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Abstract—With the expansion of Web sites to include business functions, a user interfaces with e-businesses through an interactive

and multistep process, which is often time-consuming. For mobile users accessing the Web over digital cellular networks, the failure of

the wireless link, a frequent occurrence, can result in the loss of work accomplished prior to the disruption. This work must then be

repeated upon subsequent reconnection—often at significant cost in time and computation. This “disconnection-reconnection-repeat

work” cycle may cause mobile clients to incur substantial monetary as well as resource (such as battery power) costs. In this paper, we

propose a protocol for “recovering” a user to an appropriate recent interaction state after such a failure. The objective is to minimize the

amount of work that needs to be redone upon restart after failure. Whereas classical database recovery focuses on recovering the

system, i.e., all transactions, our work considers the problem of recovering a particular user interaction with the system. This recovery

problem encompasses several interesting subproblems: 1) modeling user interaction in a way that is useful for recovery,

2) characterizing a user’s “recovery state,” 3) determining the state to which a user should be recovered, and 4) defining a recovery

mechanism. We describe the user interaction with one or more Web sites using intuitive and familiar concepts from database

transactions. We call this interaction an Internet Transaction (iTX), distinguish this notion from extant transaction models, and develop

a model for it, as well as for a user’s state on a Web site. Based on the twin foundations of our iTX and state models, we finally describe

an effective protocol for recovering users to valid states in Internet interactions.

Index Terms—Mobile, Internet, transaction, user recovery, interaction model, parametric dependencies, dependent component action

graph, ACID properties.

æ

1 INTRODUCTION

WEB sites are increasingly making use of dynamic
scripting techniques, which allow greater interactiv-

ity than static HTML. Here, users interact with dynamic
sites to achieve specific goals, typically through a sequence
of actions. A disruption in the sequence due to the failure of
one of the participating or intermediary systems typically
results in the user having to restart the sequence, often at
significant expense to both the user and to e-businesses. For
mobile users accessing the Web over digital cellular
networks, such disruptions occur frequently, as the wireless
link is much less reliable than wired connections. In this
paper, we focus on the case of the mobile Internet user.

Consider a scenario in which a user is buying an airline

ticket over his wireless Internet connection. He first logs on to

the airline site with his frequent flier number, then checks his

frequent flier mileage. He then enters his preferred travel

dates and destination, and chooses among the itineraries

offered by the site, selects his seat, enters his credit card

information, and receives a confirmation of the purchase.
Note that this interaction can span multiple sites, as may be
the case, for example, where an airline passenger’s initial

reservation request is entered on the airline’s site, but
processed on a different site to whom the airline has
outsourced online reservation processing.

In both these cases, if the user’s wireless connection

drops (as occurs frequently [22]) during the purchase step,
he must reconnect to the Internet and restart the sequence of
actions. Significant amounts of time and effort are wasted in

redoing previously completed work. The client incurs
significant costs in battery resources and airtime, as well
as the user’s own time. On the server side, this includes

expensive steps—such as processor-intensive login and
authentication and I/O intensive database lookups. Redo-
ing this work can contribute to scalability problems on Web

sites, particularly when redundant processing causes first-
time jobs to wait for computational resources to become
available.

1.1 The Problem

In the scenario described above, we would like to be able to

avoid the repetition of work (computation, communication,
I/O) required after a connection disruption, i.e., we would
like to reduce the cost of recovering a user’s interaction.

Much like a database transaction, in many ways this

interaction consists of a number of actions aimed at
achieving a particular goal or set of goals. However, the
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recovery of such interactions is quite different from the
classical notion of transaction recovery. In recovering
transactions, the focus is on ensuring that the underlying
database system is rendered consistent. Here, if a transac-
tion prematurely aborts, the transaction is rolled back and is
resubmitted after the database system recovers. In our case,
we assume that the database and application systems have
the necessary recovery components in place—this is not our
concern. We are concerned with the significant cost to the user
of resubmitting the transaction all over again, and so our goal is
to devise a mechanism where users can efficiently and
quickly restart from an appropriate point prior to discon-
nection (yet subsequent to the beginning of the interaction)
so that the interactions can resume from that point. Thus,
our concern is not “system recovery,” but rather “user
recovery.”

1.2 Goals, Tasks, and Contributions

The purpose of this paper is twofold: 1) to propose ways for
users to “recover” from interaction failures by minimizing
the amount of work that must be redone upon reconnection,
and 2) to demonstrate that this recovery problem is
interesting, not only because of the application domain,
i.e., the Internet and the World Wide Web, but also because
of a number of interesting connections to and differences
between this scenario and the recovery scenarios consid-
ered in extant (transaction) literature.

1.3 The Interaction Recovery Problem

In the context of a specific user interaction, a user interacts
with one or more Web sites through a sequence of actions
aimed at achieving a specific goal or set of goals. Since these
characteristics resemble those of a transaction, in what
follows, invoking the transaction metaphor, we describe user
interaction with a Web site as an Internet Transaction (iTX).
The goal here is to recover a user’s iTX in the case of failure.
We now discuss the overall scope of the iTX recovery
problem by identifying several interesting subproblems.

1.3.1 Describing and Capturing a User’s “State” during

the Course of an iTX

Determining the components of a user’s state is a
prerequisite to understanding exactly what it is that we
are recovering for a user. We are not aware of any usable
and implementable models of interaction states of users
and, consequently, propose our own state model—which is
simple and generic (making it useful beyond the scope of
this work). Finally, we describe mechanisms for capturing a
user’s state using data structures and algorithms.

1.3.2 Choosing a User State for Recovery

Given a set of user states produced by a user’s iTX, how can
we decide to which state to recover a user? Ideally, we
would simply choose the user’s most recent state before
failure. However, this is not always possible or correct,
since a user’s state may have become invalid, for instance, if
the data in the underlying database is modified between
failure and reconnection.

Another complexity that arises is the potential for
multiobjective interactions in an iTX. Here, the sequence of
user actions as observed by a Web site (or multiple sites) may

not correspond to a linear sequence of actions toward a
single objective, but rather may consist of interleaved
progress toward multiple user objectives. Consider, for
instance, the example of purchasing an airline ticket online.
Here, after entering his preferred travel plan, but before
confirming the purchase of his ticket, our user might check
his frequent flier mileage. Effectively, in the same interaction
session, the user is performing two tasks: mileage checking
and ticket purchase, where the mileage-checking action is
not directly related to the ticket-buying action. The recovery
protocol must deal with the complexities arising from a user
expressing more than one objective in the same iTX.

1.3.3 Recovering a User after Connection Failure

Given a means of describing iTXs and user states, how can
we use this information to recover a user to a useful state in
his iTX? We have identified the necessary properties of
such a protocol and developed a recovery protocol
satisfying these properties, taking into account architectural
considerations of wireless connections to the Internet.

We note here that a server may fail while processing a
user request. This is particularly problematic in the case
where the server fails while processing a transaction-
oriented request, such as a credit card payment. In this
scenario, the user, whether he accesses the network over a
wired or wireless link, has no means of knowing whether
his payment action completed or not. In this paper, we are
interested in developing protocols that provide the same

quality of service guarantees for users of both mobile that are
available to users of wired connections. In other words, our

protocols address the problems that arise due to the failure of a

user’s wireless connection, rather than addressing the more

general problem of HTTP reliability.

1.4 Objectives of the Paper

Having described the problem space considered here, we
summarize the objectives of this paper as follows:

1. to model an iTX, i.e., a user’s interaction with one or
more Web sites, and describe the properties of iTXs;

2. to model user states relative to the Web site (or sites),
where the state encapsulates a set of information
useful for recovery,

3. to develop an algorithm to determine which states
are valid in an iTX,

4. to find ways of extracting different user objectives
and the corresponding sequences of user actions
from a single iTX,

5. to propose a user action recovery technique to
handle failures, and

6. to show the expected behavior of the protocol in
possible failure cases.

