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Abstract 

The Mobile Studio Project and the Wireless Expansion are tools designed to provide 

affordable, simple, and powerful teaching aids to lab courses.  Although it was originally 

designed to provide cost-effective access to expensive test instrumentation, the Mobile 

Studio hardware and pedagogy has spread into advanced engineering courses as well as 

other disciplines.  While the original hardware for Mobile Studio has already been used 

in multiple settings, the Wireless Expansion allows for new types of environments to be 

created under the same philosophy: “Let the students play.”   

Originally conceived in 1999, the Mobile Studio vision was founded on the observa-

tion that incoming students’ intuitive understanding of how circuits and electrical 

systems worked was declining year after year.  The Mobile Studio rekindles the ability 

to tinker and provides the opportunity for every day to become an experiment day.  The 

Wireless Expansion system continues in these themes and allows immediate study of 

phenomena as well as the ability to test and construct experiments and projects to satisfy 

one’s curiosity/needs; without requiring a physically wired connection to the monitor-

ing/controlling computer.  This document contains information relating to the design, 

development, fabrication, operation, and functionality of the Mobile Studio’s Wireless 

Expansion system. 
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1. Introduction 

1.1 Genesis of Mobile Studio 

Integrated chips are now prevalent among electronics, resulting in discrete circuit 

topologies being found in fewer devices.  It has become harder to tinker and gain expe-

rience with hardware.  In order to manipulate an iPod you need significant background 

in electronics.  You cannot even try to exchange the battery of an iPod for a custom 

power source of equal voltage, since the iPod communicates with the battery to make 

sure it is properly licensed.  As the level of complexity of devices is increasing, it 

becomes harder for classes to relate the material to the interests of the students.  The 

students want to know how an iPod works, although they don’t care about how an RC 

circuit reacts with an AC signal.  There is a gap of understanding to how an RC circuit 

can be used to manipulate the signal of an iPod. 

 In order to bridge this barrier a new method of teaching is required.  Tens of 

thousands of dollars in lab equipment for a pair of students to spend 5 hours a week 

tinkering with the lab equipment is not yielding the returns given the investment.  Many 

students spend most of the class setting up the lab, only to have to tear it down when the 

time runs out.  Here at RPI, in order to combat the declining hands-on experience, we 

have implemented studio courses.  Studio courses take the standard lecture, lab, and 

recitation model and combine them into a lecture-and-lab hybrid.  In each class there is a 

lesson portion after which the students work on a physical instantiation of that lesson.  

Though the benefits from this method are apparent, the cost to implement studio teach-

ing would for many schools be an impassable impediment.  The studio method requires 

all lecture periods to have access to laboratory facilities.  This is where Mobile Studio, 

now referred to as  Mobile Studio Project, comes in.  In order to keep the benefits of a 

studio class, RPI needed a cost effective lab suite that could be easily deployed.  On top 

of that, the Mobile Studio is able to give students tools to use for projects along their trip 

through college.  
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1.2 Mobile Studio 

The Mobile Studio Project was originally designed to be geared towards electrical 

and computer systems engineering education.  This meant a heavy focus in electrical 

measurement.  The Mobile Studio I/O board [8] went through 3 different versions with 

multiple revisions for each version.  The latest version of the Mobile Studio I/O board is 

revision C of the RED2 version.  For the purpose of this paper only the RED2 Mobile 

Studio I/O Board (RED2) is discussed, since it is the only board with on-board wireless 

capabilities.  The RED2 was designed to be a lower-speed, low-cost circuit measurement 

workstation.  This includes, but is not limited to, an oscilloscope, function generator, and 

+/-4VDC power supply. In addition to the base functionality of the Mobile Studio boards’ 

functionality, a lot of thought was put into how other areas of education could benefit 

from the advantages and improvements that circuits and electronics courses at RPI had 

gained.  Two main efforts are currently underway to extend the board’s utilization. 

The first is the development of a Component Object Model (COM) object.  The 

COM object is a programming interface that allows other programs to directly access the 

base functionality.  This offers access to raw data streams with no graphical interface.  

Both LabVIEW and Matlab have been successfully used to view and manipulate the 

information from the I/OBoards using this object.  The COM object opens many possi-

bilities for using the board to monitor signals and alsoproduce them.  For instance, 

LabVIEW code has been written to demonstrate control algorithms.  PID controllers 

currently studied only in lecture can now be studied through experiment at only the cost 

of a motor and a board.  This also opens up endless opportunities to use the board in 

projects which would have originally been daunting to students. 

 The second step is the development and use of a wireless antenna on the RED2.  

This was added to allow for the design of an unlimited number of applications that could 

be used through the Mobile Studio system.  It was originally thought that different 

boards would be manufactured to utilize the wireless functionality; experimentation has 

since led to the development of a more generic, multifunctional Wireless Expansion 

board.  One goal is to take the programming of wireless protocols out of the hands of the 

developer in order to create much cheaper adapter cards which then utilize the Expan-

sion’s link. 
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1.3 Mobile Studio’s Wireless Expansion 

As with the Mobile Studio I/OBoards, the Wireless Expansion is targeted for an 

audience desiring cost-effective but feature-rich utilities to replace expensive lab equip-

ment.  With the Wireless Expansion, (WEXP), the scope of the Mobile Studio’s 

pedagogical effectiveness in different classroom environments has greatly increased. 

Although most phenomena can be observed as analog signals, the devices to translate 

those observations into useful voltage levels is a task on its own.  On top of that, taking 

those analog voltages and recording them in software requires another completely 

different skill set.  For this reason, even though interested parties may have the capabili-

ty to make a sensor, they may lack the ability to create a device that can be used in a 

multi-user environment such as a classroom.  RPI’s physics department first approached 

the Mobile Studio developers with this problem.   

RPI’s physics department is using a system called Logger Pro.  Logger Pro is a 

system that uses software on TI calculators in order to collect data, but that data is not 

accessible for real time manipulation.  Logger pro has a computer connection as well, 

however the panels are somewhat complicated to use.  The physics department desired a 

new system but was limited by cost and technical considerations.  They could buy new 

sensors, but the software to control the system would remain the same.  If they switched 

to a new system, they would lose the functionality of all of their old sensors and the 

updated software was out of the price range of the department.  In parallel with the 

deployment of Mobile Studio in Physics II, Physics faculty expressed a request for 

similar Mobile Studio functionality for Physics I.  Physics II is the study of electrical 

phenomena, where as Physics I is the study of mechanical.  Given that the software was 

being distributed with the purchase of a board and had an updated user interface, explor-

ing the potential to transfer was obvious.  The preliminary results for the RED1 showed 

that the quality of signals was not sacrificed for the types of experiments being done in 

Electric Circuits; therefore the  Physics I faculty wanted to explore the viability of using 

the Mobile Studio to acquire dynamic data associated with the course’s experiments. 

After Physics I’s proposal was made, the immediate advantages of such a system 

were apparent, and work began on the Physics I daughter card.  The RED1 had an 

expansion slot which allowed for another card to connect to it to use the USB as if it 
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were a UART channel. UART is a simple communication protocol which can be used 

between systems, or even used between different ICs.  Data is sent asynchronously and 

most microcontrollers have the hardware already implemented internally.  On the other 

hand, USB (Universal Serial Bus) is difficult to implement since it requires not only 

custom code for managing the channel on the microcontroller side, but also requires 

code on the desktop to monitor the channel on the host side.  By having the expansion 

connector on the Red1, even though none of the functionality on the Red1 was used, it 

allowed for new applications to be developed that used the same USB drive software.  

The complexity of the physics daughter card was greatly decreased by this feature, and 

demonstrated that Mobile Studio did not have to be just one product, but could be a slew 

of different products for different applications. 

The original physics daughter card was completed but never used in a classroom, 

due to two main problems.  The first was the streaming mode required the device to be 

tethered to the RED1 board.  The tether ended up being the USB cable which limited the 

range of the board to about 3 feet for streaming.  It was good for testing but could not be 

used in an experiment.  The second problem was the non-tethered mode was just as 

complicated as the Logger Pro software.  To run an acceleration experiment, you would 

use the GUI to set up the desired settings and then disconnect the board.  At this point 

you would run the experiment by pressing a start button on the board but you could not 

see the graph in real time as the data was collected.  This severely limited the effective-

ness for use in a class.  While it measured the data correctly, it did nothing to reinforce 

the link between the data and the actual course followed by the physical object being 

tracked for a new student who did not know what to expect.  At this point, the Physics I 

department requested that an entirely wireless solution be created.  This was the genesis 

of the Wireless Expansion. 

After the physics project was put on hold, the BLUE1 board was created.  This 

board was a much higher-performing board geared toward upper level classes.  The 

BLUE1 board was initially used in Physics II, was again generating a desire for some 

solution that could be used with the Mobile Studio system in real time.  It was when the 

RED2 was developed that this capability was finally added.  The RED2 included a 

printed wireless antenna that utilizes the 2.4 ISM band.  The main goal of using the 
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antenna was to replace the daughterboard connection with wireless connections in order 

to create tether-free daughter cards.  At this time, work began on the wireless version of 

the Physics I board.  Through the course of the development components were added to 

the board to enable other devices to utilize the wireless utility without knowing how to 

interface with the wireless protocol.  As the features for the expandability increased, it 

became obvious that two things were being developed.  One was the Physics I card and 

the other was an extensible system meant to help take some of the work out of develop-

ing future wireless cards.  The downside was the physics card began to get expensive for 

the features it provided, and the expansion had a limit.  Anything more complex than a 

relatively simple sensor would require a new wireless chip anyway.  A simple sensor 

being, a basic signal such as an analog voltage or digital reading that did not require new 

programming.  At this point, all of the desires that had been expressed during brains-

torming schemes came together and it was clear that the design had gone past designing 

a physics board and a multi-purpose wireless adapter.  With this in mind, all the Physics 

I components onto a separate device and work began work on strengthening the scope 

and extensibility of what was to become the Mobile Studio Wireless Expansion. 
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2. Historical Review 

2.1 The Mobile Studio System 

The Wireless Expansion is built upon Mobile Studio software environment and ex-

isting hardware.  To do this custom hardware had to be build to create the wireless bases 

since the RED2 used Cypress’s wireless USB which other existing systems could not 

interface with.  It is possible to write code to interface existing hardware with the Mobile 

Studio software but the main concern was the cost of the existing systems. 

