

Mobile Studio’s Wireless Expansion: a low-cost, wireless toolset for

expanding Mobile Studio’s instrumentation suite

By

Mathew Philip Wilson

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

 in Partial Fulfillment of the

 Requirements for the degree of

MASTER OF SCIENCE

Major Subject: ELECTRICAL ENGINEERING

Approved:

Dr. Don Millard, Thesis Adviser

Rensselaer Polytechnic Institute

Troy, New York

December, 2008

(For Graduation December 2008)

ii

Table of Contents

Table of Contents ... ii

Acknowledgments .. iv

Abstract .. v

1. Introduction .. 1

1.1 Genesis of Mobile Studio ... 1

1.2 Mobile Studio ... 2

1.3 Mobile Studio’s Wireless Expansion ... 3

2. Historical Review .. 6

2.1 The Mobile Studio System ... 6

2.2 Similar Systems .. 6

2.2.1 MICAz ... 6

2.2.2 Arduino .. 7

2.2.3 Wi-Fi DAQ .. 8

3. Wireless Expansion Hardware ... 10

3.1 Design Specifications ... 10

3.2 Revision A .. 12

3.2.1 MCU ... 12

3.2.2 Wireless USB ... 14

3.2.3 Power ... 14

3.2.4 Sensor Connection ... 16

3.2.5 Power Switch ... 18

3.2.6 Analog Regulator ... 19

3.2.7 RED2 Interface... 20

3.2.8 Infrared Sync System ... 20

3.2.9 Flash ... 22

3.2.10 Antenna 22

iii

3.3 Revision B .. 23

3.3.1 Power ... 23

3.3.2 Sensor Connection ... 24

3.3.3 Analog Regulator ... 25

3.3.4 RED2 Interface... 25

3.3.5 Antenna .. 26

3.4 Revision C .. 26

3.4.1 Processor .. 26

3.4.2 Power ... 27

3.4.3 USB .. 27

3.4.4 Connector ... 28

4. Wireless Expansion Firmware ... 29

4.1 Methodology .. 29

4.2 Cypress’s PSoC .. 30

4.2.1 Digital IO ... 30

4.2.2 Configurable Blocks... 33

4.3 Set Backs .. 38

4.4 Future Work ... 39

5. Mobile Studio Integration .. 41

5.1 Architecture Changes ... 41

5.1.1 Background .. 41

5.1.2 Sub Devices .. 43

6. Discussions and Conclusions ... 45

6.1 Future Work ... 45

6.2 Final Thoughts ... 46

LITERATURE REFERENCED .. 48

iv

Acknowledgments

Many people were involved in making the Wireless Expansion possible. I would

like to thank the Physics department for giving me the opportunity to work on a project

of this scale and impact. I would also like to thank my loving family who has been

supportive through all the twists and turns this project has taken. As for the others who

worked with me on this project your help and guidance has been invaluable. First off I

would like to thank Jason Coutermarsh who is my mentor and my friend, without him I

never would have continued for my masters. I would like to thank Eric Allen for sel-

flessly providing support when I most needed it; it is because of him that the wireless

boards were assembled on time. I would like to thank Bill Brubaker for being a constant

source of help and support, even when he was most busy he made time for me. Without

Bill I would likely still be stuck trying to figure out bugs and structural concerns in

Mobile Studio. Lastly, I would like to thank Don Millard, my advisor and friend who I

have been with for four years now. From freshman year he has given me opportunities

to explore advanced topics and mentored me through my college career. Thank you,

without your help I would not be who I am today.

v

Abstract

The Mobile Studio Project and the Wireless Expansion are tools designed to provide

affordable, simple, and powerful teaching aids to lab courses. Although it was originally

designed to provide cost-effective access to expensive test instrumentation, the Mobile

Studio hardware and pedagogy has spread into advanced engineering courses as well as

other disciplines. While the original hardware for Mobile Studio has already been used

in multiple settings, the Wireless Expansion allows for new types of environments to be

created under the same philosophy: “Let the students play.”

Originally conceived in 1999, the Mobile Studio vision was founded on the observa-

tion that incoming students’ intuitive understanding of how circuits and electrical

systems worked was declining year after year. The Mobile Studio rekindles the ability

to tinker and provides the opportunity for every day to become an experiment day. The

Wireless Expansion system continues in these themes and allows immediate study of

phenomena as well as the ability to test and construct experiments and projects to satisfy

one’s curiosity/needs; without requiring a physically wired connection to the monitor-

ing/controlling computer. This document contains information relating to the design,

development, fabrication, operation, and functionality of the Mobile Studio’s Wireless

Expansion system.

1

1. Introduction

1.1 Genesis of Mobile Studio

Integrated chips are now prevalent among electronics, resulting in discrete circuit

topologies being found in fewer devices. It has become harder to tinker and gain expe-

rience with hardware. In order to manipulate an iPod you need significant background

in electronics. You cannot even try to exchange the battery of an iPod for a custom

power source of equal voltage, since the iPod communicates with the battery to make

sure it is properly licensed. As the level of complexity of devices is increasing, it

becomes harder for classes to relate the material to the interests of the students. The

students want to know how an iPod works, although they don’t care about how an RC

circuit reacts with an AC signal. There is a gap of understanding to how an RC circuit

can be used to manipulate the signal of an iPod.

 In order to bridge this barrier a new method of teaching is required. Tens of

thousands of dollars in lab equipment for a pair of students to spend 5 hours a week

tinkering with the lab equipment is not yielding the returns given the investment. Many

students spend most of the class setting up the lab, only to have to tear it down when the

time runs out. Here at RPI, in order to combat the declining hands-on experience, we

have implemented studio courses. Studio courses take the standard lecture, lab, and

recitation model and combine them into a lecture-and-lab hybrid. In each class there is a

lesson portion after which the students work on a physical instantiation of that lesson.

Though the benefits from this method are apparent, the cost to implement studio teach-

ing would for many schools be an impassable impediment. The studio method requires

all lecture periods to have access to laboratory facilities. This is where Mobile Studio,

now referred to as Mobile Studio Project, comes in. In order to keep the benefits of a

studio class, RPI needed a cost effective lab suite that could be easily deployed. On top

of that, the Mobile Studio is able to give students tools to use for projects along their trip

through college.

2

1.2 Mobile Studio

The Mobile Studio Project was originally designed to be geared towards electrical

and computer systems engineering education. This meant a heavy focus in electrical

measurement. The Mobile Studio I/O board [8] went through 3 different versions with

multiple revisions for each version. The latest version of the Mobile Studio I/O board is

revision C of the RED2 version. For the purpose of this paper only the RED2 Mobile

Studio I/O Board (RED2) is discussed, since it is the only board with on-board wireless

capabilities. The RED2 was designed to be a lower-speed, low-cost circuit measurement

workstation. This includes, but is not limited to, an oscilloscope, function generator, and

+/-4VDC power supply. In addition to the base functionality of the Mobile Studio boards’

functionality, a lot of thought was put into how other areas of education could benefit

from the advantages and improvements that circuits and electronics courses at RPI had

gained. Two main efforts are currently underway to extend the board’s utilization.

The first is the development of a Component Object Model (COM) object. The

COM object is a programming interface that allows other programs to directly access the

base functionality. This offers access to raw data streams with no graphical interface.

Both LabVIEW and Matlab have been successfully used to view and manipulate the

information from the I/OBoards using this object. The COM object opens many possi-

bilities for using the board to monitor signals and alsoproduce them. For instance,

LabVIEW code has been written to demonstrate control algorithms. PID controllers

currently studied only in lecture can now be studied through experiment at only the cost

of a motor and a board. This also opens up endless opportunities to use the board in

projects which would have originally been daunting to students.

 The second step is the development and use of a wireless antenna on the RED2.

This was added to allow for the design of an unlimited number of applications that could

be used through the Mobile Studio system. It was originally thought that different

boards would be manufactured to utilize the wireless functionality; experimentation has

since led to the development of a more generic, multifunctional Wireless Expansion

board. One goal is to take the programming of wireless protocols out of the hands of the

developer in order to create much cheaper adapter cards which then utilize the Expan-

sion’s link.

3

1.3 Mobile Studio’s Wireless Expansion

As with the Mobile Studio I/OBoards, the Wireless Expansion is targeted for an

audience desiring cost-effective but feature-rich utilities to replace expensive lab equip-

ment. With the Wireless Expansion, (WEXP), the scope of the Mobile Studio’s

pedagogical effectiveness in different classroom environments has greatly increased.

Although most phenomena can be observed as analog signals, the devices to translate

those observations into useful voltage levels is a task on its own. On top of that, taking

those analog voltages and recording them in software requires another completely

different skill set. For this reason, even though interested parties may have the capabili-

ty to make a sensor, they may lack the ability to create a device that can be used in a

multi-user environment such as a classroom. RPI’s physics department first approached

the Mobile Studio developers with this problem.

RPI’s physics department is using a system called Logger Pro. Logger Pro is a

system that uses software on TI calculators in order to collect data, but that data is not

accessible for real time manipulation. Logger pro has a computer connection as well,

however the panels are somewhat complicated to use. The physics department desired a

new system but was limited by cost and technical considerations. They could buy new

sensors, but the software to control the system would remain the same. If they switched

to a new system, they would lose the functionality of all of their old sensors and the

updated software was out of the price range of the department. In parallel with the

deployment of Mobile Studio in Physics II, Physics faculty expressed a request for

similar Mobile Studio functionality for Physics I. Physics II is the study of electrical

phenomena, where as Physics I is the study of mechanical. Given that the software was

being distributed with the purchase of a board and had an updated user interface, explor-

ing the potential to transfer was obvious. The preliminary results for the RED1 showed

that the quality of signals was not sacrificed for the types of experiments being done in

Electric Circuits; therefore the Physics I faculty wanted to explore the viability of using

the Mobile Studio to acquire dynamic data associated with the course’s experiments.

After Physics I’s proposal was made, the immediate advantages of such a system

were apparent, and work began on the Physics I daughter card. The RED1 had an

expansion slot which allowed for another card to connect to it to use the USB as if it

4

were a UART channel. UART is a simple communication protocol which can be used

between systems, or even used between different ICs. Data is sent asynchronously and

most microcontrollers have the hardware already implemented internally. On the other

hand, USB (Universal Serial Bus) is difficult to implement since it requires not only

custom code for managing the channel on the microcontroller side, but also requires

code on the desktop to monitor the channel on the host side. By having the expansion

connector on the Red1, even though none of the functionality on the Red1 was used, it

allowed for new applications to be developed that used the same USB drive software.

