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Abstract— This paper develops a set of methods enabling an
information-theoretic distributed control architecture to facilitate
search by a mobile sensor network. Given a particular config-
uration of sensors, this technique exploits the structure of the
probability distributions of the target state and of the sensor
measurements to control the mobile sensors such that future
observations minimize the expected future uncertainty of the
target state. The mutual information between the sensors and
the target state is computed using a particle filter representation
of the posterior probability distribution, making it possible
to directly use nonlinear and non-Gaussian target state and
sensor models. To make the approach scalable to increasing
network sizes, single-node and pairwise-node approximations to
the mutual information are derived for general probability den-
sity models, with analytically bounded error. The pairwise-node
approximation is proven to be a more accurate objective function
than the single-node approximation. The mobile sensors are
cooperatively controlled using a distributed optimization, yielding
coordinated motion of the network. These methods are explored
for various sensing modalities, including bearings-only sensing,
range-only sensing, and magnetic field sensing, all with potential
for search and rescue applications. For each sensing modality,
the behavior of this non-parametric method is compared and
contrasted with the results of linearized methods, and simulations
are performed of a target search using the dynamics of actual
vehicles. Monte Carlo results demonstrate that as network size
increases, the sensors more quickly localize the target, and the
pairwise-node approximation provides superior performance to
the single-node approximation. The proposed methods are shown
to produce similar results to linearized methods in particular
scenarios, yet they capture effects in more general scenarios that
are not possible with linearized methods.

Index Terms— Active sensing, cooperative systems, distributed
control, entropy, intelligent sensors, mobile sensor network,
Monte Carlo methods, particle filter, mutual information.

I. INTRODUCTION

MOBILE sensor networks can be deployed to efficiently

acquire information about the world, such as the lo-

cation of a search target, with the ability to make simultane-

ous measurements from multiple vantage points. The control

objective is to search for information quickly, safely, and

reliably. Limitations in sensor capabilities can render this a

challenging task. This paper develops methods to automate

mobile sensors to meet this control objective using a proba-

bilistic, non-heuristic foundation. Given a set of sensors, these

techniques exploit the structure of the probability distributions
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of the target state and of the sensor measurements to compute

control inputs leading to future observations that minimize the

expected future uncertainty of the target state.

Several computational challenges arise in searching for a

target. First, there is the task of representing information.

Typically, there is low prior information available about the tar-

get’s state. Search regions can be complicated to represent. As

the search progresses, the target state probability distribution

often requires a more intricate model than can be represented

by a parametric distribution, such as Gaussian. Further, the

mapping between sensor observations and the physical world,

even for simple sensors, is frequently a nonlinear function,

such as the arctan function for bearing measurements, and

the L2 norm for range measurements, neither of which is

one-to-one. Second, there is the challenge of formulating the

optimal control problem. The linear, quadratic cost, Gaussian

distribution (LQG) assumptions that lead to the certainty

equivalence principle, separating the estimation and control

problems, are typically not valid in this problem [1]. Third,

there is the difficulty of cooperatively controlling the mobile

sensors. In order to improve network performance, it would be

desirable to add more sensors to the network while keeping the

computational cost of optimizing the actions bounded. Also,

safety requirements must be satisfied, such as collision avoid-

ance between vehicles. They must maintain a safe separation

distance under the constraints of their dynamics.

We propose two techniques to address these challenges,

in order to yield a mobile sensor network framework which

is scalable and capable of accurately capturing and using

information. The first technique is to directly use particle

filter estimators [2] to compute an information seeking ob-

jective function. This enables the use of multi-modal posterior

distributions, nonlinear and non-Gaussian sensor models, and

the use of general prior information. This technique preserves

details in the objective function that would be discarded by

linearization and Gaussian approximations—it is possible to

more accurately quantify the value of potential observations.

The second technique is to decompose the information seeking

objective function so that as the number of vehicles increase,

the vehicles can leverage one another’s positions to improve

the sensing capabilities using approximations that discard

higher order terms. A first approximation is to fully decouple

the problem. We define this as the single-node approximation,

and derive the error incurred. Its computational complexity is

constant with respect to the number of sensors, yielding a fast

distributed cooperative optimization. Although the vehicles

appear to cooperate due to optimization using the same target

state probability distribution, the only interactions between

their local optimization problems are the collision avoidance
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constraints. To enable a higher level of cooperative sensing, we

propose a new method that considers the effects of each sensor

on each other sensor, pairwise, the pairwise-node approxima-

tion. It incurs a linear computational expense in the number of

vehicles, yet the effect of the approximation error is provably

reduced from that of the single-node approximation, allowing

coupled effects between mobile sensors to be captured.

To evaluate the characteristics of the proposed algorithms,

we explore three sensing modalities. The first is bearings-only

sensing, such as cameras and directional antennae [3], where

the direction to the target is measured. This permits compari-

son to related work. The second is range-only sensing, includ-

ing techniques such as received signal strength measurements

and time-of-flight measurements [4], in which distance to the

target is measured. Localization using this modality is more

prone to error using standard linearization techniques, but

control actions generated using the non-parametric algorithms

presented here match the analytically optimal behavior. The

final modality is personal radio beacons, such as those used for

avalanche rescue [5]. Here, the dipole magnetic field emitted

by the beacon is measured, with a nonlinear periodic shape—

the posterior probability distribution of the state estimate can

be substantially non-Gaussian. In all scenarios, the mobile

sensor dynamics are modeled to be the dynamics of the

quadrotor helicopters in the Stanford Testbed of Autonomous

Rotorcraft for Multi-Agent Control (STARMAC) [6].

This search problem is a stochastic optimal control

problem—control inputs regulate both the dynamics of the

system and the information gained by sensing, as discussed

in work on the dual control problem [7] and on extremum-

seeking control [8]. Several stochastic optimal control prob-

lems have been solved by simplifying sensor and motion

models, such as the LQG problem [1]. The assumptions of

the LQG problem were extended to target localization using

the Extended Kalman Filter (EKF), which linearizes motion

and measurement models. These methods use metrics of the

expected estimation covariance, often in an information theo-

retic context [9], [10], [11], [12]. A feedback controller was

formulated for dual control using an EKF with assumptions

rendering the solution suboptimal, but solvable online [13].

Although EKF approaches are computationally efficient,

they use linearized measurement models, rely on a Gaussian

noise assumption, and require a guessed initial solution. This

can lead to underestimation of the covariance, biased esti-

mates, and divergence of the filter [2], [14], [15], [16]. These

drawbacks can be mitigated through a number of methods, but

they cannot be eliminated [15], [17]. The EKF methods also

approximate the structure of posterior distributions with only

a mean and a covariance, discarding additional available infor-

mation. One method to improve on EKF performance uses grid

cell discretization for estimation, though it uses a probability-

of-detection model for the sensor rather than a complete sensor

model [18]. The work presented in this paper also uses metrics

of the underlying estimator, although by using a particle filter

as the estimator, the nonlinear estimation performance can

be improved, more information can be captured, and explicit

sensor models can be incorporated.

Information theoretic costs metrics have been used to man-

age sensors [19], and led to algorithms to control sensor

networks for information gathering over an area by param-

eterizing the motion of collectives of vehicles [20]. The

optimal probing control law to minimize Shannon entropy

for the dual control problem was shown to be the input

that maximizes mutual information [21]. A property relating

probability distributions, the alpha-divergence, was computed

for particle filters and applied to manage sensors with binary

measurements, though scalability in sensor network size was

not addressed, and Shannon entropy was only found in the

limit of the presented equations [22]. Probability-of-detection

was computed using both grid cell and particle filter estima-

tors, and experimentally demonstrated [23]. An approximate

method was used to estimate the expected entropy for particle

filters over a finite horizon [24]. Gaussian particle filtering was

used with a mutual information objective function, though the

technique approximates the posterior probability distribution

as Gaussian at every update [25]. An earlier version of mutual

information approximation techniques was presented in [26].

The work presented here develops methods to make the

information theoretic ideas of previous work tractable and

scalable for real-time control of a mobile sensor network for

general sensors, dynamics, and available prior knowledge.

The theoretical contributions of this paper are three-fold.

First, formulae are derived to compute information theoretic

quantities for a particle filter representation of probability

distributions. Second, single-node and pairwise-node approxi-

mations are derived for the mutual information available in a

mobile sensor network, with general probability density mod-

els, analytical bounds on the error incurred, and computation

time that is polynomial in the number of sensors. Third, the

pairwise-node approximation is proven to be a more accurate

objective function for mutual information optimization than

the single-node approximation. The benefits of these contribu-

tions are explored for three different sensing modalities.