2.2 Similar Systems 

Other systems were investigated in an effort to create a product that would not on-

ly accomplish the goals in the short term, but also be a lasting tool that could be used 

outside of coursework.  Mentioned here are three devices which covered a sampling of 

different applications.  The MICAz, from Crossbow, are designed to be used in low 

power sensor networks where distributed processing is used in order to relay results back 

to a main system.  The Arduino, on the other hand, is specifically meant for embedded 

control of devices.  National Instruments also has wireless products available with which 

LabVIEW can be used to control or display signals from the device.  Each of these 

systems has some sort of expansion connection method, but all of them are geared 

towards different applications. 

2.2.1 MICAz 

MICAz are small devices about the same size as the WEXP.  They contain an 

expansion port meant to interface with daughter cards.   At the time of the conception of 

the WEXP, Crossbow, the company that produces the MICAz, had just announced the 

upcoming release of the Imote2.  It is extremely important to note that during the design 

of the hardware for revisions A, B, and C none of the specs for the Imote2 were known.  

Now that the Imote2 has been released and revisited, the similarity between the two 

seem like it was done by design.  In reality it is the result of two independent develop-

ment paths that ended picking similar ideas, layout topologies, and even the same power 

switch and connectors. 
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During the original investigation of existing platforms Crossbow had the MICAz.  

MICAz seems to be the original Imote even though it has a different product name.  The 

MICAz contain a base board with an expansion slot that communicated wirelessly to 

other boards that could be stand alone entities or tethered to a computer. On top of that, 

the MICAz had an embedded operating system called TinyOS along with other tools 

meant for developing not just wireless sensors, but sensor networks [4].  Minus the 

embedded operating system, the MICAz was pretty much the exact functionality that the 

wireless expansion was looking to leverage.  The MICAz could have been used instead 

of developing custom hardware except for the MICAz one flaw.  Each board cost $100 

dollars.  In order to build an extension to mobile studio two MICAz devices would have 

to be purchased along with the tether costing over $275 dollars.  The MICAz’s wireless 

connection has a reported data rate of 250kbps which is the same as Cypress’s wireless 

USB. 

The most interesting part of the MICAz was the TinyOS operating system.  For ad-

vanced users it provided an easy way to create custom autonomous sensors.   Thought 

was put into implementing something like or even TinyOS itself and has not been ruled 

out yet.  The current goal is to provide the ability to control the device from computer 

software lowering the background entry bar to use the system.  In the future this should 

be revisited in an effort to  

2.2.2 Arduino 

While the MICAz could accomplish pretty much any embedded task it was ex-

tremely expensive for a user who was looking to get into embedded control, but hadn’t 

gotten their feet wet yet.  The Arduino is a device that is geared towards hobbyists who 

are just getting started with embedded control.  None of the specs are impressive as the 

device is geared mostly toward digital and serial communication in an effort to create 

software that is as simple as possible.  To do anything with an external chip the code will 

always go through the same process.  This limits the Arduino to interfacing with high 

end products but to the targeted market there is always a chip that can interface through 

some serial protocol. 
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The Arduino does not have any wireless capabilities but has expansion boards that 

can give it Bluetooth.  The cost of an Arduino is much cheaper the MICAz at $35.00 

dollars, but the Bluetooth expansion is $150.00 dollars.  Even though this is not geared 

towards wireless sensors the Arduino has had success in attracting new developers in the 

field of embedded design that Mobile Studio wishes to emulate. 

The success of the Arduino is attributed to three things.  First, the Arduino is an 

open source hardware project which means that boards can be printed and put together 

for the cost of materials.  Second, the Arduino base is cheap to buy from a 3rd party.  The 

Arduino has its own programming language which simplifies many tasks to follow the 

same format.  From the comparison of MICAz and the Arduino, the lessons taken away 

are that to gain beginners to the embedded world it needs to be cheap, but to keep the 

more experienced developers interested there needs to be more functionality then just 

serial communications.  The other interesting point is that both of these systems have 

their own programming language. 

2.2.3 Wi-Fi DAQ 

The Wi-Fi DAQ system is on the sensing side of things.  LabVIEW can be used in 

order to control the daughter cards but most of the daughterboards have sensing devices 

and ports exposed. LabVIEW’s Wi-Fi DAQ system runs at 1.2Mbps.  The device is 

obviously not comparable to the WEXP and it shouldn’t be since the price range is in the 

$500.00 dollar range.  The nice thing about looking at the Wi-Fi DAQ system is that is 

showed that pretty much any system that is geared towards multiple types of sensors is 

going to have some sort of expansion card mechanism. 

National Instruments claim that the system can be used wirelessly with just eight 

AA batteries.  The Wi-Fi DAQ clearly is not meant for embedded use, but it has the 

advantage of being able to be used with LabVIEW.  To those who own a license to 

LabVIEW, and that is everyone at RPI, this trumps having a custom programming 

interface.  Users with no programming interface are able to use LabVIEW to create 

complex tasks for hardware.  This insight raised a certain possibility, Mobile Studio 

already works with LabVIEW and it would be a small task to add the WEXP device to 

the LabVIEW library.  This would, for the short term, replace the need for developing a 
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custom operating system and give students a chance to use embedded sensors and 

control embedded devices without the requirement of pre-exposure to programming. 
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3. Wireless Expansion Hardware 

The synergy of hardware, firmware, and software has helped to enable theMobile 

Studio’s success.  The hardware consists of the actual physical device, which is com-

posed of integrated circuits which are connected in a way that (perhaps with some help 

from the firmware)  are able to carry out various tasks.  The firmware is specific to 

each processor and board configuration.  The firmware deals with knowing the specifics 

of the hardware and given a generic task the firmware is in charge of orchestrating the 

hardware into a state in which the task can be performed.  The software is what commu-

nicates the tasks to the firmware and interacts with the computer user.  All of these are 

interconnected; i.e. when designing the hardware, decisions for the firmware and desk-

top software have to be made in conjunction with each other.  For ease of reference, the 

following overview of the WEXP is structured as if the hardware, firmware, and soft-

ware are independent systems.   

Many decisions that are discussed for the hardware are not just for increased per-

formance, but have resulted due to a balance of many factors.  From end-usability to 

mechanical constraints, each of these factors has played a huge role in the design for the 

wireless base.  The WEXP went through 3 revisions before it was used by anyone 

outside of the design team, and further revisions are sure to come as more feedback is 

obtained.   

3.1 Design Specifications 

The introduction described how the WEXP is the outgrowth of intended desired 

wireless physics card.  The original guidelines for the physics card included the follow-

ing requests for an ability to: 

• Use current physics sensors 

• Measure acceleration 

• Measure force 

• Measure range 

• Trigger on events 

• Be powered for at least two hours (One class period) 

• Operate in multi-user environment (at least 50 students) 
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Other than these requirements, the physics department was happy to have the device in 

any format.  The only other predetermined constraint was that the wireless system had to 

use Cypress’s wireless USB protocol.  The RED2 was already deployed and utilized 

Cypress’s wireless USB transceiver hardware.  The Cypress transceiver chip was chosen 

mainly due to cost.  Wireless communications are expensive, but Cypress offered 

relatively inexpensive solutions with an average bandwidth, as far as portable devices 

go.  If higher bandwidth is desired in the future a daughter card for the RED2 can be 

built which would contain a higher speed wireless transmitter.  Such a daughter card 

would be connected via a wired connection to the I/OBoards.  To clarify, the wireless 

expansion also has its own daughter boards.  These daughter boards interface through an 

expansion port on the WEXP. 

A specific physics-oriented wireless card was not built due to a desire to allow all 

students to benefit from a wireless card.  The vision is to have students and developers 

outside of the physics area be able to take advantages of the system.  It became obvious 

that the physics portion was better seen as an add-on to a more flexible Wireless Expan-

sion system.  The rest of the requirements from the WEXP are as follow: 

• Small, no bigger than 2”x2” 

• Easily rechargeable 

• Run on 50mA 

• Parts for board should be less than $30 in bulk 

• Analog voltage range of at least 3.3V 

• 4 ADCs 

• 4 DACs 

• 4 Digital IO / Pulse width 

• External Processor Interface 

• Mechanically stable 

• Firmware can be updated by user 

• Interface with COM object 

• Cross Platform 
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3.2 Revision A 

Revision A satisfied all of the design constraints and added features to increase 

usability.  This led to the design taking far longer than simply completing a prototype.  

The goal was to test the usability so that future revisions would be easier to use then the 

current lab tools.  The original sensor board design was just a simple jack to plug in 

existing sensors to demonstrate the capabilities of the Wireless Expansion. 

As a result of the initial experimentation and testing, the wireless expansion sys-

tem was split into a base board and a sensor board. To clarify, the Sensor Board was 

designed to be connected to the Base Board through a connector which has standard pins 

to interface with any future sensor boards.  The base board contains all of the intelli-

gence and capabilities to communicate with the RED2 board.  A Sensor Board is 

connected to the base board which contains the hardware for acquiring sensors.   

3.2.1 MCU 

The next step was to select the main Micro Controller Unit, MCU. Several MCU 

processors were evaluated.  The RED1 I/O board as well as the original physics board 

was built with an ARM device; the ADUC2076.  At this point, the only thing that was 

confirmed was the wireless chip had to be one of Cypresses Wireless USB chips.  The 

ADUC2076 worked well in both previous applications and had only been abandoned in 

the pursuit of faster, more accurate signals.  However, with the limit of 250Kbits per 

second, which meant one channel of an 8-bit Analog to Digital Converter (ADC) could 

only record a 30 Khz signal at maximum speed; therefore the ADUC2076 would have 

performed well as it would not be the bottle neck.  The connector would be laid out to 

give access to analog in, out, and digital ports along with some administrative connec-

tions.  Since we already possessed the development tools and had experience with this 

processor it seemed like an obvious choice.  On the other hand, even though the 

ADUC2076 seemed like the best choice in terms of speed for development of the 

wireless base, Cypress offered an integrated microcontroller and wireless communica-

tions product. 

