
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2002-38 

2002-11-04 

Mobile UNITY Schemas for Agent Coordination Mobile UNITY Schemas for Agent Coordination 

Gruia-Catalin Roman and Jamie Payton 

Mobile UNITY refers to a notation system and proof logic initially designed to accommodate the 

special needs of the emerging field of mobile computing. The model allows one to define units 

of computation and mobility and the formal rules for coordination among them in a highly 

decoupled manner. In this paper, we reexamine the expressive power of the Mobile UNITY 

coordination constructs from a new perspective rooted in the notion that disciplined usage of a 

powerful formal model must rely on formally defined schemas. Several coordination schemas 

are introduced and formalized. They examine the relationship between Mobile UNITY and... 

Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

Recommended Citation Recommended Citation 
Roman, Gruia-Catalin and Payton, Jamie, "Mobile UNITY Schemas for Agent Coordination" Report 
Number: WUCSE-2002-38 (2002). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/1154 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1154?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1154 

Mobile UNITY Schemas for Agent Coordination Mobile UNITY Schemas for Agent Coordination 

Gruia-Catalin Roman and Jamie Payton 

Complete Abstract: Complete Abstract: 

Mobile UNITY refers to a notation system and proof logic initially designed to accommodate the special 
needs of the emerging field of mobile computing. The model allows one to define units of computation 
and mobility and the formal rules for coordination among them in a highly decoupled manner. In this 
paper, we reexamine the expressive power of the Mobile UNITY coordination constructs from a new 
perspective rooted in the notion that disciplined usage of a powerful formal model must rely on formally 
defined schemas. Several coordination schemas are introduced and formalized. They examine the 
relationship between Mobile UNITY and other computing models and illustrate the mechanics of 
employing Mobile UNITY as the basis for a formal semantic characterization of coordination models. 

https://openscholarship.wustl.edu/cse_research/1154?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1154?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages




Mobile UNITY Schemas for Agent Coordination

Gruia-Catalin Roman and Jamie Payton

Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA
{roman, payton}@cse.wustl.edu

Mobile UNITY refers to a notation system and proof logic initially designed
to accommodate the special needs of the emerging field of mobile computing. The
model allows one to define units of computation and mobility and the formal
rules for coordination among them in a highly decoupled manner. In this paper,
we reexamine the expressive power of the Mobile UNITY coordination constructs
from a new perspective rooted in the notion that disciplined usage of a power-
ful formal model must rely on formally defined schemas. Several coordination
schemas are introduced and formalized. They examine the relationship between
Mobile UNITY and other computing models and illustrate the mechanics of em-
ploying Mobile UNITY as the basis for a formal semantic characterization of
coordination models.

1 Introduction

Mobile UNITY [11, 19] is a formal model developed with mobility in mind and
out of the desire to accommodate a new generation of systems that exhibit phys-
ical mobility of hosts and logical mobility of code (e.g., code on demand, remote
evaluation, and mobile agent paradigms). Mobile UNITY inherits the simplicity
of the original UNITY [4] and specializes its parent model in two important
ways. First, it imposes a program structure that emphasizes decoupling and
modularity. Systems (multiple cooperating programs in the parlance of UNITY)
are structured in terms of program descriptions (types), program instances, and
interactions. The last part defines the rules by which information is exchanged
among programs which otherwise cannot communicate with each other—in a
departure from UNITY, all variable names are local and only the interaction
policy can refer to variables across program boundaries. Second, Mobile UNITY
introduces several new constructs, including the reactive statement, which rep-
resents the boldest departure from its UNITY origins. While the term might
be suggestive of event processing constructs in other models, the semantics of
Mobile UNITY reactive statements are unique. The reactive statements are trig-
gered not by events but by system state and have the power to alter the current
state until a new configuration is reached in which no reactive statements are
enabled.

The new model of concurrency inherits much of the notation and the proof
logic directly from UNITY but makes the transition to mobility straightforward,



with no impact on program structure or proof logic. The typical application of
Mobile UNITY to mobility is actually only a schema definition, i.e., a syntactic
restriction on the general model. In this schema, each program is required to
have a distinguished variable that denotes the current location of the program
in some logical or physical space, and all interactions are conditional on the
relative locations of the programs making up the system.

The Mobile UNITY approach to mobility is indeed different from that of
Mobile Ambients [3], π-calculus [14], or mobile agent systems (e.g., Lime [16],
MARS [2], D’Agents [7], etc.). Mobile Ambients structures space hierarchically
and limits movement to conform to this hierarchical organization; the structure
of the space is actually the structure of the system being described and can
change with it. The π-calculus is a process algebra that allows for the creation
of new unique channel names and for passing such names among processes for the
purpose of establishing private communication channels. As a result, mobility
is reduced to a restructuring of the communication structure, i.e., space and
movement do not have a direct representation in the model. Mobile agent systems
vary greatly but typically address the mobility of agents across connected hosts
and the mechanics of coordination among them; the setting is generally that of
logical mobility (Lime [16] is an exception in this respect, as it accommodates
both logical and physical mobility), and space is assumed to be predefined. In
Mobile UNITY space can be arbitrary, location is part of a program’s state, and
movement is reduced to value assignment to the location variable. Interactions
among programs can be specified to meet the precise needs of each application
domain.

The goal of this paper is to explore the richness of the model by examining a
range of schemas that can adapt the basic Mobile UNITY model for a varied set
of purposes. The expressive power of Mobile UNITY has been previously tested
as part of a series of studies that demonstrated its ability to construct novel
coordination constructs (e.g., transient and transitive variable sharing) [19, 11],
to express clock-based synchronization [12], to specify and verify communica-
tion protocols (e.g., Mobile IP) [12], to specify and reason about code mobility
paradigms [18], and to function as a semantic model for coordination constructs
offered by new middleware for mobility. While building on earlier experience
with Mobile UNITY, this paper seeks to distill the knowledge we gained and
present its essence by reduction to a set of simple schemas that might assist in
future efforts to apply Mobile UNITY to novel settings.

The Mobile UNITY model is presented in Section 2. The importance of
schemas is highlighted in Section 3, where it is demonstrated that the treatment
of mobility in Mobile UNITY can be defined as a schema. Sections 4 through
7 introduce new schemas for mobile computing and coordination. While the
coordination mechanisms discussed in these sections relate directly to specific
formal models or systems known in the literature on coordination or mobility,
no effort is made to detail how a model or system might be simulated in Mobile
UNITY, as our interest is in defining interesting coordination schemas rather
than putting forth claims of universality. In each case, the origins of the schema



will be acknowledged, but its formalization will be abstract and minimalist.
Finally, conclusions are presented in Section 8.

2 The Essence of Mobile UNITY

In this section, we give a brief introduction to the Mobile UNITY [11, 19] model,
first describing the notation and associated proof logic, then applying the model
to a simple example.