The complexity of the physics daughter card was greatly decreased by this feature, and

demonstrated that Mobile Studio did not have to be just one product, but could be a slew

of different products for different applications.

The original physics daughter card was completed but never used in a classroom,

due to two main problems. The first was the streaming mode required the device to be

tethered to the RED1 board. The tether ended up being the USB cable which limited the

range of the board to about 3 feet for streaming. It was good for testing but could not be

used in an experiment. The second problem was the non-tethered mode was just as

complicated as the Logger Pro software. To run an acceleration experiment, you would

use the GUI to set up the desired settings and then disconnect the board. At this point

you would run the experiment by pressing a start button on the board but you could not

see the graph in real time as the data was collected. This severely limited the effective-

ness for use in a class. While it measured the data correctly, it did nothing to reinforce

the link between the data and the actual course followed by the physical object being

tracked for a new student who did not know what to expect. At this point, the Physics I

department requested that an entirely wireless solution be created. This was the genesis

of the Wireless Expansion.

After the physics project was put on hold, the BLUE1 board was created. This

board was a much higher-performing board geared toward upper level classes. The

BLUE1 board was initially used in Physics II, was again generating a desire for some

solution that could be used with the Mobile Studio system in real time. It was when the

RED2 was developed that this capability was finally added. The RED2 included a

printed wireless antenna that utilizes the 2.4 ISM band. The main goal of using the

5

antenna was to replace the daughterboard connection with wireless connections in order

to create tether-free daughter cards. At this time, work began on the wireless version of

the Physics I board. Through the course of the development components were added to

the board to enable other devices to utilize the wireless utility without knowing how to

interface with the wireless protocol. As the features for the expandability increased, it

became obvious that two things were being developed. One was the Physics I card and

the other was an extensible system meant to help take some of the work out of develop-

ing future wireless cards. The downside was the physics card began to get expensive for

the features it provided, and the expansion had a limit. Anything more complex than a

relatively simple sensor would require a new wireless chip anyway. A simple sensor

being, a basic signal such as an analog voltage or digital reading that did not require new

programming. At this point, all of the desires that had been expressed during brains-

torming schemes came together and it was clear that the design had gone past designing

a physics board and a multi-purpose wireless adapter. With this in mind, all the Physics

I components onto a separate device and work began work on strengthening the scope

and extensibility of what was to become the Mobile Studio Wireless Expansion.

6

2. Historical Review

2.1 The Mobile Studio System

The Wireless Expansion is built upon Mobile Studio software environment and ex-

isting hardware. To do this custom hardware had to be build to create the wireless bases

since the RED2 used Cypress’s wireless USB which other existing systems could not

interface with. It is possible to write code to interface existing hardware with the Mobile

Studio software but the main concern was the cost of the existing systems.

2.2 Similar Systems

Other systems were investigated in an effort to create a product that would not on-

ly accomplish the goals in the short term, but also be a lasting tool that could be used

outside of coursework. Mentioned here are three devices which covered a sampling of

different applications. The MICAz, from Crossbow, are designed to be used in low

power sensor networks where distributed processing is used in order to relay results back

to a main system. The Arduino, on the other hand, is specifically meant for embedded

control of devices. National Instruments also has wireless products available with which

LabVIEW can be used to control or display signals from the device. Each of these

systems has some sort of expansion connection method, but all of them are geared

towards different applications.

2.2.1 MICAz

MICAz are small devices about the same size as the WEXP. They contain an

expansion port meant to interface with daughter cards. At the time of the conception of

the WEXP, Crossbow, the company that produces the MICAz, had just announced the

upcoming release of the Imote2. It is extremely important to note that during the design

of the hardware for revisions A, B, and C none of the specs for the Imote2 were known.

Now that the Imote2 has been released and revisited, the similarity between the two

seem like it was done by design. In reality it is the result of two independent develop-

ment paths that ended picking similar ideas, layout topologies, and even the same power

switch and connectors.

7

During the original investigation of existing platforms Crossbow had the MICAz.

MICAz seems to be the original Imote even though it has a different product name. The

MICAz contain a base board with an expansion slot that communicated wirelessly to

other boards that could be stand alone entities or tethered to a computer. On top of that,

the MICAz had an embedded operating system called TinyOS along with other tools

meant for developing not just wireless sensors, but sensor networks [4]. Minus the

embedded operating system, the MICAz was pretty much the exact functionality that the

wireless expansion was looking to leverage. The MICAz could have been used instead

of developing custom hardware except for the MICAz one flaw. Each board cost $100

dollars. In order to build an extension to mobile studio two MICAz devices would have

to be purchased along with the tether costing over $275 dollars. The MICAz’s wireless

connection has a reported data rate of 250kbps which is the same as Cypress’s wireless

USB.

The most interesting part of the MICAz was the TinyOS operating system. For ad-

vanced users it provided an easy way to create custom autonomous sensors. Thought

was put into implementing something like or even TinyOS itself and has not been ruled

out yet. The current goal is to provide the ability to control the device from computer

software lowering the background entry bar to use the system. In the future this should

be revisited in an effort to

2.2.2 Arduino

While the MICAz could accomplish pretty much any embedded task it was ex-

tremely expensive for a user who was looking to get into embedded control, but hadn’t

gotten their feet wet yet. The Arduino is a device that is geared towards hobbyists who

are just getting started with embedded control. None of the specs are impressive as the

device is geared mostly toward digital and serial communication in an effort to create

software that is as simple as possible. To do anything with an external chip the code will

always go through the same process. This limits the Arduino to interfacing with high

end products but to the targeted market there is always a chip that can interface through

some serial protocol.

8

The Arduino does not have any wireless capabilities but has expansion boards that

can give it Bluetooth. The cost of an Arduino is much cheaper the MICAz at $35.00

dollars, but the Bluetooth expansion is $150.00 dollars. Even though this is not geared

towards wireless sensors the Arduino has had success in attracting new developers in the

field of embedded design that Mobile Studio wishes to emulate.

The success of the Arduino is attributed to three things. First, the Arduino is an

open source hardware project which means that boards can be printed and put together

for the cost of materials. Second, the Arduino base is cheap to buy from a 3rd party. The

Arduino has its own programming language which simplifies many tasks to follow the

same format. From the comparison of MICAz and the Arduino, the lessons taken away

are that to gain beginners to the embedded world it needs to be cheap, but to keep the

more experienced developers interested there needs to be more functionality then just

serial communications. The other interesting point is that both of these systems have

their own programming language.

2.2.3 Wi-Fi DAQ

The Wi-Fi DAQ system is on the sensing side of things. LabVIEW can be used in

order to control the daughter cards but most of the daughterboards have sensing devices

and ports exposed. LabVIEW’s Wi-Fi DAQ system runs at 1.2Mbps. The device is

obviously not comparable to the WEXP and it shouldn’t be since the price range is in the

$500.00 dollar range. The nice thing about looking at the Wi-Fi DAQ system is that is

showed that pretty much any system that is geared towards multiple types of sensors is

going to have some sort of expansion card mechanism.

National Instruments claim that the system can be used wirelessly with just eight

AA batteries. The Wi-Fi DAQ clearly is not meant for embedded use, but it has the

advantage of being able to be used with LabVIEW. To those who own a license to

LabVIEW, and that is everyone at RPI, this trumps having a custom programming

interface. Users with no programming interface are able to use LabVIEW to create

complex tasks for hardware. This insight raised a certain possibility, Mobile Studio

already works with LabVIEW and it would be a small task to add the WEXP device to

the LabVIEW library. This would, for the short term, replace the need for developing a

9

custom operating system and give students a chance to use embedded sensors and

control embedded devices without the requirement of pre-exposure to programming.

10

3. Wireless Expansion Hardware

The synergy of hardware, firmware, and software has helped to enable theMobile

Studio’s success. The hardware consists of the actual physical device, which is com-

posed of integrated circuits which are connected in a way that (perhaps with some help

from the firmware) are able to carry out various tasks. The firmware is specific to

each processor and board configuration. The firmware deals with knowing the specifics

of the hardware and given a generic task the firmware is in charge of orchestrating the

hardware into a state in which the task can be performed. The software is what commu-

nicates the tasks to the firmware and interacts with the computer user. All of these are

interconnected; i.e. when designing the hardware, decisions for the firmware and desk-

top software have to be made in conjunction with each other. For ease of reference, the

following overview of the WEXP is structured as if the hardware, firmware, and soft-

ware are independent systems.

Many decisions that are discussed for the hardware are not just for increased per-

formance, but have resulted due to a balance of many factors. From end-usability to

mechanical constraints, each of these factors has played a huge role in the design for the

wireless base. The WEXP went through 3 revisions before it was used by anyone

outside of the design team, and further revisions are sure to come as more feedback is

obtained.

3.1 Design Specifications

The introduction described how the WEXP is the outgrowth of intended desired

wireless physics card. The original guidelines for the physics card included the follow-

ing requests for an ability to:

• Use current physics sensors

• Measure acceleration

• Measure force

• Measure range

• Trigger on events

• Be powered for at least two hours (One class period)

• Operate in multi-user environment (at least 50 students)

11

Other than these requirements, the physics department was happy to have the device in

any format. The only other predetermined constraint was that the wireless system had to

use Cypress’s wireless USB protocol. The RED2 was already deployed and utilized

Cypress’s wireless USB transceiver hardware. The Cypress transceiver chip was chosen

mainly due to cost. Wireless communications are expensive, but Cypress offered

relatively inexpensive solutions with an average bandwidth, as far as portable devices

go. If higher bandwidth is desired in the future a daughter card for the RED2 can be

built which would contain a higher speed wireless transmitter. Such a daughter card

would be connected via a wired connection to the I/OBoards. To clarify, the wireless

expansion also has its own daughter boards. These daughter boards interface through an

expansion port on the WEXP.