The attention turned to Cypress to evaluate their combined microcontroller.  At 

this time, we still valued the speed with which we could develop on the 2076.  However, 
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with the integrated chip that Cypress offered, time would be saved on the development 

of the wireless communications, which was the majority of the project.  Cypress’s 

CYWUSB6953 was the first device that was investigated.  The CPU clock, at 12MHz, 

was far above the bottleneck threshold of communicating at 250Kbits a second.  It had 

enough digital pins to add to a connector and had the wireless receiver built in.  It also 

had something Cypress referred to as analog and digital blocks.  The CYWUSB6953 

claimed to be able to configure a pin to have access to digital input and output or analog 

input and output.  This feature was the driving motivator to switching to a never before 

used processor. 

The analog and digital blocks turned out to be exactly what the wireless expansion 

needed to set it apart from other devices with expansion slots.  These blocks could be 

configured to do almost any signal processing function desired.  It is basically a Com-

plex Programmable Logic Device (CLPD), packaged inside a microcontroller.  The 

expansion connector could now utilize filters, counters, amplifiers, and many, many 

more functions.  To accomplish this with the ADUC2076the connector would have to be 

10 pins longer, or else there would be a complex signal switching process and it would 

still only cover the base configurability of the digital and analog blocks.  The downside 

to this processor was that functions such as counters each take up one of these resources.  

The wireless communication required a few digital blocks to aid in the timing of the 

wireless transmissions.  In order to be able to use the configurable blocks as well as have 

enough resources for wireless communications, we began looking at Cypress’s Pro-

grammable System on Chip (PSoC), line of processors. 

Several PSoC processors were then evaluated.  The main desire was to garner extra 

digital blocks since the Serial Peripheral Interface (SPI), a protocol for inter-chip com-

munications, and timer blocks must always be active.  During debugging the UART also 

needs to be active.  This requires 4 digital blocks to debug the processor.  The 

CY8C21x34, CY8C2x23, and CY8C2x43 series were investigated while learning more 

about how the configuration of blocks worked.  In the end, the CY8C2x43 series had the 

eight digital blocks necessary as well as twelve analog blocks.  The last thing to select 

was the processor packaging style. 



 

14 
 

At this time, the assembly is currently being done in-house.  This meant whichever 

package was chosen had to match the in-house ability to solder the component.  This led 

to initially picking a processor in a TSOP form.  It was a worry, however, that the 

signals acquired would be noisy since there was only one ground pin on the device.  This 

meant the ground was distributed from that single pin to all of the other internal connec-

tions.  Any noise from one resource would potentially produce noise for all of the 

resources since the ground connection was routed past all of the components involved.  

The QFN (Quad Flat No-lead) package had a bottom ground plane which allows for 

noisy signals to be compensated by the whole of the ground plane.  Resources could be 

routed directly to the ground plane without having to share a noisy bus. Even though it is 

more difficult to mount this type of packaging, the 48QFN CY8C2643 processor was 

picked.  With the processor chosen, the selection for the wireless IC was comparatively 

quick. 

3.2.2 Wireless USB 

At the time of this stage of the development, there was only one version of Cy-

press’s new protocol available, the CYRF6936.  This implemented their LP protocol 

which combined two of their previous protocols focusing on reducing power and im-

proving range.  The wireless library could be used since the microcontroller selected was 

a cypress microcontroller,.  With the processor and wireless chip selected, the next step 

was to design the power system. 

3.2.3 Power 

The board was intended to be available for use in many different areas of educa-

tion.  In order to accomplish this, it was necessary for the board to be supplied between 

3.7V and 9V.  The 3.7V value is the voltage of a single lithium ion battery that can be 

found in cell phones or an iPod.  The 3.7V is the standard battery connected to the 

system for use as a sensor.  To accommodate use in a robotics project, the 3.7V is 

designed to be disconnected in order to take advantage of the robot power supply.  The 

max of 9volts was picked so that a 9V battery could be used as well.  In order to use 
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3.7V as a power source, the other chips must function at either 3.3V with an extremely 

low dropout regulator, or at 2.5V. 

The processor and wireless chips were both capable of operating at 3.3V.  The 

processor was able to run at 5V with a speed of 24Mhz.  The speed is limited to 12Mhz 

when running at 3.3V.  The processor is able to function at 3V in low-power mode but 

reduces the expected performance level and limits the voltage that external sensors could 

interface with.  For this reason, digital regulators were first investigated.  Digital regula-

tors have the advantage of having an extremely low Dropout Rate, which refers to how 

much voltage drop there has to be between the input and output for the regulator to 

function properly.  Digital regulators basically rapidly switch the voltage on and off to 

the circuit.  The longer the time it spends on, the higher the voltage.  The only problem 

with this is it provides a noisy power source.  For digital systems this might not have 

been such a problem, but this board was supposed to accurately handle precision ADCs 

(up to 14 bits).  With this in mind, attention turned back to finding a linear regulator with 

a low dropout voltage. 

 Though linear regulators have higher voltage dropouts than digital versions, the 

amount of current the system would draw was small.  As current pull increases, the 

dropout of a linear regulator increases.  The system was being designed to draw 100mA 

when fully powered.  The wireless chip draws 25mA on average when communicating.  

This leaves another 25mA for the rest of the system and 50mA max for a sensor without 

external power.  The regulator chosen can supply up to 500mA but this will come at the 

cost of significant reduced battery life.  The battery picked to power the device is an 

iPod nano battery. 

The iPod nano battery supplies 500mAH (milli-amp hours) of continuous cur-

rent. This would give the board a life of 10 hours of constant communication.  This 

battery made it possible to find a linear regulator which would work.  The TPS71333QD 

linear regulator from Texas Instruments has a dropout voltage of about 25mV at 100mA.  

This means the base board will function with the battery drained to 3.325V.  This put the 

operation of the device below the useful limit for most lithium ion batteries.  The device 

would operate for the full range of the battery discharge curve.   
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3.2.4 Sensor Connection 

The next step was designing the connector interface to complete the minimum 

for the board to function as the base for a sensor board. One of the most challenging 

usability aspects for revision A was finding connectors that gave good mechanical 

connections, but also were not bulky.  The board was being manufactured into a 1”x2” 

board, so space was a critical issue.  The connector needed to be a board-board connec-

tor, since making the device interconnection as simple as possible was desired.  Wire 

connectors could have been used in-between the boards with some type of mechanical 

fastening used to hold the two together, but when a single connector could solve both 

problems the wire connectors would have been just a complication.  The third desire was 

to have a connector that developers could easily work with.  A breadboard, for instance, 

is basically a big socket connector which allows wires to directly interface with it.  A 

similar thought was applied to the connector of the base board.  Instead of an awkward 

custom connector, we preferred to have an open socket connector which could be 

directly interfaced with. 

After selecting a socket type connector the next step was to decide which pins 

would be available.  The original plan was to break the connector up into multiple 

connectors.  This would isolate different systems from a developer’s standpoint.  For 

example, one connector would have all analog connections and another connector would 

contain all digital connections.  This makes it easier when learning a new system to be 

able to focus on the specific task at hand.  The intent was that each sensor board would 

interface with only the connectors required.  If multiple connectors were used, this 

would increase the mechanical strength of the boards.  Ideally, a production sensor board 

would use all four connectors. 

The functions were split into four areas; the primary connector, the expansion con-

nector, the identifier connector and the parasite connector.  The primary connector has 

all of the components that would allow for a basic sensor board to function.  Included on 

this connector are four configurable analog/digital input/output ports, power and digital 

ground, as well as analog ground and the band gap reference.  The expansion connector 

consisted of eight extra exposed pins from the processor.  Four of these pins can function 

as analog in pins or digital in/out pins.  The remaining four can only function as digital 
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in/out pins.  All eight pins on the expansion port have the ability to be connected to the 

digital blocks, and four of those pins to the analog blocks.  The processor is able to 

connect pins to blocks through a shared bus.  The CY8C2643 has sixteen individual lines 

of this bus available.  Three of these lines are taken up by the SPI communication system 

leaving thirteen lines open.  The primary connector and the expansion connector utilizes 

twelve of these lines if each pin was connected to a digital or analog block.  The remain-

ing bus line was left unused. When in debug mode, two pins from the expansion 

connector are used for UART communication.  The expectation is that most constructed 

sensors would use the primary connector and the expansion connector.  The remaining 

two connectors are meant for more advanced systems. 

The identifier connector is for a sensor board that has been registered with Mobile 

Studio.  Once Mobile Studio connects with a wireless board, a prompt asks which kind 

of sensor is attached.  A registered board will automatically open the proper feature 

inside Mobile Studio when the sensor connector is in use.  This is to help limit possible 

damage that could occur to a sensor by accidentally loading the wrong configuration.  

The last connector is the parasite connector.  This is meant for advanced developers who 

wish to interface with Mobile Studio but need direct control over some of the resources.  

One example of when someone would want to use this is for an experiment involving 

sensor networks.  One such experiment could enable multiple sensors to aggregate data 

and test different communication methods, while still using Mobile Studio’s advanced 

UI to analyze results.  To do this, a sensor board using the parasite connector would have 

its own processor.  The parasite processor could tell the base board’s processor to 

transmit data back to Mobile Studio, or it could arrest all of the WEXP’s processor’s 

actions and take complete control. 

Conceptually, this allowed for further expandability and improved mechanical 

strength of the connections, since the connectors could be laid out in a square.  However, 

the space these connectors require is significant.  Also, at the point that someone is able 

to use all of the functionality of parasite mode it would be easier to create another board 

which had the custom hardware onboard; using the Mobile Studio’s communication 

protocol.  Since the majority of sensors would not be using the parasite connector, it was 

removed and the remaining three connectors were merged into a single twenty-eight pin 
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connector in order to save space.  All of the functionality of the primary, expansion, and 

identifier connectors remained the same. 

The last thing to do was to actually find the connector to be used.  The connector 

needed to be small, but still able to interface with a solid core wire.  It needed to be 28 

pins long.  It also needed to have the mechanical strength to hold the base and sensor 

boards together even if pressure was not applied above the connector.  The torque 

problem was considerable because the connector was not aligned with the center of the 

board. So, when just handling the device, pressing in the middle could disconnect the 

two boards.  Though this might not seem important, relaxing this constraint caused 

problems in later revisions of the board.  The connector chosen was the DF11 Series 28 

pin socket connector from Hirose Electric Co Ltd.  With the selection of the connector, 

the attention turned to the usability of the device in the classroom. 

