available at http://www.3gpp.org.

[3GPP01c] 3rd Generation Partnership Project. 3GPP TS 31.113 V5.0.0 (2001-09) Technical

Specification 3rd Generation Partnership Project; Technical Specification Group

Terminals; USAT Interpreter Byte Codes (Release 5), September 2001. Available
at http://www.3gpp.org.

[ABKL93] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and delega-
tion with smart-cards. Science of Computer Programming, 21(2):91–113, October
1993.

[ACCK00] Jay Algesheimer, Christian Cachin, Jan Camenisch, and Günther Karjoth. Cryp-
tographic security for mobile code. Technical Report RZ 3302 (#93348), IBM
Research Division, Zürich Research Laboratory, December 2000.

[ADH+99] Gerd Aschemann, Svetlana Domnitcheva, Peer Hasselmeyer, Roger Kehr, and An-
dreas Zeidler. A framework for the integration of legacy devices into a Jini man-
agement federation. In R. Stadler and B. Stiller, editors, Tenth IFIP/IEEE Interna-

tional Workshop on Distributed Systems: Operations and Management DSOM ’99,

Zurich, Switzerland, volume 1700 of Lecture Notes in Computer Science, pages
257–268. Springer-Verlag, October 11–13, 1999.

[AK96] Ross Anderson and Markus Kuhn. Tamper Resistance – A Cautionary Note. In
Proceedings of Second USENIX Workshop on Electronic Commerce, Oakland, Cal-

ifornia, pages 1–11, November 18–21, 1996.

[AK97] Ross Anderson and Markus Kuhn. Low Cost Attacks on Tamper Resistant De-
vices. In M. Lomas et al., editor, Proceedings of 5th International Workshop on

Security Protocols, Paris, France, volume 1361 of Lecture Notes in Computer Sci-

ence, pages 125–136. Springer-Verlag, April 7–9, 1997.

[Amo94] Edward G. Amoroso. Fundamentals of computer security technology. Prentice-
Hall, 1994.

[And01] Ross Anderson. Security Engineering: A Guide to Building Dependable Dis-

tributed Systems. Wiley Computing Publishing, 2001.

133

Bibliography 134

[ASBL99] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The
design and implementation of an intensional naming system. In Seventeenth ACM

Symposium on Operating Systems Principles, Charleston, pages 186–201, Decem-
ber 12–15 1999.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Bell Telephone Laboratories Inc., Murray Hill, New Jersey,
USA, 1986.

[BBC+94] Jean-Paul Boly, Antoon Bosselaers, Ronald Cramer, Rolf Michelsen, Stig Mjøl-
snes, Frank Muller, Torben Pedersen, Bigit Pfitzmann, Peter de Rooij, Berry
Schoenmakers, Matthias Schunter, Luc Vallée, and Michael Waidner. The ESPRIT
Project CAFE – High security digital payment systems. In Third European Sym-

posium on Research in Computer Security (ESORICS ’94), volume 875 of Lecture

Notes in Computer Science, pages 217–230, 1994.

[BCM+00] Pierre Bieber, Jacques Cazin, Abdellah El Marouani, Pierre Girard, Jean-Louis
Lanet, Virginie Wiels, and Guy Zanon. The PACAP prototype: A tool for detecting
Java Card illegal flow. In Isabelle Attali and Thomas Jensen, editors, Proceedings

of Java Card Workshop (JCW ’2000), Cannes, France. INRIA, September 14th,
2000.

[BE01] Uwe Baumgarten and Claudia Eckert. Mobil und trotzdem sicher? it+ti In-

formationstechnik und Technische Informatik, Oldenbourg Wissenschaftsverlag,
43(5):254–263, September 2001.

[Ber97] Peter Bertelsen. Semantics of Java byte codes. Technical report, Dept. of In-
formation Technology, University of Denmark, March 1997. Available at http:

//www.dina.kvl.dk/~pmb/ .

[BF99] Dirk Balfanz and Edward W. Felten. Hand-held computers can be better smart
cards. In USENIX Security ’99, August 1999.

[BGW98] Marc Briceno, Ian Goldberg, and Dave Wagner. GSM Cloning. Avaiable at http:

//www.isaac.cs.berkeley.edu/ isaac/gsm.html, April 1998.

[Blu00a] Christof Blum. Elektronisches Ticketing bei der Deutschen Bahn AG. In Matthias
Flur, editor, OMNICARD, 2000. http://www.omnicard.de.

[Blu00b] Oliver J. Blumert. Entwicklung eines portablen Signatursystems. DA-BS-2000-03,
Darmstadt University of Technology, Department of Computer Science, July 2000.

[Blu01] Bluetooth Consortium. Specification of the Bluetooth System Version 1.1 – Core.
http://www.bluetooth.com/ , February 2001.

[BM92] Steven M. Bellovin and Michael Merrit. Encrypted Key Exchange: Password-based
protocols secure against dictionary attacks. In Proceedings of the IEEE Symposium

on Research in Security and Privacy, Oakland, pages 72–84, May 1992.

Bibliography 135

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In B. Preneel, editor, Advances in Cryp-

tology – Eurocrypt ’00, volume 1807 of Lecture Notes in Computer Science, pages
139–155. Springer-Verlag, 2000.

[Bro97] Brokat Informationssysteme GmbH. German Patent No. DE-197-47-603-A-1: Ver-

fahren zum digitalen Signieren einer Nachricht, October 1997.

[CEC00] Commission of the European Communities. Working site of eEurope action on
smart cards. http://www.europa.eu.int/ istka2/smartcards.html, 2000.

[CEN01a] CEN/ISSS WS/E-Sign N 136 Berlin/2001-03-01. CEN/ISSS WS/E-Sign Workshop
Agreement Group F. Available at http://www.ict.etsi.org/eessi/EESSI-homepage.

htm, March 2001.