A specific physics-oriented wireless card was not built due to a desire to allow all

students to benefit from a wireless card. The vision is to have students and developers

outside of the physics area be able to take advantages of the system. It became obvious

that the physics portion was better seen as an add-on to a more flexible Wireless Expan-

sion system. The rest of the requirements from the WEXP are as follow:

• Small, no bigger than 2”x2”

• Easily rechargeable

• Run on 50mA

• Parts for board should be less than $30 in bulk

• Analog voltage range of at least 3.3V

• 4 ADCs

• 4 DACs

• 4 Digital IO / Pulse width

• External Processor Interface

• Mechanically stable

• Firmware can be updated by user

• Interface with COM object

• Cross Platform

12

3.2 Revision A

Revision A satisfied all of the design constraints and added features to increase

usability. This led to the design taking far longer than simply completing a prototype.

The goal was to test the usability so that future revisions would be easier to use then the

current lab tools. The original sensor board design was just a simple jack to plug in

existing sensors to demonstrate the capabilities of the Wireless Expansion.

As a result of the initial experimentation and testing, the wireless expansion sys-

tem was split into a base board and a sensor board. To clarify, the Sensor Board was

designed to be connected to the Base Board through a connector which has standard pins

to interface with any future sensor boards. The base board contains all of the intelli-

gence and capabilities to communicate with the RED2 board. A Sensor Board is

connected to the base board which contains the hardware for acquiring sensors.

3.2.1 MCU

The next step was to select the main Micro Controller Unit, MCU. Several MCU

processors were evaluated. The RED1 I/O board as well as the original physics board

was built with an ARM device; the ADUC2076. At this point, the only thing that was

confirmed was the wireless chip had to be one of Cypresses Wireless USB chips. The

ADUC2076 worked well in both previous applications and had only been abandoned in

the pursuit of faster, more accurate signals. However, with the limit of 250Kbits per

second, which meant one channel of an 8-bit Analog to Digital Converter (ADC) could

only record a 30 Khz signal at maximum speed; therefore the ADUC2076 would have

performed well as it would not be the bottle neck. The connector would be laid out to

give access to analog in, out, and digital ports along with some administrative connec-

tions. Since we already possessed the development tools and had experience with this

processor it seemed like an obvious choice. On the other hand, even though the

ADUC2076 seemed like the best choice in terms of speed for development of the

wireless base, Cypress offered an integrated microcontroller and wireless communica-

tions product.

The attention turned to Cypress to evaluate their combined microcontroller. At

this time, we still valued the speed with which we could develop on the 2076. However,

13

with the integrated chip that Cypress offered, time would be saved on the development

of the wireless communications, which was the majority of the project. Cypress’s

CYWUSB6953 was the first device that was investigated. The CPU clock, at 12MHz,

was far above the bottleneck threshold of communicating at 250Kbits a second. It had

enough digital pins to add to a connector and had the wireless receiver built in. It also

had something Cypress referred to as analog and digital blocks. The CYWUSB6953

claimed to be able to configure a pin to have access to digital input and output or analog

input and output. This feature was the driving motivator to switching to a never before

used processor.

The analog and digital blocks turned out to be exactly what the wireless expansion

needed to set it apart from other devices with expansion slots. These blocks could be

configured to do almost any signal processing function desired. It is basically a Com-

plex Programmable Logic Device (CLPD), packaged inside a microcontroller. The

expansion connector could now utilize filters, counters, amplifiers, and many, many

more functions. To accomplish this with the ADUC2076the connector would have to be

10 pins longer, or else there would be a complex signal switching process and it would

still only cover the base configurability of the digital and analog blocks. The downside

to this processor was that functions such as counters each take up one of these resources.

The wireless communication required a few digital blocks to aid in the timing of the

wireless transmissions. In order to be able to use the configurable blocks as well as have

enough resources for wireless communications, we began looking at Cypress’s Pro-

grammable System on Chip (PSoC), line of processors.

Several PSoC processors were then evaluated. The main desire was to garner extra

digital blocks since the Serial Peripheral Interface (SPI), a protocol for inter-chip com-

munications, and timer blocks must always be active. During debugging the UART also

needs to be active. This requires 4 digital blocks to debug the processor. The

CY8C21x34, CY8C2x23, and CY8C2x43 series were investigated while learning more

about how the configuration of blocks worked. In the end, the CY8C2x43 series had the

eight digital blocks necessary as well as twelve analog blocks. The last thing to select

was the processor packaging style.

14

At this time, the assembly is currently being done in-house. This meant whichever

package was chosen had to match the in-house ability to solder the component. This led

to initially picking a processor in a TSOP form. It was a worry, however, that the

signals acquired would be noisy since there was only one ground pin on the device. This

meant the ground was distributed from that single pin to all of the other internal connec-

tions. Any noise from one resource would potentially produce noise for all of the

resources since the ground connection was routed past all of the components involved.

The QFN (Quad Flat No-lead) package had a bottom ground plane which allows for

noisy signals to be compensated by the whole of the ground plane. Resources could be

routed directly to the ground plane without having to share a noisy bus. Even though it is

more difficult to mount this type of packaging, the 48QFN CY8C2643 processor was

picked. With the processor chosen, the selection for the wireless IC was comparatively

quick.

3.2.2 Wireless USB

At the time of this stage of the development, there was only one version of Cy-

press’s new protocol available, the CYRF6936. This implemented their LP protocol

which combined two of their previous protocols focusing on reducing power and im-

proving range. The wireless library could be used since the microcontroller selected was

a cypress microcontroller,. With the processor and wireless chip selected, the next step

was to design the power system.

3.2.3 Power

The board was intended to be available for use in many different areas of educa-

tion. In order to accomplish this, it was necessary for the board to be supplied between

3.7V and 9V. The 3.7V value is the voltage of a single lithium ion battery that can be

found in cell phones or an iPod. The 3.7V is the standard battery connected to the

system for use as a sensor. To accommodate use in a robotics project, the 3.7V is

designed to be disconnected in order to take advantage of the robot power supply. The

max of 9volts was picked so that a 9V battery could be used as well. In order to use

15

3.7V as a power source, the other chips must function at either 3.3V with an extremely

low dropout regulator, or at 2.5V.

The processor and wireless chips were both capable of operating at 3.3V. The

processor was able to run at 5V with a speed of 24Mhz. The speed is limited to 12Mhz

when running at 3.3V. The processor is able to function at 3V in low-power mode but

reduces the expected performance level and limits the voltage that external sensors could

interface with. For this reason, digital regulators were first investigated. Digital regula-

tors have the advantage of having an extremely low Dropout Rate, which refers to how

much voltage drop there has to be between the input and output for the regulator to

function properly. Digital regulators basically rapidly switch the voltage on and off to

the circuit. The longer the time it spends on, the higher the voltage. The only problem

with this is it provides a noisy power source. For digital systems this might not have

been such a problem, but this board was supposed to accurately handle precision ADCs

(up to 14 bits). With this in mind, attention turned back to finding a linear regulator with

a low dropout voltage.

 Though linear regulators have higher voltage dropouts than digital versions, the

amount of current the system would draw was small. As current pull increases, the

dropout of a linear regulator increases. The system was being designed to draw 100mA

when fully powered. The wireless chip draws 25mA on average when communicating.

This leaves another 25mA for the rest of the system and 50mA max for a sensor without

external power. The regulator chosen can supply up to 500mA but this will come at the

cost of significant reduced battery life. The battery picked to power the device is an

iPod nano battery.

The iPod nano battery supplies 500mAH (milli-amp hours) of continuous cur-

rent. This would give the board a life of 10 hours of constant communication. This

battery made it possible to find a linear regulator which would work. The TPS71333QD

linear regulator from Texas Instruments has a dropout voltage of about 25mV at 100mA.

This means the base board will function with the battery drained to 3.325V. This put the

operation of the device below the useful limit for most lithium ion batteries. The device

would operate for the full range of the battery discharge curve.

16

3.2.4 Sensor Connection

The next step was designing the connector interface to complete the minimum

for the board to function as the base for a sensor board. One of the most challenging

usability aspects for revision A was finding connectors that gave good mechanical

connections, but also were not bulky. The board was being manufactured into a 1”x2”

board, so space was a critical issue. The connector needed to be a board-board connec-

tor, since making the device interconnection as simple as possible was desired. Wire

connectors could have been used in-between the boards with some type of mechanical

fastening used to hold the two together, but when a single connector could solve both

problems the wire connectors would have been just a complication. The third desire was

to have a connector that developers could easily work with. A breadboard, for instance,

is basically a big socket connector which allows wires to directly interface with it. A

similar thought was applied to the connector of the base board. Instead of an awkward

custom connector, we preferred to have an open socket connector which could be

directly interfaced with.

After selecting a socket type connector the next step was to decide which pins

would be available. The original plan was to break the connector up into multiple

connectors. This would isolate different systems from a developer’s standpoint. For

example, one connector would have all analog connections and another connector would

contain all digital connections. This makes it easier when learning a new system to be

able to focus on the specific task at hand. The intent was that each sensor board would

interface with only the connectors required. If multiple connectors were used, this

would increase the mechanical strength of the boards. Ideally, a production sensor board

would use all four connectors.

The functions were split into four areas; the primary connector, the expansion con-

nector, the identifier connector and the parasite connector. The primary connector has

all of the components that would allow for a basic sensor board to function. Included on

this connector are four configurable analog/digital input/output ports, power and digital

ground, as well as analog ground and the band gap reference. The expansion connector

consisted of eight extra exposed pins from the processor. Four of these pins can function

as analog in pins or digital in/out pins. The remaining four can only function as digital

17

in/out pins. All eight pins on the expansion port have the ability to be connected to the

digital blocks, and four of those pins to the analog blocks. The processor is able to

connect pins to blocks through a shared bus. The CY8C2643 has sixteen individual lines

of this bus available. Three of these lines are taken up by the SPI communication system

leaving thirteen lines open. The primary connector and the expansion connector utilizes

twelve of these lines if each pin was connected to a digital or analog block. The remain-

ing bus line was left unused. When in debug mode, two pins from the expansion

connector are used for UART communication. The expectation is that most constructed

sensors would use the primary connector and the expansion connector. The remaining

two connectors are meant for more advanced systems.

The identifier connector is for a sensor board that has been registered with Mobile

Studio. Once Mobile Studio connects with a wireless board, a prompt asks which kind

of sensor is attached. A registered board will automatically open the proper feature

inside Mobile Studio when the sensor connector is in use. This is to help limit possible

damage that could occur to a sensor by accidentally loading the wrong configuration.

The last connector is the parasite connector. This is meant for advanced developers who

wish to interface with Mobile Studio but need direct control over some of the resources.