3.2.5 Power Switch 

The goal of the Wireless Expansion is not only to create an extendable wireless 

platform, but to replace the burden of existing systems.  In the case of the Physics 

department this was Logger Pro.  In order to accomplish this, the Wireless Expansion 

needed to alleviate the pitfalls of the existing system.  The major complaint is the 

existing systems are hard to use due to complex rituals in order to get the hardware and 

software to work together.  Since the field of wireless sensing equipment is well devel-

oped, the items that set the Wireless Expansion apart are the ability to use the nodes not 

only as sensors but also as control boards, broadening the usability.   

Since the original use for the initial release was as a sensor for Physics I students, 

the initial usability design started there.  The sensors needed to be usable for lab when it 

was lab time.  One of the sacrifices of Wireless Sensors is the loss of power.  Originally 

a simple slide switch was going to be used to turn on and off the device, but this posed 

one serious usability problem.  The device should be smart enough to tell when it is not 

being used and be able to shut itself off if accidently left on.  The last thing that a lab 

course needed was to have students unable to participate because they forgot to turn off 

their devices.  This problem was compounded by the fact it was not an easy process to 

just switch out the batteries.   
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Thus, software-controlled power was implemented.  Software-controlled power 

utilizes the MCU to turn itself off.  To turn on the device however, there needs to be 

powered logic gates in order to be able to turn on the regulator.  In later revisions this 

was refined, but at the time the logic gates protected the processor from high voltages 

that could be present when powering the device from 12V.  In order to power the logic 

gates, a second regulator needed to be added.  Though the current that this second 

regulator used was in the micro Amps, it was an unavoidable cost of having a software 

controlled power source.  The advantage is that instead of a device being drained over-

night by accidently leaving the device on, it would take a device to be off for a month 

without charging to drain it. 

The second regulator picked was the LP2980-ADJ, and it was set to a value of 

3.3V.  A NOR gate was used to take the push button and the processor’s enable pin and 

control the regulators enable pin.  A push button allowed for the software to actually turn 

off the device as a slide switch would have to be moved back to the original position 

even if the processor tried to shut itself off.  The only problem with the push button was 

that the sensor board on top would restrict access to it.  In order to deal with this the 

sensor board would have an outline that it could fit into.  If a sensor board needed more 

space it could extend in the other directions but not towards the front of the board.  

Though this seems prohibiting, there were other systems at the front of the board that 

needed the air clearance which will be discussed later. 

3.2.6 Analog Regulator 

In an effort to increase the precision of the Analog to Digital Convertors (ADCs) 

and the Digital to Analog Converters (DACs), another regulator was added.  The MCU 

had pins for bandgap, and Analog Ground (AGND).  AGND could be driven by the 

MCU or by an external source.  Since AGND is dependent on a voltage divider given by 

VCC it is likely there would be fluctuations in AGND.  In order to alleviate this and save 

money, another LP2980-ADJ regulator was used.  Ordering two of the same part saves 

money in the long run because of bulk discounts.  The regulator was set to 1.65V and 

was powered from the main 3.3V regulator so that the routing of power to the chip was 

simpler. 
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3.2.7 RED2 Interface 

The next big usability feature is the RED2 interface.   original thought was to 

connect the boards physically in order to connect the board to the RED2.  This offered 

several advantages, the main one having the RED2 serving as a power base station.  The 

thought was to build a daughter card that was permanently connected to the RED2.  This 

daughter card would contain ports which the wireless base would connect to and be 

housed on.  Through this connection, the base would receive new programming, power, 

and storage.  Originally, it was specified to have the ability to house four sensors.  This 

would allow students to contain all of their lab materials in a 3x3x2in3 area and allow for 

charging whenever the RED2 was being used.  Students could start charging their boards 

at the beginning of class and be able to use them for an experiment after half an hour.  

However, since it is more often seen as cumbersome to plug in a device for syncing, etc. 

these days, a wireless mechanism was added. 

The wireless solution implemented was an infrared (IrDA) port which is a standard 

communications protocol when using infrared communications.  The user would point 

the device at the daughter card on the RED2 and briefly press and release the same 

button used for switching power on/off to sync.  (Holding down this button would turn 

the device off.)  Once synced, the daughter card would then communicate with the 

RED2 and automatically configure Mobile Studio for the given attachment on the base.  

The IrDA port would also notify the base of which channel to use.  In a multi-user 

environment where many of these devices are being used at once, each device operates 

on its own frequency to allow simultaneous communication.  If there are not enough 

open channels available different codes would be given out to allow co-domain wireless 

communication.  

3.2.8 Infrared Sync System 

The last thing to mention before describing the details of how the communication is 

set up is that the hard connection to the RED2 contains UART, I2C, and a single GPIO 

(General Purpose Input/Output) connection.  I2C is another inter-chip communication 

protocol like SPI except instead of having a pin that selects a slave, an address is sent 

across the data line to initiate communication.  The I2C and GPIO were originally meant 
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to be able to program a processor.  The daughter card adds the benefit of removing the 

need for new firmware programming of the RED2 processor, a Blackfin digital signal 

processor (DSP), to handle the programming and communication of the connected 

wireless cards since the code for transmitting UART directly to the desktop software is 

already present.  This requires the daughter card to have its own processor to handle the 

programming of a WEXP device.  Since a processor was already needed and it would be 

a waste if it were only used for programming one device, the multiple storage method 

was implemented.  Each connector contained a multiplexed UART, I2C, and GPIO 

connections, and was designed with the same pin out as the RED2 daughterboard 

connector.  This allows, with some Blackfin programming, the ability to connect the 

board directly to the RED2 with no daughterboard in-between.  This was done to miti-

gate the risk that the daughterboard’s benefits might not make up for the cost and time of 

development for RevA. 

In order to enable this functionality an infrared transceiver and emitter were added 

along with a UART to IR controller.  The UART chip is connected to the same bus as 

the UART on the connector communicating with the daughterboard.  A line is tied from 

one of the grounds on the connector to the enable of the IR transceiver, thus acting as a 

shutoff whenever the main board is connected.  The UART to IrDA controller required a 

clock speed of 16 times greater than the UART signal.  This put an upper limit of 9600 

baud on the speed the UART could function at.  This also required the use of another 

one of the digital blocks to function as a PWM generator for the clock.  After pairing and 

during normal operation this block is released, as the IR receiver is no longer in use.  

This unfortunately begins to complicate things because dynamically changing blocks 

adds more code to manage the device.  In the end however, the plan is for all of the pins 

to be reconfigurable which involves more than just switching blocks, but also involves 

switching the internal routing of pins. 

It turned out that the daughterboard was never built.  Even though it added the abili-

ty to charge and manage multiple sensors as well as provide housing, the average user 

initially would only carry around one sensor.  All of the ideas for the usability stuck with 

the board as it progressed.  It was clear that having a connector to sync the boards 

together or program them would make them just as cumbersome as existing systems and 
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future revisions have new ways to overcome the problems of syncing, channel division, 

and programming of the WEXP devices.  

3.2.9 Flash 

The last part of revision A added in an effort to cover all areas of the vision for the 

Wireless expansion is onboard flash memory.  The minimum a device which is part of a 

wireless sensor network needs to have is a processor, power, and memory.  The wireless 

expansion had an MCU and power, and the flash memory was added to complete the 

requirements.  This was done in an effort to see if others would be interested in using the 

WEXP devices in sensor networks, network flow experiments, control algorithms or any 

other wireless network experiments.  The WEXP would allow simulations to be used in 

a practical arena where things like communication protocols could be tested in actuality.  

Crossbow’s products dominate this arena currently [9,11] and one of the advantages the  

Crossbow system is that their wireless motes run TinyOS.  This allows users who may 

not be familiar with embedded programming to still use Crossbow’s products as event 

driven machines.  One of the thoughts is to port TinyOS onto the WEXP devices in the 

future.  Some other plans are to create LabVIEW modules and MATLAB code which 

compiles directly into the embedded language of the WEXP devices.  This would be the 

next step in network simulations as LabVIEW is ideally suited for those who may have 

extensive knowledge in the wireless network field, but may not have much or even any 

programming experience.  TinyOS still requires the knowledge of a low level C style 

language whereas LabVIEW is a graphical and extremely extensive programming tool.  

With the hardware for RevA completed the board was then laid out and produced.  

3.2.10 Antenna 

The Wireless IC uses a printed antenna to communicate on the 2.4 GHz ISM band.  

Unfortunately for revision A, the wireless communication did not work properly.  

Building the antenna is extremely frustrating because the documentation has some 

errors.  In the end there were several differences between the documentation, RED2 

antenna, and the fabricated antenna. 
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One of the major differences is that the wireless base uses capacitors and inductors 

that are of package 0805.  The 0805 corresponds to how many mils the component is so, 

for instance, 0805 is 8 mils by 5 mils.  The main reason to do this was simply to make it 

easier to assemble.  The RED2, however, uses parts in a 0603 package.  Using the 

different packages meant that the components used in the RED2, which worked, could 

not be used.  The components chosen matched in value but when the wireless communi-

cation failed to function this was one of the primary differences looked at. 

A major mistake with the revision A layout was the pad layout for the crystal.  The 

datasheet shows a top view and a bottom view for the pin layout.  The bottom view was 

accidently used leaving the pins reversed leading to an improper connection with the 

crystal.  To get around this, the crystal had to be tilted at a 45 degree angle.  An oscillos-

cope was used to verify the functionality of the crystal.  The readings showed a little bit 

more noise than the crystal on the RED2 but since the wireless communication did not 

work, the crystal wasthe primary candidate for the malfunction. 

The last potential problem needing to be addressed was the distance the components 

are from the antenna.  Though only a few mils away, they are more spread out to make 

the board easier to assemble.  With all of these discrepancies it was impossible to isolate 

and figure out what contributed to the failure of the antenna.  In revision B all of the 

components are the same as the RED2 and the crystal layout is fixed. 