[CEN01b] CEN/ISSS WS/E-Sign N 141 Berlin/2001-03-01. CEN/ISSS WS/E-Sign; PT on
Area G1; Draft CWA: "Security Requirements for Signature Creation Systems".
Available at http://www.ict.etsi.org/eessi/EESSI-homepage.htm, March 2001.

[Cha96] David Chappell. Understanding ActiveX®and OLE. Microsoft Press, 1996.

[Che00] Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and Program-

mer’s Guide. Addison-Wesley, 2000.

[Con98] HAVi Consortium. The HAVi Specification: Specification of the Home Audio/Video

Interoperability Architecture Version 1.0 beta, November 1998.

[CPV97] Antonio Carzaniga, Gian Petro Picco, and Giovanni Vigna. Designing distributed
applications with mobile code paradigms. In Proceedings of the 19th International

Conference on Software Engineering (ICSE’̇97), 1997.

[CV65] F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the Multics system.
In Proceedings of 27th AFIPS Joint Computer Conference, pages 619–628, 1965.

[CZH+99] Steven Czerwinski, Ben Y. Zhao, Todd Hodes, Anthony Joseph, and Randy Katz.
An Architecture for a Secure Service Discovery Service. In Fifth Annual Interna-

tional Conference on Mobile Computing and Networks (MobiCOM ’99), Seattle,

WA, August 1999. Draft version, accepted for publication.

[Dal00] Dallas Semiconductor iButton Homepage. http://www.ibutton.com/ , 2000.

[DB99] Neil Daswani and Dan Boneh. Experimenting with electronic commerce on the
PalmPilot. In Financial Cryptography ’99, number 1648 in Lecture Notes in Com-
puter Science, pages 1–16, Anguilla, BWI, February, 22nd 1999. Springer-Verlag.

[Det78] Jürgen Dethloff. US Patent No. 4,105,156: Identification system safeguarded

against misuse, August 8, 1978. Available by search at http://www.uspto.gov/patft/

index.html.

[DG69] Jürgen Dethloff and Helmut Gröttrup. German Patent No. DE-19-45-777-C3: Iden-

tifizierungsschalter, February 1969. Patent was granted in 1982.

Bibliography 136

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, IT-22(6):644–654, November 1976.

[Dij68] Edsger W. Dijkstra. Go To Statement Considered Harmful. Communications of the

ACM, 11(3):147–148, March 1968.

[DoD85] DoD. Department of Defense Standard No: DoD 5200.28-STD: Department of

Defense Trusted Computer System Evaluation Criteria, December 1985.

[Dur99] Durlacher Research Ltd. Mobile Commerce Report. Available at http://www.

durlacher.com, London, November 1999.

[Dur01] Durlacher Research Ltd. UMTS Report – An Investment Perspective. Available at
http://www.durlacher.com, London, March 2001.

[Eck00] Claudia Eckert. Mobile Devices In eBusiness – New Opportunities And New Risks.
In Proceedings of SIS ’2000 Workshop, Zürich, Switzerland, 2000.

[Eck01] Claudia Eckert. Zur Sicherheit mobiler persönlicher Endgeräte. In Proceedings of

Kommunikationssicherheit KSI ’2001, Rot, Germany, DuD Fachbeiträge. Vieweg
Verlag, March 27–28, 2001.

[Edw99] W. Keith Edwards. Core JINI. The Sun Microsystem Press - Java Series. Pentice
Hall PTR, 1999.

[ETSI00] European Telecommunication Standardization Institution (ETSI), Sophia Antipo-
lis, France. ETSI EN 300 089 V3.1.1 (2000-12) Integrated Services Digital Net-

work (ISDN); Calling Line Identification Presentation (CLIP) supplementary ser-

vice; Service description, December 2000.

[EUP99] Directive 1999/93/EC of the European Parliament and of the Council of 13 De-
cember 1999 on a Community framework for electronic signatures. Available at
http://www.ict.etsi.org/eessi/e-sign-directive.pdf , 1999.

[EUR01] EURESCOM P1005 Project. Project homepage at http://www.eurescom.de/public/

projects/p1000-series/P1005/P1005.htm, 2001.

[FHW00] M. Freudenthal, S. Heiberg, and J. Willemson. Personal security environment on
Palm PDA. In Proceedings of 16th Annual Computer Security Applications Con-

ference, New Orleans, Louisiana, USA, December 11–15, 2000.

[Fin99] Klaus Finkenzeller. RFID-Handbuch. Carl Hanser Verlag, 1999.

[FIPS95] National Institute of Standards and Technology, U.S. Department of Commerce.
Federal Information Processing Standards Publication (FIPS PUB) 180-1: Secure

Hash Standard, April 1995.

[FMM99] Stefan Fünfrocken, Friedemann Mattern, and Marie-Louise Moschgath. Die Java-
Card als Programmier- und Anwendungsplattform für Verteilte Anwendungen.
In C. H. Cap, editor, Proceedings Java-Informations-Tage JIT’99, Düsseldorf,

Germany, Informatik aktuell, pages 100–109. Springer-Verlag, September 20–21,
1999.

Bibliography 137

[Fün99] Stefan Fünfrocken. Protecting Mobile Web-Commerce Agents with Smartcards.
In Proceedings of ASA/MA’99, Palm Springs, CA, pages 90–102. IEEE Computer
Society Press, October 3–6, 1999.

[Fon98] Philip W. L. Fong. Viewer’s discretion: Host security in mobile code systems.
Technical Report SFU CMPT TR 1998-19, School of Computing Science, Simon
Fraser University, Burnaby, B.C., Canada, May 1998. Available at http://www.cs.

sfu.ca/~pwfong/personal/ .

[Fox97] Dirk Fox. Gateway: IMSI-Catcher. Datenschutz und Datensicherheit (DuD),
21(9), 1997. Available at http://www.datenschutz-und-datensicherheit.de/ jhrg21/

imsicatc.htm.

[Gas88] Morrie Gasser. Building a Secure Computer System. Van Nostrand Reinold Com-
pany, New York, 1988.