One example of when someone would want to use this is for an experiment involving

sensor networks. One such experiment could enable multiple sensors to aggregate data

and test different communication methods, while still using Mobile Studio’s advanced

UI to analyze results. To do this, a sensor board using the parasite connector would have

its own processor. The parasite processor could tell the base board’s processor to

transmit data back to Mobile Studio, or it could arrest all of the WEXP’s processor’s

actions and take complete control.

Conceptually, this allowed for further expandability and improved mechanical

strength of the connections, since the connectors could be laid out in a square. However,

the space these connectors require is significant. Also, at the point that someone is able

to use all of the functionality of parasite mode it would be easier to create another board

which had the custom hardware onboard; using the Mobile Studio’s communication

protocol. Since the majority of sensors would not be using the parasite connector, it was

removed and the remaining three connectors were merged into a single twenty-eight pin

18

connector in order to save space. All of the functionality of the primary, expansion, and

identifier connectors remained the same.

The last thing to do was to actually find the connector to be used. The connector

needed to be small, but still able to interface with a solid core wire. It needed to be 28

pins long. It also needed to have the mechanical strength to hold the base and sensor

boards together even if pressure was not applied above the connector. The torque

problem was considerable because the connector was not aligned with the center of the

board. So, when just handling the device, pressing in the middle could disconnect the

two boards. Though this might not seem important, relaxing this constraint caused

problems in later revisions of the board. The connector chosen was the DF11 Series 28

pin socket connector from Hirose Electric Co Ltd. With the selection of the connector,

the attention turned to the usability of the device in the classroom.

3.2.5 Power Switch

The goal of the Wireless Expansion is not only to create an extendable wireless

platform, but to replace the burden of existing systems. In the case of the Physics

department this was Logger Pro. In order to accomplish this, the Wireless Expansion

needed to alleviate the pitfalls of the existing system. The major complaint is the

existing systems are hard to use due to complex rituals in order to get the hardware and

software to work together. Since the field of wireless sensing equipment is well devel-

oped, the items that set the Wireless Expansion apart are the ability to use the nodes not

only as sensors but also as control boards, broadening the usability.

Since the original use for the initial release was as a sensor for Physics I students,

the initial usability design started there. The sensors needed to be usable for lab when it

was lab time. One of the sacrifices of Wireless Sensors is the loss of power. Originally

a simple slide switch was going to be used to turn on and off the device, but this posed

one serious usability problem. The device should be smart enough to tell when it is not

being used and be able to shut itself off if accidently left on. The last thing that a lab

course needed was to have students unable to participate because they forgot to turn off

their devices. This problem was compounded by the fact it was not an easy process to

just switch out the batteries.

19

Thus, software-controlled power was implemented. Software-controlled power

utilizes the MCU to turn itself off. To turn on the device however, there needs to be

powered logic gates in order to be able to turn on the regulator. In later revisions this

was refined, but at the time the logic gates protected the processor from high voltages

that could be present when powering the device from 12V. In order to power the logic

gates, a second regulator needed to be added. Though the current that this second

regulator used was in the micro Amps, it was an unavoidable cost of having a software

controlled power source. The advantage is that instead of a device being drained over-

night by accidently leaving the device on, it would take a device to be off for a month

without charging to drain it.

The second regulator picked was the LP2980-ADJ, and it was set to a value of

3.3V. A NOR gate was used to take the push button and the processor’s enable pin and

control the regulators enable pin. A push button allowed for the software to actually turn

off the device as a slide switch would have to be moved back to the original position

even if the processor tried to shut itself off. The only problem with the push button was

that the sensor board on top would restrict access to it. In order to deal with this the

sensor board would have an outline that it could fit into. If a sensor board needed more

space it could extend in the other directions but not towards the front of the board.

Though this seems prohibiting, there were other systems at the front of the board that

needed the air clearance which will be discussed later.

3.2.6 Analog Regulator

In an effort to increase the precision of the Analog to Digital Convertors (ADCs)

and the Digital to Analog Converters (DACs), another regulator was added. The MCU

had pins for bandgap, and Analog Ground (AGND). AGND could be driven by the

MCU or by an external source. Since AGND is dependent on a voltage divider given by

VCC it is likely there would be fluctuations in AGND. In order to alleviate this and save

money, another LP2980-ADJ regulator was used. Ordering two of the same part saves

money in the long run because of bulk discounts. The regulator was set to 1.65V and

was powered from the main 3.3V regulator so that the routing of power to the chip was

simpler.

20

3.2.7 RED2 Interface

The next big usability feature is the RED2 interface. original thought was to

connect the boards physically in order to connect the board to the RED2. This offered

several advantages, the main one having the RED2 serving as a power base station. The

thought was to build a daughter card that was permanently connected to the RED2. This

daughter card would contain ports which the wireless base would connect to and be

housed on. Through this connection, the base would receive new programming, power,

and storage. Originally, it was specified to have the ability to house four sensors. This

would allow students to contain all of their lab materials in a 3x3x2in3 area and allow for

charging whenever the RED2 was being used. Students could start charging their boards

at the beginning of class and be able to use them for an experiment after half an hour.

However, since it is more often seen as cumbersome to plug in a device for syncing, etc.

these days, a wireless mechanism was added.

The wireless solution implemented was an infrared (IrDA) port which is a standard

communications protocol when using infrared communications. The user would point

the device at the daughter card on the RED2 and briefly press and release the same

button used for switching power on/off to sync. (Holding down this button would turn

the device off.) Once synced, the daughter card would then communicate with the

RED2 and automatically configure Mobile Studio for the given attachment on the base.

The IrDA port would also notify the base of which channel to use. In a multi-user

environment where many of these devices are being used at once, each device operates

on its own frequency to allow simultaneous communication. If there are not enough

open channels available different codes would be given out to allow co-domain wireless

communication.

3.2.8 Infrared Sync System

The last thing to mention before describing the details of how the communication is

set up is that the hard connection to the RED2 contains UART, I2C, and a single GPIO

(General Purpose Input/Output) connection. I2C is another inter-chip communication

protocol like SPI except instead of having a pin that selects a slave, an address is sent

across the data line to initiate communication. The I2C and GPIO were originally meant

21

to be able to program a processor. The daughter card adds the benefit of removing the

need for new firmware programming of the RED2 processor, a Blackfin digital signal

processor (DSP), to handle the programming and communication of the connected

wireless cards since the code for transmitting UART directly to the desktop software is

already present. This requires the daughter card to have its own processor to handle the

programming of a WEXP device. Since a processor was already needed and it would be

a waste if it were only used for programming one device, the multiple storage method

was implemented. Each connector contained a multiplexed UART, I2C, and GPIO

connections, and was designed with the same pin out as the RED2 daughterboard

connector. This allows, with some Blackfin programming, the ability to connect the

board directly to the RED2 with no daughterboard in-between. This was done to miti-

gate the risk that the daughterboard’s benefits might not make up for the cost and time of

development for RevA.

In order to enable this functionality an infrared transceiver and emitter were added

along with a UART to IR controller. The UART chip is connected to the same bus as

the UART on the connector communicating with the daughterboard. A line is tied from

one of the grounds on the connector to the enable of the IR transceiver, thus acting as a

shutoff whenever the main board is connected. The UART to IrDA controller required a

clock speed of 16 times greater than the UART signal. This put an upper limit of 9600

baud on the speed the UART could function at. This also required the use of another

one of the digital blocks to function as a PWM generator for the clock. After pairing and

during normal operation this block is released, as the IR receiver is no longer in use.

This unfortunately begins to complicate things because dynamically changing blocks

adds more code to manage the device. In the end however, the plan is for all of the pins

to be reconfigurable which involves more than just switching blocks, but also involves

switching the internal routing of pins.

It turned out that the daughterboard was never built. Even though it added the abili-

ty to charge and manage multiple sensors as well as provide housing, the average user

initially would only carry around one sensor. All of the ideas for the usability stuck with

the board as it progressed. It was clear that having a connector to sync the boards

together or program them would make them just as cumbersome as existing systems and

22

future revisions have new ways to overcome the problems of syncing, channel division,

and programming of the WEXP devices.

3.2.9 Flash

The last part of revision A added in an effort to cover all areas of the vision for the

Wireless expansion is onboard flash memory. The minimum a device which is part of a

wireless sensor network needs to have is a processor, power, and memory. The wireless

expansion had an MCU and power, and the flash memory was added to complete the

requirements. This was done in an effort to see if others would be interested in using the

WEXP devices in sensor networks, network flow experiments, control algorithms or any

other wireless network experiments. The WEXP would allow simulations to be used in

a practical arena where things like communication protocols could be tested in actuality.

Crossbow’s products dominate this arena currently [9,11] and one of the advantages the

Crossbow system is that their wireless motes run TinyOS. This allows users who may

not be familiar with embedded programming to still use Crossbow’s products as event

driven machines. One of the thoughts is to port TinyOS onto the WEXP devices in the

future. Some other plans are to create LabVIEW modules and MATLAB code which

compiles directly into the embedded language of the WEXP devices. This would be the

next step in network simulations as LabVIEW is ideally suited for those who may have

extensive knowledge in the wireless network field, but may not have much or even any

programming experience. TinyOS still requires the knowledge of a low level C style

language whereas LabVIEW is a graphical and extremely extensive programming tool.

With the hardware for RevA completed the board was then laid out and produced.

3.2.10 Antenna

The Wireless IC uses a printed antenna to communicate on the 2.4 GHz ISM band.

Unfortunately for revision A, the wireless communication did not work properly.

Building the antenna is extremely frustrating because the documentation has some

errors. In the end there were several differences between the documentation, RED2

antenna, and the fabricated antenna.

23

One of the major differences is that the wireless base uses capacitors and inductors

that are of package 0805. The 0805 corresponds to how many mils the component is so,

for instance, 0805 is 8 mils by 5 mils. The main reason to do this was simply to make it

easier to assemble. The RED2, however, uses parts in a 0603 package. Using the

different packages meant that the components used in the RED2, which worked, could

not be used. The components chosen matched in value but when the wireless communi-

cation failed to function this was one of the primary differences looked at.