The remainder of this paper is organized as follows:
Section 2 describes related work. Section 3 describes the
basic notion of an iTX. Section 3.3 describes the properties
of iTXs. Section 4 describes an iTX model and discusses
how an iTX can be decomposed into a set of component
sub-iTXs, where each sub-iTX represents a logically
separate objective in an interaction. Section 5 describes
our recovery protocol and Section 6 describes how the
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protocol will behave in possible failure cases. Section 7
concludes the paper.

2 RELATED WORK

The theory and application of transaction-based processing
in the context of database systems are well-researched
topics. Early work such as [1] and [14] describe the basic
tenets of transaction processing and compare the perfor-
mance of transaction processing protocols. Long transac-
tions (e.g., Sagas) are discussed in [12] and [4].

The metaphor of transaction processing has since been
extended to other application areas. The ACTA framework
[4] describes a formal framework for extending the idea of a
transaction to other areas. For example, [2], [13], [19]
describe workflow processing using transactions and work-
flow templates, while [23] utilizes transactions to model
mobile interactions. The notion of transactions has even
been applied to electronic commerce, as in [18] and [21].

All the works cited above have one idea in common: The
activity modeled as a transaction consists of a predefined
sequence of operations (typically called a template in the
workflow literature). However, user activity with the Web
often progresses in a “stream-of-consciousness” fashion,
where neither the user nor the site knows which operation
will come next in the interaction. While this paper describes
a user’s interaction with one or more Web sites using the
metaphor of a transaction, we relax the restriction that the
transaction models an interaction with a predefined
sequence of operations. Rather than using predefined
templates, our proposed approach observes the sequence of
operations as they occur, logs a “state” corresponding to
each operation, saves these “states” in a log, and utilizes
these “states” to recover the user to a useful point in his
interaction.

We also draw on previous work in recovery and graph
theory. Database recovery is described clearly in [16]. In [17],
the authors describe a protocol for mobile recovery based on
basic transaction recovery. Our work differs from this in that
we consider the validity of stored user states, as well as
multiobjective transactions. In [3], the authors describe an
approach to recovering database-backed applications.
Again, this work takes a server-centric view, while we
consider recovery from the point of view of a single user. In
terms of graph theory, we draw on work described in [5].

3 iTX: DEFINITION AND PROPERTIES

We define the notion of an iTX as follows:

Definition 1. An iTX I is a sequence of user actions
hA1; A2; . . . ; Ani (called component actions) initiated by a
particular user in the context of a single user session on a
particular Web site or a set of Web sites, to achieve one or more
user objectives.

The reader will note that we consider user interaction in
the context of a user session, rather than in the more familiar
context of a Web session. Clearly, this notion requires further
explanation. In this section, we first use an example to
convey the basic idea of an iTX. We then clarify the notion

of user sessions as opposed to Web sessions and then

consider the properties of iTXs.

3.1 An iTX Example

We now describe an example scenario, which we also use as

a running example through the remainder of this paper. In

this example, as well as through the remainder of this

paper, we assume that the Web sites we discuss are well-

built (i.e., database transactions are atomic and supported

by a transaction processing monitor, such as BEA’s Tuxedo

software) and error-free (i.e., the Web site application code

produces expected outputs, given acceptable inputs).
Consider a scenario in which a user interacts with an

airline reservation Web site. Here, our example user logs on

to the airline site with his frequent flier number and

proceeds to interact with the site. He first enters his desired

travel plan for an upcoming trip and receives a set of

itineraries. Then, using a link on a navigation bar, he checks

his other (previously planned) itineraries for upcoming

trips to check for potential conflicts with his current travel

plans. Using yet another link on the navigation bar, he then

checks his frequent flier mileage to verify that the mileage

for his recent trips appears in his account. He then returns

to his itineraries (using the back button) and cancels a

previously planned trip. Then, returning to his mileage

account (through the History list), he notices that a recent

trip is not reflected in his account, and so he submits a

request to update his mileage account to reflect that trip. He

then rechecks his mileage. Then, he returns to the itinerary

page (through the History list) and selects his preferred

flight. After selecting a seat on the flight from the available

seats, he submits his credit card information for payment.

Finally, he checks his itineraries again, to verify that his

purchase appears there.
We denote this iTX I as the sequence

hA1; A2; A3; A4; A5; A6; A7; A8; A9; A10; A11i;

as shown below:

I: A1 (login);

A2 (plan entry);
A3 (previous itinerary check);

A4 (mileage check);

A5 (itinerary cancel);

A6 (request mileage update);

A7 (mileage re-check);

A8 (itinerary selection);

A9 (seat selection);

A10 (ticket payment);
A11 (itinerary verify).

Here, we assume that the use of the Back button and the

History list will replay the previous response received,

rather than reposting the previous request to the site. This

can occur in a number of ways, e.g., if a user is interacting

with a site through multiple instances of the browser. Thus,

the action sequence as observed by the Web site does not

necessarily contain Back or History actions.
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3.2 The Notion of a User Session

The reader may have noted that Definition 1 makes
reference to the notion of a user session. We now explain
why we introduce this concept, rather than employing the
more familiar idea of a Web session.

A Web session represents a single user’s interaction with
a single Web site in a single visit. During this interaction,
the site recognizes the continuity of the Web session
through the use of a session identifier. Web sessions have
limited time validity; after a site-specified time period,
inactive Web sessions “time out,” i.e., become invalid on the
site. Clearly, the notion of a Web session has meaning only
to the Web site on which the Web session is taking place.

It is possible, however, that a user may interact with more
than one Web site in pursuit of his objectives. Consider, for
example, a scenario in which an airline has chosen to
outsource its online reservation system to a third party. Here,
the airline’s Web site might provide a form for entering travel
reservation data, while subsequent interactions in the ticket-
purchase process (e.g., itinerary selection and payment) are
handled by a different site. We can map this example to the
generic iTX example above: ActionA2 (plan entry) occurs on
the airline’s site, while all subsequent interactions, i.e.,
actionsA3 (previous itinerary check) toA11 (itinerary verify),
are handled by the outsourced provider. In this scenario, the
user’s interaction in the ticket-purchase process spans two
sites, with separate session ids on each site.

Clearly, in this case, the notion of a Web session, limited
as it is to a single site, is not sufficient to characterize this
interaction. Thus, we introduce the notion of a user session,
in which we relax the Web session requirement that a
session takes place on a single site, and allow a user session
to span multiple sites. Here, we can define the notion of a
user session clearly by considering a “user-centric” point of
view: A user session is a span of time in which a single user
interacts with one or more Web sites during which there
exists at least one valid active Web session (i.e., a Web
session that has not timed out at the Web site).

3.3 Properties of iTXs

iTXs possess a number of interesting properties across
several dimensions. Two specific properties are of interest
in this work: 1) differing Web site and user expectations of
the interaction and 2) the potential for multiple objectives.
We consider these properties in light of the differences
between iTXs and extant transaction models, as well as the
impact each property has on the design of a recovery
protocol. In the ensuing discussion, and throughout the
remainder of the paper, we refer to both the single and
multiple-site iTX cases as the single-site case without loss of
generality, except in instances where the cases differ.

3.3.1 Web Site and User Expectations of an iTX Differ

One essential intuition needed to understand iTXs is that
the Web site and the user have different expectations. Let us
first consider what the Web site expects. Since the HTTP
protocol is stateless [11], the Web site treats each user action as
an independent task. Here, a user’s action may enable other
actions, e.g., a user must first select a flight (action A8 in our
example iTX) before he can select a seat (action A9), but the
site does not enforce a specific workflow. For example, the site

does not force the user to select a seat after selecting a flight,
but he cannot select a seat without first selecting a flight.