[Gen99] Wolfgang Gentz. Elektronische Geldbörsen in Deutschland. Datenschutz und

Datensicherheit (DuD), 23(1), 1999.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Sun Microsys-
tems Inc., Mountain View, 1996.

[GKP00] Scott Guthery, Roger Kehr, and Joachim Posegga. How to turn a GSM SIM into a
Web server. In Josep Domigo-Ferrer, David Chan, and Anthony Watson, editors,
Proceedings of Fourth IFIP TC8/WG8.8 Smart Card Research and Advanced Ap-

plication Conference CARDIS’2000, pages 209–222. Kluwer Academic Publisher,
September 20–22, 2000.

[GKPV00] Scott Guthery, Roger Kehr, Joachim Posegga, and Harald Vogt. GSM SIMs as Web
servers. In Proceedings of 7th International Conference on Intelligence in Services

and Networks IS&N’2000, Athens, Greece, February 2000. Short paper.

[GM01a] S. Guthery and S. Marks. IP and ARP over ISO 7816. IETF Internet-Draft draft-

guthery-ip7816-01.txt, January 2001. Expires 2001-07.

[GM01b] S. Guthery and S. Marks. IP/TCP/UDP Header Compression for ISO 7816 Links.
IETF Internet-Draft draft-guthery-ip7816-00.txt, January 2001. Expires 2001-07.

[GSM02.19] European Telecommunication Standardization Institution (ETSI), Sophia Antipo-
lis, France. Digital cellular telecommunications system (Phase 2+, Release 98):

Subscriber Identity Module Application Programming Interface (SIM API); Ser-

vice description; Stage 2 (GSM 02.19 version 7.0.0 Release 1998), 2000.

[GSM03.19] European Telecommunication Standardization Institution (ETSI), Sophia Antipo-
lis, France. Digital cellular telecommunications system (Phase 2+): Subscriber

Identity Module Application Programming Interface (SIM API); SIM API for Java

Card; Stage 2 (GSM 03.19 version 7.1.0, Release 1998), 2000.

[GSM03.20] European Telecommunication Standardization Institution (ETSI). ETSI-GSM Tech-

nical Specification: European digital cellular telecommunication system (phase 1);

Security-related Network Functions (GSM 03.20 version 3.3.2), January 1991.

Bibliography 138

[GSM03.40] European Telecommunication Standardization Institution (ETSI). Technical Speci-

fication Digital cellular telecommunications system (Phase 2+); Technical realiza-

tion of the Short Message Service (SMS); (GSM 03.40 version 7.4.0 Release 1998),
January 2000.

[GSM03.48] European Telecommunication Standardization Institution (ETSI). Digital cellular

telecommunications system (Phase 2+); Security Mechanisms for the SIM applica-

tion toolkit; Stage 2 (GSM 03.48 version 8.1.0 Release 99), November 1999.

[GSM07.05] European Telecommunication Standardization Institution (ETSI). Technical Speci-

fication Digital cellular telecommunications system (Phase 2+); Use of Data Ter-

minal Equipment - Data Circuit terminating; Equipment (DTE - DCE) interface

for Short Message Service (SMS) and Cell Broadcast Service (CBS) (GSM 07.05

version 7.0.1 Release 1998), July 1999.

[GSM07.07] European Telecommunication Standardization Institution (ETSI). Technical Spec-

ification Digital cellular telecommunications system (Phase 2+); AT command set

for GSM Mobile Equipment (ME) (GSM 07.07 version 7.5.0 Release 1998), January
2000.

[GSM11.11] European Telecommunication Standardization Institution (ETSI). Digital cellular

telecommunications system (Phase 2+); Specification of the Subscriber Identity

Module – Mobile Equipment (SIM–ME) interface (GSM 11.11 version 8.1.0 release

1999), November 1999.

[GSM11.14] European Telecommunication Standardization Institution (ETSI). Digital cellu-

lar telecommunications system (Phase 2+); Specification of the SIM Application

Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM–ME) inter-

face (GSM 11.14 version 8.1.0 release 1999), August 2000.

[GSTY96] Howard Gobioff, Sean Smith, J. D. Tygar, and Bennet Yee. Smart cards in hostile
environments. In Second USENIX Workshop on Electronic Commerce, pages 23–
28, November 1996.

[Gut01] Scott Guthery (ed.). Frequently asked questions (FAQ) of the Internet news-
group news:alt.technology.smartcards. Available at http://www.scdk.com/atsfaq.

htm, 2001.

[HH98] Dirk Husemann and Reto Hermann. OpenCard Framework. Available at http:

//www.ibm.com/developerworks/ library/opencard-framework/ , August 1998.

[HNI+98] Jaap Haartsen, Mahmoud Naghshineh, Jon Inouye, Olaf J. Joeressen, and Warren
Allen. Bluetooth: Visions, goals, and architecture. ACM Mobile Computing and

Communications Review, 2(4), October 1998.

[HNSS99] Uwe Hansmann, Martin S. Nicklous, Thomas Schäck, and Frank Seliger. Smart

Card Application Development Using Java. Springer-Verlag, 1999.

[Hoh98a] Fritz Hohl. Time limited blackbox security: Protecting mobile agents from mali-
cious hosts. In Giovanni Vigna, editor, Mobile Agents and Security, number 1419
in Lecture Notes in Computer Science, pages 92–113. Springer-Verlag, 1998.

Bibliography 139

[Hoh98b] Michael Hohmuth. The Fiasco kernel: Requirements definition. Technical Re-
port TUD-FI98-12, Dresden University of Technology, Dept. of Computer Science,
1998.

[HvE98] C. Hawblitzel and T. von Eicken. A Case for Language-Based Protection. Technical
Report TR98-1670, Cornell University, Department of Computer Science, March
1998. Available at http://www.cs.cornell.edu/slk/papers/TR98-1670.pdf .