A major mistake with the revision A layout was the pad layout for the crystal. The

datasheet shows a top view and a bottom view for the pin layout. The bottom view was

accidently used leaving the pins reversed leading to an improper connection with the

crystal. To get around this, the crystal had to be tilted at a 45 degree angle. An oscillos-

cope was used to verify the functionality of the crystal. The readings showed a little bit

more noise than the crystal on the RED2 but since the wireless communication did not

work, the crystal wasthe primary candidate for the malfunction.

The last potential problem needing to be addressed was the distance the components

are from the antenna. Though only a few mils away, they are more spread out to make

the board easier to assemble. With all of these discrepancies it was impossible to isolate

and figure out what contributed to the failure of the antenna. In revision B all of the

components are the same as the RED2 and the crystal layout is fixed.

3.3 Revision B

3.3.1 Power

None of the power requirements changed as far as the minimum and maximum

values for the input voltage in this revision. One of the major things that did not work

out in revision A was the daughterboard connection to the main board. One of the main

functions of the daughterboard was the ability to charge the boards. In order to deal with

this the original thought was to add the charging circuitry to revision B. The only

problem with that plan was that external circuitry needed to be added to protect the

charging circuit when powering from an external board.

In order to alleviate this problem, the power is supplied for Revision B through an

external board. This offers several advantages for working in the classroom. If a device

24

is accidently left on, the battery could be swapped out for a spare. Since every power

board had its own charger, classrooms could have spares for such an occasion. The

external power board would contain all of the circuitry necessary for charging the given

power source. The main version of the power board contains the same 3.7V iPod nano

battery. This power board can be charged from a 5V DC power source or a USB cable.

The other major change for the power system is the power control circuitry. A lot

of space was taken up by the pushbutton powered by an external 3.3V Logic regulator.

Revision B’s main focus is to limit the complexity of the device as much as possible to

create a simpler system. With the push button gone, the space above it is also free to be

occupied by a sensor board. The majority of the space savings in this revision is from

the power system and the board size was able to be reduced from 1”x2” to 1”x1.75”.

Though this quarter inch does not seem significant it was an obvious enhancement when

finally fabricated.

3.3.2 Sensor Connection

The original sensor connector chosen for Revision A was a 2 mil pitch rectangular

socket connector. The original thought was to allow easy access to the pins through

solid core wire. Unfortunately the connectors did not have a long life when mistreated.

If the wrong type of wire is pressed into the socket it can render the connector useless. It

also had become obvious that it would be relatively cheap to create a development board

which would contain more features that could be used for hardware development or in

projects. With a development board being considered, the focus on the connector

changed from accessibility to space.

As with revision A, many types of connectors were evaluated for Revision B. The

main features present in the connector that are currently implemented in Revision B are

that the board-to-board height is small, the pitch between the pins is tiny, and the over-

head of the shroud is as small as possible. In Revision B the mechanical stability was

not as much of a concern, with the thought that other purely mechanical devices such as

screws and spacers could be used to ensure the mechanical stability.

25

3.3.3 Analog Regulator

In revision B, a capacitor is placed at the analog ground pin. Analog ground in al-

so exposed on the connector. Therefore, an external regulator can be used on a sensor

card, if needed. This allows a sensor card to employ a high precision analog ground

voltage which may or may not be half of Vcc, which is 3V. If an external regulator is

not used, then the capacitor allows the processor to use the analog ground with an

external cap. The cap provides lower noise and increased voltage accuracy.

3.3.4 RED2 Interface

A simple connector is used to interface with the RED2 in this revision, instead of

building a complex system. A custom connector needs to be fashioned to connect

directly to the daughterboard port on the RED2. Though this removes the cost of yet

another board, it added the cost of this custom connector, which is easier to fabricate in

small quantities. The connector on the RED2 is not uni-directional so this method has

the downside that it is possible to accidentally connect the boards backwards.

Another big problem is that the connector for the RED2 is not easily accessible.

There is a cover that is over the necessary connector so if the wireless board is to be

connected, the RED2 must be disassembled. This was not seen as a big problem, since

the connector only provides programming and it would not have to be done very often.

Unfortunately if a new firmware version did come out, then the user needed to be able to

upgrade the firmware so cables had to be provided to every user.

In order to get around fashioning cables for students, a connector that could be

plugged directly into the board was used. The layout for the connector is placed in the

upper right corner which helps enforce a uni-directional connection. If the board is

plugged in the wrong way it is impeded by other components on the board. It turns out

that the RED2 is incapable of using that connector because of the manufacturing

process. The RED2’s daughterboard connector contains holes in the bottom to allow for

a connector to pass through. These holes are filled up during the solder reflow and have

to be unplugged with a soldering iron in order to use. This was not discovered until

RevB was manufactured.

26

3.3.5 Antenna

Overall RevB worked successfully for all of the desired features. The wireless

communication worked, as well as the ADCs, which allowed a demo to be created which

streamed wireless acceleration data. RevB had a few flaws that made it unusable

though, namely the difficulties in programming it due to the connector problem. Since

the antenna works in this version, the following describes the basics for getting the

2.4Ghz wiggle antenna operational.

 The documentation for the wiggle antenna is not correct. This shows up when

looking at the bottom of the antenna. The height of the extended ground plane before

the ground plane for the whole device is 60 mils. On the top side the height of the

extended ground plane is at least 60 mils for the arm, with 30 more mils on top of that

for the base of the antenna to come through. The fix for this is to change the length

shown on the bottom from 60 to 120 mils.

The components used in revision B of the wireless base are the same components

used in the RED2. Though it was never confirmed if this contributed to revision A’s

failure, it is highly recommended to use the high frequency caps instead of Cypress’s

suggested components for enhanced performance. The inductors that Cypress recom-

mends are incorporated.

3.4 Revision C

Where RevB underwent many cutbacks on features, RevC added a few new ones

in order to create something that would be able to last for a while without requiring

further revisions. Several major changes occurred: a new processor was chosen, a new

power system was designed, a USB chip was added, a second processor was added and

another connector was added. The dimensions of RevB to RevC went from 1”x1.75" to

1.25”x1.75”.

3.4.1 Processor

While working with the processor for RevB, trouble arose with the digital blocks.

There weren’t enough resources to support the administration functions of internal

timers and SPI communication, along with having blocks to spare for things like the

27

ADCs. The blocks are described in detail later in section 4.2. In order to alleviate this

problem, a new processor was chosen which wasn’t previously available, the

CY8C29666. The CY8C29666 had the same pinout as the RevB processor but con-

tained 16 digital blocks as opposed to eight. The cost in price increased by $2.00 but

allowed for the device to have more resources available for different configurations.

3.4.2 Power

The power board in RevB did not work out too well. There were just too many

parts that had to be connected together in order to get something functioning. Another

concern was with the slide switch. Accidently draining a device of power before an

experiment would result in frustration from the Physics department since they would see

this as a new problem as opposed to the benefit garnered by switching from a wired

sensor to a wireless one. Another concern was that without the detachable power board,

it would be hard to use the device in projects with different voltage levels. There was

also the problem with charging the device, but that was solved quickly with the addition

of a USB device (mentioned in the next section).

In order to alleviate the above concerns, the power system was redesigned once

again. A push button is used instead of a slide switch. Instead of having a logic supply,

a Zener diode is used to ensure voltage protection on the pins, but allows for no current

flow when the device is off. A max1555 charger is in place to charge a single cell

lithium ion battery from the USB power. In-between the battery and the rest of the

system is a diode. This diode will protect the battery if the voltage supplying the system

is greater than the battery. This was done to allow external power to be able to still

power the board. The battery is now permanently attached to the base but no current is

drawn when the device is off and with the ability to externally power the device without

damaging the battery, all goals were able to be achieved.

3.4.3 USB

In an effort to steer towards platform independence and with the need for a pow-

er connector on the board because of the new power system, a USB interface was added.

The only thing tying mobile studio to Windows for developers is that the current USB

28

driver is only for Windows. With the USB interface added, projects can be built on

other platforms which use the Wireless Expansion’s capabilities.

3.4.4 Connector

After experimenting with the connector in RevB it was decided to go back to the

original plan from RevA and use multiple connectors to insure mechanical stability.

Functionally, the connectors are also differentiated. The 19-pin connector contains all of

the signal lines as well as the SPI interface to allow for more complete integration with

daughter cards. The 9-pin connector contains power and ground along with the status

lines of the sensor. The status lines are the same as in RevB: the first indicates the

presence of a daughter board, the second indicates if the board is in development mode

or not, and the last indicates whether or not there is the one wire ID chip present.

29

4. Wireless Expansion Firmware

4.1 Methodology

The objective of the wireless expansion is to provide an API that can be used to

interface the base with new hardware expansions. In order to accomplish this, the

programming ideology is to have the base act as a passive configurable microcontroller.

The desktop will configure the MCU on the wireless base to enter the proper mode

instead of upgrading the firmware. For example, to set up an analog stream the desktop

software would tell the processor on the wireless base to load the chosen ADC resources

into the analog blocks. It would then configure the sample rate and set properties of the

ADC such as the bit resolution. The desktop software knows that the incoming data is

from the ADC in the form requested and will display it properly in a graph or whatever

user interface method the particular resource uses.

Expanding this process to a more advanced case allows developers to ultimately

control the wireless base completely from configuration code. The wireless base will

not have to be constantly receiving instructions in order to operate. Instead, resources

will be set up and provided with trigger events. When a trigger event occurs, the given

resource will execute its stored process. Though this is not meant to be an OS like the

MICAz utalize, it can be used to allow simple configuration from the control application.

Like the MICAz’s OS, TinyOS, there are a set of resources that can be configured to

work together from a set of triggers. A resource is basically any complex function

which is available on the base. This consists of different analog and digital blocks as

well as any SPI resources on the base.

TinyOS is an event driven language which contains resources as well. Each re-

source can have callbacks and drive other resources through a similar triggering

mechanism. Eventually, it is the hope that the wireless base’s firmware could implement

anything that TinyOS would implement except in a higher-level language, thus opening

the programming to more than just people with embedded programming experience. An

example to demonstrate the difference is as follows: both TinyOS and the base’s firm-

ware could have configuration code written to read from an analog block every 10

seconds and after the read, save the result to flash. The base’s firmware could not be

30

configured to act as a communication host and communicate with several of the wireless

nodes without the desktop software. It comes down to the fact that there will not be any

decision implementation to start off with. In other words, there will be no way to check

to see if an analog read is above a certain threshold and notify the desktop software upon

triggering this event. Instead the data will be reported regularly and the desktop soft-

ware will have to check to see if the data is above the threshold. The desktop software

can then tell the base to enter a new configuration.