We proceed in Section II by formulating the problem

and showing the equivalence of searching for a target and

maximizing mutual information. Then, algorithms are de-

rived to compute mutual information using particle filters in

Section III, and used in a distributed control algorithm to

cooperatively control the vehicles. The methods are applied

in simulation in Section IV to the three sensing modalities de-

scribed above. The results in these examples show successful

localization under all tested circumstances, due to the under-

lying particle filter. The pairwise-node approximation leads to

faster localization than using the single-node approximation,

and increasing the size of the network speeds localization.

Successful localization of the rescue beacon’s magnetic field

source exemplifies the utility of these techniques.

II. PROBLEM FORMULATION

This section defines the search problem and proposes an

information-theoretic framework for the solution. First, the

mobile sensor network model is defined, then the goal of

searching for a target is cast using the information-theoretic

concept of mutual information as a utility function to optimally

search for a target.
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A. Mobile Sensor Motion and Measurement Models

Consider a set of nv vehicles carrying sensors to locate a

target in the search domain Θ. The state of the target θt ∈
Θ ⊂ R

nθ at discrete time t is unknown to the vehicles. Though

we consider stationary targets here, a motion model could be

used for nonstationary targets [27]. A prior distribution p(θ0)
is provided, using any information available a priori.

The state of the ith vehicle is x
(i)
t ∈ R

ns , with ns vehicle

states, such as position, orientation, and velocity. The discrete

time dynamics are

x
(i)
t+1 = f

(i)
t (x

(i)
t ,u

(i)
t ), (1)

where u
(i)
t ∈ U (i) ⊂ R

nu is the set of nu control inputs,

U (i) is their domain, and the time duration between time steps

is ∆. The collision avoidance constraint imposed between

vehicles is a minimum separation of d̄. This accounts for the

finite expanse of the vehicles and safety margin. Let ρ
(i)
t be

the subset of the ith vehicle’s states that corresponds to its

position. The collision avoidance constraint is

||ρ
(i)
t − ρ

(j)
t || ≥ d̄ ∀ j ∈ {1, . . . , nv : j 6= i}. (2)

Sensor measurements for the ith vehicle z
(i)
t ∈ Z(i) ⊂

R
nz are taken at rate 1

∆ , where Z(i) is the domain of the

observations, with dimension nz . When the superscript is

omitted, zt = {z
(1)
t , . . . , z

(nv)
t }. The measurement model is

z
(i)
t = h

(i)
t (x

(i)
t , θ, η

(i)
t ). (3)

Observation noise η
(i)
t ∈ R

nη has an assumed probability

distribution p(η
(i)
t ) which need not be Gaussian. The problem

formulation admits a broad class of measurement models, as

h
(i)
t could be a nonlinear or discontinuous mapping of the

states and measurement noise onto the observation space.

Each vehicle is provided the measurement model for all

sensors in the network a priori. This enables each vehicle to

interpret observations made by any sensor in the network and

model their capabilities, making possible optimal trajectory

planning as described in the following section. Note that the

measurement model for a sensor must be known in order to

use it, so sharing the measurement models between vehicles

introduces no practical limitations in this cooperative scenario.

For computational purposes, each vehicle must store the

posterior distribution locally. To enable distributed knowledge

of this distribution, using non-parametric estimators, each

vehicle i maintains its own instantiation of the posterior

distribution of the target state p(θt) incorporating all prior

measurements, {z1, . . . , zt−1}. The local instantiation of p(θt)
is a non-parametric approximation to the true posterior distri-

bution. The system is assumed to be Markov, hence recursive

updates using Bayes’ rule are used to incorporate observations

made or received between time t− 1 and t,

p(θt|zt) =
p(θt)p(zt|θt)

p(zt)
. (4)

The target is assumed stationary for this work, so recursion

is accomplished using p(θt) = p(θt−1|zt−1). To incorporate

a nonstationary target, a motion model would provide this

relationship. All vehicles’ distributions are based on the full

Sensor Filter

ControllerDynamics

Fig. 1. As in a standard control system, the state vectors x of the vehicles are
manipulated using the control inputs u. Unlike a typical control system, the
information-seeking controller receives the full probability distribution p(θ)
of the target state estimate vector θ, rather than only the expected value. The
future value of x can be controlled such that future sensor measurements
z yield the greatest expected reduction in the uncertainty of p(θ), based on
sensors models. The vehicles maximize the information gained about the target
state while minimizing the number of future measurements required.

history of shared observations, and can be assumed nearly

identical. It is assumed that the vehicles are equipped with

communication devices that enable this exchange of mea-

surements between vehicles. One such reliable technology is

demonstrated in the 802.11g network used for STARMAC [6].

Although the methods presented are tolerant of imperfect

communication in practice, the implications of communication

quality on the control objective is a current area of research.

B. Information Seeking

The goal of the search team differs from a typical control

system. The measurement of success is not the ability to track

a trajectory—rather, as depicted in Fig. 1, it is to maximize the

likelihood of localizing the target as quickly as possible. The

target is localized by making observations at a fixed rate. The

more observations required, the slower the target is localized.

Therefore, the goal can equivalently be stated as controlling

sensor locations to minimize the expected number of future

observations needed to ascertain the target’s state. A set of

observations can be interpreted, in an information-theoretic

sense, as a code word, with an alphabet comprised of all

possible quantized outputs of the nz sensors. These encode

the target state, which is represented numerically in software

by a finite alphabet of symbols, such as 64 bits in a double

precision floating point data type. Therefore, to minimize the

expected number of remaining observations is to maximize the

expected log-likelihood of the posterior distribution with each

observation of the vehicles, as derived in [28].

In order to increase this likelihood as quickly as possible

at each time step, only the control actions for the current

time step need be considered. To optimize control actions

over longer time horizons, it is equivalent to using a larger

code word, in information theoretic terms. Although a longer

optimization horizon results in equal or better expected per-

formance by the end of the time horizon, the one step horizon

maximizes the current rate at which information is acquired,

yielding equal or better expected results by the next time step.

Interesting bounds on the tradeoff are given by [25]. To satisfy

the goal of acquiring information as quickly as possible for
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Fig. 2. Directed graphical model of the estimator with 3 mobile sensors.
The dashed line region contains the random variables used in the information
theoretic optimization to compute the control actions at time t = 1. The
optimization finds control actions that minimize the expected uncertainty
of the subsequent target state model p2(θ), a function of the probability

distributions of the random variables z
(1)
2 , z

(2)
2 , and z

(3)
2 , and the current

target state model p1(θ). Although p1(θ) is independent of future states of the
sensors, the sensor probability distributions are functions of the future states
of the sensors, states controlled by the information theoretic optimization.

the time-critical search problem—with diminishing returns for

delayed information—one step horizons are considered here.

Taking the log-likelihood of the posterior distribution given

by Bayes’ rule in (4), and using p(zt, θt) = p(zt|θt)p(θt)
yields

H(θt|zt) = H(θt)− I(zt; θt), (5)

where

H(θt) = −

∫

θ∈Θ

p(θt) log p(θt)dθ, (6)

H(θt|zt) = −
∫

θ∈Θ

z∈Z

p(θt, zt) log p(θt|zt)dθdz,
(7)

I(zt; θt) =
∫

θ∈Θ

z∈Z

p(θt, zt) log p(θt,zt)
p(θt)p(zt)

dθdz.
(8)

H(θt) is the entropy of the target state distribution, I(zt; θt) is

the mutual information between the distributions of the target

state and the sensors, and H(θt|zt) is the conditional entropy1

of the distribution—the expected entropy of the target state

when conditioning with zt[29]. The entropy of a probability

distribution is a metric of its uncertainty. The mutual informa-

tion is a metric of the expected divergence (Kullback-Liebler)

between the independent and joint distributions of θt and zt.

It is large when two distributions have strong interdependence,

and zero when they are independent.

Control inputs ut and vehicle states xt influence observa-

tions zt through (1) and (3). To minimize the expected future

uncertainty of the target state distribution with respect to ut

is to minimize (5). Note that the actual uncertainty can only

be determined once the true measurement zt is made. The

1When the argument of H(·) indicates a conditional relationship,
e.g., a|b, it is the expected entropy of the conditional probability
distribution p(a|b), since b is a random variable. Thus, H(a|b) =
∫

b∈B
p(b)

(

∫

a∈A
p(a|b) log p(a|b)da

)

db. Because p(a, b) = p(a|b)p(b),

this is equal to the expression in (7). If the value of b were known to be a
constant bc, then the entropy would be H(a|b = bc), which can be computed
without taking an expectation.

prior uncertainty is independent of the future control inputs,

as depicted in Fig. 2, so to minimize the expected posterior

uncertainty, one must maximize the observation information

with respect to the control inputs.