[IAN01] Internet Assigned Numbers Authority. http://www.iana.org/ , 2001.

[IBM01] IBM. IBM Pervasive Computing Homepage. Available at http://www.ibm.com/

pvc/ , 2001.

[Ice99] ICEBERG Project Home Page. http:// iceberg.cs.berkeley.edu, 1999.

[IEEE802.11] IEEE. IEEE Standard for Information technology, Telecommunications and infor-

mation exchange between systems, Local and metropolitan area networks, Specific

requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY), Specifications Adopted by the ISO/IEC and redesignated as ISO/IEC

8802-11:1999(E), 1999.

[IFH00] Naomaru Itoi, Tomoko Fukuzawa, and Peter Honeyman. Secure internet smart-
cards. Technical Report 00-6, Center for Information Technology Integration
(CITI), University of Michigan, August 2000.

[IrD01] Infrared Data Association. http://www.irda.org/ , 2001.

[ISO88] ISO/IEC 7816-2: Identification cards – Integrated circuit(s) cards with contacts –

Part 2: Dimensions and locations of the contacts, 1988.

[ISO89] ISO/IEC 7816-3: Identification cards – Integrated circuit(s) cards with contacts –

Part 3: Electronic signals and transmission protocols, 1989.

[ISO90a] ISO/IEC 8824: Information technology, Open Systems Interconnection, Specifica-

tion of Abstract Syntax Notation One (ASN.1), 1990.

[ISO90b] ISO/IEC 8825: Information technology, Open Systems Interconnection, Specifica-

tion of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1), 1990.

[ISO92] ISO/IEC 7816-3 Amd. 1: Identification cards – Integrated circuit(s) cards with

contacts – Part 3: Electronic signals and transmission protocols – Amendmend 1:

Protocol type T=1, asynchronous half-duplex block transmission protocol, 1992.

[ISO94] ISO/IEC 7816-4: Information technology – Identification cards – Integrated cir-

cuit(s) cards with contacts – Inter-industry commands for interchange, July 1994.

[ISO97] International Standardization Organization, JTC 1/SC 22. ISO/IEC 15145:1997

Standard Information technology – Programming languages – FORTH, 1997.

[ISO99a] International Organization for Standardization. ISO/IEC 15408-1:1999 Informa-

tion technology, Security techniques, Evaluation criteria for IT security, Part 1:

Introduction and general model, 1999.

Bibliography 140

[ISO99b] International Organization for Standardization. ISO/IEC 15408-2:1999 Informa-

tion technology, Security techniques, Evaluation criteria for IT security, Part 3:

Security assurance requirements, 1999.

[ISO99c] International Organization for Standardization. ISO/IEC 15408-3:1999 Informa-

tion technology, Security techniques, Evaluation criteria for IT security, Part 1:

Introduction and general model, 1999.

[Jab96] David P. Jablon. Strong Password-only Authenticated Key Exchange. ACM Com-

puter Communications Review, 26(5), October 1996.

[JCF01] Java card forum web site. http://www.javacardforum.org, 2001.

[Kar00] Günter Karjoth. Secure mobile agent-based merchant brokering in distributed mar-
ketplaces. In David Kotz and Friedemann Mattern, editors, Proceedings of Second

International Symposium on Agent Systems and Applications and Fourth Interna-

tional Symposium on Mobile Agents ASA/MA ’2000, Zurich, Switzerland, number
1882 in Lecture Notes in Computer Science, pages 44–56. Springer-Verlag, 2000.

[KG98] Lora L. Kassab and Steven J. Greenwald. Formalizing the Java Security Archi-
tecture of JDK 1.2. In 5th European Symposium on Research in Computer Secu-

rity (ESORICS), Lecture Notes in Computer Science, Louvain-la-Neuve, Belgium,
1998. Springer Verlag.

[KK99] Oliver Kömmerling and Markus G. Kuhn. Design Principles for Tamper-Resistant
Smartcard Processors. In USENIX Workshop on Smartcard Technology, 1999.

[KM01] Roger Kehr and Hendrik Mieves. SIMspeak: Towards an open and secure platform
for GSM SIMs. In I. Attali and T. Jensen, editors, Proceedings of International

Conference on Research in Smart Cards: Smart Card Programming and Security,

E-smart 2001, Cannes, France,, volume 2140 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, September, 19–21 2001.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In N. Koblitz, editor, Advances in Cryptology (Crypto’96), vol-
ume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer-Verlag,
1996.

[KP01] Roger Kehr and Joachim Posegga. Verfahren und Vorrichtung zum digitalen Sig-
nieren einer Transaktion. German Patent, Deutsches Patent- und Markenamt, 2001.

[KPS95] C. Kaufman, R. Perlman, and M. Speciner. Network Security – Private Communi-

cation in a Public World. Prentice-Hall, 1995.

[KPSW01] Roger Kehr, Joachim Posegga, Roland Schmitz, and Peter Windirsch. Mobile
Security for Internet Applications. In Proceedings of Kommunikationssicherheit

KSI’2001, DuD Fachbeiträge. Vieweg Verlag, March 27–28, 2001.

[KPV99a] Roger Kehr, Joachim Posegga, and Harald Vogt. PCA: Jini-based Personal Card
Assistant. In R. Baumgart, editor, Proceedings of Secure Networking – CQRE

[Secure]’99, Düsseldorf, Germany, volume 1740 of Lecture Notes in Computer

Science, pages 64–75. Springer-Verlag, November 30 – December 2, 1999.

Bibliography 141

[KPV99b] Roger Kehr, Joachim Posegga, and Harald Vogt. Verfahren zur Erhöhung der

Sicherheit bei digitalen Unterschriften, DE 199 23 807 A 1. Deutsches Patent- und
Markenamt, May 19th, 1999.

[KPV00] Roger Kehr, Joachim Posegga, and Harald Vogt. Kartenterminal und Verfahren

zum Betreiben eines Kartenterminals, DE 100 15 775 A 1. Deutsches Patent- und
Markenamt, March 30th, 2000.