Notation. As in UNITY, the key elements of program specification are vari-
ables and assignments. Programs are simply sets of conditional assignment state-
ments, separated by the symbol []. Each statement is executed atomically and
is selected for execution in a weakly fair manner—in an infinite computation,
each statement is scheduled for execution infinitely often. A program description
begins by introducing the variables being used in the declare section. Abstract
variable types such as sets and sequences can be used freely. The initially sec-
tion defines the allowed initial conditions for the program. If a variable is not
referenced in this section, its initial value is constrained only by its type. The
heart of any Mobile UNITY program is the assign section consisting of a set of
labeled conditional assignment statements of the form:

label :: var1, var2, . . . , varn := expr1, expr2, . . . , exprn if cond

where the optional label associates a unique identifier with a statement. The
guard cond, when false, reduces the statement execution to a skip.

As in UNITY, Mobile UNITY also provides quantified assignments, specified
using a three-part notation:

label :: 〈‖ vars : condition :: assignment〉

where vars is a list of variables, condition is a boolean expression that defines a
range of values, and assignment is an assignment statement. For every instance
of the variables in vars satisfying the condition, an assignment statement is
generated. All generated assignments are performed in parallel. (This three part
notation is used for other operations besides quantified assignment. For exam-
ple, the ‖ can be replaced with a ’+’, and all generated expressions are added
together and a value is returned). Though not provided in the original model,
the nondeterministic assignment [1] proved to be useful in many formalizations.
A nondeterministic assignment statement such as x := x′.Q, assigns to x a value
x′ nondeterministically selected from among the set of values satisfying the pred-
icate Q.

In addition to the types of assignment statements described above, Mobile
UNITY also provides a transaction (not present in UNITY) for use in the assign
section. Transactions capture a form of sequential execution whose net effect
is a large-grained atomic state change (in the absence of reactive statements,
which are explained later in this section). A transaction consists of a sequence



of assignment statements which must be scheduled in the specified order with
no other statements interleaved in between. The notation for transactions is:

label :: 〈s1; s2; . . . ; sn〉

The term normal statement, or simply statement, will be used to denote both
transactions and the stand-alone assignments discussed earlier to constrast them
with reactive statements introduced later in this section. As previously stated,
normal statements are selected for execution in a weakly fair manner and exe-
cuted one at a time. The guards of all normal statements can be strengthened
without actually modifying the statement itself by employing inhibit statements
of the form:

inhibit label when cond

where label refers to some statement in the program and cond is a predicate.
The net effect is conjoining the guard of the named statement with the negation
of cond at runtime, thus inhibiting execution of the statement when cond is true.

A construct unique to Mobile UNITY is the reactive statement:

s reacts-to cond

where s is an assignment statement (not a transaction) and cond is a predicate.
The basic idea is that reactions are triggered by any assignment establishing the
reactive condition cond. The semantics are a bit more complex since a program
(or a system, which will be defined later) can contain many reactive statements.
Operationally, one can think of each assignment (appearing alone or as part of
a transaction) as being extended with the execution of all defined reactions up
to such a point that no further state changes are possible by executing reac-
tive statements alone. More formally, the set of all reactive statements forms
a program < that is executed to fixed point after each atomic state change by
assignments appearing alone or within a transaction. Clearly, < must be a ter-
minating progrm. The result is a very powerful construct that can easily capture
the effects of interrupts, dynamic system reconfigurations, etc.

Illustration. A sample Mobile UNITY program is shown in Figure 1. The
program text specifies the actions of a baggage cart that moves along a track,
loading at one end of the track and unloading at the other end. The program Cart
defines variables y and λ of type integer in the declare section; y represents
the size of the cart’s current load, and λ can be thought of as the cart’s location
on the track. The initially section states that the cart is empty at the start of
execution. Note that λ is not given a value in the initially section; λ can take
on any value of type integer at the beginning of program execution. The assign
section of Cart illustrates the use of several Mobile UNITY constructs.

Statement load is a simple conditional non-deterministic assignment state-
ment that places a load in the cart (represented by the non-deterministic choice
of a positive integer) if the cart is located at position 0 and is empty. The state-
ments go right and go left are simple assignment statements that update the



cart’s location on the track. The first inhibit statement prevents the execution
of the go right statement when the cart is empty. Similarly, the next inhibit
statement prevents the cart from moving left when the cart is not empty. The
next statement, unload , assigns to y a value of 0 if the cart is not empty and
the cart is located at position N , effectively emptying the cart. The two state-
ments following the unload statement are reactive statements. In the first, the
reactive statement is enabled when the cart is at a position less than 0. If after
the execution of a normal statement in the program, this statement becomes
enabled, the cart’s position is updated to a legal position (position 0) on the
track. Similarly, the second reactive statement, when enabled, will force the cart
in a legal position on the track, position N .

program Cart
declare

y, λ : integer

initially

y = 0
assign

load :: y := y ′.(y ′ > 0) if λ = 0 ∧ y = 0
[] go right :: λ := λ+ 1
[] go left :: λ := λ− 1
[] inhibit go right when y = 0
[] inhibit go left when y 6= 0
[] unload :: y := 0 if λ = N ∧ y 6= 0
[] λ := 0 reacts-to λ < 0
[] λ := N reacts-to λ > N

end

Fig. 1. An example Mobile UNITY program

Proof Logic. Mobile UNITY has an associated proof logic by and large
inherited directly from UNITY. Program properties are expressed using a small
set of predicate relations whose validity can be derived directly from the program
text or from other properties through the application of inference rules.

Basic safety is expressed using the unless relation. For two state predicates
p and q, the expression p unless q means that for any state satisfying p and
not q, the next state in the execution sequence must satisfy either p or q. There
is no requirement for the program to reach a state that satisfies q, i.e., p may
hold forever. Progress is expressed using the ensures relation. The relation
p ensures q means that for any state satisfying p and not q, the next state
must satisfy p or q. In addition, there is some statement that guarantees the
establishment of q if executed in a state satisfying p and not q. Note that the
ensures relation is not itself a pure liveness property, but is a conjunction of a
safety and a liveness property. The safety part of the ensures relation can be
expressed as an unless property, and the existence of an establishing statement



can be proven with standard techniques. In UNITY, the two predicate relations
are defined by:

p unless q ≡ 〈∀s : s in P :: {p ∧ ¬q}s{p ∨ q}〉

p ensures q ≡ (p unless q) ∧ 〈∃s : s in P :: {p ∧ ¬q}s{q}〉

where s is a statement in the program P .
The distinction between UNITY and Mobile UNITY becomes apparent only

when we consider the manner in which we prove Hoare triples, due to the in-
troduction of transactions and reactive statements. For instance, in UNITY a
property such as:

{p}s{q}where s in P

refers to a standard conditional multiple assignment statement s exactly as it
appears in the text of the program P . By contrast, in a Mobile UNITY program
we will need to use:

{p}s∗{q}where s ∈ ℵ,

and ℵ denotes the normal statements of P while s∗ denotes a statement s mod-
ified to reflect the guard strengthing caused by inhibit statements and the ex-
tended behavior resulting from the execution of the reactive statements in the
reactive program < consisting of all reactive statements in P . The following
inference rule captures the proof obligations associated with verifying a Hoare
triple in Mobile UNITY under the assumption that s is not a transaction:

p ∧ ι(s)⇒ q, {p ∧ ¬ι(s)}s{H}, H 7→ (FP (<) ∧ q) in <

{p}s∗{q}

For each non-reactive statement s, ι(s) is defined to be the disjunction of all
when predicates of inhibit clauses that name statement s. Thus, the first part
of the hypothesis states that if s is inhibited in a state satisfying p, then q must
be true of that state also. {p∧¬ι(s)}s{H} (from the hypothesis) is taken to be a
standard Hoare triple for the non-augmented statement s. H is a predicate that
holds after execution of s in a state where s is not inhibited. It is required that
H leads to fixed-point and q in the reactive program <.