4.2 Cypress’s PSoC

The processor family used in all of the revisions is from Cypress’s PSoC line.

PSoC stands for Programmable System on Chip. It works a lot like a Complex Pro-

grammable Logic Device (CPLD) in which different “blocks” can be configured in order

to provide hardware implementations of many signal manipulation functions in both

digital and analog. Working with the PSoC for the first time can be difficult to get

started and hard to debug. With the addition of unverified hardware it becomes difficult

to track down a configuration error vs. bad hardware. It is highly advisable to inspect

both the configuration and initialization code of the blocks.

4.2.1 Digital IO

To get started, note that the expansion pins let out on the connector were specifical-

ly chosen because many of them can act as analog in or out, along with other digital

functions. Any I/O pin can be configured as a digital input, output, interrupt, or con-

nected to a digital block. The input and output aren’t straightforward As an input, the

pin can be configured as high impedance, pull-up, or pull-down pin. In pull-up or pull-

down mode, the pin can also function as an output. Working with just the pure input and

output is straightforward. There is a port address which you can read or write to which

reads or sets the port. In order to use the pin as an input, you must set the pin to High Z.

The other option is Analog High Z, which is actually a misnomer. Putting a pin in

Analog High Z turns the pin off and does not function in analog applications. To use the

pin as an output, it needs to be configured as either a Strong, or Strong Slow. The only

difference is the rising time between the logic levels for Strong Slow takes longer.

31

4.2.1.1 Port Definitions and Configuration

The last notable thing about the pure input/output modes is that by assigning the pin

to something, an address and masks are defined for use in the program. All ports can be

accessed through PRTxDR and a specific pin is accessed by bit-masking that address.

PRT0DR & 0x01 will perform a read on port 0 pin 0. If port 0 pin 0 was named

RedLED in the file PSoCGPIOINT.h, several definitions are made, of which

RedLED_Data_ADDR and RedLED_MASK are most important. By including this file

the code can access these aliases in order to make changes in future revisions more

portable. If a pin is changed, all that has to be done is that the pins on the configuration

panel need to be renamed and the code will function the same. This is especially useful

when moving around resources that require the manipulation of multiple pins.

The other definitions are important for more advanced usage of the chip. Continu-

ing with the previous example, 3 drive mode masks are defined as

GreenLED_DriveMode_x_ADDR, where x is 0 through 2. The drive mode is what

configures the pin to be Strong, High Z, Pull-up, etc. Using these drive modes allows

reconfiguration of the pins at runtime, which is the key to interfacing with different

sensors. In addition to the drive modes, three interrupt control registers are defined as

GreenLED_IntCtrl_x_ADDR, for x as 0 and 1, and GreenLED_IntEn_ADDR. The

IntCtrl sets the interrupt mode to active high, low, or change from read while the IntEn

enables the interrupt. The last definition created is the GreenLED_GlobalSelect_ADDR,

which allows the user to enable a connection to the global bus (described later) depend-

ing on how the Drive Modes are configured. In order to figure out all of the different

combinations, several documents with descriptions are available. By using these regis-

ters, any pin can be reconfigured at run time to interface with almost any daughter card’s

I/O needs. In order to access the daughter card’s resources, other types of processing

needs to occur which often would require a hardware interface such as an analog-to-

digital converter or a filter. The PSoC’s digital and analog blocks allow this without the

addition of new hardware. But first, one needs to understand the pull-up and pull-down

states of the I/O configuration, as this can be confusing at times.

32

4.2.1.2 Shadow Registers

The confusion of pull-up and pull-down drive modes is from the fact that in these

states the pin is operating as an output and as an input. When configuring a device as a

pull-up resistor,writing logic high to this pin will result in proper operation of this pin as

a pull-up resistor. Reading this pin gives the result of the voltage on the pad. For

instance, if a switch is connected to logic low and is activated, even though the pin is

being forced logic high, when reading the voltage it will register as logic low. If logic

low is written to the pin, then the pin stops functioning as a pull-up and will force logic

low. Current will flow through the internal pull-up resistor of 5.6kOhms. This may not

seem unexpected, but the problem occurs when using standard bit masking.

For this example, port 0 will have pin 0 configured as an internal pull-up resistor.

Connected to the pin is a push switch which connects the pin to ground when activated,

and is no-connection when not activated. Port 0 pin 1 will have an LED attached to it

with active low logic. The goal is to write a program to turn the LED on when the

button is pressed. The following code could be used if a pull-up was not being used.

while(1) {

if(PRT0DR & 0x01) {

PRT0DR &= ~0x02 // Turn LED On !Causes problems for pull up

} else {

PRT0DR |= 0x02 // Turn LED Off !Causes problems for pull up

}

}

If all pins were configured in High Z or Strong mode, this program would work

fine. This is because PRT0DR reflects the state of the pin that was set. In the example

of the pull-up PRT0DR &= ~0x02 will compile into PRT0DR = PRT0DR & 0x02. This

means it will perform a read of the pins before the AND operation. If pin 0 is logic low,

a logic low will be written to pin 0 and result in disabling the pull-up. In order to get

around this, shadow registers are used in which the shadow registers are modified and

keep track of the desired values. This illuminates the read from PRT0DR and isn’t too

difficult to implement. The only problem is when using other libraries that don’t use

shadow registers or have a different naming schema, some editing has to be done to

33

make them compatible. Below is the proper code when a pull-up or pull-down pin is

present.

BYTE PRT0SHADE = 0x03; //LED off Pull Up High

PRT0DR = PRT0SHADE;

while(1) {

if(PRT0DR & 0x01) {

PRT0DR = (PRT0SHADE &= ~0x02) // Turn LED On

} else {

PRT0DR = (PRT0SHADE |= 0x02) // Turn LED Off

}

}

Since PRT0SHADE now holds the state of the port, there is no accidental overwrite

of the desired state because of a read from the current state. With that brief aside, the

last thing to mention about the PSoC line is how the blocks work.

4.2.2 Configurable Blocks

These configurable blocks represent different hardware functions the processor

can implement and interface with through software. It does this through configuring

internal lines to connect up components such as capacitors, amplifiers, and resistors.

There are two types of resources: digital and analog. Both of these contain a different

interface to the physical pins of the device. In RevC, there are 16 digital blocks and 12

analog blocks.

4.2.2.1 Digital Blocks

When working with the digital blocks, there are a few key concepts to keep track

of. The digital blocks represent the hardware which is configurable into the desired

function. These include but are not limited to: counters, digital communication, pulse

width modulation, and many others. There are 16 of these blocks, but that does not

mean it is always possible to use up all of the resources. There are sixteen global out

and sixteen global in buses. These buses connect the blocks to the pins on the processor.

Some blocks can require the use of multiple pins. Take for instance the SPI block. It

requires three pins, MOSI, MISO and SCLK. MOSI and SCLK will take up two lines of

the global out bus and MISO will take up one line of the global in bus. It would be

34

impossible to have fifteen pulse width modulated pins in this configuration because there

aren’t enough lines on the global out bus. Instead, a max of fourteen pulse width mod-

ulated pins would be possible leaving one digital block free.

There are also additional restrictions. On top of the sixteen line limit for the global

bus, every four blocks has a row bus. The row bus consists of four lines for input and

four lines for output. The purpose of the row is to connect the block to the global bus.

In the previous example, the SPI block will use up two lines of the output row bus,

leaving only two available. In order to use the other three blocks, it is necessary that

combined they only require the resources of two output row lines or less and three input

row lines or less, as the SPI also takes up one input row.

The last big constraint is that eight of the digital blocks are allocated as communica-

tion blocks. These blocks can function with any of the digital resources attached but are

the only ones capable of supporting the communication resources. This makes it neces-

sary to allocate all of the communication blocks first and then fill in the other

functionality. This can become tricky since analog blocks can have digital blocks

associated with them. Placing an integrating ADC requires the use of 3 digital blocks of

a counter and a sixteen bit PWM generator. The best way to figure out if it is possible to

create a configuration is to sit down with the designer and try working it out. By switch-

ing the type of resource, by using a SAR ADC instead of a delta-sigma ADC for

instance, it is often possible to find some configuration that will work.

Another interesting capability the digital blocks contain is the broadcast rows.

There are four of these, one for each grouping, which can be connected to another

broadcast row or a block. The broadcast row can be used as input for any of the digital

blocks and even a clock source. This row is a way to get signals from one grouping of

blocks to another without using up any of the resources of the global bus.

As far as the allocation for the wireless expansion goes, three blocks are permanent-

ly in use. An 8-bit timer, an 8-bit counter, and the SPI master. In debug mode, two

more blocks are used for the UART RX and TX. The expansion connector contains four

dynamicIO and nine expansionIO. The only difference is the dynamicIO can be analog

output as well. This allows for the remaining thirteen pins to each be connected to its

own digital block and would maximize the digital resources. As soon as one starts

35

generating mixed signal configurations, the number of digital blocks available can drop

dramatically as some analog blocks can take up to 5 digital blocks. The digital blocks

are designed to allow the pin-out to change yet still maintain the same functionality as

before by rerouting the internal configuration. The analog blocks have a completely

different configuration setup which is much less flexible.

4.2.2.2 Analog Blocks

The CY8C29666 has twelve analog blocks. Similar to the digital blocks, the ana-

log blocks are grouped together, but in threes instead of fours. Unlike the digital blocks,

these groups are dependent on one another making the design of an analog system much

harder. A couple examples on the restrictions for the analog section are: all the blocks in

a group share an output bus, all the blocks in a group share the same clock, and there are

only four dedicated output pins. There are many more restrictions that are uncovered as

configurations are created which aren’t always apparent. For example, the configuration

editor only allows one variable incremental ADC but it allows 4 twelve-bit incremental

ADCs.

Since the restrictions are much more stringent depending on the type of analog

block used, the exact maximum specifications are not readily ascertained. Each analog

block contains its own set of restriction rules and no general groupings are apparent. On

top of the restrictions being hard to determine, the datasheets often contradict them-

selves. For example, a single or double stage incremental ADC claims in the features to

support a 46.8 ksps at 6 bit resolution. This corresponds to 46.8 khz sample rate.