[KRV00a] Roger Kehr, Michael Rohs, and Harald Vogt. Issues in smartcard middleware. In Is-
abelle Attali and Thomas Jensen, editors, Proceedings of First International Work-

shop, JavaCard ’2000, Cannes, France, number 2041 in Lecture Notes in Computer
Science. Springer-Verlag, September 14th, 2000.

[KRV00b] Roger Kehr, Michael Rohs, and Harald Vogt. Mobile code as an enabling technol-
ogy for service-oriented smartcard middleware. In Proceedings of Second Inter-

national Symposium on Distributed Objects and Applications DOA’2000, Antwerp,

Belgium, pages 119–130. IEEE Computer Society, September 20–23, 2000.

[KVZ99] Roger Kehr, Harald Vogt, and Andreas Zeidler. Towards a generic proxy execu-
tion service for small devices. In Proceedings of Workshop on Future Services for

Networked Devices (FuSeNetD’99), Heidelberg, November 8–9, 1999.

[Lam01] Thierry Lamotte. IP Smart Cards in the (Not So) Distant Future. ETSI Project Smart
Card Platform Meeting #5, Palm Springs, USA, March 20–23, 2001. Available at
http:// research.gemplus.com/smart/ r_d/publications/ index.html.

[Ler01] Xavier Leroy. On-card bytecode verification for Java Card. In Proceedings of

eSmart ’2001, Cannes, France, volume 2140 of Lecture Notes in Computer Science.
Springer-Verlag, September 2001.

[LM99] Sergio Loureiro and Refik Molva. Function hiding based on error correcting codes.
In Manuel Blum and C.H. Lee, editors, Proceedings of Cryptec’99, International

workshop on cryptographic techniques and electonic commerce, Hong Kong, pages
92–98, July 1999.

[LM00] Sergio Loureiro and Refik Molva. Mobile code protection with smartcards. In Pro-

ceedings of ECOOP ’2000 Workshop on Mobile Object Systems Sophia Antipolis,

France, June 13th, 2000.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Sun
Microsystems Inc., Mountain View, second edition edition, 1999.

[Mat01] Friedemann Mattern. Ubiquitous Computing – Der Trend zur Informatisierung und
Vernetzung aller Dinge (in German). In Der Weg in die mobile Informationsge-

sellschaft, Tagungsband 6. Deutscher Internet-Kongress. dpunkt-Verlag, Septem-
ber 2001. Available at http://www.inf.ethz.ch/vs/publ/ .

[Met01] MetaMata. JavaCC compiler toolkit. Available at http://www.metamata.com/

javacc/ , 2001.

Bibliography 142

[Mic96] Microsoft Corporation. DCOM Technical Overview. Available at http://www.

microsoft.com/com/ , November 1996.

[Mic00] Microsoft Windows for Smart Cards Homepage. Available at http://www.microsoft.

com/smartcard, 2000.

[Mic01] Microsoft Visual Basic Homepage. Available at http://msdn.microsoft.com/

vbasic/ , 2001.

[Mol00] Raphael Molina. Delegated exchange of privacy information within context-aware
applications. Master’s thesis, Darmstadt University of Technology, September
2000.

[MOV97] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1997.

[MP92] Michel Mouly and Marie-Bernadette Pautet. The GSM System for Mobile Commu-

nications. Cell & Sys, 1992. Available at http://www.TelecomPublishing.com.

[mSi00] The Mobile Electronic Signature Consortium. mSign Protocol Specification Ver-

sion 1.0, October 2000. Available at http://www.msign.org.

[MT79] Robert Morris and Ken Thompson. Password security: A case history. CACM,
22(11):594–597, 1979.

[Mye99] Andrew C. Myers. Mostly-Static Decentralized Information Flow Control. Techni-
cal report mit/lcs/tr-783, Massachusetts Institute of Technology, January 1999.

[Nid99] Michael Nidd. Service Discovery in DEAPspace. Technical Report RZ 3149
(#93195), IBM Research Division, Zürich Research Laboratory, June 1999. http:

//deapspace.zurich.ibm.com.

[NL96] George C. Necula and Peter Lee. Safe kernel extensions without run-time checking.
In Second USENIX Symposium on Operating Systems Design and Implementation

(OSDI ’96), Seattle, Washington, pages 229–243. ACM Press, October 28–31 1996.

[NT94] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service for
computer networks. IEEE Communications Magazine, 32(9):33–38, September
1994.

[Oak98] Scott Oakes. Java Security. O’Reilly, 1998.

[OCF99] OpenCard Consortium. OpenCard Framework 1.2 Programmer’s Guide, fourth
edition, December 1999. Available at [OCF00].

[OCF00] OpenCard Consortium Homepage, 2000. http://www.opencard.org.

[OLW97] John K. Ousterhout, Jacob Y. Levy, and Brent B. Welch. The safe-tcl security
model. Technical Report TR-97-60, Sun Microsystems Laboratories, 1997.

[OMG00] Object Management Group. The Common Object Request Broker Architecture

Specification Revision 2.4, October 2000. Available at http://www.omg.org.

Bibliography 143

[Ott01] Heinz Otter. Die österreichische Bürgerkarte mit Sozialversicherungs- und elek-
tronischer Signaturfunktion. In 11. GMD-SmartCard Workshop, Darmstadt, Ger-

many. GMD – Forschungszentrum Informationstechnik GmbH, SIT, Darmstadt,
February 6–7, 2001.

[Ovum99] Ovum Ltd. Smart Card Systems: Multi-application Technologies and Strategies,
June 1999. Available at www.ovum.com.

[Pay01] Paybox homepage. Available at http://www.paybox.de, 2001.

[PC99] Stephan Preuß and Clemens. H. Cap. Overview of spontaneous networking – evolv-
ing concepts and technologies. In Proceedings of Workshop on Future Services for

Networked Devices (FuSeNetD’99), Heidelberg, November 8–9, 1999.