3.3 Revision B 

3.3.1 Power 

None of the power requirements changed as far as the minimum and maximum 

values for the input voltage in this revision.  One of the major things that did not work 

out in revision A was the daughterboard connection to the main board.  One of the main 

functions of the daughterboard was the ability to charge the boards.  In order to deal with 

this the original thought was to add the charging circuitry to revision B.  The only 

problem with that plan was that external circuitry needed to be added to protect the 

charging circuit when powering from an external board. 

In order to alleviate this problem, the power is supplied for Revision B through an 

external board.  This offers several advantages for working in the classroom.  If a device 
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is accidently left on, the battery could be swapped out for a spare.  Since every power 

board had its own charger, classrooms could have spares for such an occasion.  The 

external power board would contain all of the circuitry necessary for charging the given 

power source.  The main version of the power board contains the same 3.7V iPod nano 

battery.  This power board can be charged from a 5V DC power source or a USB cable. 

The other major change for the power system is the power control circuitry.  A lot 

of space was taken up by the pushbutton powered by an external 3.3V Logic regulator.  

Revision B’s main focus is to limit the complexity of the device as much as possible to 

create a simpler system.  With the push button gone, the space above it is also free to be 

occupied by a sensor board.  The majority of the space savings in this revision is from 

the power system and the board size was able to be reduced from 1”x2” to 1”x1.75”.  

Though this quarter inch does not seem significant it was an obvious enhancement when 

finally fabricated. 

3.3.2 Sensor Connection 

The original sensor connector chosen for Revision A was a 2 mil pitch rectangular 

socket connector.  The original thought was to allow easy access to the pins through 

solid core wire.  Unfortunately the connectors did not have a long life when mistreated.  

If the wrong type of wire is pressed into the socket it can render the connector useless.  It 

also had become obvious that it would be relatively cheap to create a development board 

which would contain more features that could be used for hardware development or in 

projects.  With a development board being considered, the focus on the connector 

changed from accessibility to space. 

As with revision A, many types of connectors were evaluated for Revision B.  The 

main features present in the connector that are currently implemented in Revision B are 

that the board-to-board height is small, the pitch between the pins is tiny, and the over-

head of the shroud is as small as possible.  In Revision B the mechanical stability was 

not as much of a concern, with the thought that other purely mechanical devices such as 

screws and spacers could be used to ensure the mechanical stability. 
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3.3.3 Analog Regulator 

In revision B, a capacitor is placed at the analog ground pin.  Analog ground in al-

so exposed on the connector.  Therefore, an external regulator can be used on a sensor 

card, if needed.  This allows a sensor card to employ a high precision analog ground 

voltage which may or may not be half of Vcc, which is 3V.  If an external regulator is 

not used, then the capacitor allows the processor to use the analog ground with an 

external cap.  The cap provides lower noise and increased voltage accuracy. 

3.3.4 RED2 Interface 

A simple connector is used to interface with the RED2 in this revision, instead of 

building a complex system.  A custom connector needs to be fashioned to connect 

directly to the daughterboard port on the RED2.  Though this removes the cost of yet 

another board, it added the cost of this custom connector, which is easier to fabricate in 

small quantities.  The connector on the RED2 is not uni-directional so this method has 

the downside that it is possible to accidentally connect the boards backwards.   

Another big problem is that the connector for the RED2 is not easily accessible.  

There is a cover that is over the necessary connector so if the wireless board is to be 

connected, the RED2 must be disassembled.  This was not seen as a big problem, since 

the connector only provides programming and it would not have to be done very often.  

Unfortunately if a new firmware version did come out, then the user needed to be able to 

upgrade the firmware so cables had to be provided to every user. 

In order to get around fashioning cables for students, a connector that could be 

plugged directly into the board was used.  The layout for the connector is placed in the 

upper right corner which helps enforce a uni-directional connection.  If the board is 

plugged in the wrong way it is impeded by other components on the board.  It turns out 

that the RED2 is incapable of using that connector because of the manufacturing 

process.  The RED2’s daughterboard connector contains holes in the bottom to allow for 

a connector to pass through.  These holes are filled up during the solder reflow and have 

to be unplugged with a soldering iron in order to use.  This was not discovered until 

RevB was manufactured. 
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3.3.5 Antenna 

Overall RevB worked successfully for all of the desired features.  The wireless 

communication worked, as well as the ADCs, which allowed a demo to be created which 

streamed wireless acceleration data.  RevB had a few flaws that made it unusable 

though, namely the difficulties in programming it due to the connector problem.  Since 

the antenna works in this version, the following describes  the basics for getting the 

2.4Ghz wiggle antenna operational. 

 The  documentation for the wiggle antenna is not correct.  This shows up when 

looking at the bottom of the antenna.  The height of the extended ground plane before 

the ground plane for the whole device is 60 mils.  On the top side the height of the 

extended ground plane is at least 60 mils for the arm, with 30 more mils on top of that 

for the base of the antenna to come through.  The fix for this is to change the length 

shown on the bottom from 60 to 120 mils. 

The components used in revision B of the wireless base are the same components 

used in the RED2.  Though it was never confirmed if this contributed to revision A’s 

failure, it is highly recommended to use the high frequency caps instead of Cypress’s 

suggested components for enhanced performance.  The inductors that Cypress recom-

mends are incorporated. 

3.4 Revision C 

Where RevB underwent many cutbacks on features, RevC added a few new ones 

in order to create something that would be able to last for a while without requiring 

further revisions.  Several major changes occurred: a new processor was chosen, a new 

power system was designed, a USB chip was added, a second processor was added and 

another connector was added.  The dimensions of RevB to RevC went from 1”x1.75" to 

1.25”x1.75”. 

3.4.1 Processor 

While working with the processor for RevB, trouble arose with the digital blocks.  

There weren’t enough resources to support the administration functions of internal 

timers and SPI communication, along with having blocks to spare for things like the 
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ADCs.  The blocks are described in detail later in section 4.2.  In order to alleviate this 

problem, a new processor was chosen which wasn’t previously available, the 

CY8C29666.  The CY8C29666 had the same pinout as the RevB processor but con-

tained 16 digital blocks as opposed to eight.  The cost in price increased by $2.00 but 

allowed for the device to have more resources available for different configurations. 

3.4.2 Power 

The power board in RevB did not work out too well.  There were just too many 

parts that had to be connected together in order to get something functioning.  Another 

concern was with the slide switch.  Accidently draining a device of power before an 

experiment would result in frustration from the Physics department since they would see 

this as a new problem as opposed to the benefit garnered by switching from a wired 

sensor to a wireless one.  Another concern was that without the detachable power board, 

it would be hard to use the device in projects with different voltage levels.  There was 

also the problem with charging the device, but that was solved quickly with the addition 

of a USB device (mentioned in the next section). 

In order to alleviate the above concerns, the power system was redesigned once 

again.  A push button is used instead of a slide switch.  Instead of having a logic supply, 

a Zener diode is used to ensure voltage protection on the pins, but allows for no current 

flow when the device is off.  A max1555 charger is in place to charge a single cell 

lithium ion battery from the USB power.  In-between the battery and the rest of the 

system is a diode.  This diode will protect the battery if the voltage supplying the system 

is greater than the battery. This was done to allow external power to be able to still 

power the board.  The battery is now permanently attached to the base but no current is 

drawn when the device is off and with the ability to externally power the device without 

damaging the battery, all goals were able to be achieved. 

3.4.3 USB 

In an effort to steer towards platform independence and with the need for a pow-

er connector on the board because of the new power system, a USB interface was added.  

The only thing tying mobile studio to Windows for developers is that the current USB 
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driver is only for Windows.  With the USB interface added, projects can be built on 

other platforms which use the Wireless Expansion’s capabilities. 

3.4.4 Connector 

After experimenting with the connector in RevB it was decided to go back to the 

original plan from RevA and use multiple connectors to insure mechanical stability.  

Functionally, the connectors are also differentiated.  The 19-pin connector contains all of 

the signal lines as well as the SPI interface to allow for more complete integration with 

daughter cards.  The 9-pin connector contains power and ground along with the status 

lines of the sensor.  The status lines are the same as in RevB: the first indicates the 

presence of a daughter board, the second indicates if the board is in development mode 

or not, and the last indicates whether or not there is the one wire ID chip present. 
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4. Wireless Expansion Firmware 

4.1 Methodology 

The  objective of the wireless expansion is to provide an API that can be used to 

interface the base with new hardware expansions.  In order to accomplish this, the 

programming ideology is to have the base act as a passive configurable microcontroller.  

The desktop will configure the MCU on the wireless base to enter the proper mode 

instead of upgrading the firmware.  For example, to set up an analog stream the desktop 

software would tell the processor on the wireless base to load the chosen ADC resources 

into the analog blocks.  It would then configure the sample rate and set properties of the 

ADC such as the bit resolution.  The desktop software knows that the incoming data is 

from the ADC in the form requested and will display it properly in a graph or whatever 

user interface method the particular resource uses. 

Expanding this process to a more advanced case allows developers to ultimately 

control the wireless base completely from configuration code.  The wireless base will 

not have to be constantly receiving instructions in order to operate. Instead, resources 

will be set up and provided with trigger events.  When a trigger event occurs, the given 

resource will execute its stored process.  Though this is not meant to be an OS like the 

MICAz utalize, it can be used to allow simple configuration from the control application.  

Like the MICAz’s OS, TinyOS, there are a set of resources that can be configured to 

work together from a set of triggers.  A resource is basically any complex function 

which is available on the base.  This consists of different analog and digital blocks as 

well as any SPI resources on the base. 

TinyOS is an event driven language which contains resources as well.  Each re-

source can have callbacks and drive other resources through a similar triggering 

mechanism.  Eventually, it is the hope that the wireless base’s firmware could implement 

anything that TinyOS would implement except in a higher-level language, thus opening 

the programming to more than just people with embedded programming experience.  An 

example to demonstrate the difference is as follows: both TinyOS and the base’s firm-

ware could have configuration code written to read from an analog block every 10 

seconds and after the read, save the result to flash.  The base’s firmware could not be 
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configured to act as a communication host and communicate with several of the wireless 

nodes without the desktop software.  It comes down to the fact that there will not be any 

decision implementation to start off with.  In other words, there will be no way to check 

to see if an analog read is above a certain threshold and notify the desktop software upon 

triggering this event.  Instead the data will be reported regularly and the desktop soft-

ware will have to check to see if the data is above the threshold.  The desktop software 

can then tell the base to enter a new configuration. 