For transactions of the form 〈s1; s2; . . . sn〉 the following inference rule can
be used before application of the one above:

{a}〈s1; s2; . . . sn−1〉
∗{c}, {c}sn

∗{b}

{a}〈s1; s2; . . . sn〉∗{b}

where c may be guessed at or derived from b as appropriate. This represents
sequential composition of a reactively-augmented prefix of the transaction with
its last sub-action. This rule can be used recursively until we have reduced the
transaction to a single sub-action. This rule may seem complicated, but it rep-
resents standard axiomatic reasoning for ordinary sequential programs, where
each sub-statement is a predicate transformer that is functionally composed
with others.



System specification. So far, the notation and logic of Mobile UNITY have
been discussed in terms of a single program. However, Mobile UNITY structures
computations in systems consisting of multiple components and coordination
rules that govern their interactions. Each component is a program with unique
variable names. Programs are defined as instantiations of program types. Pro-
gram type definitions are followed by a Components section that establishes
the overall system configuration and some initialization parameters and by an
Interactions section consisting of coordination constructs used to capture the
nature of the data transfers among the decoupled component programs.

A System description begins by providing paramaterized type definitions for
the programs to be composed. A type definition of a program is simply program
text that has a parameter used only to identify an instantiation of a program.
Type definitions are similar to macros in that the textual type definition of a
program can be substituted for a program instantiation anywhere within the
System.

In the Components section of a system, component programs are instanti-
ated using the name of a type definition and a parameter value to identify the
instantiated program. The Components section assumes a form such as:

programA(1)[] programA(2)[] programB(1)

where programA(i) and programB(j) are type definitions in the system, and
programA(1), programA(2), and programB(1) are the desired program instanti-
ations.

Instantiated programs making up a System in Mobile UNITY have disjoint
namespaces. The separate namespaces for programs hide variables and treat
them as internal by default, instead of being universally visible to all other com-
ponents as is the case in UNITY program composition. Formally, uniqueness
of variable names in Mobile UNITY systems is achieved by implicitly prepend-
ing the name of the component to that of each variable, e.g., programA(1).x ,
programB(1).x . This facilitates modular system specification and impacts the
way program interactions are specified for those situations where programs must
communicate. Coordination among programs in Mobile UNITY is facilitated by
defining rules for program interaction in the Interactions section of a system.

The Interactions section of the system specification defines inter-process
communication. As mentioned previously, programs in Mobile UNITY cannot
interact with each other in the same style as in UNITY (by sharing identically
named variables) because they have distinct namespaces. Instead, special con-
structs must be provided to facilitate program interaction. These rules must be
explicitly defined in the Interactions section of a system, using fully-qualified
variable names. Since in mobile computing systems, interaction between com-
ponents is transient and location-dependent, the Interactions section often
restricts communication based on variables representing location information.
Reactive statements, inhibit statements, and assignment statements can appear
in the Interactions section. Here, however, references to variables that cross
program boundaries are permitted.



Illustration. Figure 2 shows a system called BaggageTransfer. It is based
upon a restructuring of the earlier Cart program designed to separate the cart,
loading, and unloading actions. Three types of components are used: Cart(k),
Loader(i), and Unloader(j). Each program type is parmeterized so as to allow
for the creation of multiple instances of the same type.

System BaggageTransfer
program Cart(k)

declare

y, λ : integer

initially

y = 0
assign

go right :: λ := λ+ 1
[] go left :: λ := λ− 1
[] inhibit go right when y = 0
[] inhibit go left when y 6= 0
[] λ := 0 reacts-to λ < 0
[] λ := N reacts-to λ > N

end

program Loader(i)
declare

x : integer

initially

x = 0
assign

load :: x := x ′.(x′ > 0)
end

program Unloader(j)
declare

z : integer

initially

z = 0
assign

unload :: z := 0
end

Components

Cart(1) [] Cart(2)
[] Loader(1) [] Unloader(1)

Interactions 1

Cart(k).y ,Loader(i).x := Loader(i).x , 0
when Cart(k).y = 0

∧ Loader(i).x 6= 0
∧Cart(k).λ = 0

[] Cart(k).y ,Unloader(j).z := 0,Cart(k).y
when Cart(k).y 6= 0

∧ Unloader(j).z = 0
∧Cart(k).λ = N

end BaggageTransfer

Fig. 2. An example Mobile UNITY system

Cart(k) defines a program in which a baggage cart is moved along a track. As
before, the movement of the cart depends on the value of the program variable
y , which represents the weight of the current baggage in the cart. Notice that the
program type definition contains no statement in which y is explicitly assigned.
Loader(i) defines a program in which a variable x is non-deterministically as-
signed a value, presumably defining a baggage weight to be loaded. Unloader(j)
defines a program in which a variable is assigned a value of 0.

The Components section instantiates the component programs in the Bag-
gageTransfer System. Two carts (Cart(1) and Cart(2)) are created along with
a single loader and unloader. The two carts are distinguished by the distinct
values given to parameter k.

1 Though its semantics are identical to those of the if keyword, the when keyword is
used for emphasis in the Interactions section of Mobile UNITY systems.



The Interactions section allows the carts, loader, and unloader program
instantiations to work together to transport baggage. The first statement is an
asynchronous value transfer conditional on the location of the cart and the status
of the loader. Since all free variables are assumed to be universally quantified
by convention, the statement describes the relationship between a typical loader
and a typical cart, and so it applies to both carts. The load stored in Loader(i).x
is transferred to the cart and stored in Cart(k).y . This will enable the cart to
start its movement towards the unloader. In a similar fashion, the arrival of a
cart at the right hand side of the track makes it possible for the load to be
transferred from Cart(k).y to Unloader(j).z , later to be discarded as apparent
in the code of the unloader.

As shown elsewhere [11], many different coordination constructs can be built
out of the basic constructs presented so far. Among them, one of particular
interest is transient and transitive variable sharing, denoted by ≈. For instance,
the code below describes an interaction between a cart and an inspector where
the cart and the inspector share variables y and w as if they denoted the same
variable, when co-located. At the point when the cart and inspector become co-
located, the shared variable is given the value of the cart’s y variable as specified
by the engage clause. When the cart and inspector are no longer co-located,
the cart’s y variable retains the value of the shared variable and the inspector’s
w variable is set to 0, as stated in the disengage clause.