[PCS00] PC/SC Workgroup. http://www.pcscworkgroup.com, 2000.

[PKCS#11] RSA Laboratories. PKCS #11 v2.10: Cryptographic Token Interface Standard, De-
cember 1999. Available at http://www.rsalabs.com/rsalabs/pkcs/pkcs-11/ .

[PPSW95] Andreas Pfitzmann, Birgit Pfitzmann, Matthias Schunter, and Michael Waid-
ner. Vertrauenswürdiger Entwurf portabler Benutzerendgeräte und Sicherheitsmod-
ule. In Proceedings of Verläßliche Informationssysteme VIS’95, pages 329–350.
Vieweg, 1995.

[PPSW96] Andreas Pfitzmann, Birgit Pfitzmann, Matthias Schunter, and Michael Waidner.
Mobile user devices and security modules: Design for trustworthiness. Technical
Report RZ 2784 (#89262), IBM Research Division, Zurich, May 1996.

[PRS+01] Birgit Pfitzmann, James Riordan, Christian Stüble, Michael Waidner, and Arnd
Weber. The PERSEUS system architecture. Technical Report RZ 3335 (#93381),
IBM Research Division, Zurich, April 2001.

[PV98] Joachim Posegga and Harald Vogt. Byte code verification for Java smart cards
based on model checking. In 5th European Symposium on Research in Com-

puter Security (ESORICS’98), Louvain-la-Neuve, Belgium, volume 1485 of Lecture

Notes in Computer Science. Springer-Verlag, 1998.

[PvdBJ00] Erik Poll, Joachim van den Berg, and Bart Jacobs. Specification of the javacard api
in jml. In Proceedings of CARDIS ’2000, Bristol, UK, September 2000. Kluwer
Academic Publisher.

[PVGW00] Henning Pagnia, Holger Vogt, Felix C. Gärtner, and Uwe G. Wilhelm. Solving
Fair Exchange with Mobile Agents. In Second International Symposium on Agent

Systems and Applications and Fourth International Symposium on Mobile Agents

(ASA/MA2000), volume 1882 of Lecture Notes in Computer Science, pages 57–72,
Zurich, Switzerland, 2000.

[RCW01] Algis Rudys, John Clements, and Dan S. Wallach. Termination in language-based
systems. In Network and Distributed Systems Security Symposium ’01, San Diego,

California, February 2001.

Bibliography 144

[RE97] W. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, Winchester,
New York, Heidelberg, 1997.

[RFC0761] J. Postel. DOD Standard: Transmission Control Protocol. Internet RFC 761, Jan-
uary 1980.

[RFC1034] P. Mockapetris. Domain Names - Concepts and Facilities. Internet RFC 1034,
November 1987.

[RFC1057] Sun Microsystems Inc. RPC: Remote Procedure Call Protocol Specification Ver-
sion 2 (ONCRPC). Internet RFC 1057, June 1988.

[RFC1321] R. Rivest. The MD5 message-digest algorithm. Internet RFC 1321, April 1992.

[RFC1661] W. Simpson. The Point-to-Point Protocol (PPP). Internet RFC 1661, July 1994.

[RFC1945] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0. IETF RFC 1945, May 1996.

[RFC2045] N. Freed and N. Borenstein. Multipurpose internet mail extensions (MIME) part
one: Format of internet message bodies. Internet RFC 2045, November 1996.

[RFC2131] R. Droms. Dynamic host configuration protocol (DHCP). Internet RFC 2131,
March 1997.

[RFC2165] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service Location Protocol
(SLP). Internet RFC 2165, June 1997.

[RFC2246] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Internet RFC 2246, January
1999.

[RFC2535] D. Eastlake. Domain Name System Security Extensions. Internet RFC 2535, March
1999.

[RH99] Jim Rees and Peter Honeyman. Webcard: A Java Card Web Server. Technical
Report 99-3, Center for Information Technology Integration (CITI), University of
Michigan, 1999.

[RH00] Jim Rees and Peter Honeyman. Webcard: A Java Card Web Server. In Proceedings

of CARDIS ’2000, Bristol, UK, September 2000. Kluwer Academic Publisher.

[Roh00] Michael Rohs. Konzeption und Realisierung einer Integration von Smartcards in
Jini-Föderationen (in German). Master’s thesis, Darmstadt University of Technol-
ogy, Department of Computer Science, April 2000.

[RV01] Michael Rohs and Harald Vogt. Smart Card Applications and Mobility in a

World of Short Distance Communication, CASTING Project. Distributed Systems
Group, ETHZ Zurich, January 2001. Available at http://www.inf.ethz.ch/vs/res/

proj/casting.html.

Bibliography 145

[SA99] Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security issues
for ad-hoc wireless networks. In B. Christianson, B. Crispo, and M. Roe, ed-
itors, Proceedings of 7th International Workshop on Security Protocols, Heidel-

berg, Lecture Notes in Computer Science. Springer-Verlag, April 1999. Available
at http://www.cl.cam.ac.uk/~fms27/duckling/ .

[Sal97] Salutation Consortium. Salutation Architecture Specification. http://www.

salutation.org, October 1997.

[SAT00] SIMalliance Limited. SBC: S@T Byte Code Technical Specification 01.00 v1.0.3,
June 2000. Available at http://www.simalliance.org.

[Sch96] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code

in C. John Wiley & Sons, Inc, 1996.

[Sch00] Bruce Schneier. Secrets and Lies – Digital Security in a Networked World. Wiley
Computer Publishing, 2000.

[Sch01] Karl Scheibelhofer. What you see is what you sign. In Proceedings of IFIP confer-

ence on Communications and Multimedia Security (CMS ’2001), Darmstadt, Ger-

many, May 21–22, 2001.