In order to seek information, the network computes its

control inputs by maximizing the mutual information utility

function, defined as follows

Definition 1 (Mutual Information Utility Function): The

mutual information utility function evaluated at vehicle i is

V (i)(xt,ut, p(θt)) = I(zt+1; θt+1), (9)

where argument p(θt) indicates that the data defining the prob-

ability distribution of θt are used by the utility function. The

arguments on the right hand side of (9) are random variables;

to evaluate this expression requires the sensor model, (3), and

vehicle motion model, (1). Both are functions of the arguments

of the mutual information utility function.

Methods for computing this utility function are presented

in the next section.

III. METHODOLOGY

The goal of the search problem is to minimize the un-

certainty encompassed in the posterior distribution of the

target state, represented here by a particle filter. Regardless of

the specific implementation of the particle filter, the method

proposed in this work focuses on controlling the vehicles

such that they maneuver the sensors to make observations that

reduce the uncertainty in the particle set as quickly as possible,

distinguishing likely particles from unlikely particles.

This section proceeds by first reviewing particle filters as

implemented here. Then a method is developed to compute

mutual information directly from the particle filter repre-

sentation. To improve the efficiency of computing mutual

information as the size of the sensor network grows, two

decompositions are derived next. These approximations, with

analytically quantified error, permit a direct tradeoff between

computational complexity and the level of cooperation be-

tween vehicles. Finally, the distributed control algorithm ap-

plied to these utility functions is presented.

A. Particle Filter

Particle filters are a Monte Carlo method to perform

Bayesian estimation. By using this method, it is possible

to directly use nonlinear sensor and motion models, non-

Gaussian noise models, and non-Gaussian posterior probability

distributions. Although particle filters typically incur more

computational cost than parametric methods for nonlinear es-

timation, a well formulated particle filter generally results in a

more accurate representation of the solution [14]. The method

is presented here for completeness, as an existing technology.

Specific algorithms remain an active field of research. For

more details, the reader is referred to [14], [27], [30].

Each vehicle approximates p(θt) with an onboard particle

filter, incorporating the observations shared by all vehicles,

with a set of N particles (θ̃
(i)
t,k,w

(i)
t,k) indexed by k, where

θ̃
(i)
t,k ∈ Θ is the state of the particle, and w

(i)
t,k ∈ R+ is
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Particle Set

Correction
(weighting)

Resampling

Particle Set

Prediction

Fig. 3. Graphical depiction of a 1-D particle filter. This non-parametric
method approximates Bayes’ rule updates, (4). The filter is initialized by
drawing particles from a prior probability distribution over the state space
p(θ). Sensor measurements zt and sensor models are used to weight particles
according to their likelihood given their states. The particles can then be
resampled, according to their weights, to concentrate on regions with high
likelihoods. Finally, the particle distribution is predicted for the subsequent
time step and future observations are iteratively incorporated [14], [30].

the importance weight.2 The particles represent p(θt) by the

probability mass function,

p̂(i)(θt) =

N
∑

k=1

w
(i)
t,kδ(θt − θ̃

(i)
t,k), (10)

where δ(·) is the Dirac delta function. This approximates p(θt)
over intervals in Θ, with convergence results given in [31].

By maintaining a set of particles locally aboard each vehicle,

only the observations need to be communicated, as opposed

to the values of the entire particle set. The particle filter itera-

tively incorporates new observations by predicting the state of

each particle, updating importance weights with the likelihood

of new observations, and then resampling the particles, as

depicted in Fig. 3 and described in detail in [30], [27].

This work uses a standard sampling-importance-resampling

algorithm [14], [30] with a low variance sampler [14] having

time complexity O(N). Resampling is performed when the

effective sample size estimate Neff = 1/
∑N

k=1

(

w
(i)
t,k

)2

is

less than N/2 [32]. The minimum mean square error (MMSE)

estimate is computed using

θ̂
(i)
t =

∫

Θ

θtp(θt)dθ ≈
N
∑

k=1

w
(i)
t,kθ̃

(i)
t,k. (11)

B. Determining Mutual Information from Particle Sets

To evaluate the mutual information utility function, (9), it

can be expanded as [29],

I(zt; θt) = H(zt)−H(zt|θt). (12)

Minimizing the expected posterior uncertainty is equivalent

to maximizing the difference between the uncertainty that any

2The second subscript of any variable denotes the index of the particle to
which the variable belongs.

particular observation will be made, H(zt), and the uncertainty

of the measurement model, H(zt|θt).
To compute (12) using the particle filter representation, start

with the first term,

H(zt) = −

∫

Z

p(zt) log p(zt)dz. (13)

This cannot be directly evaluated because p(zt) must be

determined from the particle set and sensor model. First,

expand the distribution as

p(zt) =

∫

Θ

p(zt|θt)p(θt)dθ. (14)

Note that when sensor observations are conditionally indepen-

dent given the target state, a useful decomposition is

p(zt|θt) =

nv
∏

j=1

p(z
(j)
t |θt). (15)

This is true when sensor noise is uncorrelated and due to local

effects at the sensor, as is often the case.

Next, Monte Carlo integration techniques can be used [33].

Substituting (10) into (14) yields the particle filter approxima-

tion at the ith vehicle,

p(zt) ≈
N
∑

k=1

(

w
(i)
t,kp(zt|θt= θ̃

(i)
t,k)
)

. (16)

Remark 1 (Normalizing weights): The importance weights

must be normalized to sum to one prior to Monte Carlo

integration. All w
(i)
t,k must be divided by

∑N
k=1 w

(i)
t,k.

Substituting (16) into (13) yields the observation entropy of

the distribution represented by the particle filter approximation

at the ith vehicle,

H(zt) ≈ −
∫

Z

{(

N
∑

k=1

(

w
(i)
t,kp(zt|θt= θ̃

(i)
t,k)
)

)

· log

(

N
∑

k=1

(

w
(i)
t,kp(zt|θt= θ̃

(i)
t,k)
)

)}

dz.

(17)

This integration can then be performed using an appropriate

numerical quadrature technique [34].

Next, similar methods are applied to compute

H(zt|θt) = −

∫

Z,Θ

p(zt, θt) log p(zt|θt)dzdθ. (18)

The joint distribution can be expanded using the chain rule,

p(zt, θt) = p(θt)p(zt|θt). (19)

Substituting (19) into (18) and applying the approximation,

(10), yields the conditional observation entropy of the distri-

bution represented by the particle filter at the ith vehicle,

H(zt|θt) ≈ −
∫

Z

N
∑

k=1

{

w
(i)
t,kp(zt|θt= θ̃

(i)
t,k)

· log p(zt|θt= θ̃
(i)
t,k)
}

dz.

(20)

Thus, the mutual information utility function, (9), can be found

by using (17), (20), and (12).
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Remark 2 (Independent distributions): If p(zt) and p(θt)
are independent distributions, then I(zt; θt) = 0. To examine

(17) and (20) in this limit, consider a sensor with p(zt|θt) =
m(zt), independent of θt. Then, (17) approximates H(zt) as

H(zt) ≈ −

∫

Z

m(zt) log (m(zt))dz. (21)

Similarly, H(zt|θt) evaluates to the same expression. There-

fore, in the limit where p(zt) and p(θt) are independent,

I(zt; θt) given by (12) is zero, the exact value.

Remark 3 (Particle subsampling): Accuracy and computa-

tion time can be traded off by subsampling the particle set

to evaluate the objective function (e.g., using low variance

resampling). Experimentally, the number of particles required

to accurately compute I(zt; θt) is typically less than the

number required to estimate the posterior distribution.

This optimization remains highly coupled between the nv

vehicles. Next, the degree of cooperation between the vehicles

is analyzed to determine a scalable control strategy.

C. Approximately Decoupling Mutual Information

The mutual information between the random variables θt

and zt quantifies the expected reduction in uncertainty. How-

ever, the computational complexity of using a particle set

representation to evaluate this quantity grows exponentially

with nz due to integration over each dimension.

We present two approximations to mutual information that

allow it to be evaluated in polynomial time with respect to

the number of sensors. This makes the network scalable,

yet capable of exploiting the descriptiveness of the particle

filter. Note that the approximations are general; not specific

to particle filters. This section proceeds by first defining the

approximations and then quantifying and comparing the errors

incurred. First, consider the single-node approximation.