Cart(k).y ≈ Inspector(q).w when Cart(k).λ = Inspector(q).λ
engage Cart(k).y
disengage Cart(k).y, 0

Proof Logic Revisited. The entire system can be reasoned about using the
logic previously presented because it can easily be re-written as an unstructured
program with the name of each variable and statement expanded according to the
program in which it appears, and with all statements merged into a single assign
section. In other words, the system structuring represents solely a notational
convenience with no deep semantic implications.

3 Mobile UNITY as a General Schema for Mobility

The features that differentiate Mobile UNITY [11] from the original UNITY [4]
model have been the result of a careful analysis of what is necessary to model
mobile systems. Yet, the presentation so far deliberately avoided showing these
constructs in the context of mobility. This is because the new features, while
needed to capture mobility, can be used in a wide range of settings and for a
variety of purposes. In this section, we specialize the general notation to one
form of mobility and coordination representative of much of the published work
on Mobile UNITY. We accomplish this by defining a schema for mobility. Other
schemas specialized for other situations and related to existing models of coor-
dination will be described in following sections.



A schema is typically defined as a syntactic (sometimes semantic) pattern
which restricts the use of language constructs to specific forms that have desir-
able properties. Efficient implementation or accurate modeling of key applica-
tion concerns are properties one may seek in defining a particular schema. In
this section and in the remainder of this paper, we focus on the latter. More
precisely, in this section we desire to restrict the model in a manner that allows
one to directly capture systems whose components can move freely through a
space and interact with each other in a location-dependent manner. Programs
are defined to be the basic unit of mobility, modularity, and execution. This is
a natural choice in Mobile UNITY and, fortunately, places no undue burden on
the modeling process because programs can be of arbitrary complexity. Both
fine-grained mobility (e.g., single statements) and coarse-grained mobility (e.g.,
whole components) may be expressed simply by varying the size of the programs
being used. The use of program types facilitates compact representation of sys-
tems consisting of large numbers of mobile components. For now, we impose no
restrictions on the size of the program code, the functions it performs, or the
number of components that are being instantiated. In a given application set-
ting, however, such restrictions may prove to be highly profitable, e.g., when one
considers the case of very small devices such as sensors dedicated to evaluating
one single local environmental condition, such as temperature.

System BaggageTransfer
program Cart(k) at λ

. . .

end

program Loader(i) at λ

. . .

end

program Unloader(j) at λ

. . .

end

Components

Cart(1) [] Cart(2) [] Loader(1) at 0 [] Loader(2) at N/2
[] Unloader(1) at N [] Unloader(2) at 3N/4

Interactions
Cart(k).y ,Loader(i).x := Loader(i).x , 0

when Cart(k).y = 0 ∧ Loader(i).x 6= 0 ∧ Cart(k).λ = Loader(i)λ
[] Cart(k).y ,Unloader(j).z := 0,Cart(k).y

reacts-to Cart(k).y 6= 0 ∧Unloader(j).z = 0 ∧ Cart(k).λ = Unloader(j).λ

end BaggageTransfer

Fig. 3. Sample application of the general mobility schema



Because programs are expected to be mobile, a mechanism must be intro-
duced to capture the notion that a given component is present at a specific
location and that it can move from one location to another. We choose to model
location as a distinguished variable which is required to appear in all programs.
Conventionally, this variable is named λ. Figure 3 depicts a new version of the
BaggageTransfer system presented earlier, slightly modified to conform with the
mobility schema presented in this section. The first thing to observe is the slight
change in notation. The distinguished variable λ is pulled into the program type
declaration. The resulting notation is merely a mechanical transformation de-
signed to enforce the distinguished nature of the variable λ. Furthermore, the
initialization of λ, if necessary, is relegated to the Components section.

By having an explicit representation of the program location as part of its
state, mobility is reduced to changes in the value of λ. The type of λ is deter-
mined by the specific way in which space is modeled. In the example shown in
Figure 3, we assume a discrete linear space over the range 0 to N . Other no-
tions of space can be used with equal ease. When modeling physical movement,
a latitude and longitude pair may be appropriate in defining a point in space.
Logical mobility may entail the use of host identifiers. Spaces may be uniform
and bounded, may be undefined in certain regions, or may extend to infinity. The
operations permitted for use in changing λ are specified implicitly in the defini-
tion of the space. As before, in Figure 3 the location of the cart is incremented
or decremented one unit at a time, thus faithfully representing the nature of
discrete but contiguous linear movement. When the space being modeled has
a specific structure, mobility requires appropriate constraints. For instance, if
the space is defined as a graph, it is reasonable to expect that movement takes
place along edges in the graph. In other cases, we may prefer to allow a pro-
gram to change location by simply moving to any reachable node in the graph if
the passage through intermediary nodes results in no local interactions. In the
BaggageTransfer example presented in Figure 3, changes to the cart’s λ variable
are restricted so that the cart can only move along positions on the track. It is
important to note that, by reducing movement to value assignment, the proof
logic naturally covers mobility without necessity for extensions.

The manner in which programs use the location variable, in turn, may induce
several subschemas. A program may be location-oblivious in the sense that it
never refers to λ anywhere in its code (except for its compulsory declaration).
In such cases, mobility is external to the program, however, its behavior may
be affected by mobility indirectly, i.e., by the coordination rules defined in the
Interactions section. Location-aware programs refer to the value of λ and al-
ter their behavior based on their current location. Finally, location-controlling
programs actually modify their location explicitly in their code. In Figure 3, the
loader and unloader programs are location-oblivious, and the cart programs are
location-controlling.

Finally, we turn our attention to the Interactions section. It is intended
to serve as a repository for the inter-program coordination rules. In general,
statements present in the Interactions section can be of an arbitrary nature and



are permitted to refer to variables owned by the individual programs contained
within the system.

In the case of a mobile system, it is reasonable to assume that interactions
are local. When mobile code is involved, interactions among programs take place
whenever the components are co-located. In the presence of physical mobility,
connectivity relies on wireless communication that is limited in range. Given
such considerations, a reasonable restriction might be to require all statements
appearing in the Interactions section to limit their effects only to pairs of vari-
ables in co-located programs. The co-location requirement can be a reasonable
abstraction for situations in which all components within some limited region
of the space can communicate with each other. Pairwise interactions may be
imposed due to the nature of the underlying communication protocols (e.g.,
message passing). In Figure 3, both interactions are guarded by the requirement
that the affected components are at the same location. In one case, whenever
either cart is co-located with a loader, loading is possible but not required. In
the other case, by using a reactive statement, a cart co-located with an empty
unloader is guaranteed to unload.

At this point, all the essential features of this mobility schema are represented
in Figure 3, but a slight generalization could result in a richer model. We achieve
this by permitting the equality relation used among locations to be replaced by
any arbitrary binary relation among points in space. For instance,

within range(A.λ, B.λ) or reachable(A.λ, B.λ)

would allow one to accommodate the notion of limited wireless transmission
range or connectivity in wired networks, respectively.