4.2 Cypress’s PSoC 

The processor family used in all of the revisions is from Cypress’s PSoC line.  

PSoC stands for Programmable System on Chip.  It works a lot like a Complex Pro-

grammable Logic Device (CPLD) in which different “blocks” can be configured in order 

to provide hardware implementations of many signal manipulation functions in both 

digital and analog.  Working with the PSoC for the first time can be difficult to get 

started and hard to debug.  With the addition of unverified hardware it becomes difficult 

to track down a configuration error vs. bad hardware.  It is highly advisable to inspect 

both the configuration and initialization code of the blocks. 

4.2.1 Digital IO 

To get started, note that the expansion pins let out on the connector were specifical-

ly chosen because many of them can act as analog in or out, along with other digital 

functions.  Any I/O pin can be configured as a digital input, output, interrupt, or con-

nected to a digital block.  The input and output aren’t straightforward  As an input, the 

pin can be configured as high impedance, pull-up, or pull-down pin.  In pull-up or pull-

down mode, the pin can also function as an output.  Working with just the pure input and 

output is straightforward. There is a port address which you can read or write to which 

reads or sets the port.  In order to use the pin as an input, you must set the pin to High Z.  

The other option is Analog High Z, which is actually a misnomer.  Putting a pin in 

Analog High Z turns the pin off and does not function in analog applications.  To use the 

pin as an output, it needs to be configured as either a Strong, or Strong Slow.  The only 

difference is the rising time between the logic levels for Strong Slow takes longer. 
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4.2.1.1 Port Definitions and Configuration 

The last notable thing about the pure input/output modes is that by assigning the pin 

to something, an address and masks are defined for use in the program.  All ports can be 

accessed through PRTxDR and a specific pin is accessed by bit-masking that address.  

PRT0DR & 0x01 will perform a read on port 0 pin 0.  If port 0 pin 0 was named 

RedLED in the file PSoCGPIOINT.h, several definitions are made, of which 

RedLED_Data_ADDR and RedLED_MASK are most important.  By including this file 

the code can access these aliases in order to make changes in future revisions more 

portable.  If a pin is changed, all that has to be done is that the pins on the configuration 

panel need to be renamed and the code will function the same.  This is especially useful 

when moving around resources that require the manipulation of multiple pins. 

The other definitions are important for more advanced usage of the chip.  Continu-

ing with the previous example, 3 drive mode masks are defined as 

GreenLED_DriveMode_x_ADDR, where x is 0 through 2.  The drive mode is what 

configures the pin to be Strong, High Z, Pull-up, etc.  Using these drive modes allows 

reconfiguration of the pins at runtime, which is the key to interfacing with different 

sensors.  In addition to the drive modes, three interrupt control registers are defined as 

GreenLED_IntCtrl_x_ADDR, for x as 0 and 1, and GreenLED_IntEn_ADDR.  The 

IntCtrl sets the interrupt mode to active high, low, or change from read while the IntEn 

enables the interrupt.  The last definition created is the GreenLED_GlobalSelect_ADDR,  

which allows the user to enable a connection to the global bus (described later) depend-

ing on how the Drive Modes are configured. In order to figure out all of the different 

combinations, several documents with descriptions are available.  By using these regis-

ters, any pin can be reconfigured at run time to interface with almost any daughter card’s 

I/O needs.  In order to access the daughter card’s resources, other types of processing 

needs to occur which often would require a hardware interface such as an analog-to-

digital converter or a filter.  The PSoC’s digital and analog blocks allow this without the 

addition of new hardware.  But first, one needs to understand the pull-up and pull-down 

states of the I/O configuration, as this can be confusing at times. 
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4.2.1.2 Shadow Registers 

The confusion of pull-up and pull-down drive modes is from the fact that in these 

states the pin is operating as an output and as an input.  When configuring a device as a 

pull-up resistor,writing logic high to this pin will result in proper operation of this pin as 

a pull-up resistor.  Reading this pin gives the result of the voltage on the pad.  For 

instance, if a switch is connected to logic low and is activated, even though the pin is 

being forced logic high, when reading the voltage it will register as logic low.  If logic 

low is written to the pin, then the pin stops functioning as a pull-up and will force logic 

low.  Current will flow through the internal pull-up resistor of 5.6kOhms.  This may not 

seem unexpected, but the problem occurs when using standard bit masking.   

For this example, port 0 will have pin 0 configured as an internal pull-up resistor.  

Connected to the pin is a push switch which connects the pin to ground when activated, 

and is no-connection when not activated.  Port 0 pin 1 will have an LED attached to it 

with active low logic.  The goal is to write a program to turn the LED on when the 

button is pressed.  The following code could be used if a pull-up was not being used. 

while(1) {  

if(PRT0DR & 0x01) {  

PRT0DR &= ~0x02 // Turn LED On !Causes problems for pull up 

} else {  

PRT0DR |= 0x02 // Turn LED Off !Causes problems for pull up 

} 

} 

If all pins were configured in High Z or Strong mode, this program would work 

fine.  This is because PRT0DR reflects the state of the pin that was set.  In the example 

of the pull-up PRT0DR &= ~0x02 will compile into PRT0DR = PRT0DR & 0x02.  This 

means it will perform a read of the pins before the AND operation.  If pin 0 is logic low, 

a logic low will be written to pin 0 and result in disabling the pull-up.  In order to get 

around this, shadow registers are used in which the shadow registers are modified and 

keep track of the desired values.  This illuminates the read from PRT0DR and isn’t too 

difficult to implement.  The only problem is when using other libraries that don’t use 

shadow registers or have a different naming schema, some editing has to be done to 
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make them compatible.  Below is the proper code when a pull-up or pull-down pin is 

present. 

BYTE PRT0SHADE = 0x03; //LED off Pull Up High 

PRT0DR = PRT0SHADE; 

while(1) {  

if(PRT0DR & 0x01) {  

PRT0DR = (PRT0SHADE &= ~0x02) // Turn LED On 

} else {  

PRT0DR = (PRT0SHADE |= 0x02) // Turn LED Off 

} 

} 

Since PRT0SHADE now holds the state of the port, there is no accidental overwrite 

of the desired state because of a read from the current state.  With that brief aside, the 

last thing to mention about the PSoC line is how the blocks work. 

4.2.2 Configurable Blocks 

These configurable blocks represent different hardware functions the processor 

can implement and interface with through software.  It does this through configuring 

internal lines to connect up components such as capacitors, amplifiers, and resistors.  

There are two types of resources: digital and analog.  Both of these contain a different 

interface to the physical pins of the device.  In RevC, there are 16 digital blocks and 12 

analog blocks.  

4.2.2.1 Digital Blocks 

When working with the digital blocks, there are a few key concepts to keep track 

of.  The digital blocks represent the hardware which is configurable into the desired 

function.  These include but are not limited to: counters, digital communication, pulse 

width modulation, and many others.  There are 16 of these blocks, but that does not 

mean it is always possible to use up all of the resources.  There are sixteen global out 

and sixteen global in buses.  These buses connect the blocks to the pins on the processor.  

Some blocks can require the use of multiple pins.  Take for instance the SPI block.  It 

requires three pins, MOSI, MISO and SCLK.  MOSI and SCLK will take up two lines of 

the global out bus and MISO will take up one line of the global in bus.  It would be 
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impossible to have fifteen pulse width modulated pins in this configuration because there 

aren’t enough lines on the global out bus.  Instead, a max of fourteen pulse width mod-

ulated pins would be possible leaving one digital block free. 

There are also additional restrictions. On top of the sixteen line limit for the global 

bus, every four blocks has a row bus.  The row bus consists of four lines for input and 

four lines for output.  The purpose of the row is to connect the block to the global bus.  

In the previous example, the SPI block will use up two lines of the output row bus, 

leaving only two available.  In order to use the other three blocks, it is necessary that 

combined they only require the resources of two output row lines or less and three input 

row lines or less, as the SPI also takes up one input row. 

The last big constraint is that eight of the digital blocks are allocated as communica-

tion blocks.  These blocks can function with any of the digital resources attached but are 

the only ones capable of supporting the communication resources.  This makes it neces-

sary to allocate all of the communication blocks first and then fill in the other 

functionality.  This can become tricky since analog blocks can have digital blocks 

associated with them.  Placing an integrating ADC requires the use of 3 digital blocks of 

a counter and a sixteen bit PWM generator.  The best way to figure out if it is possible to 

create a configuration is to sit down with the designer and try working it out.  By switch-

ing the type of resource, by using a SAR ADC instead of a delta-sigma ADC for 

instance, it is often possible to find some configuration that will work. 

Another interesting capability the digital blocks contain is the broadcast rows.  

There are four of these, one for each grouping, which can be connected to another 

broadcast row or a block.  The broadcast row can be used as input for any of the digital 

blocks and even a clock source.  This row is a way to get signals from one grouping of 

blocks to another without using up any of the resources of the global bus. 

As far as the allocation for the wireless expansion goes, three blocks are permanent-

ly in use.  An 8-bit timer, an 8-bit counter, and the SPI master.  In debug mode, two 

more blocks are used for the UART RX and TX.  The expansion connector contains four 

dynamicIO and nine expansionIO.  The only difference is the dynamicIO can be analog 

output as well.  This allows for the remaining thirteen pins to each be connected to its 

own digital block and would maximize the digital resources.  As soon as one starts 
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generating mixed signal configurations, the number of digital blocks available can drop 

dramatically as some analog blocks can take up to 5 digital blocks.  The digital blocks 

are designed to allow the pin-out to change yet still maintain the same functionality as 

before by rerouting the internal configuration.  The analog blocks have a completely 

different configuration setup which is much less flexible. 

4.2.2.2 Analog Blocks 

The CY8C29666 has twelve analog blocks.  Similar to the digital blocks, the ana-

log blocks are grouped together, but in threes instead of fours.  Unlike the digital blocks, 

these groups are dependent on one another making the design of an analog system much 

harder.  A couple examples on the restrictions for the analog section are: all the blocks in 

a group share an output bus, all the blocks in a group share the same clock, and there are 

only four dedicated output pins.  There are many more restrictions that are uncovered as 

configurations are created which aren’t always apparent.  For example, the configuration 

editor only allows one variable incremental ADC but it allows 4 twelve-bit incremental 

ADCs. 