From the perspective of the user, however, each
component action is part of a sequence aimed at reaching
a specific goal or set of goals (much like operations in a
transaction). In other words, the user views his actions as a
logically related sequence of actions, rather than as a set of
independent actions. For example, in the airline reservation
iTX, a user who has selected a flight is very likely to next
select a seat on the flight.

The above discussion reveals our first iTX property:

Property 1. In an iTX, the Web site and user have differing
expectations with respect to a user’s interaction on the site.

Given these differing expectations, one natural question
that arises is: “How does a site provide the user with the
feeling that his actions are semantically related, while
treating each of his actions as independent?” This is
accomplished by maintaining a state for each user, which
represents the cumulative effect of the user’s actions on the
site. After each component action Ai of an iTX, the user’s
state Si is either 1) a root state S0 in the case of a newly-
started iTX, or 2) a modification of the state Siÿ1 resulting
from the previous action Aiÿ1. Thus, an interaction can be
captured by a sequence of states, corresponding to the
actions in an iTX. Using this notion, we can think of an iTX
as evolving, with each action resulting in a new state built on
the state resulting from the previous action (if any) and any
new information resulting from the current action.

In virtually all Web sites, the notion of a user state is
implemented in one of two ways: 1) state information is
maintained in a session object on the site, and referenced
with a session id (which is passed back and forth between
the user and the site in each HTTP request and response), or
2) all state information is passed back and forth between the
user and the site in the HTTP request and response using
mechanisms such as HTTP headers or hidden fields.

Intuitively, we can think of a user state on a Web site as
referring to a “snapshot” of the information that results
from a user’s interaction with a Web site. Because of the
stateless nature of the HTTP protocol [11], this interaction
occurs on an action-by-action basis. Corresponding to each
such action-response cycle, information is exchanged
between the user and the site—the state captures a snapshot
of this exchange.

Essentially, the state comprises four types of information:

1. an HTTP request, i.e., the request the user has sent to
the site,

2. an HTTP response, i.e., the actual text sent to the
user in response to a request,

3. identifying information and results of the operations
the site has executed on behalf of the user, such as
would be found in cookies, and

4. a validity parameter, which denotes whether or not
the state is valid.

Thus, we define a user’s state on the Web site as follows:

Definition 2. In an iTX, a user’s state changes from action to
action. After each component action Ai in an iTX, the user
state Si is a 4-tuple hKi;Qi; Pi; Lii, where
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. Ki is the set of cookies valid for the user after action Ai.

. Qi is the user’s HTTP request corresponding to action
Ai.

. Pi is the site’s HTTP response to Qi.

. Li is the result of a function fðKi;Qi; PiÞ denoting the
validity of the user state.

In our airline site example in Section 3.1, the user submits
the details of his travel plan (action A2), and the site gives
back a set of itineraries to the user. After receiving the
itineraries, the user’s (valid) state is composed of K2, his
cookie information (which includes his login information),
Q2, the HTTP request for the itineraries (containing his
travel plans), and P2, the site’s HTTP response to his query
(the page containing a set of itineraries).

The validity of a state, Li, requires further elaboration. A
user’s state Si is based on the information available in the
Web site’s database at the time of action Ai. The database
state may change after Ai, in which case we may not want to
use the information in Si for recovery purposes. Consider
our airline iTX example. Suppose that our user’s iTX fails
after itinerary selection (action A8) but before seat selection
(A9) and that, before he reconnects, the site sells the last seat
on the user’s preferred flight. In this case, the user’s state
containing the originally offered itineraries is invalid since
it is inconsistent with the database at the Web site, and
should not be served to the user when he reconnects.

A common mechanism for invalidation is the use of
“time-to-live” periods; here, a user response sent out from
the origin server would include a maximum age value, after
which the response would be considered invalid. This can
be achieved through the use of the Expires header in the
HTTP Protocol [11]. Consider, for example, our airline
request example. Suppose that a user has reached step A9,
i.e., he has requested a particular seat on a specific flight. In
this situation, the airline site may send back a response
confirming the seat selection with an Expires header with a
date value 30 minutes later than the generation time of the
response. This Expires header would indicate that the site
will consider the seat reservation valid for 30 minutes, after
which (if the user has not completed the purchase process
by submitting payment information) the seat reservation
would be returned to the pool of available seats and offered
to other customers.

Having considered the difference in the Web site and
user expectations of an iTX, and having introduced the idea
of a user state, we now consider how iTX Property 1
compares with existing transaction models. Virtually all
transaction models share a common notion of a transaction
as a sequence of operations over which ACID semantics are
imposed: atomicity, consistency, isolation, and durability. We
consider these in the context of an iTX. Here, consistency
and durability are clearly must-haves. Returning to our
airline reservation example, a site that sells the same seat to
two people (violating consistency) or “loses” a user’s
reservation (violating durability) would not attract or retain
many customers. These characteristics are typically pro-
vided by the site’s database(s).

Clearly, failure atomicity must also be supported on the
site. For example, returning to the airline site iTX, if a user
selects a seat on a flight (action A9), but departs before

actually purchasing the seat, the site must eventually return
that seat to inventory. This is typically accomplished
through a combination of Web site application code and
database operations. For example, a site may, on the
timeout of a user’s session (at which point the site assumes
that the user has departed), initiate actions to “undo”
partially completed purchases by returning unpurchased
items (e.g., seats in our airline example) to available
inventory in the site’s database.

In the context of a Web site environment, the isolation
property, in which a transaction is prevented from seeing
the partial results of other transactions, is virtually im-
possible to support. Returning to our airline example,
consider a scenario in which a user U1 has selected a seat on
a flight, but has not yet actually purchased the seat. Further
suppose that user U2 requests a view of the available seats
on the same flight immediately after U1 selected his seat.
Here, U2 will see that the seat U1 chose is “taken”, even
though U1 has not actually purchased the seat. Clearly, partial
results are visible here. Supporting isolation in this
environment would require locking key portions of the
database (e.g., available itineraries in the airline example),
which would severely restrict the number of users a site can
support simultaneously.

Given the above discussion on the support of ACID
semantics in iTXs, a comparison with support of ACID
semantics in extended (long) transaction models (e.g., [12])
would seem to be in order. Readers will note that extended
transaction models do allow the violation of the isolation
property at the root level. However, at the component
transaction level, extended transaction models mandate that
execution be isolated while iTXs, in contrast, do not require
isolation even at the component action level. The reason for
this is subtle but important: A component transaction in an
extended transaction may itself be a multiaction transaction,
whereas the component action in an iTX is always a single-
action task, where the single action is a HTTP request
submitted by the user, causes the execution of a script that
may result in multiple (atomic) updates on databases
without necessarily enforcing isolation across this set of updates.

Given the discussion above, we are interested in how
Property 1 impacts the design of a recovery protocol.
Virtually all extant transaction models utilize backward
recovery and/or forward recovery mechanisms. In backward
recovery, the recovery protocol undoes the effects of a
partially completed transaction. In forward recovery, the
recovery protocol performs or (in the case of transaction
restart) reperforms the operations in a transaction.