Definition 2 (Single-Node Approximation): This equation

approximates the mutual information utility function, (9), for

optimization routines onboard the ith vehicle, using

V (i)
s (xt,ut, p(θt)) = I(z

(i)
t ; θt). (22)

This differs from (9) in that only the sensor aboard vehicle i
is considered for computing the mutual information.

In this approximation, a sensing node’s utility function

uses the previous observations of all sensing nodes, but only

considers its own future observations. Although the vehicles

cooperate through a distributed optimization, their local utility

functions do not include the effect of future observations of

each other’s sensors. This is equivalent to an approximation

in the literature that has been applied to linearized, Gaussian

estimators (e.g., [9]). The computational complexity of the

single-node approximation is constant with respect to nv .

Second, in a new approximation to improve accuracy, the

pairwise interactions of all vehicles are additionally con-

sidered. This more accurately captures the effect of group

control inputs on mutual information (as will be proven in

Theorem 3) with computational complexity linear in nv . This

new technique is the pairwise-node approximation,

Definition 3 (Pairwise-Node Approximation): This

equation approximates the mutual information utility

function, (9), for optimization routines onboard the ith

vehicle using

V
(i)
p (xt,ut, p(θt)) = (2− nv)

(

I(z
(i)
t ; θt)

)

+
nv
∑

j=1
j 6=i

(

I(z
(i)
t , z

(j)
t ; θt)

)

. (23)

where nv ≥ 2; otherwise (9) is readily used.

Using this approximation, sensing nodes additionally con-

sider the effect of other vehicles’ future observations, pairwise,

on the utility of their own future observations. Whereas the

single-node approximation leads to emergent cooperative be-

havior from common knowledge of the target state distribution,

the pairwise-node approximation makes possible improved

cooperation by approximating the effect of future observations

of all other sensing nodes on the mutual information.

To quantify the error incurred in these approximations, a

preliminary lemma is given for the subsequent theorems.

Lemma 1 (Exchange of Conditioning Variables): The con-

ditioning variables in mutual information can be exchanged,

for random variable a, b, and c, using either of

I(a; b|c) = I(a; b)− I(a; c) + I(a; c|b), (24)

I(a; b|c) = I(a; b)− I(b; c) + I(b; c|a). (25)

Proof:

I(a; b)− I(a; b|c) = H(a)−H(a|b)−H(a|c) +H(a|b, c)
= I(a; c)− I(a; c|b).

proving (24). Equation (25) follows by commuting the order

of a and b in I(a; b) and I(a; b|c) above.

To quantify the error incurred by the approximations, an-

alytical expressions for the errors are derived and compared.

First, consider the single-node approximation.

Theorem 1 (Single-Node Approximation Error): The

difference between the single-node approximation for the ith

vehicle and the true value of (9) is ǫs,

ǫ(i)s = c(i)s +

nv
∑

j=2
j 6=i

(

I(z
(j)
t ; z

(i)
t , z

(1)
t , . . . , z

(j−1)
t )

)

, (26)

where c
(i)
s encompasses the terms that are constant with

respect to the ith mobile sensor’s control inputs.

Proof: Without loss of generality, consider the case of

approximating the mutual information from the perspective of

vehicle i = 1. The mutual information can be expanded using

the chain rule [29], and then rewritten using Lemma 1 to yield

I(θt; zt) =
nv
∑

j=1

I(θt; z
(j)
t |z

(1)
t , . . . , z

(j−1)
t )

=
nv
∑

j=1

(

I(θt; z
(j)
t )− I(θt; z

(1)
t , . . . , z

(j−1)
t )

+ I(θt; z
(1)
t , . . . , z

(j−1)
t |z

(j)
t )
)

.

Exchanging conditioning variables on the latter two terms

using (25),

I(θt; zt) = V
(1)
s (xt,ut, p(θt)) + c

(1)
s

+
nv
∑

j=2

(

I(z
(j)
t ; z

(1)
t , . . . , z

(j−1)
t |θt)

−I(z
(j)
t ; z

(1)
t , . . . , z

(j−1)
t )

)

.
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with constant c
(i)
s = −

nv
∑

j=1
j 6=i

I(z
(j)
t ; θt). Applying the assump-

tion that observations are conditionally independent given

the target state, the first term in the summation is zero.

This assumption is exact when sensor noise is uncorrelated

between vehicles and due to local effects at the sensor. Thus,

generalizing to the ith vehicle, the mutual information utility

function can be evaluated using (22) with error given by (26).

Next, we consider the pairwise-node approximation.

Theorem 2 (Pairwise-Node Approximation Error): The

difference between the pairwise-node approximation for the

ith vehicle and the true value of (9) is ǫp,

ǫ(i)p =

nv
∑

j=2
j 6=i

(

I(z
(j)
t ; z

(1)
t , . . . , z

(j−1)
t |z

(i)
t )
)

. (27)

Proof: Without loss of generality, consider the case of

approximating the mutual information from the perspective of

vehicle i = 1. The mutual information can be expanded using

an application of the chain rule, separating the first term in

the summation, and applying the chain rule again,

I(θt; zt) = I(θt; z
(1)
t )

+
nv
∑

j=2

(

I(θt; z
(1)
t , z

(j)
t |z

(2)
t , . . . , z

(j−1)
t )

−I(θt; z
(1)
t |z

(2)
t , . . . , z

(j−1)
t )

)

.

Exchanging conditioning variables in the summation using

(25), canceling the resulting terms that sum to zero, and

splitting the remaining summation yields

I(θt; zt) = V
(1)
p (xt,ut, p(θt))

+
nv
∑

j=3

(

I(θt; z
(2)
t , . . . , z

(j−1)
t |z

(1)
t , z

(j)
t )

−I(θt; z
(2)
t , . . . , z

(j−1)
t |z

(1)
t )
)

.

Exchanging conditioning variables inside the summation, can-

celing terms summing to zero, and assuming conditional

independence of observations given the target state yields

I(θt; zt) = V
(1)
p (xt,ut, p(θt)) + ǫ

(1)
p .

Thus, the mutual information utility function can be evaluated

using (23) with error given by (27).

Now consider the effect that this added computational

complexity has on the error terms, as a function of the value

of the ith vehicle’s control inputs.

Theorem 3 (Relative Accuracy of Approximations): The

magnitude of the error terms that vary with the ith vehicle’s

control inputs in the single-node approximation is greater than

or equal to the magnitude of the pairwise-node approximation

error terms, and equal only when the vehicle’s observations

are independent of all other vehicles. That is,

|ǫ(i)s − c
(i)
s | ≥ |ǫ

(i)
p |. (28)

Proof: Subtract from the single-node approximation

error, (26), the terms that do not vary with the i(th) vehicle’s

control inputs, c
(i)
s , and apply the chain rule for mutual

information [29],

I(z
(j)
t ; z

(i)
t , z

(1)
t , . . . , z

(j−1)
t ) =

I(z
(j)
t ; z

(i)
t ) + I(z

(j)
t ; z

(1)
t , . . . , z

(j−1)
t |z

(i)
t ).

(29)

Mutual information is always non-negative, and is zero only

if the distributions are independent. So,

I(z
(j)
t ; z

(i)
t , z

(1)
t , . . . , z

(j−1)
t ) ≥ I(z

(j)
t ; z

(2)
t , . . . , z

(j−1)
t |z

(i)
t ).
(30)

The magnitudes of the sums of the left and right sides of this

equation, from j = 1 to j = nv , are equal to, respectively, the

left and right sides of (28).

When the sensor measurements are uncorrelated, the single-

node approximation yields the same result as the pairwise-

node approximation and is computationally faster. However,

if the observations are correlated, as is more frequently true,

then the pairwise-node approximation yields a closer estimate.

Although the magnitude of the pairwise-node approximation

error is less than that of the single-node approximation, it

is not possible to guarantee that the optimization is not

skewed by some systematic error between the exact solution

and the single-node error. However, using the pairwise-node

approximation still yields an approximate expected mutual

information surpassing what seemed possible using the single-

node approximation, and in experiments, the pairwise-node

approximation yields better results, as presented in Section IV.

In summary, no matter the method used—the exact expres-

sion with (12), (17), and (20), the single-node approximation

with (22), or the pairwise-node approximation with (23)—the

vehicles can evaluate the mutual information utility function,

in a decentralized manner, to enable them to cooperatively

seek the target. By optimizing this objective function, they

actively aim to reduce the uncertainty in their particle filters.

By using the single-node approximation, the vehicles can run

the local optimization problem faster, and cooperate by trying

to reduce the uncertainty of the same posterior distribution.