In this paper, we are concerned with a particular class of mobile systems, one
that emphasizes spatial and temporal decoupling among components. In coor-
dination models, such decoupling facilitates component interactions (exhibiting
various degrees of decoupling) that are more abstract than those provided by
the typical communication layers. In the remainder of this paper, we will explore
styles of coordination and Mobile UNITY’s ability to capture their essential fea-
tures in schemas.

4 Agent Mobility in Wired Networks

Agent systems represent a popular new mode of computing specifically designed
to take advantage of the global space offered by the Internet. An agent is a code
fragment that can move from site to site in purposeful pursuit of some task
defined at its point of origin. The underlying space is a graph whose vertices
denote servers willing and able to accept agents. Since Internet connectivity
may be perceived to be reliable and universal, the edges in the graph represent
accessibility to other sites. Each agent carries with it not only the code to be
executed, but also data and control state that affect its actions at each site.
The movement from one site to the next may be autonomous (subjective) or
initiated by the server (objective). Agents belonging to the same community of



applications may interact with each other. In D’Agents [7], for instance, message
passing, streams, and events are used to enable agents to communicate among
themselves. Agent systems that stress coordination rather than communication
tend to rely on tuple spaces, in the spirit of the orginal coordination modality
proposed in Linda [6]. TuCSoN [17], MARS [2], and Limbo [5] are just a small
sample of agent sytems that employ tuple based coordination. They provide the
basis for the schema proposed below.

In examining such systems, the following features capture their essence:

– agent mobility among servers
– admission control
– coordination by means of tuple spaces located on the server
– traditional tuple space operations, e.g., out(tuple), in(pattern), rd(pattern)
– augmentation of tuple space operations with reactions that extend the effects

of the basic operations to include arbitrary atomic state transitions.

A coordination schema that enforces this design style will need to distin-
guish between agents and servers. Syntactically this can be done by substituting
Server or Agent for the keyword Program, as needed. For instance, one can
do this by means of a macro definition of the form:

Agent X ≡
Program Agent X

With this distinction, we can examine the different requirements for agent and
server programs. The agent location is the location of one of the servers and the
change in location can be accomplished by modifying λ to hold the value of some
other server location, including the agent’s home location. For reasons having to
do with admission control, it is best to think of λ as holding a pair of values:

λ ≡
(current location, desired server relocation)

and provide the agent with a single move operation:

goto(S) ≡
λ := (λ ↑ 1, S)

We use var ↑ n to denote the nth element held by the record-like variable var.
Since checking that the new location is valid requires comparing the agent’s
location with the location of a server, the actual move (i.e., the assignment to
λ) is relegated to the Interactions section.

While the agent is present at a particular server, all interactions with the
server and other agents take place by sharing a single tuple space owned by the
server. The variable T could be used to represent such a tuple space (assumed
here to be a set of tuples) inside the agent with the Interactions section estab-
lishing the tuple sharing rules. Access to T is restricted to tuple space operations.
The out operation simply adds a tuple to the set if the guard g is true:



out(t) if g ≡
T := T ∪ {t} if g.

The in operation is blocking and removes a tuple matching some pattern p:

z = in(p) if g ≡
〈 θ : θ = θ′.(θ′ ∈ T ∧match(θ′, p)) ∧ g :: z := θ‖T := T − {θ}〉

where we use the nondeterministic value selection expression x′.Q to indentify
one suitable tuple. If none exists, the operation is reduced to a skip. Busy waiting
is the proper modeling solution for blocking operations in the Mobile UNITY
context. The rd operation is similar to an in, the only difference being that the
returned tuple is not removed from the tuple space.

The server also has a location λ and a variable T , but its location cannot
change. For the sake of uniformity, the server’s location variable must hold a pair
like the agent’s location variable λ, but the two fields hold identical values. Since
the server is stationary, it cannot change its λ variable, and the goto operation
is not available. However, the server needs to be aware of the presence of agents
at its location, either in order to refuse admission by sending an agent back
before it can have any local effects or by forcing an agent to move elsewhere
when conditions demand it. The presence of an agent could be made known to
the server by introducing a new variable Q in both agents and servers. On the
agent, the variable contains a tuple i that identifies that agent but no operations
are available to access it. The Interactions section will ensure that all the
variables Q of all the agents are shared with the server forming a set of all
agents present at that location. (The server need not store its own identity in
Q.) The server can discover the presence of agents by reading the contents of Q
without being able to modify it. This can be accomplished by hiding Q inside
an operation such as:

AG:=LocalAgents() ≡
AG := Q

Finally, the server may request an agent to move to some other location by
employing an operation such as:

Move A to S ≡
M := (A,S)

which places in the hidden variable M a request to move agent A to server S.
The actual move is encoded in the Interactions section, which will determine
the location of S, will use it to change the location of A, and clear the request
from M .

The syntactic restrictions on agent and server code are complemented by
coordination patterns built into the Interactions section. First, we must specify



the sharing rules governing the variables T and Q. Using the transient and
transitive variable sharing of Mobile UNITY, the sharing rules become:

S.T ≈ A.T when S.λ ↑ 1 = A.λ ↑ 1
engage S.T

disengage S.T., ∅

S.Q ≈ A.Q when S.λ ↑ 1 = A.λ ↑ 1
engage S.Q ∪A.Q

disengage S.Q− {A.ι}, {A.ι}

where we assume that the initial value of A.Q is permanently saved in A.ι,
another hidden variable.

Mobility requests are handled by introducing reactive statements designed
to extend the request (a local operation) with its actual processing (a global
coordination action). For instance, the objective move operation requested by
the server is transformed into an equivalent hidden subjective request:

A.λ := (A.λ ↑ 1, S.λ ↑ 1)‖S′.M := nil

reacts-to A.λ ↑ 1 = S′.λ ↑ 1 ∧ S′.M = (A,S).

This, in turn, results into two cases to consider: when A is accepted by the
destination S and the move is carried out:

A.λ := (S.λ ↑ 1, S.λ ↑ 1) reacts-toA.λ ↑ 2 = S.λ ↑ 1 ∧ admitted(A.Q, S)

and when the move is rejected and the agent is reactivated at its current location:

A.λ := (A.λ ↑ 1, A.λ ↑ 1) reacts-to A.λ ↑ 2 = S.λ ↑ 1 ∧ ¬admitted(A.Q, S).