Neither backward recovery nor forward recovery are truly
appropriate for iTX recovery. The reader will recall from the
discussion in Section 1 that the Web site application and
database do not require recovery; rather, we are interested
in user recovery, which need not involve the Web site
systems. In this environment, backward recovery is not
possible—virtually no Web site exposes an interface that
will allow the automatic invocation of compensating
operations (i.e., without a user choosing the operation
through an HTML page) for user actions. Nor is forward
recovery possible—the user’s future actions are unknown
and the results of past actions may be invalid. In this latter
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case, the automatic resubmission of a user’s previous HTTP

requests might result in errors. What is really needed here is
the ability to provide the user with a recent and valid

interaction state, with the goal of minimizing the amount of

work that must be redone. Based on this discussion, we can

define the following feature requirements for an iTX

recovery protocol.

Feature 1. An iTX recovery protocol should have the ability to:

. Store user states for use in the case of connection
failure.

. Return a recent and valid state to the user upon
reconnection after failure.

3.3.2 An iTX may have Multiple Objectives

A single iTX may reveal several user objectives. Recall the

example iTX in Section 3.1. Here, the user reveals several
separate objectives:

1. canceling his previously planned itineraries,
2. verifying that his frequent flier mileage balance is

correct, and
3. purchasing a new ticket.

Each of these objectives can be represented by a (possibly
overlapping) subsequence of component actions called a

sub-iTX.

Property 2. An iTX may be composed of several potentially

overlapping sub-iTXs, where each sub-iTX represents a

separate user objective.

We define a sub-iTX as follows.

Definition 3. Consider an iTX I ¼ hA1 . . .Ani. A sub-iTX B of

an iTX I consists of a sequence of component actions

hAj;Ak; . . . ; Ami, meeting the following conditions:

1. Each component action of B is a component action in I.
2. For any two component actions Aa and Ab in B, if Aa

precedes Ab in B, then Aa must also precede Ab in I.
3. B semantically represents a single user objective.

For instance, the sub-iTX representing the itinerary-

canceling objective consists of the subsequence hA1; A3; A5i
(login, previous itinerary check, itinerary cancel), while the

sub-iTX for mileage account-checking consists of hA1; A7i
(login, mileage recheck), and the sub-iTX for the ticket-

purchase objective consists of the subsequence

hA1; A2; A8; A9; A10; A11i

(login, plan entry, itinerary selection, seat selection, ticket

payment, itinerary verify). Sub-iTXs can be arbitrarily

interleaved within a single iTX. Depending on the possible

interactions among objectives, sub-iTXs may or may not
overlap by sharing a common prefix sequence of compo-

nent actions. In this example, all sub-iTXs in the iTX share a

common prefix: the login action (A1). Note that only one of

these sub-iTXs can be active at any given time. For example,
at component action A5 (mileage-checking), the user is

clearly active in the mileage-check sub-iTX, and not the

ticket-purchase sub-iTX.

Given the above discussion, the following question
arises: Relative to which objective should the user interac-
tion recover? Our proposed solution is to postulate that the
user should be returned to the objective (i.e., the sub-iTX)
that was active at the time of failure, i.e., the sub-iTX of his
most recent action on the site. This places an interesting
requirement on a recovery protocol: In order to return the user
to a useful point in the iTX, the user’s sub-iTX of interest at the
time of failure must be discerned, and all other sub-iTXs filtered
out from consideration in the recovery protocol. For example, in
the airline iTX, recovery from a failure at action A9 (seat
selection) should not place the user at the mileage-checking
action A4 (mileage check). Similarly, failure at component
action A4 (mileage-check) should not recover the user to the
travel-plan entry action A2 (plan entry). This reveals the
following required feature in our recovery protocol.

Feature 2. The recovery protocol must be able to distinguish
among multiple sub-iTXs in an iTX.

We will show, in Section 4, how to distinguish sub-iTXs

in an iTX, which makes it possible to design a recovery
protocol supporting Feature 2.

4 DEVELOPING A GRAPHICAL iTX MODEL

In an iTX, data generated in one user action may be used by
the site in further interactions with the user, i.e., in
responses to later actions by the same user. Consider, for
instance, the airline site example in Section 3.1. Here,
clearly, our user cannot select a seat on a flight (action A9)
without first selecting a flight (action A8), which in turn
cannot occur if the user has not yet entered his travel plan
(action A2). This implies a form of dependency among
actions in an iTX, i.e., action A8 (itinerary selection) is
dependent on parameters that are somehow passed to it
from action A2 (plan entry). Since these dependencies are
based on parameter-passing, we refer to them as parametric
dependencies (PDs). Such parametric dependencies can be
used to distinguish sub-iTXs within an iTX.

The first issue that arises is how such PDs can be
recognized. In fact, in light of the stateless nature of the
HTTP protocol (i.e., the fact that the Web site observes two
parametrically dependent actions as independent, rather
than related, as noted in Property 1), such recognition
would appear to be impossible. However, it turns out that
PDs can indeed be recognized in the context of modern
dynamic Web sites. A dynamic Web site is one in which the
content sent to a user is generated on the fly by running a
script. In contrast, in a static site, static files are served
directly to the user from the file system, i.e., no process runs
to generate the page. Without a process, there can be no
parameters passed, therefore, there are no PDs in static sites.

Several site building technologies, such as Java Server
Pages (JSP) [15], and Active Server Pages (ASP) [7], support
dynamic page generation. These have become popular
because they dramatically increase the potential for inter-
activity with a user—a dynamic site composed of few
scripts can potentially generate a vast number of different
pages based on information retrieved from an underlying
database, subject to various input parameters.
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When a user interacts with a dynamic site, each
component action Ai corresponds to an execution instance
of some script Ci. Note that multiple component actions in
the course of a single iTX may map to the same script (e.g.,
the user may check his frequent flier mileage more than
once during a single visit to an airline Web site). Consider
the airline reservation system example. Here, when the user
submits a request with his travel details (e.g., component
action A2), the site runs a program using the user’s travel
details as the input parameters of the program. This
program accesses the airline database, which returns a set
of suitable itineraries. The program takes the itineraries
returned from the database, adds an HTML presentation
layer, and serves the itineraries back to the user as the site’s
response.

In fact, we can map each action Ai in an iTX to a script
Ci, i.e., the logic in script Ci embodies the semantic action
Ai. For example, an action that involves submitting login
information on a Web site might map to a particular script
login.jsp.

In our airline reservation example, we can map the
actions in iTX I to scripts in the airline site as depicted in
Fig. 1.

Here, component action A1 (login) maps to script the
script C1 (login.jsp), while component action A2 (plan
entry) maps to script C2 (submit_travel_plan.jsp).
Similarly, component action A3 (previous itinerary check)
maps to script C3 (show_current_reservations.jsp),
component action A4 (mileage check) maps to script C4

(check_ff_mileage.jsp), and component action A5

(itinerary cancel) maps to script C5 (cancel_itinerar-
y.jsp). Component action A6 (request mileage update)
maps to script C6 (request_mileage_update.jsp).
Component action A7 (mileage recheck) maps to script C4

(check_ff_mileage.jsp), component action A8 (itiner-
ary selection) maps to script C7 (select_itinerar-
y.jsp), and component action A9 (seat selection) maps to
script C8 (select_seat.jsp). Finally, component action
A10 (ticket payment) maps to script C9 (enter_paymen-
t_info.jsp) and component action A11 (itinerary verify)
maps to script C3 (show_current_reservations.jsp).

In sites built with these dynamic page generation technologies,
it is possible to distinguish the sub-iTXs in an iTX by examining
the parameters passed between scripts on a Web site. Each
component action is carried out by dynamic scripts that run
on an application server, such as Microsoft’s Internet
Information Server (IIS) [8] and BEA Systems’ WebLogic
Server [20]. Since HTTP is inherently a connectionless
protocol [11], each of these dynamic scripts runs indepen-
dently. However, quite often, a script may be dependent on
information obtained from, or generated in, another script.
Consider, for example, the scenario in which our traveler
has selected his preferred itinerary on the airline site

(component action A8), and is then presented with a seat
selection. The script that generates the itinerary choice list
executes independently of the seat-selection script, but the
seat-selection script must somehow know which flights are
in the user’s selected itinerary. Clearly, some method of
passing information from one script to another is required.
There are four ways to achieve this:

1. hidden fields in forms,
2. cookies,
3. session variables, and
4. explicit parameter passing through the HTTP GET/

POST call.