By using the pairwise-node approximation, the computational

expense of the objective function is reduced from the full

problem, yet the vehicles consider the future observations that

can be made collectively—their objective functions reward

them such that their combined future observations reduce the

uncertainty of the target state as fast or faster than the single-

node approximation. Next, we consider how these objective

functions are optimized in a distributed manner.

D. Mobile Sensor Network Control

The mobile sensor network control problem is structured

as a set of local optimal control problems for each sensing

node, coupled through interconnecting constraints. The local

optimization problem is formed holding the actions of the

other vehicles fixed, using an iterative algorithm based on [35],

ensuring convergence to ǫ-feasible solutions that satisfy the

necessary conditions for Pareto optimality. The distributed
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algorithm iterates by communicating interim solutions of con-

trol inputs amongst vehicles between local optimizations in a

hierarchical, synchronous, or asynchronous manner.

To satisfy the interconnecting constraints, a penalty func-

tion [36] is defined for each vehicle as

P (xt,ut) =

n(i)
c
∑

m=1

max(0, g(i,m)(xt,ut))
γ , (31)

where m indexes a set of n
(i)
c interconnecting inequality

constraints, g(i,m), that affect vehicle i. The penalty function

must be zero wherever the constraints are satisfied and must

be differentiable. The nv − 1 collision avoidance constraints

from (2) are written as

g(i,m) = dmin − ||x
(i)
t+1 − x

(m)
t+1|| ≤ 0

∀m ∈ {1, . . . , nv : m 6= i}.
(32)

The penalty function is subtracted from the individual ve-

hicle cost scaled by penalty parameter β, varying the tradeoff

between constraint violation and the information theoretic cost,

with an update β := αβ at each iteration, where α ∈ (0, 1) is

a design parameter. The local optimization problem based on

the single-node approximation, (22), is

Single-Node Local Optimization Program:

maximize
u

(i)
t ∈U

V
(i)
s (ut,xt, p(θt))−

1
β
P (xt,ut)

subject to xt+1 = ft(xt,ut)
zt = h(xt+1, θt, ηt)

(33)

The argument for this optimization program is the local control

input. Other control inputs in the penalty function arguments

are the current desired values communicated by other vehicles.

The single-node approximation will not vary with the con-

trol inputs of other vehicles, hence agreement between vehicles

on the correct control actions for the group is not required.

Only the collision avoidance constraint must be satisfied.

For the pairwise-node approximation, (23), the control in-

puts of all vehicles affect the objective function, V
(i)
p , hence

slack variables must be added to decouple the local sensor

costs, resulting in additional interconnecting constraints to

include in the penalty function. Define the slack variable ũ
(i)
t

as the vector of all sensors’ control inputs computed by the

ith sensor. Agreement among mobile sensing nodes on ũ
(i)
t is

realized through the penalty function enforced constraint

ũ
(i)
t = ũ

(j)
t ∀ i, j ∈ {1, . . . , nv : j 6= i}. (34)

The pairwise-node local optimization program is defined anal-

ogously to the single-node local optimization program, with

optimization instead over the entire control vector ũ
(i)
t ∈ U .

Potential extensions include consideration of inter-agent

coupling [37]. It is also interesting to consider cases where

there is not global connectivity, communication is intermittent,

or bandwidth is limited. These are topics of current research.

As described in Algorithm 1, for a hierarchical implementa-

tion the vehicles are ordered in a fixed manner. Initial solutions

are determined locally ignoring interconnected constraints.

Then, prior to local optimization, the relative weight of the

penalty function with respect to the local cost is increased

by a factor α ∈ (0, 1) and β := αβ, increasing the penalty

of violating the interconnecting constraints gradually as the

vehicles iterate. Each vehicle, starting with 1, solves the local

information-seeking optimization problem with the current

preferred solution and penalty parameter, and subsequently

passes that solution and parameter on to the next vehicle.

The optimization concludes when the solution agreed to is

within ǫ > 0 of feasible and the local cost functions satisfy

an appropriate convergence criteria.

Algorithm 1 Single Time Step Distributed Optimization

1: Define xt

2: Initialize ut or ũt

3: repeat

4: β ← αβ
5: for i = 1 to nv do

6: Transmit ut or ũt to vehicle i
7: Perform local optimization at vehicle i

8: Update u
(i)
t or ũ

(i)
t for vehicle i

9: end for

10: until Convergence criteria satisfied

This algorithm ensures that all vehicles, with control con-

straints, maintain collision-free operation while maximizing

the information gain at each time step. Through the single-

node and pairwise-node approximations, the algorithm can be

computed in real-time and implemented for many actual sce-

narios (e.g., convergence of each iteration in the examples of

Section IV took fractions of seconds). Real-time performance

is indeed a relative concept, depending on problem complexity,

computation power, network size, communication capabilities,

and measurement rate. However, the approximations presented

provide objective functions that have polynomial computa-

tional complexity with respect to the number of vehicles.

IV. INFORMATION-SEEKING EXAMPLES

The proposed techniques are explored for three sensing

modalities. The first modality, bearings-only sensing, allows

comparison to previous work. Advantages are seen in using

a particle filter over a linearized filter when there is large

initial uncertainty. The second modality, range-only sensing,

is prone to bias and divergence when using standard linearized

methods, but demonstrates intuitive results when using particle

filter methods. The final modality, sensing the magnetic field

of a rescue beacon, demonstrates a problem that cannot be

solved by linearized methods because the beacon orientation,

a random variable on a periodic domain, has large uncertainty

during most of the search. In order to capture the effects

of future observations, it is necessary to plan using mutual

information methods with particle filters.

The vehicle model for these examples is based on the

STARMAC quadrotor helicopters, shown in Fig. 4 and detailed

in [6]. Note that any choice of vehicle or portable device

could be used for the algorithms developed. The dynamics
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(a)

(b)

Fig. 4. (a) Two quadrotor helicopters from the Stanford Testbed of
Autonomous Rotorcraft for Multi-Agent Control (STARMAC), hovering at
GPS waypoints. The simulations use dynamic models of these (b) vehicles.

of a quadrotor helicopter can be approximated as those of a

point mass capable of accelerating in any direction, subject to

constraints. For safety, a velocity constraint is also imposed.

Further, they must maintain separation. Parameters for the

simulations are given in Table I.

In the each of the following three examples, the measure-

ment model is first presented. Then, the expected behavior

of the information seeking sensor network is determined for

comparison for an accurately known target location using a

linearized measurement model. This predicted behavior can

differ from the simulated system, as the linearization used for

analysis simplifies effects that are fully captured by particle

filter mutual information methods. However, it validates the

particle filter methods when the approximation is reasonable,

and otherwise permits the particle filter methods to be com-

pared and contrasted to linearized, Gaussian methods. Finally,

simulation results using particle filter mutual information

methods are presented.

A. Bearings-Only Sensing

For this example, consider sensors that measure the direc-

tion to the target, such as cameras [11] or directional anten-

nae [3]. We will demonstrate that the non-Gaussian posterior

probability distribution can be captured using the particle filter

representation and directly used by the mutual information

utility function. Results using the single-node approximation

show that emergent behavior due to prior information can be

sometimes beneficial, but sometimes counterproductive. The

pairwise-node approximation yields more consistent behavior

resulting in better performance, on average. By using particle

filter methods, the bias, underestimated covariance, and diver-

gence associated with EKFs [38], [16], [15], can be avoided.

Fig. 5. Bearings-only measurement model, where z is a measurement of the

direction from the position of the sensor (x
(i)
t , y

(i)
t )T to the position of the

target (x
(i)
m , y

(i)
m )T . It differs from the true direction due to additive noise,

given by (35). Examples sensors include cameras and directional antennae.

No divergence was encountered in simulations of the methods,

and the mutual information optimization successfully maneu-

vers the vehicle to extract information about the probability

distribution represented by the particle set.

1) Measurement Model: Consider searching for a target in

the xy-plane. The location of the ith search vehicle at time t

is (x
(i)
t , y

(i)
t )T , components of x

(i)
t . The state of the target is

its location θ = (xm, ym)T . The bearing measurement model

is

h
(i)
b (x

(i)
t , θ, η

(i)
t ) = arctan

(

ym − y
(i)
t

xm − x
(i)
t

)

− ψ
(i)
t + η

(i)
t (35)

where hb is the model of the bearing measurement with

noise, as shown in Fig. 5, ψ
(i)
t is the ith vehicle’s heading

and η
(i)
t ∼ N (0, σ2

b ) is the measurement noise. Although

any measurement model could be used for this particle filter

implementation, such as one including pixel noise in a camera,

or one including signal attenuation with range for a directional

antenna, the additive noise model allows comparison to previ-

ous work (e.g., [9], [11], [12]). The variance is σ2
b , which for

simplicity is chosen to be the same for all sensors.