Since the restrictions are much more stringent depending on the type of analog 

block used, the exact maximum specifications are not readily ascertained.  Each analog 

block contains its own set of restriction rules and no general groupings are apparent.  On 

top of the restrictions being hard to determine, the datasheets often contradict them-

selves.  For example, a single or double stage incremental ADC claims in the features to 

support a 46.8 ksps at 6 bit resolution.  This corresponds to 46.8 khz sample rate.  

Reading the datasheet further reveals that the equation used to get the 46.8 ksps requires 

the source clock to be set at 24 MHz which is the maximum clock speed at 5V operation.  

Continuing from there the max sample rate for the 3V configuration is now 23.4 ksps 

since 12 MHz is the maximum clock speed.   Reading further reveals that the maximum 

clock speed that that can be used is actually 8 MHz due to restrictions on the switched 

capacitors.  This limits the max sample rate to 15.6ksps for a 6 bit ADC.  There are 

many other examples like this for the different blocks so care needs to be taken when 

designing new configurations. 
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Given these issues, the following are some guidelines to help determine available 

configurations.  There is a 6-bit successive approximate ADC (SAR) which is capable of 

sampling at 40 kHz.  The SAR works by using an DAC to implement binary search.  The 

DAC is set to half of the value between the min and max known range and a comparator 

reports weather the actual voltage is higher or lower.  The SAR is only available in 6-bits 

so when trying to get more bits, the sample rate rapidly declines.  If needed a higher bit 

SAR could be built manually using a higher bit DAC at the cost of more analog blocks.  

At 7-bits an integrator ADC has to be used, dropping the sample rate down to 10.4 kHz 

and at 14 bits, the speed is down to 121 Hz.  The maximum number of ADCs allowed is 

4, no matter which ones are chosen.  DACs have better performance but the maximum 

number of bits for a DAC is 9.  The 9-bit DAC has a sample rate of 125 ksps and a 6-bit 

DAC has a sample rate of 250 ksps.  The maximum amount of DACs allowed is also 4. 

This allows for a maximum of 4 ADCs and 4 DACs working simultaneously.  In that 

configuration all of the analog blocks are used since each ADC needs an amplifier and 

eight digital blocks are used for counters and PWM generators.  By changing the types 

of ADCs the digital block count can be decreased but results in really low resolution 

ADCs.  There are many other types of analog blocks, but the most interesting thing that 

can be done is the combining of multiple blocks in order to create some function.  This 

could be as simple as a low pass filter or something more complex like a frequency 

modulator.  Keep in mind what makes this system comparable to having external circui-

try is that the configuration is actually done in hardware as opposed to software 

emulation. 

Configuring the analog blocks can be more confusing since there are multiple ways 

the system is designed to accommodate large configuration possibilities.  To start with 

each group of three analog blocks has to share the same clock.  This clock can come 

from several sources: VC1, VC2, Analog Clock Select 1 or Analog Clock Select2.  For 

some reason VC3 is not available and can cause problems when using VC3 to configure 

the clock rate for the digital portion.  If an analog block has a digital portion, the clock in 

the analog section must match the clock of the digital block.  If VC1 and VC2 are in use 

and a different clock speed is needed then a counter or timer can be configured to act as 

a clock divisor which can be given to the digital block via the broadcast row, or an 
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output row.  On the analog side, the use of Analog Clock Select 1 or 2 gives access to 

the digital blocks and can be configured to use the output of the counter or timer as the 

clock.  Since there are only 2 clock selects it is impossible to have 4 analog blocks that 

use 4 different clocks that aren’t VC1 or VC2.  This may not sound like a problem but 

often it is the clock that sets things such as the sample rate.  When trying to create a 

programmable sample rate by using a timer by switching the sample rate it will affect all 

of the clock speeds for all the blocks using that timer. 

There are four types of analog blocks: continuous time B and E and switched capa-

citor C and D [1].  Like the digital block segmentation of generic and communication, 

different analog blocks support different analog functionality.  Each analog block 

contains one inverter.  Switched Capacitor (SC) blocks contain capacitors placed around 

the amplifier which are controlled from two clocks φ1 andφ2.  These two clocks allow for 

many different types of amplifier configurations to be created, resulting in the high 

degree of configurability that is present.  The difference between the type C and type D 

is the layout of the caps around the amplifier.  The Continuous Time (CT) blocks have 

no capacitors present and only consist of resistors around the amplifier.  In the 

CY8C29666, there are only type B continuous time blocks. 

The input to the blocks is done through four multiplexors.  Some blocks have the 

ability to be connected to a pin directly from port 2.  Port 2 is not utilized as an analog 

input since any of the pins on port 0 can be routed to the analog blocks.  The MUX is 

only available as an input to the first block in each column.  The first block in each 

column is a CT block, meaning only amplifiers can use the MUX.  From there the output 

of the amplifier can be distributed to the other blocks.  Going back to the decision about 

port 2, port 2 can feed directly into some of the switch capacitor blocks but this does not 

free up any resources since basically all of the analog resources besides the amplifiers 

require SC blocks.  The only case this would be useful is when using multiple stage op 

amps and using up more than one CT block but still needing to feed in input to one of 

the SC blocks.  At that point, the configuration is too application-specific and should be 

made in external circuitry. 

As previously mentioned, there are only four output pins which are directly mapped 

to each grouping of analog blocks.  In order to change the output at a pin, the blocks 
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need to be rearranged to give the proper block access to the output bus.  On top of the 

analog out bus, there is an analog look up table (LUT) bus.  Some analog blocks have an 

output which can be connected to the LUT and then used as input in the digital section.  

The LUT bus has some logic functionality for its neighboring bus.  With the ability to 

have digital and analog blocks interact in a configurable way it is likely that most any 

circuit function can be reproduced in some manor by the PSoC.  

4.3 Set Backs 

There was a great deal of trouble dealing with the RED2 firmware, which turned 

out to have several issues.  Since the RED2 main processor is not a Cypress chip, a 

custom library had to be written in order to interface with the wireless IC.  This custom 

library was then built upon for the duration of this project and led to many errors that 

weren’t easily reproduced. 

The first major issue that occurred is the wireless section would just shut down, with 

no apparent cause.  The firmware would still be responding but the wireless chip could 

not recover no matter what error code was present.  This turned out to be a threading 

issue.  The processor would be writing to the wireless IC and in the middle handle an 

interrupt.  The interrupt had the possibility of trying to send a different command to the 

wireless IC which then would result in the IC entering random states.  In order to fix 

this, some heavy thread safe code was implemented.  This can now start to be cleaned up 

as some of the other errors have come to light. 

The next major issue that seemed impossible to track down was that the device 

would slowly stop working.  For some reason the wireless IC would record a length 

bigger than the payload size even though the payload was correct.  The library would 

then try to write all of the bytes to the supplied buffer which would result in a buffer 

overflow.  In the Cypress implementation, there are checks to make sure the received 

length isn’t greater than the expected length.  In the RED2 firmware, the variable for the 

length is set, but nothing is done with it to ensure proper operation.  Currently this still 

needs to be fixed.  As a temporary workaround, there is a case which checks to make 

sure the size is within a proper limit and if it is not, it aborts. 
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4.4 Future Work 

The setbacks caused the most visible gap in the firmware completion.  Though the 

methodology is sound and thorough, the implementation does not manage to fully 

accommodate the planned functionality.  A state machine is present for which there are 

four states: boot, unpaired, paired and physics1.  The firmware’s breakdown is apparent 

at the paired state.  Instead of waiting for configuration commands, the physics1 state is 

loaded.  To match the methodology there should be no physics1 state, instead there 

should be an active state which is entered after configuration information is transmitted.  

Besides working on the firmware implementation to meet the desired methodolo-

gy, there are a few more items that could be worked on in the future to enhance the range 

of applications the wireless expansion could accommodate.  In order to fully interface 

with digital resources on daughter cards through SPI, mini instruction sets need to be 

created for controlling these at runtime.  This will have to be developed in future work 

and begins the discussion of whether or not development should go into creating some-

thing like TinyOS, or perhaps even implementing TinyOS where at runtime 

configuration code and instruction code is loaded in order to truly alter the capabilities of 

the base. 

The communication mode currently uses 16-byte packets and uses Cypress’s trans-

mission protocols.  The first thing that could be done to increase data throughput would 

be to implement streaming mode on the RED2.  The streaming mode for RevC is already 

written by Cypress.  In streaming mode, data packets of up to 256 bytes can be sent at a 

time and would at least double the throughput of the band.  Some care does need to be 

taken, because longer transmission times will be associated with larger data payloads.  

The chance of a packet being corrupted increases the longer it is in the air and will 

require far more overhead to retransmit than if a smaller payload packet is lost.  Figuring 

out the optimal balance between speed and overhead given packet losses would be a 

good candidate for future work. 

Cypress advertises a max of 250Kbits/sec when using their wireless protocol in 8 

DR mode.  Using raw Gaussian Frequency Shift Keying (GFSK) Cypress boasts a 

1Mbit/sec data rate link.  That means there is a 75% overhead between 8 DR mode and 
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GFSK.  It is likely that spending some time optimizing a custom protocol which runs on 

the GFSK band would reduce the overhead significantly.  



 

41 
 

5. Mobile Studio Integration 

5.1 Architecture Changes 

The architecture for the Mobile Studio desktop software underwent major changes, 

not just in naming schemas but also in terms of the class hierarchy and functionality.  

The main highlight is expansion boards of any type are now considered to be devices.  

An expansion board comes in the form of any utility that uses an I/OBoard as the 

physical link to Mobile Studio.  This can be a daughter card, the wireless base, an 

expansion board to the wireless base, or any other derivatives which may occur in the 

future.  The other major software activity occurs in representing the resources discussed 

in the firmware section.  Though this is not an architecture change (since it needed to be 

created anew), in the future it is the hope that this will become an integral part of Mobile 

Studio.  Before going into detail about the changes, a little background may be helpful in 

understanding what motivated them. 