Since the number of ways scripts can pass information is
limited and decided at site design time, the site designer can
statically determine the dependency list among scripts
using commonly-used site analyzer/designer tools, e.g.,
Visual Interdev [9]. Parametric dependencies across sites
(which lead to multiple-site iTXs) are also well-defined at
design time and can easily be added manually to the set of
parametric dependencies on receiving sites.

We can define the notion of a script dependency as
follows:

Definition 4. A script Ci is parametrically dependent on another
script Cj, denoted Ci ! Cj, when data produced during the
execution of Cj becomes input parameters referenced during
the execution of Ci. In the case of multiple-site parametric
dependencies, Ci and Cj reside on different Web sites.

Note that the symbol “! ” denotes the flow of
dependency (i.e., the “depends-on” relationship); para-
meters flow between scripts in the opposite direction. The
reader should not confuse the notion of parametric
dependency with the familiar notion of functional depen-
dencies from the database literature.

We now return to our airline reservation system example
(described in Section 3.1) to clarify the notion of parametric
dependencies among scripts. Script dependency analysis in
this example would produce dependencies among the
scripts as shown graphically in Fig. 2.

Here, script C2 is parametrically dependent on C1, i.e.,
C2 ! C1 (C2 relies on a set of parameters generated in C1).
Similarly, C3 ! C1 (though C3 may require a different set of
parameters from C1 than C2), C4 ! C1, C5 ! C3, C6 ! C1,
C7 ! C2, C8 ! C7, and C9 ! C8. Script C1 is not parame-
trically dependent on any other script, i.e., it draws data
from no other script on the site. Note that a particular
dependency Cj ! Ci may span site boundaries—in this
type of scenario, Cj receives data it needs from Ci.

Using the action-script mapping (as shown in Fig. 1), we
can derive parametric dependencies between component
actions in an iTX. For instance, in our airline example,
action A2 (plan entry) maps to script C2, and action A8
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(itinerary selection) maps to script C7. Since script C7 ! C2,
we can derive a component action dependency. Formally, we
define the notion of component action dependency as
follows:

Definition 5. A component action Ai is parametrically
dependent on another component action Aj if the script
corresponding to action Ai (i.e., Ci) is parametrically
dependent on a script Cj corresponding to action Aj. We
denote this dependency in a manner similar to script
dependencies: Aj ! Ai.

Based on Definition 5, we can provide a precise
definition of a sub-iTX.

Definition 6. A sub-iTX B is a sequence of parametrically
dependent component actions hA1; A2; . . . ; Ani that represents
a single user objective, where 1) for any adjacent sequential
pair of actions hAi;Aji, Aj ! Ai, and 2) the first component
action A1 in the sub-iTX has no parametric dependency on
any other component action.

Using these component action dependencies, we can
derive sub-iTXs, i.e., dependent component action se-
quences, within an iTX. sub-iTXs derived for the airline
example are shown in Table 1.

From the above discussion, it is clear that iTXs are
amenable to a graph-based representation, modeling the
component actions of an iTX as vertices and dependencies
between component actions as edges. Accordingly, we model
an iTX as a Dependent Component Action Graph ( DCAG),
which is defined as follows:

Definition 7. Corresponding to an iTX I, there exists a DCAG
GI ¼ ðV ;EÞ, where GI is a directed, acyclic graph, a vertex
v 2 V is a component action of a particular iTX I, and an edge
e ¼ ðv; uÞ 2 E represents the dependency of v on u, i.e., v! u
(where v is dependent on parameters generated in u).

Returning to our running airline site example, the DCAG
of the dependencies for our user’s iTX, as developed in
Section 4, is depicted graphically in Fig. 3.

Here, we can clearly see the six sub-iTXs discovered in
the course of the discussion of the airline site example in
Section 4: The path from A10 (ticket payment) to A1 (login)
represents sub-iTX1; the path from A6 (request mileage
update) to A1 (login) represents sub-iTX2; the path from A4

(mileage check) to A1 (login) represents sub-iTX3; the path
from A7 (mileage re-check) to A1 (login) represents
sub-iTX4; the path from A5 (itinerary cancel) to A1 login
represents sub-iTX5; and the path from A11 (itinerary
verify) to A1 (login) represents sub-iTX6.

The DCAG is of great importance in recovering users’
iTXs; as the reader will see in Section 5, it is a crucial part of
our recovery strategy. Intuitively, each path in a DCAG
represents a failover path. Here, if a user’s iTX fails at some
action Ar, and there exists an edge in the DCAG ðAr;AqÞ,
then, assuming that there exists a valid state for the user for
Aq, we can recover the user to Aq (if Aq is valid), from which
he can again attempt action Ar. If Aq is invalid, and there
exists an edge ðAq;ApÞ, we traverse the DCAG from Aq to
Ap, and consider the validity of Ap, and so on, until we
encounter a valid state in the DCAG, or until we reach a
node from which there are no outgoing edges (in which
case, recovering the user state is infeasible). Essentially,
then, the DCAG represents a failover map for the recovery
protocol. Henceforth, we will use the terms DCAG and
failover map interchangeably.

We now consider the notion of DCAGs in the context of
our airline site example (Section 3.1). Suppose that the iTX
failed at component action A10 (ticket payment). Then, since
we know that the user was involved in sub-iTX1 at the
time of failure, the recovery protocol can follow the directed
edge from A10 (ticket payment) to A9 (seat selection), the
most recent component action in the same sub-iTX. Then, if
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the state S9 associated with A9 (seat selection) is valid, the
recovery protocol will recover the user to state S9. If S9 is
not valid, the protocol will traverse the DCAG from A9 (seat
selection) to A8 (itinerary selection), checking S8 for
validity, and so on, through sub-iTX1 until it finds a valid
state, or reaches the beginning of the sub-iTX without
finding a valid state.

4.1 A Cautionary Note

The goal of our recovery protocol is to handle iTX failures.
In other words, if an iTX fails, our proposed mechanism
will allow a user to “recover” much of the work performed
in the failed iTX. However, our protocol should not be
taken as the cure-all recovery scheme for anything a user
might do on a Web site. For instance, there may exist
dependencies among separate iTXs initiated by a user. In these
cases, the knowledge of the semantic relationship between a
set of separate iTXs does not reside in the iTXs themselves;
rather, it exists in the user’s view of his interaction with the
Internet. In these cases, our protocol can recover each of
these iTXs independently. But, as our protocol will not be
privy to the semantic dependencies across these different
iTXs, certain explicit actions may be required on the part of
the user in order to take care of the residual effects of these
dependencies. The following example clarifies this notion.

Consider the case of a user who is interested in planning
a vacation, including not only airfare to his destination of
choice, but also a hotel room. Here, three potential
interaction cases exist, each of which maps to a different
set of iTXs and sub-iTXs. We describe each in turn,
specifically considering the type of iTX in each case.

In the first case, the user might make a hotel reservation
on one Web site (perhaps a hotel’s Web site), and purchase
his airline ticket on another (perhaps the airline’s site).
Clearly, here, the user’s vacation planning does not map to
a single iTX. Rather, since the hotel plans and airline ticket
were purchased on separate sites, and no data was passed
between the sites, the hotel and airline site interactions map
to separate iTXs. In this scenario, a user who has reserved a
hotel and then finds that he cannot purchase airline tickets
for the dates he prefers, must explicitly cancel his hotel
reservation since there is no way for the two sites to
condition the placement of the hotel reservation on the
success of the airline ticket purchase.