2) Predicted Behavior: For bearings-only sensors the opti-

mal control actions for a linearized, Gaussian approximation

of the system provide a reasonable prediction of the behavior

of the optimal system, with some exceptions. With this ap-

proximation, trends in optimal sensor placement and the effect

of increasing nv can be derived. Let p(θt) be approximated

as Gaussian with mean (x̂m, ŷm)T and covariance Σ. The

Jacobian of (35) is

J
(i)
b =

1

r(i)
[

sin ξ(i) − cos ξ(i)
]

, (36)

where ξ(i) = arctan 2
(

ŷm − y
(i)
t , x̂m − x

(i)
t

)

and r(i) =
√

(

x̂m − x
(i)
t

)2

+
(

ŷm − y
(i)
t

)2

. The goal is to minimize the

conditional entropy, as in (5). Using the entropy formula for

Gaussians [29], and the covariance update for an EKF [14],

the conditional entropy for the linearized problem is

H(θt|zt) =

1
2 log

(

(2πe)2
∣

∣

∣

∣

(

Σ−1 +
∑nv

i=1 J
(i)
b

T
(

σ2
b

)−1
J

(i)
b

)−1
∣

∣

∣

∣

)

,

(37)
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where

J
(i)
b

T
(

σ2
b

)−1
J

(i)
b =

1

σ2
b

(

r(i)
)2

[

sin2 ξ(i) − sin 2ξ(i)

2

− sin 2ξ(i)

2 cos2 ξ(i)

]

.

(38)

To minimize the uncertainty, (37), it is equivalent to maximize

U
(i)
b (ξ, r) =

∣

∣

∣

∣

∣

Σ−1 +

nv
∑

i=1

J
(i)
b

T
(

σ2
b

)−1
J

(i)
b

∣

∣

∣

∣

∣

. (39)

This provides two insights into the behavior of informa-

tion seeking bearings-only sensors. First, as r(i) decreases,

U
(i)
b (ξ, r) increases—it is beneficial to be close to the target.

This is due to the decreased effect of additive direction noise at

close range—an effect noticeable in our own vision. Note that

as r(i) → 0, the true Bayesian posterior probability distribution

has nonzero uncertainty, whereas linearization error in the EKF

causes U
(i)
b (ξ, r) → ∞. If a linear estimator incorporates a

measurement made at the mean, the most informative location,

the covariance of the estimate becomes singular.

To observe a second insight, consider the case in which

values of r(i) are equal and nonzero for all i. An analytical

solution for optimal values for ξ(i) can be found when Σ =
σ2I , where σ is the standard deviation in the target state

estimate in both axes and I is a 2 × 2 identity matrix. By

taking the gradient of (39), the optimal values of ξ(i) can be

shown to be those that satisfy

nv
∑

i=1

cos 2ξ(i) = 0 and
nv
∑

i=1

sin 2ξ(i) = 0. (40)

Thus, two solutions always satisfy (40), 1) spacing the vehicles

with equal angles of π
nv

, and 2) grouping all vehicles into pairs

or triplets that are at 90◦ or 60◦, respectively. For nv > 4, a

continuum of other solutions exist that achieve minimum con-

ditional entropy. Note that cos 2ξ(i) = cos (2ξ(i) + nπ)∀n ∈
Z, so optimally configured vehicles may be on either side

of the target with the same benefit—a consequence of the

linearization. The complete optimal solution, then, causes the

vehicles to fan out to satisfy the optimal direction criteria, and

approach the origin, due to the 1
r(i) perspective effect.

To determine the benefit of increasing nv for optimally

spaced vehicles, (37) can be simplified using (40), with all

vehicles at the same range, r(i) = r. Then,

H(θt|zt) =
1

2
log

(

(2πe)2
(

1

σ2
+

nv

2σ2
br

2

)2
)

. (41)

As more sensors are added to the network, they increase

performance logarithmically. Increasing nv is equivalent to

proportionally decreasing the σ2
b . The worst case can similarly

be computed, for the configuration in which all vehicles are

at the same angle with respect to the target,

H(θt|zt) =
1

2
log

(

(2πe)2
1

σ2

(

1

σ2
+

nv

σ2
br

2

))

. (42)

Consider the ratio of arguments in the log expressions in

(41) and (42). The ratio of the best configuration to worst is

κ = 1 +
n2

v

4σ4
br

4p−1
(

1
σ2 + nv

σ2
b
r2

) . (43)

TABLE I

SIMULATION PARAMETERS AND LEGEND

Category Parameter Value

Vehicle Type Quadrotor
Speed limit 2 m/s

Acceleration limit 0.2 m/s2

Minimum separation, d̄ 3 m

Particle Filter Search area 40×40 m square
Prior, p(θ0) Uniform over Θ

Number of particles, N 2000

Plot Particle darkness ∝ w
(1)
t,k

True target location Square icon
MMSE estimate X icon
Curve trailing vehicles History of trajectory

0 40

0

40

x

y

0 40

0

40

x

y

(a) t = 0 s (b) t = 3 s

0 40

0

40

x

y

0 40

0

40

x

y

(c) t = 22 s (d) t = 50 s

Fig. 6. Simulation of bearings-only target search with 4 mobile sensors
using the particle filter distribution to compute mutual information, and the
pairwise-node approximation for distributed control. By directly using the
particle filter distribution, there is no bias from linearization, as there is in
an EKF. The vehicles spread out around the particle distribution, due to the
mutual information utility function, with two pairs spaced apart with respect
to the mean as predicted in (40). They approach the expected target location,
only to gain the maximum information possible. See Table I for simulation
parameters and the legend.

As nv increases, κ increases—cooperation has more benefit.

As the prior uncertainty σ decreases, so does κ, decreasing

the benefit of cooperation as the target is better localized.

The patterns of cooperation given by (40) will be apparent

in the results using particle filters, as will the benefits of

approaching the expected target location. However, the particle

filter will be shown to handle nonlinear effects for measure-

ments near the target, rather than risking divergence due to

linearization error. The logarithmic benefit of increasing nv is

apparent in the Monte Carlo results.

3) Particle Filter Results: Bearings-only simulations were

run with the particle filter mutual information utility functions
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Fig. 7. Mean and quartile bars of the probability that the true target state
is within 1 m of the MMSE estimate, for sets of 1000 trials of bearings-only
target localization. The difference between the single-node and pairwise-node
approximations are shown in (a), with nv = 4. The pairwise-node results
are more predictable and result in better expected performance. The effect
of utilizing more sensors is shown in (b), comparing the effect of using the
pairwise-node approximation for varying number of search vehicles.

to determine the empirical behavior of the algorithms, as

shown in Fig. 6, and to obtain Monte Carlo results. The

uniform prior probability distribution over the search region

represents the prior knowledge that the target is contained in

the region, with complete uncertainty of its location within.

Simulated sensor noise was σb = 0.3 radians, as might be

found in a directional antenna. This large noise exacerbates the

effect of large uncertainty, nonlinearities, and non-Gaussian

posterior distributions to demonstrate the capabilities of the

proposed methods. The methods performed equally well with

σb = 0.01 radians. Particle deprivation due to low noise was

not encountered, though for sufficiently low noise this must

be considered [14].

Empirically, it was observed that the particle filter based

algorithms result in the rapid localization of the target. These

results were consistent for a large number of trial runs, as

demonstrated by Monte Carlo results. Sets of 1000 trials were

performed for several sizes of networks, with both the single-

node and pairwise-node approximations. As shown in Fig.

7a, the use of the pairwise-node approximation resulted in

a reduced time-to-convergence compared to the single-node

approximation, on average. The pairwise-node approximation

also yielded more consistent performance than the single-

node approximation, shown by narrower error bands. This

demonstrates the benefit of considering the effects vehicles

have on one another while performing the optimization, rather

than relying on emergent behavior for vehicle cooperation.

The result of using the pairwise-node approximation for

an increasing number of vehicles is shown in Fig. 7b. The

particle filter based information seeking algorithm successfully

exploits the additional availability of sensors. The time-to-

convergence is reduced, on average, as vehicles are added to

the fleet. Next, the use of range-only sensors is analyzed.