5.1.1 Background 

One of the key guiding principles of Mobile Studio is to get the wider educational 

and hobbyist communities involved by having the ability to create custom panels for 

running experiments.  For instance, it is possible to create a graph which will only 

display data after an external trigger has occurred.  Though this functionality is not 

shipped with Mobile Studio, a third party can program their own “feature”, which is a 

user interface for showing and interacting with the data to and from the RED2.  Current-

ly, development of this particular feature is underway by a student who has not had 

access to Mobile Studio in the past.  Normally this would be extremely difficult for a 

programmer outside of the development team, but Mobile Studio has an extensive 

powerful plug-in interface which is able to run different devices, features, and allow 

even the creation and integration of new hardware. 

Mobile Studio functions around five main interface types: a Device, a Device 

Plug-in, a Feature, a Feature Plug-in, and an IOHost. These five can be simplified down 

to three as a Plug-in is responsible for creating the type of interface it is.  A Device Plug-

in is responsible for creating a Device, and a Feature Plug-in is responsible for creating a 

Feature.  Reducing these to three interfaces leaves a Device, a Feature, and a Host which 
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run all of Mobile Studio.  An interface is a set of functionality an object of code has to 

implement.  The development team has sole access to the Host interface and does not 

have plans to release it to be modifiable by the public.  Given that stance, the goal is to 

have as little of the functionality driven by the Host interface as possible, leaving all of 

the control to the Devices and Features.  The Host Interface functions as the glue be-

tween the Devices and the Featuresand is visibly the window which contains the buttons 

to open the different features available for a given device. 

A device contains all of the functions a feature calls to get or set data on the board.  

It is a wrapper for a connection to the computer which translates those function calls into 

firmware byte commands.  In the case of the I/OBoards, the connection is through a 

USB cable.  The flow of communication follows as a Feature or the Host will make a 

function call to a device.  The device will translate that function’s goal into a set of 

commands to communicate with the firmware on the attached board, which is called a 

physical device and is where Device gets its name.  The firmware will respond accor-

dingly and return any results back up to the Device.  The Device then parses this into 

data in a form that the Feature or Host can use.  The function then returns with the 

requested data. 

A Feature is the GUI or graphical user interface which displays results and allows 

user interaction.  The Feature is what takes the board’s capabilities, and makes them 

accessible to the users of the system.  A Feature is passed a Device when it is created 

and is able to query the device to see what is supported for that Feature.  For example, 

the Digital IO Feature can ask a device how many digital ports are available.  These 

functions are available through another set of interfaces which simplify the function calls 

for each Feature.  These resource interfaces can be reused or combined by other Features 

in order to access the resources on the Device.  A possible way to structure a system 

when creating a new Feature would be for each new Feature to have its own resource 

interface which the Device may implement.  Another way would be to have a Feature 

use several generic resource interfaces.  In either case it is up to the developer of the 

Feature and there is no standard, aside from the basic interfaces to which the Feature 

must conform. 
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With the addition of the expansion board, Mobile Studio has gone through two 

cycles of adding special classes of Devices to the framework.  The first iteration of 

adding expansions onto the base I/OBoards was the physics daughter card.  The physics 

daughterboard was treated as something completely new to Mobile Studio and had its 

own interfaces to implement.  Special control code was written alongside the existing 

architecture.  Almost none of the code was reused for the “sub device” from the storing 

of the object to the passing of the object to features, even though from the perspective of 

the user there was no difference.  The difference between a Device and a “sub device” is 

with the communication to the computer.  A “sub device” used functions the Device 

implemented to communicate with the computer.  The Device in the case of the RED2 

and physics board acted as a UART to USB Bridge.  At the time, the way the desktop 

software was implemented took less time, and since it was not foreseen that more than 

one type of “sub device” would ever exist, there is no architecture available to allow 

“sub devices” to use the existing code.  During the era of the RED1 and the physics 

daughter board, the “sub device” was referred to as the daughter board device and would 

likely not have been changed had not another “sub device” come along. 

5.1.2 Sub Devices 

The wireless board is the second device to be added to Mobile Studio that is of a 

class considered a “sub device”.  This refers to the fact that the “sub device” does not 

contain a direct connection to a computer.  A Device is basically a USB object with a 

bunch of functions that the Feature calls.  The Device translates the function calls into 

the byte code which is sent to the firmware.  The only reason a “sub device” came about 

was because the Device, for simplicity’s sake the RED2, needed to have firmware calls 

in order to support the Device attached to it.  The desktop software went through two 

revisions which corresponded with RevB and RevC of the hardware.   

In RevB the existing sub device code was removed.  Instead of classifying RevB 

as a sub device it was promoted to the status of a Device.  The original Device contained 

many Features which the WEXP-B could never support.  Since in the past all of the 

I/OBoards had similar Features, the method in which the Device was used in the Feature 

was to call a function which returned an interface with the appropriate functions.  If a 
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Device did not support that Feature it returned null.  This is likely one of the main 

reasons for the sub device split.  Instead of having the I/OBoards return null for sub 

device Features, and sub devices return null for I/OBoard Features, two different inter-

faces were made.  The WEXP-B desktop revision did not combine I/OBoards and 

WEXP Devices seamlessly, but they were put under the same umbrella.  A Device 

Interface was created which had two subclasses, an I/OBoard Device Interface and a 

WEXP Device Interface.  This began to allow the same code which only needed the 

shared functionality to handle WEXP Devices as Devices as well.  All of the Feature 

specific methods were moved into the I/OBoardDevice and a new method for adding 

Feature methods was used for the WEXP devices.  Instead of the WEXP DeviceInterface 

requiring all WEXP Devices to contain implementations for all of the existing Features 

for any WEXP Device, a WEXP Device implements only the Features it supports by 

being able to select which interfaces for different Features to inherit.  The only addition-

al function that a WEXP device had to implement was pairing.   

As far as additions to Mobile Studio go, custom code for RevB was written to 

handle special Features of the wireless boards.  Instead of each device having its own 

panel with Features there was one panel which populated itself with all of the connected 

wireless nodes displayed as Features.  The given Feature was selected based on what 

daughter card was connected.  To accomplish this, the Host had to differentiate between 

the I/OBoards and the WEXP Devices, which unfortunately took away from some of the 

benefit of being able to reuse the code. 

Once RevC was finished Mobile Studio underwent one more major architecture 

change.  Instead of having a separate GUI display for the I/OBoards and the Wireless 

Devices the same mechanism is used.  The WEXP Device Interface is removed and a 

WEXP Device now uses just the standard Device Interface.  The I/OBoard Device 

Interface is still present, but only for backwards compatibility.  As the old features are 

updated, the I/OBoard Device Interface will be phased out. 
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6. Discussions and Conclusions 

6.1 Future Work 

There were many setbacks that occurred during the development, which are dis-

cussed above.  Most of the setbacks were overcome swiftly, but one setback in particular 

was overcome only in the last few days of the project.  This setback turned out to be a 

problem with a support library, but several weeks were spent trying to understand and 

fix this problem.  This took a toll on the amount of content that could be created to 

support the wireless devices.  Enormous amounts of time went into creating hardware 

which would alleviate many of the frustrations in both capabilities and usability.  The 

software did not get as much time dedicated to the development of tools and features, 

which really took away from the WEXP’s performance in the students’ eyes. 

In order to accommodate the desires of the Physics department, time was sacri-

ficed for the main board in order to generate a product that was going to be functional 

for the Physics department before the end of phase 1.  From the perspective of the 

physics card, the microphone and the range finder need to be given panels in the desktop 

software, but the firmware needs to be written as described prior in Section 4.  Currently 

the firmware is written specifically for the accelerometer.  It would be worth the time to 

take a step back and rewrite the firmware to require configuration of the different blocks 

by the desktop software.  This way, it will be easier to add on new devices as time goes 

on. 

Also mentioned in the future work of the desktop software, some time needs to go 

into looking at the structure for Devices, Features, and Resources.  Currently, a 3rd party 

developer would have to create a new Device, and have it implement a new resource for 

each new feature.  This will severely start to fragment the market if multiple developers 

began creating their own Devices.  All of the resources need to be hammered out and 

implemented for the different Devices.  For the wireless expansion, this means some 

complex firmware in order to have a programmable set of instructions for interacting 

with things like SPI devices on daughter cards. 

The last step that needs to be done is the rest of the chip features need to be enabled. 

The flash, USB, and programmer chips are not implemented currently.  The USB is 
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going to be a major undertaking since software drivers will have to be written for the PC.  

Focusing on the programmer, will enable the wireless expansion to be released and 

allow development to continue without fear of isolating users.  In the hardware section 

there was discussion about how to program the device and in the end distributing cables 

or trying to build connectors wouldn’t work for the average user. Enabling the pro-

grammer will also require the enabling of the flash leaving only the USB to be 

implemented in the future.  Since the programmer made it acceptable to have users try to 

update firmware, the advanced configuration and USB updates can be distributed later. 

With these three things done, the potential growth for the wireless expansion could 

boundless.  One of the major advances Mobile Studio could leverage is that the wireless 

expansion could begin to take the system off Windows dependence.  There would be no 

desktop software on other platforms but, it would allow for a programming interface 

which could even be used in portable devices such as the iPhone or the G1.  In addition 

to adding platforms for developers, Mobile Studio is ready to become a developer tool 

for not just education-based systems, but for creating new hardware.  The wireless 

expansion allows for the creation of custom wireless devices that will be able to utilize 

the existing programming interface, allowing the devices to be used in many different 

programs like MATLAB and LabVIEW. 

6.2 Final Thoughts 

The success of the Wireless Expansion can be measured by how readily adapta-

ble/adoptable the system becomes.  Creating better graphical panels to display data in a 

clean way, adding some tools to analyze incoming data, and adding features to the 

analog stream - are all tasks that require the future development of content.  This content 

development can be done by others who are not experts on the system and will be able to 

be done quickly.  The bulk of the work went into flushing out all of the bugs from the 

existing wireless code in the Red2and constructing an expandable wireless system from 

scratch.  The quality of that system was confirmed when the Imote2 was revisited.  The 

wireless expansion, which was designed independently, has all of the features and much 

of the same design that Crossbow, a company that has been in the wireless sensor market 
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for years, has developed using a full engineering department – for a significantly higher 

price. 
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