[SigG97] Deutscher Bundestag. Gesetz zur digitalen Signatur. http://www.regtp.de/

Fachinfo/Digitalsign/neu/rechtsgr.htm, 22 July 1997. English Version ("Digital
Signature Act") available from http://www.regtp.de/English/ laws/download.htm.

[SigV97] Deutscher Bundestag. Verordnung zur digitalen Signatur. http://www.regtp.de/

Fachinfo/Digitalsign/neu/rechtsgr.htm, 22 July 1997. English Version ("Dig-
ital Signature Ordinance") available from http://www.regtp.de/English/ laws/

download.htm.

[SK00] Tage Stabell-Kulø. Smartcards: How to put them to use in a user-centric sys-
tem. In Second International Symposium On Handheld and Ubiquitous Computing

(HUC2k), Bristol, UK, volume 1927 of Lecture Notes in Computer Science, pages
200–210, September 25–27 2000.

[Sla01] Slashdot. "don’t trust code signed by ’microsoft corporation". Available at http:

// slashdot.org/articles/01/03/22/1947233.shtml, March, 22nd 2001.

[SLB00] Schlumberger, Inc.: Cyberflex SimeraTM, Technical Information. Available at http:

//www.cyberflex.com/Products/MobileCom/simera/simera.html, 2000.

[Smi96] Sean W. Smith. Secure coprocessing applications and research issues. Technical
Report LA-UR-96-2805, Los Alamos National Laboratory, August 1996.

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast capa-
bility system. In Seventeenth ACM Symposium on Operating Systems Principles,

Charleston, pages 170–185, December 12–15 1999.

[ST98a] T. Sander and C. Tschudin. Towards mobile cryptography. In Proceedings of the

IEEE Symposium on Security and Privacy, Oakland, CA, 1998. IEEE Computer
Society Press.

Bibliography 146

[ST98b] Tomas Sander and Christian F. Tschudin. Protecting mobile agents against ma-
licious hosts. In G. Vigna, editor, Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 44–60. Springer-Verlag, 1998.

[Stü00] Christian Stüble. Development of a Prototype for a Security Platform for Mobile
Devices. Master’s thesis, University of Dortmund and University of Saarland, 2000.

[Sun96] Sun Microsystems Inc. Manifest and Signature Specification, 1996. http:// java.

sun.com/products/ jdk/1.2/docs/guide/ jar/manifest.html.

[Sun98] Java Object Serialization Specification. http:// java.sun.com/ j2se/1.3/docs/guide/

serialization/ , 1998.

[Sun99a] Sun. Jini Architecture Specification – Revision 1.0. Sun Microsystems Inc., January
1999.

[Sun99b] Sun. Jini Discovery and Join Specification – Revision 1.0. Sun Microsystems Inc.,
January 1999.

[Sun99c] Sun. Jini Lookup Service Specification – Revision 1.0. Sun Microsystems Inc.,
January 1999.

[Sun00a] Sun. Java Card 2.1.1 Runtime Environment Specification, 2000. Available at http:

// java.sun.com/products/ javacard/ .

[Sun00b] Sun. Java Card 2.1.1 Virtual Machine Specification, 2000. Available at http:// java.

sun.com/products/ javacard/ .

[Sun01a] Sun Microsystems Inc. Jini Technology IP Interconnect Specification Version 0.7,
March 2001. Available at http://developer.jini.org/exchange/projects/ surrogate/

IP/ .

[Sun01b] Sun Microsystems Inc. Jini Technology Surrogate Architecture Specification Ver-

sion 0.7, March 2001. Available at http://developer.jini.org/exchange/projects/

surrogate/ .

[Sur01] Smart Card Project Homepage at Jini.org. Available at http://developer.jini.org/

exchange/projects/ smartcard/ , January 2001.

[Swi00] Swisscom. Swiss Patent No. PCT/EP00/09121: Method for securing communica-
tions between a terminal and an additional user equipment, 2000.

[Tab00] Hugo Taborda. Analysis and Evaluation of a Server-side Secure Sockets Layer Im-
plementation on Smartcards. Master’s thesis, Darmstadt University of Technology,
July 2000.

[TCPA00] Trusted Computing Platform Alliance. Trusted Computing Platform Alliance

(TCPA): TCPA Design Philosophies and Concepts Version 1.0, 2000. Available
at http://www.trustedpc.org.

[UDDI01] UDDI Consortium. UDDI Web site. http://www.uddi.org/ , 2001.

Bibliography 147

[UPn99a] Univeral Plug and Play Device Architecure Specification Version 0.9. Available
at [UPn99b], November 1999.

[UPn99b] Universal Plug and Play Homepage. http://www.upnp.org, 1999.

[Uri00] Pascal Urien. Internet card, a smart card as a true Internet node. Computer Com-

munications, Elsevier Science, 23(17):1655–1666, 2000.

[Uri01a] Pascal Urien. Programming internet smart card with XML scripts. In Proceed-

ings of eSmart ’2001, Cannes, France, volume 2140 of Lecture Notes in Computer

Science. Springer-Verlag, September 2001.

[Uri01b] Pascal Urien. Proposal for a standard smartcard communication stack interface.
Bull CP8 R&D, March 2001. Submitted to the Java Card Forum [JCF01].

[US01] ID Theft: U.S. government’s central website for information about identity theft.
Available at http://www.consumer.gov/ idtheft/ , 2001.

[UST00] Pascal Urien, Hayder Saleh, and Adel Tizraoui. Internet card, a smart card for
Internet. In Protocols for Multimedia Systems PROMS ’2000, Cracow, Poland,
October 22–25, 2000. Proceedings are available from http://www.kt.agh.edu.pl/

research/conf/proms00/ .

[Vig98] G. Vigna. Cryptographic traces for mobile agents. In G. Vigna, editor, Mobile

Agents and Security, volume 1419 of Lecture Notes in Computer Science. Springer-
Verlag, June 1998.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.