B. Range-Only Sensing

For this example, we consider sensors that measure the

distance to the target, using sensors such as wireless com-

munication devices [4]. In addition to avoiding the problems

associated with EKFs described previously, the use of particle

Fig. 8. Range-only measurement model where z is a measurement of the

distance from the position of the sensor (x
(i)
t , y

(i)
t )T to the position of the

target (x
(i)
m , y

(i)
m )T . It differs from the true range due to additive noise, given

in (44). An example of such a measurement is the time of flight of wireless
communication signals.

filters makes it possible to quantify effects on information

gain not possible with a linearized method. Although in the

linearized model the optimal range to the target will be shown

to be inconsequential for the selected model, the particle

filter information formulation finds an optimal range, due to

minimum and maximum ranges for the sensor, an effect that

cannot be captured by the linearized model.

1) Measurement Model: Again, consider searching for a

target in the xy-plane, with the same states as the previous,

bearings-only, example. The range measurement model is

h(i)
r (x

(i)
t , θ, η

(i)
t ) =

√

(

xm − x
(i)
t

)2

+
(

ym − y
(i)
t

)2

+ η
(i)
t ,

(44)

where hr is the model of the range measurement with noise,

as shown in Fig. 8, η
(i)
t ∼ N (0, σ2

r) is the measurement noise.

Although any measurement model could be used, such as

noise proportional to range, due to clock drift, the additive

noise model is chosen to permit comparison with other work

(e.g., [10]). This sensor lacks directional information, hence

a single measurement provides an axisymmetric probability

distribution of potential target locations.

2) Predicted Behavior: To gain insight into the behavior

of the optimally controlled system, again consider the case of

an accurately localized target, with a probability distribution

well approximated as Gaussian having a covariance matrix

equal to a scaled identity matrix. In this condition, the optimal

placement of sensors can be solved for, as was done for the

bearings-only sensor in Section IV-A. The Jacobian of the

sensor model is

J (i)
r =

[

cos ξ(i) sin ξ(i)
]

, (45)

where ξ is the angle from the ith vehicle to the mean of the

target estimate, as in Section IV-A. The uncertainty following

a sensing action is

H(θt|zt) =

1
2 log

(

(2πe)2
∣

∣

∣

∣

(

Σ−1 +
∑

J
(i)
r

T
(

σ2
r

)−1
J

(i)
r

)−1
∣

∣

∣

∣

)

,

(46)

where Σ is the covariance of the target state distribution.

Unlike the bearings-only sensor, the posterior uncertainty is

not a function of range, in this linearized case. Therefore,

only the direction from the target to the vehicles need be
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Fig. 9. Range-only target localization with 4 mobile sensors (quadrotor
helicopters) using the particle filter distribution to compute mutual information
and the pairwise-node approximation for distributed control. The vehicles
spread out along the ring of particles, and then fan out at optimal distances
to the target, according to the minimum and maximum range of their sensors.
Approaching the target would be a sub-optimal solution for these sensors. See
Table I for simulation parameters and the legend.

optimized. Numerical solutions show an expected behavior—

optimal solutions tend to cluster near the elongated axis of the

confidence ellipse corresponding to any posterior distribution.

If the posterior distribution has equal uncertainty in the x
and y directions, then the optimal angles for the bearings-

only sensors, given by the conditions of (40), are also the

optimal angles for range-only sensors. Either sensor type

provides measurements that can be used to “triangulate” a

measurement—they are simply providing measurements ro-

tated by 90◦ from each other—though there is no scaling due

to perspective for a range-only sensor. However, particle filters

capture the effect of saturation of the sensor and the curvature

of the range measurements. The actual range of the range-only

sensors is, in fact, important.

3) Particle Filter Results: Range-only simulations were

run with the particle filter mutual information utility function

and pairwise-node approximation to determine the empirical

behavior of the algorithms, and evaluate how the mutual in-

formation utility of measurements vary with sensing locations.

The sensor has additive noise of σ = 5 m, a relatively large

value for the scale of the search space. This demonstrates the

ability of the algorithm to model and react to large uncertainty

and non-Gaussian posterior distributions. The maximum range

for results presented here is 56 m, enabling comparison with

previous work by ensuring that maximum range measurements

are unlikely, although the sensor model does consider the

effect when it occurs, and has been demonstrated to perform

x

y

0 40

0

40

x

y

0 40

0

40

(a) (b)

Fig. 10. Using the particle filter to directly compute available mutual in-
formation captures effects not possible with a linear Gaussian approximation,
such as the saturation of measurements at the near and far limits of the sensor’s
range. The mutual information contours, for moving to any point at the
subsequent time step, are shown (a) using a linear, Gaussian approximation,
with an EKF, versus (b) using a particle filter. The brighter the contour, the
more information is available. The 1− σ ellipse of the EKF is shown in (a).
In both examples, the vehicle is controlled using the particle filter mutual
information, leading to similar trajectories. The plotted particles, etc., are as
described in Fig. 6.

well in similar simulations with maximum ranges of 5 m,

10 m, and 20 m.

The particle filter based algorithms again result in rapid

localization of the target, despite complete prior uncertainty

over the search region, as shown in a typical result in Fig. 9,

using four vehicles with the pairwise-node approximation.

Again, the consistent ability of the mobile sensor network

to localize the target demonstrates the capabilities of the

proposed methods. As expected from the predictions above,

the vehicles fan out. The mutual information objective function

indicates they will gain the most information in this manner.

The linearized approximation predicts that distance between

the sensors and the target is unimportant for this sensor, unlike

the bearings-only scenario. However, the vehicles converge to

a standoff distance. Differences between the prediction using

the linearized approximation and the more accurate particle fil-

ter method are highlighted by the comparing available mutual

information in Fig. 10, where contours of the mutual informa-

tion objective function are plotted for an observation from any

point. These differences arise from effects that are eliminated

by linearization and Gaussian estimation. For instance, there

are important nonlinearities. The range-only sensor saturates; a

range less than zero would be non-physical, and the maximum

is finite. In the example shown in Fig. 10, the sensor limits

are 0 to 56 m. Also, effects of the structure of the distribution

are captured. It may be ring-like or multimodal. This is not

captured by the linearized method. Finally, there is the effect of

curvature when interpreting range measurements. This cannot

be captured using a linearized method, but is inherently part

of the particle filter method. Now, consider a third and final

sensor, rescue beacons.

C. Rescue Beacon Sensing

For this example, we consider a sensing modality for which

EKFs are prone to failure—sensing the avalanche rescue

beacon of a victim buried in snow due to an avalanche. The
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Fig. 11. Rescue beacon magnetic field, as given in (47). A cross-section of
isosurfaces of field strength is shown, with arrows depicting local magnetic
field orientation. The transmitter antenna is at the origin, with its antenna
parallel to the y-axis.

beacon uses a modulated magnetic dipole with a field that can

be measured by beacon receivers. Both the position and orien-

tation of the beacon are unknown, adding complexity beyond

the sensors of the previous sections. The search is currently

performed by individual rescuers using a rehearsed search

pattern—a complex activity requiring professional training to

be effective [39]. Rapid localization is essential—in one study,

odds of survival were 92% for victims unburied within 15

minutes, but dropped to 30% after 35 minutes [40]. Particle

filters are well suited for this application. Sum-of-Gaussian

filter have also been used, with initialization using the first

measurement [41]. An approach using a Rao-Blackwellized

particle filter performed poorly in simulations [41].

We demonstrate the use of particle filter techniques to

estimate the posterior probability distribution and control the

vehicles using the particle filter distribution, such that they

maximize the rate at which they acquire information about the

victim’s location. We derive the expected behavior in limited

situations by linearizing the measurement model. Due to the

periodic domain, the information in the linearized model is

only accurate when the target is well localized. This enables

validation of the particle filter implementation under that

circumstance, toward the conclusion of the search. The particle

filter methods handle the automatic acquisition of information

during all stages of the search.

1) Measurement Model: The rescue beacon system uses

measurements of the magnetic dipole emitted by a loop an-

tenna modulated at 457 kHz, a frequency that penetrates snow

and water, and is not reflected by rock [42]. The magnetic

field of a modulated electromagnetic source B : R
3 → R

3 is

derived in [43], and shown in Fig. 11. Given the modulation

frequency and range of rescue beacons, the near-field formula

for the magnetic field is appropriate [42], [43]. Measurements

are made of the toroidal near-field at spherical coordinates

(r(i), φ(i), α(i)) with respect to the antenna, where r(i) is the

range, φ(i) is the rotation angle about the axis of the antenna,

and α(i) is the elevation angle from the plane of the antenna

loop, in the right-hand sense, as shown in a two dimensional

Fig. 12. Rescue beacon measurement model, in two dimensions, with
the transmitter antenna axis lying along the xy-plane at (xm, ym) with
orientation ψm. The measurement z is the local orientation of the magnetic
field vector in the plane of the receiver, with additive noise, given by (48).
The field has components Br and Bα from (47). The mobile sensor, at time
t, is at position (xt, yt).

cross-section in Fig. 12. The magnetic field is [43]

B =
m

2π
(

r(i)
)3

(

(2 sinα(i))er − (cosα(i))eα

)

, (47)

where the magnitude of the dipole moment is m = I0πr
2
anw,

I0 is the amplitude of the antenna loop current, ra is the

radius of the antenna loops, nw is the number of windings,

and er and eα are unit vectors of the spherical coordinate

frame in the positive r and negative α directions, respectively.