As an example, consider an inspector agent that moves among unloader ser-
vice sites and computes the total number of packages that pass through the
system. Each unloader is assumed to hold a local counter of packages. The in-
spector adds the local counter to its own and resets the local one. Once all sites
are visited, the inspector agent returns home. Each site will reject any inspec-
tor agent that is not authorized to collect the data. By employing the schema
presented in this section, the agent code for this example becomes:



program Inspector(k) at λ

always

home again = (λ = (home(k), home(k)))

declare
. . .

initially

ι = (inspector.k, password(k))
[] Q = {ι} [] T = {} [] N = 0 [] λ = (home(k), home(k))

assign

〈goto(next server(λ)); t := in(〈counter, int : m〉);
N := N + t ↑ 2; out(〈counter, 0〉)〉

[] N := 0 reacts-to home again

end

One element still missing from the schema definition is the augmentation of
tuple space operations with arbitrary extra behaviors. This can be accomplished
by separating the initiation of an operation from its execution. An in operation,
for instance, can be redefined as a request RQ which, in turn, can enable a
programmer specified reaction on the server:

t:=in(p) if g ≡
〈RQ := (id, in, p) if g; t, T, tt := tt, T − {tt}, nil if tt 6= nil〉

〈‖θ : θ = θ′.(θ′ ∈ T ∧ match(θ′, p)) :: tt := θ〉 reacts-toRQ ↑ 3 = p

action extends(ρ, ω, π) ≡
action reacts-toRQ 6= nil ∧ tt 6= nil ∧ ρ(RQ ↑ 1) ∧ ω(RQ ↑ 2) ∧ π(RQ ↑ 3)

‖ RQ := nil reacts-toRQ 6= nil ∧ tt 6= nil

where (ρ, ω, π) specifies the criteria under which the in operation is extended.
This illustration assumes one extension only, but it could be rewritten to accom-
modate multiple extensions to be applied in a nondeterministic order.

Since systems consist of components controlling local actions and interac-
tions that extend their effects to other components, it is not suprising that the
schema definition also seems to be structured along these lines: mostly syntac-
tic restrictions of the component code (further refined by component type) and
coordination patterns of a behavioral nature, restricted in scope solely to vari-
ables involved in the process of information sharing. It is this structuring of the
schema definition that qualifies it as a coordination schema.

5 Agent Mobility in Ad Hoc Networks

In this section we explore the implication of extending the mobile agent paradigm
to ad hoc networks. Ad hoc networks are formed when hosts come into wireless



contact with each other and communicate as peers in the absence of base sta-
tions and any wired infrastructure. In such settings, one can envision systems
consisting of hosts that move through physical space and agents that reside
on such hosts. Agents can coordinate application activities with other agents
within reach, and also have the ability to move from one host to another when
connectivity is available. One of the very few systems to offer these capabilities
is Lime [16], which will be used as a model for the schema we explore in this
section. The key features of Lime are as follows:

– each agent may create an arbitrary number of local tuple spaces, each bearing
a locally distinct name

– agents coordinate by sharing identically-named tuple spaces belonging to
agents on connected hosts, i.e., each agent has access to all the tuples in
such combined tuple spaces (called federated tuple spaces).

In Mobile UNITY, it is convenient to represent each tuple space as a pair of
variables, one holding a name and the other storing the set of locally-owned
tuples that are part of that tuple space, tuples the agent is willing to share with
other agents. Consequently, the tuplespace sharing rule can be easily expressed
as follows:

A.X T ≈ B.Y T when connected(A,B) ∧A.X N = B.Y N

engage A.X T ∪B.Y T

disengage

〈set t, C, Z : connected(A,C) ∧A.X N = C.Z N

∧ t ∈ A.X T ∧ t owned by C :: t〉,
〈set t, C, Z : connected(B,C) ∧B.Y N = C.Z N

∧ t ∈ B.Y T ∧ t owned by C :: t〉

where connected is defined in terms of reachability in the ad hoc network and
the extensions N and T refer to names and sets of tuples, respectively. Upon
connection, the engagement value is the union of all the connected identically-
named tuple spaces, and, upon disconnection, the set of tuples is repartitioned
according to the new connectivity pattern. However, in order to accomplish this,
the concept of tuple ownership needs a representation; we assume that each tuple
includes a current location field (an agent id, ι) which allows us to define:

t owned by C ≡
t.loc = C.ι

In the above, we take the liberty to assume that fields in a tuple could be
referenced by name. It is interesting to note the kind of hierarchical spatial or-
ganization emerging from this schema: hosts have locations in the physical space
and their wireless communication capabilities can be abstracted by a reachabil-
ity predicate, not shown but implied in the definition of connected; agents reside
on hosts or servers in a manner similar to that shown in the previous section (for
this reason, we do not repeat the details of agent movement even though now it



is conditional on the availability of connectivity); tuples reside on agents, a new
logical space defined by the name of the tuple space combined with that of the
agent.

Since tuples have a logical location, it becomes reasonable to consider the
possibility of restricting operations on tuples to particular subspaces, and to en-
tertain the notion of tuple movement. Actually, Lime offers both capabilities.
For instance, in and out operations can be restricted to a specific agent loca-
tion. More interestingly, out operations can be targeted to a particular location,
i.e., the named tuple space of a particular agent. Since the agent may not be
connected at the time, the tuple is augmented with a second location field that
stores the desired destination. This is reminiscent of the agent mobility treat-
ment from the previous section but with one important difference—the tuple will
continue to reside locally until such time that migration becomes possible. Mi-
gration, immediate or upon the establishment of a new connection, is captured
by an interaction of the form:

A.X T :=
〈set t, B, Y : t ∈ A.X T ∧ t.dest = B ∧ connected(A,B)
∧ A.X N = B.Y N :: t[loc : B; dest : B]〉

∪
〈set t, B, Y : t ∈ A.X T ∧ t.dest = B ∧ ¬(connected(A,B)
∧ A.X N = B.Y N) :: t〉
reacts-to true

where we use the notation t[field name : newvalue] to denote a modification of
a particularly named field in tuple t.

Since the purpose of this paper is to explore coordination schemas, we refrain
from including here all features of Lime and limit ourselves to noting that a com-
plete formalization of Lime in terms of Mobile UNITY has been performed [15].
The features that were discussed in this section demonstrate the applicability
of the model to an area of computing of growing importance, one that presents
new challenges to the software engineering community.

6 Mobility in Malleable Program Structures

In some systems, the definition of space is the program itself. In Mobile Ambi-
ents [3], for instance, the program consists of environments called ambients that
can be embedded within each other. Mobility takes place by altering the relation
among ambients, which, for mobility purposes, are treated as single units. An
ambient can exit its parent and become a peer with the parent; an ambient can
enter a peer ambient; and an ambient can dissolve the domain boundary of a
peer ambient. All these can be done only if the name of the relevant ambient
is known. This is a way to model security capabilities. Other systems, such as
MobiS [9], are more restrictive in terms of the range of operations provided for
mobility while others, such as CodeWeave [10], may approach mobility at a much



finer level of granularity—in CodeWeave, single statements and single variables
can be moved anywhere in the program structure where the latter is distributed
across hosts and is hierarchical along the lines of block-structured programming
languages.

The schema we describe in this section is directly inspired by Mobile Ambi-
ents. Key points of distinction will be related to fundamental differences between
a process algebra and a programming notation that does not support dynamic
process creation or scope restriction. To avoid possible confusion, we will use the
term spatial domain, or simply domain, to refer to the analog of an ambient.
The defining features of the resulting schema are:

– hierarchical structuring of the space in terms of embedded domains that
reflect directly the overall structure of the system

– protection enforcement via capabilities that rely on secret unique names
– mobility in the form of localized restructuring of the system structure.