[VV98] Jean-Jacques Vandewalle and Eric Vétillard. Developing Smart Card-Based Ap-
plications using Java Cards. In Proceedings of the Third Smart Card Research

and Advanced Application Conference (CARDIS’98), Louvain-la-Neuve, Belgium,
September 1998.

[W3C99] W3C. XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16 Novem-

ber 1999, November 1999. Available at http://www.w3.org/TR/xslt.html.

[W3C00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible

Markup Language (XML) 1.0 (Second Edition) W3C Recommendation 6 October

2000. W3C, October 2000. Available at http://www.w3.org/TR/2000/REC-xml-

20001006.

[W3C01] W3C. XML Schema Part 0–2: W3C Recommendation, 2 May 2001, May 2001.
Available at http://www.w3.org/XML/Schema/ .

[Wal99] Jim Waldo. The Jini Architecture for Network-centric Computing. Communica-

tions of the ACM, 42(7):76–82, July 1999.

[WAP98a] Wireless Application Protocol Forum. http://www.wapforum.org, 1998. Hosts
downloadable specifications.

Bibliography 148

[WAP98b] Wireless Application Forum Ltd. Wireless Application Protocol Architecture Spec-

ification Version Version 30-Apr-1998, April 1998. Available at [WAP98a].

[WAP99a] Wireless Application Forum Ltd. Wireless Application Protocol Wireless Markup

Language Specification Version 1.2, November 1999. Available at [WAP98a].

[WAP99b] Wireless Application Forum Ltd. Wireless Application Protocol Wireless Transport

Layer Security Specification Version 05-Nov-1999, November 1999. Available at
[WAP98a].

[WAP99c] Wireless Application Protocol Forum, Ltd. WAP Push Architectural Overview Ver-

sion 1999-11-08, November 1999. Available at [WAP98a].

[WB96] Mark Weiser and John Seely Brown. The coming age of calm technology. Available
at http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm, October 1996.

[WBS98] U. G. Wilhelm, L. Buttyàn, and S. Staamann. On the problem of trust in mobile
agent systems. In Symposium on Network and Distributed System Security, pages
114–124, San Diego, CA, USA, March 1998. Internet Society.

[WE99] Jane Kaufman Winn and Carl Ellison. http://www.ftc.gov/bcp/ icpw/comments/

revwin~1.htm, March 1999.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific American, pages 94–
104, September 1991.

[WHFG92] R. Want, A. Hopper, V Falcao, and J. Gibbons. The Active Badge Location System.
ACM Transactions on Information Systems, 10(1), 1992.

[Wil99] Uwe Wilhelm. A Technical Approach to Privacy based on Mobile Agents Protected

by Tamper-resistant Hardware. PhD thesis, École Polytechnique Fédérale de Lau-
sanne (EPFL), 1999. Thése N. 1961.

[WSZ01] Konrad Wrona, Marko Schuba, and Guido Zavagli. Mobile Payments – State of the
Art and Open Problems. In Ludger Fiege, Gero Mühl, and Uwe Wilhelm, editors,
Proceedings of Second International Workshop on Electronic Commerce, WEL-

COM ’2001, Heidelberg, Germany, volume 2232 of Lecture Notes in Computer

Science, pages 88–100. Springer-Verlag, November, 16–17 2001.

[Yee94] Bennet Yee. Using secure coprocessors. PhD thesis, Carnegie Mellon University,
May 1994.

[Yee99] B. S. Yee. A sanctuary for mobile agents. In J. Vitek and C. Jensen, editors,
Secure Internet Programming: Security Issues for Mobile and Distributed Systems,
number 1603 in Lecture Notes in Computer Science, pages 261–273. Springer-
Verlag, 1999.

[YKS+01] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH Connection
Protocol. Available as IETF Draft draft-ietf-secsh-connect-09.txt, January 2001.

Bibliography 149

[YT95] Bennett Yee and J. D. Tygar. Secure Coprocessors in Electronic Commerce Appli-
cations. In Proceedings of the First USENIX Workshop of Electronic Commerce,

New York, pages 155–170, July 1995.

[Zob01] Rosalie Zobel. Smart cards for eEurope. In Matthias Fluhr, editor, Die Chip-

karte: Neue Sicherheitskonzepte und Wertschöpfungsmodelle, Proceedings of OM-

NICARD ’2001, Berlin, pages 10–18. inTIME Berlin, January 16–18, 2001.

Curriculum Vitae

Name Roger Kilan-Kehr geb. Kehr

Geburtsdatum 22. Januar 1970 in Marburg/Lahn

Schule

Aug 76 – Jul 80 Grundschule in Hatzbach und Stadtallendorf

Aug 80 – Jun 89 Schwalmgymnasium in Treysa mit Abschluß der allgemeinen
Hochschulreife

Jul 89 – Sep 90 Wehrdienst in Stadtallendorf

Studium

Okt 90 – Mär 91 Studium der Mathematik an der TH Darmstadt

Apr 91 – Sept 97 Studium der Informatik an der TH Darmstadt

Sep 94 – Mär 95 Auslandsaufenthalt im Rahmen des ERASMUS-Programms an der
Universidade Nova de Lisboa (Lissabon)

Sep 97 Abschluß als Diplom-Informatiker

Berufliche Tätigkeit

Okt 97 – Dez 98 Mitarbeiter bei Net & Publication Consultance GmbH, Rödermark

Jan 99 – Dez 01 Wissenschaftlicher Mitarbeiter am Fachgebiet Datenbanken und
Verteilte Systeme und am Information Technology Transfer Office
(ITO) des Fachbereichs Informatik, TU Darmstadt

Sep 00 – Dez 01 Kollegiat des Graduiertenkollegs Infrastrukturen für den elektroni-

schen Markt and der TU Darmstadt

seit Jan 99 Wissenschaftlicher Mitarbeiter bei T-Systems Nova GmbH, Be-
reich Informationssicherheit, Technologiezentrum Deutsche Tele-
kom AG, Darmstadt