In the second case, the user might place his hotel
reservation and purchase his ticket from the same Web site
(perhaps an online travel site), but in separate transactions.
Here, he would complete the hotel reservation, then begin
searching for airline tickets for his preferred dates. In this
scenario, the site does not pass any data between the hotel
reservation and airline ticket purchase transactions; thus,
they are separate sub-iTXs within the same iTX. As in the
first case, a user who made a hotel reservation and then
failed to find matching airline tickets, would need to
explicitly cancel the hotel reservation.

In the third and final case, the user might be able to
bundle the hotel reservation and airline ticket purchase in
the same transaction on the same site. Here, when the user
searches for hotel reservations, the site prompts him for
airline tickets,1 and asks for a “commit” point (at which

both his hotel and airline plans would be booked) only
once. Here, the user’s vacation plans map to a single iTX.

5 RECOVERING FROM FAILURE IN AN iTX

Based on the features described above in Section 3.3, we
now describe how we recover user interactions with the
Web. Intuitively, our proposed recovery protocol has the
following steps:

a. log a user state for each component action of a user’s
iTX in an action log,

b. generate and continually update a failover map (i.e., a
DCAG) of the user’s iTX, showing the various sub-
iTXs within it, and

c. upon failure of a user’s iTX, consult the log and the
failover map to recover the user.

Steps a and b occur concurrently with the user’s interaction
with the site, while step c occurs upon failure. Here, four
issues of importance arise:

1. the location of the action logs, failover maps, and
recovery logic,

2. how the action logs and failover maps are generated,
3. choosing the action from which recovery should be

undertaken, and
4. upon failure of an iTX, how the recovery protocol

can use the user’s log and failover map to recover his
iTX.

We discuss each of these issues in turn. In addition, we
include a brief description of our design and implementa-
tion efforts, which are currently underway, as well as our
plans for testing our protocols once implementation is
complete, as shown in Appendix F.

5.1 Location of the Logs, Failover Maps, and
Recovery Logic

Recovery functionality must reside somewhere on the
(inclusive) path between the Web site and the user’s
browser. Since the only input to our protocol is the captured
user states, the recovery functionality can be resident on
any device that observes the state of every component
action of the user, i.e., at any of several points on this path,
in both wireless and wired architectures, where state can be
observed and logs can be maintained and processed.

Wireless devices connect to the Internet through a
software interface called a gateway, e.g., the Nokia WAP
Server [6]. This architecture is depicted graphically in Fig. 4.
As readers may not be familiar with the particular role of
the gateway in this architecture, we provide a brief
overview here. The functionality of the gateway is to serve
as an interface between the binary wireless transmission
protocol and the TCP/IP transmission protocol used on the
Internet. (In addition, the gateway also handles numerous
other tasks, such as content filtering, billing, and security.)
Since wired-to-wireless or wireless-to-wired translation
must occur for each HTTP request and response, all
interaction between a user and the Internet will pass
through a gateway. Gateways typically serve a large
geographic area and must be explicitly specified by the
user (i.e., there is no notion of transparent hand-off between
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gateways, as exists in cellular networks)—users typically
dial in to a gateway in much the same way that a modem
dials in to an ISP.

As noted above, the recovery functionality can reside at
different points in the architecture depicted in Fig. 4, e.g., on
the user’s browser, on the gateway, on devices in the
network cloud, or on the Web site.

The wireless device is a nonoptimal choice since it has
limited battery, memory, and processing power. We might
consider using persistent cookies on the wireless device to
store a user’s recovery information locally. In this approach,
we would store the user’s session id, as well as enough
other information to recover the user to a useful interaction
state, in a persistent cookie on the client’s machine; that is,
after each action, all this information would be written to
persistent memory in a new cookie. The first problem with
this approach arises from the limits imposed on persistent
cookies in the standard: persistent cookie files are limited in
both the space allotted to a single cookie (4KB) and the
number of cookies that a particular domain can set for a
given user (20 per domain) [10]. Storing recovery informa-
tion at the client in this format is likely to require multiple
cookies since recovery information must be stored for each
click. Given this, and the fact that many sites use several of
their “allotted” cookies to store user-identification and
profile information, it is likely that a recovery protocol
utilizing persistent cookies may in some cases run out of
“cookie space,” resulting in the inability to store recovery
information, and potentially preventing recovery due to the
lack of needed data.

The various network nodes (in the Internet cloud depicted
in Fig. 4), such as routers, cannot serve this purpose since
user requests are not guaranteed to traverse the same path
throughout a user’s session with a site.

The Web site is also a poor choice of location for the data
structures and algorithms of our recovery protocol. First,
and foremost, the servers on the Web site are already
overburdened with functionality; adding additional work
would decrease the scalability as well as performance of an
already-overloaded component of the site architecture.
Storing each user’s interaction information on the site’s
persistent storage (since, in spite of the perceived abun-
dance of memory, transient memory space on Web and
application servers is typically a hotly-contended resource)
raises a serious performance issue on the site—interaction
information would need to be written to disk for each user
click, introducing an enormous I/O overhead burden. In
addition, if a user’s interaction spans multiple sites, as is the
case in some systems, recovery information would be
spread across multiple autonomous servers, leaving open

the question of how a recovery protocol would handle such
distributed recovery data.

Transaction Processing (TP) monitors, which are typi-
cally used as recovery mechanisms within a Web site
infrastructure, might seem to be applicable to this problem
at first glance. However, on disconnection, the user loses his
session state, including his session id. Once this occurs,
there is no way for the site to associate the user with his
session on return—the user’s IP address will not necessarily
work since the site may associate several users coming to
the site through the same proxy as having the same IP
address. TP monitors, as part of the Web site infrastructure,
are subject to this restriction and, thus, cannot be used to
solve this problem.

The gateway, however, seems to be a natural choice for
the location of the recovery functionality since all Web site
interaction for a particular user during a particular session
funnels through the same gateway. A recovery mechanism
residing at the gateway can monitor outgoing (from the
user) requests, as well as incoming responses, allowing the
gateway to capture states. Since, as noted above, gateways
must be explicitly set in the user’s wireless device (and
connected to, in much the same way a modem user dials
into an ISP), users are unlikely to reconnect to different
gateways after failure—so, the gateway that captures a
user’s state(s) will also be able to recover the user upon
reconnection. Thus, we have chosen to describe the work-
ings of our protocol in the context of a gateway-resident
recovery system for the remainder of this paper.2

5.2 Generating Action Logs and Failover Maps

We now turn to the second aspect of our recovery protocol,
namely, the storage of user states and the construction of a
DCAG or failover map corresponding to a specific iTX. In
principle, this is quite simple—the gateway, by observing
incoming and outgoing traffic, traps and stores user state
information in a log. Simultaneously, by using the log, it
continually updates the failover maps of the iTXs currently
being observed. We now 1) present a set of data structures
for storing user states (i.e., design the log), 2) describe
algorithms for trapping state information from user HTTP
requests and responses, and 3) describe algorithms that
generate failover maps using information from the log, as
well as other information.

5.2.1 The Action Log Data Structure

We provide a relational representation for the log below for
ease of discourse; clearly, many other data structure
representations are possible (e.g., simple text logs). We
store each action as a tuple in an ACTION_TABLE relation,
where each tuple contains the following nine attributes:

. ROW_ID: the unique identifier for each component
action.