In Mobile UNITY, a system is simply a collection of programs. One way
to organize it hierarchically and still allow for dynamic reconfiguration is to
impose a partial order over the set of programs in a manner that corresponds
to a tree having an imaginary root. A domain is defined in terms of all the
programs that share a common parent, and the name of the parent can be used
to uniquely designate that domain. This can be encoded by simply setting λ to
refer to the (program, parent) pair of names. An assignment of location values
in the Components section defines the initial program structure. At the start,
each program is given a unique name which, as explained later, can change over
time. The program instance parameter can be used for this purpose. Below is
an example of a well-formed Components section:

A(1) at (1, 0)
B(1) at (1.1, 1)
C(1) at (1.2, 1)

where A, B, and C receive hidden distinct names 1, 1.1, and 1.2, respectively.
The above establishes four domains: domain 0, which contains A(1); domain
1, which contains the peer components B(1) and C(1); domain 1.1, which is
empty; and domain 1.2, which is also empty. References to domain names will
be needed in the programs. For this reason we assume that a distinguished
variable ι provides each program with its own name, assumed to be unique. We
assume, however, that λ (the pair consisting of ι and its parent, i.e., the domain
name) is not directly accessible to the individual programs, i.e., the schema rules
out statements that refer to λ in any way.

To enforce some sort of scoping constraints, we simply require that program
to program communication be restricted only among peers. The type of commu-
nication is not important for the remainder of this presentation, but the reader
should assume that it is available in the form of tuple space coordination or
synchronous message exchange. One thing that is important is the fact that
program/domain names can be passed among programs.



In the spirit of Mobile Ambients, we treat naming as the critical element
of any security enforcement policy. Without exception, all operations entailing
mobility involve a domain name reference, and such names must be acquired
via some communication channel and cannot be guessed. For instance, the exit
and enter operations allow a component to move up in the structure at the level
of the current parent program and to move down in the structure inside the
domain associated with one of its peers, respectively. In both cases, the correct
name of the parent or the sibling must be known in order for the operation
to succeed. This will become apparent only when we discuss the coordination
semantics expressed in the Interactions section since both operations reduce
simply to appropriate requests for action:

x :=exit n if g ≡
〈OP := (exit, n) if g; x := true if OP ↑ 1 = pass; OP := nil〉

y := enter n if g ≡
〈OP := (enter, n) if g; y := true if OP ↑ 1 = pass; OP := nil〉

The variables x and y are used to communicate back to the program that the
operation succeeded. We use a transaction to set the variables x and y to the
correct values after the coordination is completed.

In Mobile Ambients, open n dissolves the boundaries of a peer level ambient
n. In our case, this is equivalent to bringing the subordinate programs to the
same level as the parent. The domain does not disappear, but it does become
empty. Locally, the operation is encoded again simply as a request which may
or may not be satisfied:

x := open n if g ≡
〈OP := (open, n) if g; x := true if OP ↑ 1 = pass;OP := nil〉

The most subtle aspect of our attempt to create a structured navigation
schema along the lines defined by Mobile Ambients is the management of domain
names. In process algebras, the name restriction operator provides a powerful
mechanism for generating new, unique names and for using them to enforce pri-
vate communication among components. The operational approach associated
with a programming notation such as Mobile UNITY forces us to consider an
operational alternative that can offer comparable capabilities. Our solution is to
permit domain (i.e., program) renaming. A renamed program cannot be refer-
enced by anyone else unless the new unique name is communicated first—this is
the analog of scope extension in process algebras.

The renaming operation assumes the form:

d := rename n if g ≡

〈OP := (rename, n, new()) if g; d := nil;
d := OP ↑ 3 if OP ↑ 1 = pass;OP := nil〉

When renaming is successful, the new domain name is returned in d in order to
facilitate it being communicated to other components. In principle, a component



may be able to rename itself, its domain (i.e., its parent), and its peers—as long
as it has their correct names. This can be restricted further if necessary.

The Interactions section needs to encode the coordination rules associated
with the operations above. The general pattern is to verify that the referenced
name is correct, record in the variable OP this fact, and complete all necessary
changes to the domain structure. We illustrate this by considering the case when
a request is made to rename the current domain, i.e., the parent name:

P.OP := (pass, n,m) reacts-to P.OP = (rename, n,m) ∧ P.λ ↑ 2 = n

Q.λ := (m,Q.λ ↑ 2) reacts-to P.OP = (pass, n,m) ∧Q.λ ↑ 1 = n

R.λ := (R.λ ↑ 1,m) reacts-to P.OP = (pass, n,m) ∧R.λ ↑ 2 = n

The first reactive statement records the success of the renaming for the case
when n is indeed the domain name containing P , the initiator of the operation.
The second reactive statement changes the domain name while the third changes
the domain reference in all the components associated with the renamed domain.
Similar code can be used to process exit, enter, and all other open requests.

As an illustration let us consider two programs P and Q which desire to share
private information in a protected domain, and let us assume the existence of a
third program S. Initially P , Q, and S are assumed to be part of some domain
U , as shown in Figure 4a.

U
�

(a) (b)

U
�

U
�

(c)

S
�

S
�

P
���

Q �
�
S
�

P
� �

Q � P
���

Q �

Fig. 4. Domain configurations

We use superscripts to denote the domain names. Assuming that P and Q know
the name γ of S, they both can issue the operation enter γ changing the con-
figuration to that shown in Figure 4b.

At this point, P can rename S with a new unique name δ and communicate
the name δ to Q. The resulting configuration is shown in Figure 4c. Now, both
P and Q can exit and enter S at will with no risk that any other program might
be able to enter their private domain.

One problem this example ignores is the situation that some other program
R may have entered S prior to P and Q. While R is trapped forever (R cannot
perform any operations on S because the name of S is changed), R could interfere
with the data exchanges between P and Q. There are several ways to avoid this



situation. One interesting solution is to allow P to know the cardinality of its
domain, i.e., the number of components in S.

7 Location-Sensitive Synchronous Communication

The study of synchronous communication has its origins in CSP [8] and was later
refined with the introduction of an entire family of process algebras, including
CCS [13] and π-calculus [14]. Most often, events are identified by naming a
communication channel and are differentiated as being send (c) and receive (c)
events associated with distinct processes. Pairs of matching events are executed
simulataneously. If data is actually being exchanged, the typical notation is c!x
for sending a value and c?x for receiving a value. In principle, many pairs of pro-
cesses could be synchronized using the same channel name with matching pairs
being selected nondeterministically. In π-calculus it becomes possible to protect
access to a specific channel by creating new channel names and communicat-
ing them to other specific processes. In this section, we explore a schema that
has these kinds of features and we show how communication can be constrained
based on the relative location among processes. Let us consider first a generic
event model, á la CSP [8], in which a process can send (c!x) or receive (c?x) val-
ues on a specified channel. Since Mobile UNITY programs are not sequential in
nature, blocking will be interpreted as no additional operations being permitted
to take place on the respective channel. Finally, we allow a process to use the
same channel in both directions, but not at the same time.