The sensor measures the orientation of the magnetic field

line projected onto the plane in the receiver containing two

orthogonal receiver antennae. The angle is computed using

the arctan of the ratio of the measurements on each axis.

For purposes of this simulation, consider a search for a

rescue beacon in two dimensions, with its axis known to lie

in the horizontal plane, with unknown heading angle ψm.

The state of the target is θ = (xm, ym, ψm)
T

, a three

dimensional state. Note that it is simple to include the target’s

altitude and pitch to solve the true problem using the particle

filter framework, but the three degree of freedom model used

in this paper provides more easily visualized results. The

measurement equations can then be written in terms of the

magnetic field direction at a receiver,

h(i)
a

(

x
(i)
t , θ, η

(i)
t

)

= ξ(i)−arctan
(

2 cot(α(i))
)

+η
(i)
t , (48)

where ha is the modeled value of the noisy magnetic field

orientation measurement z as shown in Fig. 12, α(i) = ξ(i) −
ψt, and η

(i)
t ∼ N (0, σ2

a) is the measurement noise.

2) Predicted Behavior: To gain insight into the behavior of

the optimally controlled system, again consider the case of an

accurately localized target, with a probability distribution that

can be approximated as Gaussian, with a covariance matrix

equal to a scaled identity matrix. In this condition, we can

analytically solve for the optimal placement of the sensors, as
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Fig. 13. Rescue beacon localization with 4 sensors using the particle
filter distribution to compute mutual information and the pairwise-node
approximation for distributed control, simulating the search for a victim buried
in an avalanche. The target’s orientation is ψm = π/4 radians. The orientation
of each particle indicates the orientation of its estimate. The vehicles fan out
with respect to the particle distribution, as it evolves, and then approach the
expected target location, only to gain more information about its location. See
Table I for simulation parameters and the legend.

done for sensors in previous sections. The Jacobian of h
(i)
a is

J
(i)
a = 1

3(λ(i))
2
+(r(i))

2









sin(ξ(i))
r(i)

(

(

r(i)
)2
− 3

(

λ(i)
)2
)

cos(ξ(i))
r(i)

(

3
(

λ(i)
)2
−
(

r(i)
)2
)

2
(

r(i)
)2









T

,

(49)

where λ(i), the lateral distance between the mean of the

estimated antenna axis and the measurement point, is

λ(i) = r(i) cosα(i). (50)

The optimal sensing utility function can be found using (39) by

replacing J
(i)
b with J

(i)
a . High prior uncertainty in orientation

yields a utility function similar to a range-only sensor, with

the optimal relative angle being along the axis of the sensor.

Low prior uncertainty in orientation yields a utility function

similar to a bearings-only sensor. Unlike the bearings-only

or range-only sensors, few additional generalizations can be

drawn from the linearized model, due to its complexity. The

mutual information contours for the linearized results were

compared to those for the particle filter methods. Although

the results match for low uncertainty, unimodal posterior

probability distributions, they were found to vary substantially

for more typical particle distributions encountered during

simulated searches, with multiple modes, and high uncertainty.

3) Particle Filter Results: Rescue beacon simulations were

run with the particle filter mutual information utility function
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Fig. 14. Using the particle filter to directly compute available mutual
information captures effects not possible with a linear Gaussian approxima-
tion, such as the spatially varying orientation in the posterior distribution,
and multiple modes. The plots show the evolution of the available mutual
information, as measurements are collected by a single mobile sensor to
localize a rescue beacon, using the exact mutual information utility function.
The contours plotted in the background are the available mutual information
for measurements from any point. The mobile sensor’s control input moves
the vehicle to the location with maximal mutual information, subject to
constraints. The plotted particles, etc., are as described in Fig. 13.

and the pairwise-node approximation to show the empirical

behavior of the algorithms, and evaluate how the mutual in-

formation utility function evolves as the problem converges. In

addition estimating the search target’s position, the orientation

must be estimated. To simplify presentation, the simulated

searches were performed using three degrees of freedom as

in (48). The sensors measure the local magnetic field line

orientation with an additive noise of σa = 0.7 radians. The

prior distribution of orientations was uniform over [0, 2π).
Other simulation parameters are in Table I.

As shown in Fig. 13, the proposed method quickly localizes

the target. At first, the vehicles fan out. They proceed to

move to locations that reinforce one another’s measurements.

The behavior is substantially more complicated than that re-

quired for range or bearing sensors. The posterior distribution,

visualized by the particles, demonstrates the ability of this

method to handle complicated posterior beliefs. It successfully

exploits the structure of the probability distribution to reduce

uncertainty. The four vehicles cooperate in a distributed,

computationally efficient manner.

To visualize the optimization being performed aboard the

vehicles, Fig. 14 shows the mutual information available for

an observation from any point, for one vehicle with σa =
0.3 radians. The vehicle initially is driven away from where
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Fig. 15. Comparison of contours of mutual information that a second vehicle
would obtain for making a measurement from that point, using (a) the single-
node approximation versus (b) the pairwise-node approximation. The brighter
the contour, the more mutual information is available for sensing from that
location. Using the single-node approximation, the second vehicle would tend
to move along side the first vehicle. Using the pairwise-node approximation,
the second vehicle would prefer to fan out. The arrows indicate the preferable
directions of travel from potential current positions of the second vehicle. The
scenario shown is a rescue beacon search, following actions from t = 2.

the initial measurements were made, as to not make redundant

measurements. The low region for mutual information, in

the simulated scenario, follows the direction of the field

line that was already measured—maximum information can

be gained by initially moving orthogonally to the measured

field line. Note that this differs from a common method

of trained rescuers, who follow the field line direction to

compensate for a lack of georeferenced measurements. As the

search progresses, and the particle set gains more structure,

sometimes multimodal, the contours evolve guiding the vehicle

to the best available measurements.

The effect of the pairwise-node approximation versus the

single-node approximation is visualized in a zoomed in con-

tour plot in Fig. 15. The contours depict the mutual informa-

tion utility function for placement of a second vehicle, given

that a vehicle exists in the location shown. The single-node

approximation is not effected by the existing vehicle, whereas

the pairwise-node approximation leads to the cooperative

behavior of the vehicles fanning out, as appropriate for the

depicted rescue beacon search.

V. CONCLUSION

A set of methods was developed to enable information-

theoretic distributed control of a mobile sensor network,

based on estimation by particle filters, to search for a tar-

get. Although particle filters have higher computational cost

than parametric approximation methods, they provide superior

descriptiveness of the probability distribution of the search

target’s state. The techniques presented in this paper exploit

the structure of these probability distributions of the target

state and the sensor measurements to find control inputs lead-

ing to future observations that minimize the expected future

uncertainty of the target state. Formulae were derived to com-

pute information-theoretic quantities using particle filters, and

single-node and pairwise-node approximations were derived

to enable scalability in network size. Analytical bounds were

found for the error incurred by the approximations, and the

pairwise-node approximation was proven to be a more accurate

objective function than the single-node approximation.

The methods were demonstrated in simulated target searches

using three sensing modalities. Bearings-only sensor results

provide comparison to previous work that used parametric, lin-

earized methods. The performance is demonstrated in Monte

Carlo experiments. Range-only sensor results show the ability

to handle a sensing scenario that is simple to understand, yet

complicated to solve using parametric methods. They illustrate

the ability of the proposed algorithms to capture common

nonlinear effects such as saturation. Finally, the avalanche

rescue beacon search results exemplify the ability of the

techniques to handle problems that would pose significant

hurdles to previous methods.

Several directions exist for future work, including analyzing

the benefits and complications of including longer time hori-

zons, and extending the simulations to moving targets. The

algorithms are currently being implemented on STARMAC

quadrotor helicopters. This experiment will demonstrate au-

tonomous localization of a search target by a mobile sensor

network using particle filter mutual information methods. The

algorithms have been run in real-time on STARMAC flight

computers. The techniques presented in this paper open the

door to a variety of future applications. They provide methods

to decouple information, and to directly use particle filters to

quantify and actively seek available information.
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