. USER_ID: a unique identifier for the user (in a
wireless scenario, the user identifier can be derived
from the device identifier of the wireless device,
which uniquely identifies it).
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. SCRIPT_ID: the unique identifier of the dynamic
script specified with the request and associated with
the component action (part of the HTTP header).

. REQ_TIME: the time at which the gateway receives
the user’s HTTP request (i.e., a time stamp),

. RES_TIME: the time at which the response is
generated in the origin server (i.e., a time stamp).

. HTTP_RESPONSE: the HTTP response received in
response to the request.

. COOKIE: the cookie information that has been sent
by the Web server along with the HTTP response.

. TIME_TO_LIVE: The duration for which the HTTP
response is valid; if this parameter is not specified,
time-to-live is assumed to be infinite, i.e., the HTTP
response never becomes invalid. This parameter, as
noted in Section 3.3.1, may be passed through the
HTTP Expires header.

. NODE_PTR: Pointer to the corresponding graph
node in the failover map.

5.2.2 Trapping Action Log Data from HTTP Requests

and Responses

Next, we consider how action log data is extracted from an
HTTP request at the gateway. As each component action
passes through the gateway, the gateway traps this informa-
tion using procedures PROCESS_REQUEST and PROCESS_
RESPONSE, shown in Algorithm 1 and Algorithm 2 (both
given in Appendix A, with complexity given in Appendix E),
respectively, stores it in the ACTION_TABLE, and updates
the failover map.

In order to make clear how the gateway processes
requests, consider our running example of the ticket-
purchasing sub-iTX, i.e., sub-iTX1. Suppose our user has
logged in (action A1) and submitted his travel plan (action
A2). As a result of submitting his travel plan, the site has
offered the user a set of possible itineraries. Upon selecting
his itinerary, the user submits an HTTP request for his
preferred flight (action A8). Here, the gateway calls the
PROCESS_REQUEST function, which adds a new row to
the ACTION_TABLE containing our user’s user_id, the
script_name requested (i.e., select_itinerary.jsp), and
a time stamp for the request.

To clarify the workings of response processing on the
gateway, we return to the airline-ticket example begun in
our description of PROCESS_REQUEST in the previous
paragraph. Here, our user has logged in to the site,
submitted his travel plan, and has requested a particular
flight (i.e., his sub-iTX consists of hA1; A2; A8i). In return,
the site sends him an HTTP response offering him a
choice of available seats on the flight. Upon receiving this
HTTP response on behalf of the user, the gateway extracts
several necessary items of information: the time at which
the response was generated on the origin server, the age
of the response, the script list (which contains script
dependencies for the recovery protocol—how the script
dependency information is obtained is discussed in
Section 5.2.3), any cookie(s) in the response, the user id,
and the TTL of the response. The gateway then creates a
new node in the user’s failover map for the current action
and updates the row of the ACTION_TABLE that contains

the request that prompted the current HTTP response
with the information from the HTTP response.

Having discussed the processing of both HTTP requests
and HTTP responses, we now consider how failover maps
are updated with new user actions.

5.2.3 Generate Failover Maps

The failover map, i.e., the DCAG, corresponding to a
particular user’s iTX is dynamically created as he clicks on
the Web site. Before we delve into the specifics of failover
map generation, we first consider the information required
to generate a failover map.

As the reader will recall from the discussion in Section 4,
generating a DCAG requires script dependency information
in order to determine which component actions are
dependent on one another. In order to create a DCAG for
a user’s iTX on the gateway, the gateway must obtain this
script dependency information, which is server-resident. It
turns out that this is fairly easily achieved—the site can pass
this information to the gateway by adding a ScriptList
directive to the HTTP header (this can be achieved simply
by writing the attribute into the HTTP header in the output
of the script on the site) in the HTTP response. Since script
dependencies are static and predefined, no computation is
required at runtime on the Web site to determine the
dependencies.

The ScriptList directive consists of a list ScriptList where
ScriptList = ScriptName[, ScriptList] and ScriptName is a script
name, including the full URL path. Here, HTTP response is
dependent on each script listed in the ScriptList. For instance,
in our airline example, suppose that there exist two scripts
on the site, login.jsp (corresponding to A1, the login
action), and submit_travel_plan.jsp (corresponding
to A2, the travel plan entry action). As noted in Section 4,
C2 ! C1, i.e., submit_travel_plan.jsp script is depen-
dent on login.jsp page. The header of the HTTP
response for submit_travel_plan.jsp should contain
following line: Script-header: http://www.airlinereservation.
com/login.jsp (assuming the example site domain is airline
reservation.com).3 We now move on to describe our algo-
rithm for actually generating a failover map.

For each component action of a user’s iTX, a new node is
created in the DCAG using the UPDATE_DYNAMIC_
ACTION_GRAPH function in Algorithm 3 (given in
Appendix B, with complexity given in Appendix E).

Once again, we return to the airline ticket purchase
example to clarify the workings of this algorithm. Here, a
new node in the graph is created for the new action. Then,
the ACTION_TABLE is searched for the row representing
the user’s most recent action upon which the current action
is dependent (according to the ScriptList dependency
information), and the new node is set to point to the node
on which it is dependent. Here, the gateway finds that
action A8 (itinerary selection) is dependent on action A2

(plan entry) (since select_itinerary.jsp is dependent
on submit_travel_plan.jsp). Accordingly, an edge
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(A8, A2) is added to the failover map, indicating this
dependency. In this manner, the gateway will create a
DCAG for each user’s iTX.

The first step in the recovery protocol following the
failure of an iTX is identifying the user’s most recently
completed action. We discuss this next.

5.3 Identifying the User’s “Most Recently
Completed Action”

One question we must answer in order to discuss our
recovery protocols is: What was the “most recently completed
action,” i.e., the action with respect to which valid states are
computed and recovery is undertaken? We define this “most
recently completed action” as follows: If failure occurs
before a request for an action is sent (and, hence, logged) by
the gateway, the “most recently completed action” is the
one immediately prior to this request. If it happens after the
request is sent by the gateway, then this action is the “most
recently completed action” and it is with respect to this
action that recovery is undertaken. This implies that
recovery can be undertaken only after there is a response
to this pending action. As with the wired HTTP calls, we
assume that timeouts are associated with requests for
actions and, so, when sites eventually respond or timeouts
occur, recovery from disconnections can be undertaken.

5.4 Using the Logs and Failover Maps to Recover
User iTXs?

We just discussed how to identify the “most recently
completed action.” This identification is done as the first
step in recovery following the failure of an iTX. With this
action identified, we can recover a valid state for the user
during recovery by following these steps:

1. Determine the active sub-iTX: When an iTX fails,
the user may have already initiated multiple sub-
iTXs in his iTX. The goal of our recovery protocol is
to return the user to a state from which he can
continue. Here, we assume that the active sub-iTX at
the time of failure is the sub-iTX in which the user
was involved in the most recently completed action.
(Alternatively, the user may be offered a selection of
sub-iTXs from which recovery can begin. This is a
trivial modification since both mechanisms identify
a sub-iTX from which recovery should proceed.)