Under these assumptions, an output operation may assume the following
syntax and semantics:

c!x if g ≡
c := (out, x) if g ∧ c = nil

The local view of the channel stores a request for output, if not already in use.
If the guard is passable and the channel is not in use, a request for an input
operation works similarly, but requires the transfer of the channel value to a
specified variable:

c?x if g ≡
c := (in, nil) if g ∧ c = nil [] x, c := c ↑ 2, nil reacts-to c ↑ 2 6= nil

The reaction guarantees the immediate data transfer and the resetting of the
channel state.

As before, the actual coordination takes place in the Interactions section.
The standard solution is to simply match pairs of pending input/output opera-
tions present in different processes and involving the same channel:

P.c,Q.c := nil, (in, P.c ↑ 2)when P.c ↑ 1 = out ∧Q.c ↑ 1 = in

where process names P and Q and channel name c are universally quantified.



Another alternative is to carry out communications as soon as they are fea-
sible. This can be accomplished simply by replacing the asynchronous transfer
above by a corresponding reactive statement:

P.c,Q.c := nil, (in, P.c ↑ 2) reacts-to P.c ↑ 1 = out ∧Q.c ↑ 2 = in

The final variation on this theme is to restrict such communications to situations
in which P and Q are co-located, as in:

P.c,Q.c := nil, (in, P.c ↑ 2)
reacts-to P.c ↑ 1 = out ∧Q.c ↑ 2 = in ∧ P.λ = Q.λ.

So far we assumed that the channel names were fixed and the lack of any
protection against unauthorized usage. In order to capture the unique ability
of π-calculus to create new channel names that can be passed around among
processes, we need to distinguish between the variable used to refer to a channel
and the channel name. By storing the channel name, it becomes possible for it
to be changed and shared. Surprisingly, the changes in the schema are relatively
straightforward. First, we assume the existence of a function that returns a
unique system-wide name that can be stored in a local program variable and
cannot be forged:

η := new().

Second, we alter the structure of the local channel to accept a new name, but
only when not in use:

c named η if g ≡
c := (η, nil) if g ∧ c ↑ 2 = nil

The send and receive operations are altered so as to not impact the channel
name. The requests are stored in the second field associated with the local view
of the channel:

c!x if g ≡
c := (c ↑ 1, (out, x)) if g ∧ c ↑ 2 = nil

c?x if g ≡
c := (c ↑ 1, (in, nil)) if g ∧ c ↑ 2 = nil

[] x, c := c ↑ 2 ↑ 2, (c ↑ 1, nil) reacts-to c ↑ 2 ↑ 2 6= nil

Finally, input/output commands are matched based on names associated
with the individual channels, and, if desired, constrained to co-location:

P.a,Q.b := (P.a ↑ 1, nil), (Q.b ↑ 1, (in, P.a ↑ 2 ↑ 2))
where P.a ↑ 1 = Q.b ↑ 1 ∧ P.a ↑ 2 ↑ 1 = out

∧ Q.b ↑ 2 ↑ 1 = in ∧ P.λ = Q.λ.



The result is an interesting combination of a mobility schema with a dynamic
reconfiguration schema.

8 Conclusion

The premise of this position paper has been the notion that effective use of
powerful models in practical settings must rely on disciplined use of the model.
One formal strategy for establishing such a discipline of thought and design is to
impose an appropriate programming schema, i.e., mostly syntactic restrictions
over the model. We explored the schema-based approach in the particular do-
main of coordination models and languages for mobility and produced evidence
that Mobile UNITY can be readily customized to accommodate a diverse set of
coordination models in a manner that maintains the clean separation between
fully decoupled component actions and the coordination semantics that tie them
together. We view the examples we provided mostly as exercises designed to illus-
trate ideas rather than solve specific problems or define novel formal strategies.
Nevertheless, some of the illustrations offer practical guidelines for the use of
a formal notation such as Mobile UNITY as the basis for precise definitions of
coordination-based middleware constructs. At the same time, some of the ex-
ercises suggest interesting new investigative paths deserving of a more careful
formal analysis.

Acknowledgements

This research was supported in part by the National Science Foundation un-
der Grant No. CCR-9970939 and the Office of Naval Research under ONR MURI
research contract N00014-02-1-0715. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the sponsoring agencies.

References

1. R. J. R. Back and K. Sere. Stepwise refinement of parallel algorithms. Science of
Computer Programming, 13(2–3):133–180, 1990.

2. G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing, 4(4):26–35, 2000.

3. L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science, Special
Issue on Coordination, 240(1):177–213, June 2000.

4. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, New York, NY, 1988.

5. N. Davies, S. Wade, A. Friday, and G. Blair. Limbo: A tuple space based platform
for adaptive mobile applications. In Proceedings of the International Conference
on Open Distributed Processing/Distributed Platforms (ICODP/ICDP ’97), pages
291–302, May 1997.

6. D. Gelernter. Generative communication in Linda. ACM Computing Surveys,
7(1):80–112, Jan. 1985.



7. R. Gray, D. Kotz, G. Cybenko, and D. Rus. D’agents: Security in a multiple-
language, mobile agent system. In G. Vigna, editor, Mobile Agents and Security,
volume 1419 of Lecture Notes in Computer Science, pages 154–187. 1998.

8. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
9. C. Mascolo. MobiS: A specification language for mobile systems. In Proceedings of

3rd Int. Conf. on Coordination Models and Languages, volume 1594, pages 37–52.
Springer-Verlag, 1999.

10. C. Mascolo, G.P. Picco, and G.-C. Roman. A fine-grained model for code mobility.
In Proceedings of the Seveth European Software Engineering Conference ESEC,
volume 1687 of Lecture Notes in Computer Science, pages 39–56. Springer-Verlag,
September 1999.

11. P.J. McCann and G.-C. Roman. Compositional programming abstractions for
mobile computing. IEEE Transactions on Software Engineering, 24(2):97–110,
1998.

12. P.J. McCann and G.-C. Roman. Modeling Mobile IP in Mobile UNITY. ACM
Transactions on Software Engineering and Methodology, 8(2):115–146, April 1999.

13. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and

II. Information and Computation, 100(1):1–77, 1992.
15. A.L. Murphy. Enabling the Rapid Development of Dependable Applications in the

Mobile Environment. PhD thesis, Washington University in St. Louis, August
2000.

16. A.L. Murphy, G.P Picco, and G.-C. Roman. Lime: A middleware for physical and
logical mobility. In Proceedings of the 21st International Conference on Distributed
Systems, pages 524–533. IEEE Computer Society Press, April 2001.

17. A. Omicini and F. Zambonelli. The TuCSoN coordination model for mobile infor-
mation agents. In Proceedings of the 1st Workshop on Innovative Internet Infor-
mation Systems, June 1998.

18. G.P. Picco, G.-C. Roman, and P.J. McCann. Reasoning about code mobility in
Mobile UNITY. ACM Transactions on Software Engineering and Methodology,
10(3):338–395, 2001.

19. G.-C. Roman and P. J. McCann. A notation and logic for mobile computing.
Formal Methods in System Design, 20:47–68, 2002.


	Mobile UNITY Schemas for Agent Coordination
	Recommended Citation
	Mobile UNITY Schemas for Agent Coordination

	tmp.1472055847.pdf.rPvsu