Reading the datasheet further reveals that the equation used to get the 46.8 ksps requires

the source clock to be set at 24 MHz which is the maximum clock speed at 5V operation.

Continuing from there the max sample rate for the 3V configuration is now 23.4 ksps

since 12 MHz is the maximum clock speed. Reading further reveals that the maximum

clock speed that that can be used is actually 8 MHz due to restrictions on the switched

capacitors. This limits the max sample rate to 15.6ksps for a 6 bit ADC. There are

many other examples like this for the different blocks so care needs to be taken when

designing new configurations.

36

Given these issues, the following are some guidelines to help determine available

configurations. There is a 6-bit successive approximate ADC (SAR) which is capable of

sampling at 40 kHz. The SAR works by using an DAC to implement binary search. The

DAC is set to half of the value between the min and max known range and a comparator

reports weather the actual voltage is higher or lower. The SAR is only available in 6-bits

so when trying to get more bits, the sample rate rapidly declines. If needed a higher bit

SAR could be built manually using a higher bit DAC at the cost of more analog blocks.

At 7-bits an integrator ADC has to be used, dropping the sample rate down to 10.4 kHz

and at 14 bits, the speed is down to 121 Hz. The maximum number of ADCs allowed is

4, no matter which ones are chosen. DACs have better performance but the maximum

number of bits for a DAC is 9. The 9-bit DAC has a sample rate of 125 ksps and a 6-bit

DAC has a sample rate of 250 ksps. The maximum amount of DACs allowed is also 4.

This allows for a maximum of 4 ADCs and 4 DACs working simultaneously. In that

configuration all of the analog blocks are used since each ADC needs an amplifier and

eight digital blocks are used for counters and PWM generators. By changing the types

of ADCs the digital block count can be decreased but results in really low resolution

ADCs. There are many other types of analog blocks, but the most interesting thing that

can be done is the combining of multiple blocks in order to create some function. This

could be as simple as a low pass filter or something more complex like a frequency

modulator. Keep in mind what makes this system comparable to having external circui-

try is that the configuration is actually done in hardware as opposed to software

emulation.

Configuring the analog blocks can be more confusing since there are multiple ways

the system is designed to accommodate large configuration possibilities. To start with

each group of three analog blocks has to share the same clock. This clock can come

from several sources: VC1, VC2, Analog Clock Select 1 or Analog Clock Select2. For

some reason VC3 is not available and can cause problems when using VC3 to configure

the clock rate for the digital portion. If an analog block has a digital portion, the clock in

the analog section must match the clock of the digital block. If VC1 and VC2 are in use

and a different clock speed is needed then a counter or timer can be configured to act as

a clock divisor which can be given to the digital block via the broadcast row, or an

37

output row. On the analog side, the use of Analog Clock Select 1 or 2 gives access to

the digital blocks and can be configured to use the output of the counter or timer as the

clock. Since there are only 2 clock selects it is impossible to have 4 analog blocks that

use 4 different clocks that aren’t VC1 or VC2. This may not sound like a problem but

often it is the clock that sets things such as the sample rate. When trying to create a

programmable sample rate by using a timer by switching the sample rate it will affect all

of the clock speeds for all the blocks using that timer.

There are four types of analog blocks: continuous time B and E and switched capa-

citor C and D [1]. Like the digital block segmentation of generic and communication,

different analog blocks support different analog functionality. Each analog block

contains one inverter. Switched Capacitor (SC) blocks contain capacitors placed around

the amplifier which are controlled from two clocks φ1 andφ2. These two clocks allow for

many different types of amplifier configurations to be created, resulting in the high

degree of configurability that is present. The difference between the type C and type D

is the layout of the caps around the amplifier. The Continuous Time (CT) blocks have

no capacitors present and only consist of resistors around the amplifier. In the

CY8C29666, there are only type B continuous time blocks.

The input to the blocks is done through four multiplexors. Some blocks have the

ability to be connected to a pin directly from port 2. Port 2 is not utilized as an analog

input since any of the pins on port 0 can be routed to the analog blocks. The MUX is

only available as an input to the first block in each column. The first block in each

column is a CT block, meaning only amplifiers can use the MUX. From there the output

of the amplifier can be distributed to the other blocks. Going back to the decision about

port 2, port 2 can feed directly into some of the switch capacitor blocks but this does not

free up any resources since basically all of the analog resources besides the amplifiers

require SC blocks. The only case this would be useful is when using multiple stage op

amps and using up more than one CT block but still needing to feed in input to one of

the SC blocks. At that point, the configuration is too application-specific and should be

made in external circuitry.

As previously mentioned, there are only four output pins which are directly mapped

to each grouping of analog blocks. In order to change the output at a pin, the blocks

38

need to be rearranged to give the proper block access to the output bus. On top of the

analog out bus, there is an analog look up table (LUT) bus. Some analog blocks have an

output which can be connected to the LUT and then used as input in the digital section.

The LUT bus has some logic functionality for its neighboring bus. With the ability to

have digital and analog blocks interact in a configurable way it is likely that most any

circuit function can be reproduced in some manor by the PSoC.

4.3 Set Backs

There was a great deal of trouble dealing with the RED2 firmware, which turned

out to have several issues. Since the RED2 main processor is not a Cypress chip, a

custom library had to be written in order to interface with the wireless IC. This custom

library was then built upon for the duration of this project and led to many errors that

weren’t easily reproduced.

The first major issue that occurred is the wireless section would just shut down, with

no apparent cause. The firmware would still be responding but the wireless chip could

not recover no matter what error code was present. This turned out to be a threading

issue. The processor would be writing to the wireless IC and in the middle handle an

interrupt. The interrupt had the possibility of trying to send a different command to the

wireless IC which then would result in the IC entering random states. In order to fix

this, some heavy thread safe code was implemented. This can now start to be cleaned up

as some of the other errors have come to light.

The next major issue that seemed impossible to track down was that the device

would slowly stop working. For some reason the wireless IC would record a length

bigger than the payload size even though the payload was correct. The library would

then try to write all of the bytes to the supplied buffer which would result in a buffer

overflow. In the Cypress implementation, there are checks to make sure the received

length isn’t greater than the expected length. In the RED2 firmware, the variable for the

length is set, but nothing is done with it to ensure proper operation. Currently this still

needs to be fixed. As a temporary workaround, there is a case which checks to make

sure the size is within a proper limit and if it is not, it aborts.

39

4.4 Future Work

The setbacks caused the most visible gap in the firmware completion. Though the

methodology is sound and thorough, the implementation does not manage to fully

accommodate the planned functionality. A state machine is present for which there are

four states: boot, unpaired, paired and physics1. The firmware’s breakdown is apparent

at the paired state. Instead of waiting for configuration commands, the physics1 state is

loaded. To match the methodology there should be no physics1 state, instead there

should be an active state which is entered after configuration information is transmitted.

Besides working on the firmware implementation to meet the desired methodolo-

gy, there are a few more items that could be worked on in the future to enhance the range

of applications the wireless expansion could accommodate. In order to fully interface

with digital resources on daughter cards through SPI, mini instruction sets need to be

created for controlling these at runtime. This will have to be developed in future work

and begins the discussion of whether or not development should go into creating some-

thing like TinyOS, or perhaps even implementing TinyOS where at runtime

configuration code and instruction code is loaded in order to truly alter the capabilities of

the base.

The communication mode currently uses 16-byte packets and uses Cypress’s trans-

mission protocols. The first thing that could be done to increase data throughput would

be to implement streaming mode on the RED2. The streaming mode for RevC is already

written by Cypress. In streaming mode, data packets of up to 256 bytes can be sent at a

time and would at least double the throughput of the band. Some care does need to be

taken, because longer transmission times will be associated with larger data payloads.

The chance of a packet being corrupted increases the longer it is in the air and will

require far more overhead to retransmit than if a smaller payload packet is lost. Figuring

out the optimal balance between speed and overhead given packet losses would be a

good candidate for future work.

Cypress advertises a max of 250Kbits/sec when using their wireless protocol in 8

DR mode. Using raw Gaussian Frequency Shift Keying (GFSK) Cypress boasts a

1Mbit/sec data rate link. That means there is a 75% overhead between 8 DR mode and

40

GFSK. It is likely that spending some time optimizing a custom protocol which runs on

the GFSK band would reduce the overhead significantly.

41

5. Mobile Studio Integration

5.1 Architecture Changes

The architecture for the Mobile Studio desktop software underwent major changes,

not just in naming schemas but also in terms of the class hierarchy and functionality.

The main highlight is expansion boards of any type are now considered to be devices.

An expansion board comes in the form of any utility that uses an I/OBoard as the

physical link to Mobile Studio. This can be a daughter card, the wireless base, an

expansion board to the wireless base, or any other derivatives which may occur in the

future. The other major software activity occurs in representing the resources discussed

in the firmware section. Though this is not an architecture change (since it needed to be

created anew), in the future it is the hope that this will become an integral part of Mobile

Studio. Before going into detail about the changes, a little background may be helpful in

understanding what motivated them.

5.1.1 Background

One of the key guiding principles of Mobile Studio is to get the wider educational

and hobbyist communities involved by having the ability to create custom panels for

running experiments. For instance, it is possible to create a graph which will only

display data after an external trigger has occurred. Though this functionality is not

shipped with Mobile Studio, a third party can program their own “feature”, which is a

user interface for showing and interacting with the data to and from the RED2. Current-

ly, development of this particular feature is underway by a student who has not had

access to Mobile Studio in the past. Normally this would be extremely difficult for a

programmer outside of the development team, but Mobile Studio has an extensive

powerful plug-in interface which is able to run different devices, features, and allow

even the creation and integration of new hardware.

Mobile Studio functions around five main interface types: a Device, a Device

Plug-in, a Feature, a Feature Plug-in, and an IOHost. These five can be simplified down

to three as a Plug-in is responsible for creating the type of interface it is. A Device Plug-

in is responsible for creating a Device, and a Feature Plug-in is responsible for creating a

Feature. Reducing these to three interfaces leaves a Device, a Feature, and a Host which

42

run all of Mobile Studio. An interface is a set of functionality an object of code has to

implement. The development team has sole access to the Host interface and does not

have plans to release it to be modifiable by the public. Given that stance, the goal is to

have as little of the functionality driven by the Host interface as possible, leaving all of

the control to the Devices and Features. The Host Interface functions as the glue be-

tween the Devices and the Featuresand is visibly the window which contains the buttons

to open the different features available for a given device.