2. Check validity of the saved states within the active
sub-iTX: We wish to ensure that the response served
back to a user is a valid one. Specifically, the
recovery protocol should, in this step, choose the
most recent valid state for which all preceding states in the
sub-iTX are valid. To see why all preceding states
must be valid, we consider the following example,
based on our running airline reservation system
example. Consider a situation in which a user
making a reservation over a mobile phone selects a
flight at time t1. Suppose the site assigns a time-to-
live value of 10 minutes to this response (which
offers seats on the selected flight), such that the
response has a valid period of t1 þ 10. Now suppose
that the user receives a phone call, forcing him to put
the reservation connection on hold to take the call,

which lasts for nine minutes. Upon returning to the
reservation system, the user selects a seat, at time t2,
where t2 ¼ t1 þ 9. In response, the site sends a
confirmation of the selected seat, which has a time-
to-live of 10 minutes. Now, suppose that, two
minutes later (i.e., at time t1 þ 11), as he is filling
out credit card payment information, the user’s
connection fails. Here, the system has two choices
for recovery, the seat-selection page (i.e., the
response from the itinerary-selection action) and
the payment page (i.e., the response from the seat-
selection action). However, the failure time t1 þ 11 is
greater than the valid time of the response t1 þ 10
from the itinerary selection action, indicating that
the response from the itinerary selection action is no
longer valid. Since the seat-confirmation/payment
page is dependent on the validity of the previous
page, even though it may itself be valid, it cannot be
served because it is dependent on an invalid response.

3. Rebuild the user’s state for recovery: A user’s
recovery state consists of all the state information
(e.g., cookies) from the component actions on which
the recovery action is dependent. We can find these
component actions by traversing the DCAG from the
recovery state to all the nodes reachable from it and
gathering the cookie information from the corre-
sponding rows in the ACTION_TABLE.

4. Replay the recovery state: Once the appropriate
recovery state is chosen and rebuilt, the correspond-
ing HTTP response from the ACTION_TABLE is
sent to the user.

The recovery protocol is presented as the RECOVER_

USER function in Algorithm 4 (given in Appendix C, with

complexity given in Appendix E).
Once again, we return to the airline example, in which

our user has logged in (action A1), submitted his travel plan

(action A2), and selected an itinerary (action A8). He now

wished to select his seat. Suppose, that at this point, the

user’s connection drops. Upon his reconnection, the gate-

way will call the RECOVER_USER function. The recovery

protocol will identify the user’s most recent HTTP request

in the ACTION_TABLE (i.e., the row with the maximum

timestamp for the user). This row contains the user’s most

recent action (in our example, this is action A8, selecting an

itinerary). Assuming this action, as well as those corre-

sponding to his previous actions (i.e., A1 (login) and A2

(plan entry)), to have a valid state, the gateway will replay

the corresponding HTTP response, placing the user at the

point from which he can select a seat on his preferred flight.

If however, the timeout period for his itinerary selection

action has elapsed, but those for the login and travel plan

submission actions have not, then the recovery protocol will

recover the user only to the HTTP response for action A2

(plan entry), from which he will again be able to select an

itinerary.
To reduce the space requirements of the ACTION_TABLE,

periodically the system runs a garbage collection procedure

to remove user states that have expired from the ACTION_

TABLE and the DCAG. This can be accomplished with the
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GARBAGE_COLLECTION function shown in Algorithm 5
(given in Appendix D).

6 EXPECTED BEHAVIOR IN THE CASE OF FAILURE

We will consider connection failure in the context of our
online airline reservation example from Section 3. Suppose
that our user has entered all his ticket-payment information,
e.g., credit card information, and has selected the “confirm
purchase” button, which submits his payment information
to the airline site. In between submitting his request and
receiving the site’s response, his connection fails. (This is
perhaps the most interesting example from a user’s point of
view, since pressing the “confirm purchase” button is a
“point of no return” from the user’s point of view.) At this
point, we can ask the following question: Has the user
purchased the ticket? That is, is his purchase action
completed? We consider this question in light of the
possible failure cases, described below.

There are three general failure cases, depicted graphi-
cally in Fig. 5, possible in the scenario described in this
paper:

1. The user’s connection fails after he has submitted a
request containing his payment information, but
before that request reaches the gateway and is
logged. In this case, the user’s request containing
his payment information is never logged at the
gateway. Here, the recovery protocol aborts the
action in progress and performs recovery assuming
that the most recently completed action was seat
selection.

2. Once the gateway logs a request from a client, two
outcomes are possible: either a) the request will
reach the server and be processed; or b) the server
fails after receiving the request, but before proces-
sing the response. In case (2a), the gateway will
receive the response and process it normally.

Case (2b) is more challenging, in that there is no
good way for the gateway to “sense” that the server
has failed. The tricky problem here is that there is no
way for the gateway to distinguish between the
“server slow” condition (in which the server will
eventually respond) and “server failed” condition
(in which the server will not respond), while it is
waiting for a response. Here, we are interested in the
period before the HTTP request times out. Once the
timeout period has elapsed, the gateway will
consider the request to have failed, whether the
server has actually failed or not. Note that system
behavior in the timeout case is the same for users of

both wired and wireless connections—in both these

scenarios, reaching timeout results in a failed

request. Thus, in case (2b), even if a disconnection

occurs between the client and the gateway before the

site’s response is logged at the gateway, either the

response will arrive at the gateway before timeout,

at which point it will be logged, or the request will

time out, at which point the request will be

considered to have failed. Should recovery be

attempted before the response is received or the

timeout period has not yet fully elapsed, the gate-

way will simply wait for the response or timeout,

which is essentially the same behavior the end user

would observe had a connection failure not oc-

curred. If the gateway receives a response, the

gateway would simply forward it to the client. If,

alternatively, the request times out, the gateway will

forward a timeout error to the client.
3. The user’s connection fails after the gateway has

received the response with the purchase confirma-
tion, but before the user receives the response. In this
case, both the request containing the user’s payment
information, as well as the response containing the
site’s confirmation of payment, have been logged at
the gateway. Here, the action is in fact complete, and
so this action is identified as the “most recently
completed action.” (Note that in the case of the ticket
purchase action, the response never becomes in-
valid, and, so, the recovery system replays the
purchase confirmation (sent by the site) to the user
(and logged at the gateway).)

7 CONCLUSION

With the expansion of Web sites to include business

functions, a user interfaces with e-businesses through an

interactive and multistep process, which is often time-

consuming. At the same time, mobile Internet access is

becoming more common. In mobile environments, a loss of

connection, or any other system failure, can result in the loss

of work accomplished prior to the disruption. This work

must then be repeated upon subsequent reconnection—of-

ten at significant cost in time and computation for both the

Web site and the mobile user. In some environments, such as

wireless scenarios, this “disconnection-reconnection-repeat

work” cycle may cause Web clients to incur substantial

monetary as well as resource (such as battery power) costs as

well. In this paper, we proposed a protocol for “recovering”

a user to an appropriate recent interaction state after such a

failure. The objective was to minimize work that needs to be

redone upon restart after failure.
Whereas classical database recovery focuses on recover-

ing the system, i.e., all transactions, our work considers the

problem of recovering a particular user interaction with the

system. This challenging recovery problem encompasses

several interesting subproblems:

a. modeling user interaction in a way that is useful for
recovery,

b. characterizing a user’s “recovery state,”
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c. determining the state to which a user should be
recovered, and

d. defining a recovery mechanism.

To address these, we began with two foundation notions:
a) iTXs, which are sequences of user actions with one or more
Web sites, and b) user-site interaction states, which represent
the information exchanged between the user and a Web site
during the course of a single user action on the site.

We presented the properties of iTXs as well as the
features required of an iTX recovery scheme. We then
developed a graph model of an iTX for use as a failover map
in our recovery protocol. For the user-site interaction model,
we developed the notion of a user recovery state based on the
observable information in HTTP requests and responses.
Our recovery protocol is based on these models. Our
recovery protocol logs user recovery states and continually
updates users’ failover maps. Upon failure, the recovery
mechanism, located at the gateway—for reasons discussed
in the paper, consults the log and the failover map to find
the appropriate recovery state in terms of state validity and
user objective, and recovers the user to this state.

APPENDIX

Appendices A through G are available as supplemental
materials in the Digital Library at http://computer.org/
tmc/archives.htm.
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