A device contains all of the functions a feature calls to get or set data on the board.

It is a wrapper for a connection to the computer which translates those function calls into

firmware byte commands. In the case of the I/OBoards, the connection is through a

USB cable. The flow of communication follows as a Feature or the Host will make a

function call to a device. The device will translate that function’s goal into a set of

commands to communicate with the firmware on the attached board, which is called a

physical device and is where Device gets its name. The firmware will respond accor-

dingly and return any results back up to the Device. The Device then parses this into

data in a form that the Feature or Host can use. The function then returns with the

requested data.

A Feature is the GUI or graphical user interface which displays results and allows

user interaction. The Feature is what takes the board’s capabilities, and makes them

accessible to the users of the system. A Feature is passed a Device when it is created

and is able to query the device to see what is supported for that Feature. For example,

the Digital IO Feature can ask a device how many digital ports are available. These

functions are available through another set of interfaces which simplify the function calls

for each Feature. These resource interfaces can be reused or combined by other Features

in order to access the resources on the Device. A possible way to structure a system

when creating a new Feature would be for each new Feature to have its own resource

interface which the Device may implement. Another way would be to have a Feature

use several generic resource interfaces. In either case it is up to the developer of the

Feature and there is no standard, aside from the basic interfaces to which the Feature

must conform.

43

With the addition of the expansion board, Mobile Studio has gone through two

cycles of adding special classes of Devices to the framework. The first iteration of

adding expansions onto the base I/OBoards was the physics daughter card. The physics

daughterboard was treated as something completely new to Mobile Studio and had its

own interfaces to implement. Special control code was written alongside the existing

architecture. Almost none of the code was reused for the “sub device” from the storing

of the object to the passing of the object to features, even though from the perspective of

the user there was no difference. The difference between a Device and a “sub device” is

with the communication to the computer. A “sub device” used functions the Device

implemented to communicate with the computer. The Device in the case of the RED2

and physics board acted as a UART to USB Bridge. At the time, the way the desktop

software was implemented took less time, and since it was not foreseen that more than

one type of “sub device” would ever exist, there is no architecture available to allow

“sub devices” to use the existing code. During the era of the RED1 and the physics

daughter board, the “sub device” was referred to as the daughter board device and would

likely not have been changed had not another “sub device” come along.

5.1.2 Sub Devices

The wireless board is the second device to be added to Mobile Studio that is of a

class considered a “sub device”. This refers to the fact that the “sub device” does not

contain a direct connection to a computer. A Device is basically a USB object with a

bunch of functions that the Feature calls. The Device translates the function calls into

the byte code which is sent to the firmware. The only reason a “sub device” came about

was because the Device, for simplicity’s sake the RED2, needed to have firmware calls

in order to support the Device attached to it. The desktop software went through two

revisions which corresponded with RevB and RevC of the hardware.

In RevB the existing sub device code was removed. Instead of classifying RevB

as a sub device it was promoted to the status of a Device. The original Device contained

many Features which the WEXP-B could never support. Since in the past all of the

I/OBoards had similar Features, the method in which the Device was used in the Feature

was to call a function which returned an interface with the appropriate functions. If a

44

Device did not support that Feature it returned null. This is likely one of the main

reasons for the sub device split. Instead of having the I/OBoards return null for sub

device Features, and sub devices return null for I/OBoard Features, two different inter-

faces were made. The WEXP-B desktop revision did not combine I/OBoards and

WEXP Devices seamlessly, but they were put under the same umbrella. A Device

Interface was created which had two subclasses, an I/OBoard Device Interface and a

WEXP Device Interface. This began to allow the same code which only needed the

shared functionality to handle WEXP Devices as Devices as well. All of the Feature

specific methods were moved into the I/OBoardDevice and a new method for adding

Feature methods was used for the WEXP devices. Instead of the WEXP DeviceInterface

requiring all WEXP Devices to contain implementations for all of the existing Features

for any WEXP Device, a WEXP Device implements only the Features it supports by

being able to select which interfaces for different Features to inherit. The only addition-

al function that a WEXP device had to implement was pairing.

As far as additions to Mobile Studio go, custom code for RevB was written to

handle special Features of the wireless boards. Instead of each device having its own

panel with Features there was one panel which populated itself with all of the connected

wireless nodes displayed as Features. The given Feature was selected based on what

daughter card was connected. To accomplish this, the Host had to differentiate between

the I/OBoards and the WEXP Devices, which unfortunately took away from some of the

benefit of being able to reuse the code.

Once RevC was finished Mobile Studio underwent one more major architecture

change. Instead of having a separate GUI display for the I/OBoards and the Wireless

Devices the same mechanism is used. The WEXP Device Interface is removed and a

WEXP Device now uses just the standard Device Interface. The I/OBoard Device

Interface is still present, but only for backwards compatibility. As the old features are

updated, the I/OBoard Device Interface will be phased out.

45

6. Discussions and Conclusions

6.1 Future Work

There were many setbacks that occurred during the development, which are dis-

cussed above. Most of the setbacks were overcome swiftly, but one setback in particular

was overcome only in the last few days of the project. This setback turned out to be a

problem with a support library, but several weeks were spent trying to understand and

fix this problem. This took a toll on the amount of content that could be created to

support the wireless devices. Enormous amounts of time went into creating hardware

which would alleviate many of the frustrations in both capabilities and usability. The

software did not get as much time dedicated to the development of tools and features,

which really took away from the WEXP’s performance in the students’ eyes.

In order to accommodate the desires of the Physics department, time was sacri-

ficed for the main board in order to generate a product that was going to be functional

for the Physics department before the end of phase 1. From the perspective of the

physics card, the microphone and the range finder need to be given panels in the desktop

software, but the firmware needs to be written as described prior in Section 4. Currently

the firmware is written specifically for the accelerometer. It would be worth the time to

take a step back and rewrite the firmware to require configuration of the different blocks

by the desktop software. This way, it will be easier to add on new devices as time goes

on.

Also mentioned in the future work of the desktop software, some time needs to go

into looking at the structure for Devices, Features, and Resources. Currently, a 3rd party

developer would have to create a new Device, and have it implement a new resource for

each new feature. This will severely start to fragment the market if multiple developers

began creating their own Devices. All of the resources need to be hammered out and

implemented for the different Devices. For the wireless expansion, this means some

complex firmware in order to have a programmable set of instructions for interacting

with things like SPI devices on daughter cards.

The last step that needs to be done is the rest of the chip features need to be enabled.

The flash, USB, and programmer chips are not implemented currently. The USB is

46

going to be a major undertaking since software drivers will have to be written for the PC.

Focusing on the programmer, will enable the wireless expansion to be released and

allow development to continue without fear of isolating users. In the hardware section

there was discussion about how to program the device and in the end distributing cables

or trying to build connectors wouldn’t work for the average user. Enabling the pro-

grammer will also require the enabling of the flash leaving only the USB to be

implemented in the future. Since the programmer made it acceptable to have users try to

update firmware, the advanced configuration and USB updates can be distributed later.

With these three things done, the potential growth for the wireless expansion could

boundless. One of the major advances Mobile Studio could leverage is that the wireless

expansion could begin to take the system off Windows dependence. There would be no

desktop software on other platforms but, it would allow for a programming interface

which could even be used in portable devices such as the iPhone or the G1. In addition

to adding platforms for developers, Mobile Studio is ready to become a developer tool

for not just education-based systems, but for creating new hardware. The wireless

expansion allows for the creation of custom wireless devices that will be able to utilize

the existing programming interface, allowing the devices to be used in many different

programs like MATLAB and LabVIEW.

6.2 Final Thoughts

The success of the Wireless Expansion can be measured by how readily adapta-

ble/adoptable the system becomes. Creating better graphical panels to display data in a

clean way, adding some tools to analyze incoming data, and adding features to the

analog stream - are all tasks that require the future development of content. This content

development can be done by others who are not experts on the system and will be able to

be done quickly. The bulk of the work went into flushing out all of the bugs from the

existing wireless code in the Red2and constructing an expandable wireless system from

scratch. The quality of that system was confirmed when the Imote2 was revisited. The

wireless expansion, which was designed independently, has all of the features and much

of the same design that Crossbow, a company that has been in the wireless sensor market

47

for years, has developed using a full engineering department – for a significantly higher

price.

48

LITERATURE REFERENCED

1. M. Basinger. PSoC Designer™ Device Selection Guide – Revision I. Cypress

MicroSystems, Inc, January 18, 2007

http://www.psocdeveloper.com/uploads/tx_piapappnote/an2209_03.pdf

2. J. Stewart. In-System Serial Programming (ISSP™) Protocol - Revision D.

Cypress MicroSystems, Inc, March 17, 2004.

http://www.psocdeveloper.com/uploads/tx_piapappnote/an2026.pdf

3. Crossbow Technology, Inc. Imote2: High-Performance Wireless Sensor Net-

work Node, Crossbow’s Web Site,

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Imote2_Datashe

et.pdf

4. Crossbow Technology, Inc. MICAz: Wireless Measurement System. Cross-

bow’s Web Site,

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datash

eet.pdf

5. V. Subramanian. Transport and Link-Level Protocols for Wireless Networks

and Extreme Environments. Rensselaer Polytechnic Institute, April 2008

6. J. Coutermarsh. Mobile Studio: a low-cost, highly portable, PC-based electron-

ic instrumentation suite. Rensselaer Polytechnic Institute, December 2007.

7. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC2018 - TCP Selective

Acknowledgment Options, October 1996.

8. Rensselaer Polytechnic Institute. The Mobile Studio Project. Mobile Studio’s

Website, August 2008. http://www.mobilestudioproject.com/

9. Crossbow Technology, Inc. Customer Reference, Crossbow’s Website, Novem-

ber 28. http://www.xbow.com/Industry_solutions/CustomerReference.aspx

10. Cypress Microsystems, Inc. WirelessUSB™ Antenna Design Layout Guide-

lines – AN5032, Cypress’s Web Site, March 30, 2005.

http://download.cypress.com.edgesuite.net/design_resources/application_notes/c

ontents/wirelessusb_tm__antenna_design_layout_guidelines___an5032_12.pdf

11. F. Zhao and L. Guibas, Wireless Sensor Networks – An Information Processing

Approach, Morgan Kaufmann Publishers, 2004.

