
 

 
Abstract 

 
This paper presents a mobile application for capturing 
images of printed multi-page documents with a 
smartphone camera. With today’s available document 
capture applications, the user has to carefully capture 
individual photographs of each page and assemble them 
into a document, leading to a cumbersome and time 
consuming user experience. We propose a novel approach 
of using video to capture multipage documents. Our 
algorithm automatically selects the best still images 
corresponding to individual pages of the document from 
the video. The technique combines video motion analysis, 
inertial sensor signals, and an image quality (IQ) 
prediction technique to select the best page images from 
the video. For the latter, we extend a previous no-
reference IQ prediction algorithm to suit the needs of our 
video application. The algorithm has been implemented on 
an iPhone 4S. Individual pages are successfully extracted 
for a wide variety of multi-page documents. OCR analysis 
shows that the quality of document images produced by 
our app is comparable to that of standard still captures. At 
the same time, user studies confirm that in the majority of 
trials, video capture provides an experience that is faster 
and more convenient than multiple still captures. 

1. Introduction 
With ongoing advances in mobile camera technology, 

smartphones are being increasingly used to capture images 
of documents in a variety of consumer and business 
applications. Examples of such documents include bank 
applications, checks, insurance claims, receipts, etc. A 
variety of mobile apps for document scanning are 
available in the market, notable ones being Camscanner, 
MDScan, JotNot, and various apps from banks like Chase. 
When the document comprises multiple pages, all of these 
apps require the user to take a sequence of still shots, one 
per page. This process can be time-consuming and 
cumbersome for the user, especially when the number of 
pages becomes large, as would be the case for certain bank 
and loan application forms. 
We propose a novel means for mobile capture of multi-
page documents that uses video instead of still 
photography. We hypothesize that video capture provides 

a much superior user experience as it eliminates the need 
to manually frame and capture multiple still shots. We 
exploit the fact that most modern smartphones capture 
video in HD resolution, and have verified this provides 
adequate document image quality (IQ) for many business 
applications. What remains is an automatic way to select a 
set of high quality images of individual pages of the 
document from the video sequence. We propose an 
algorithm that combines video motion analysis, inertial 
sensor signals, and an extension of a recent learning-based 
IQ prediction technique to select the best page images 
from the video. To our knowledge, there does not exist 
such a video-based app for document page capture.  
The mobile application works as follows. The user 
launches the app on his/her smartphone, points the device 
at the document and starts the video capture as s/he flips 
through the pages of the document. Measurements from 
the smartphone’s inertial sensors are simultaneously 
recorded with the video. Once recording is completed, the 
app invokes the automatic page selection algorithm and 
presents images corresponding to individual pages to the 
user for further processing (e.g. geometric correction, 
noise removal, etc.) and approval. 

2. Related Work 
In a general sense, our problem is related to that of video 
storyboarding [1] and summarization [2] which addresses 
the task of extracting key frames corresponding to 
important events from video data to form a summary 
representation. In our application, the important event 
occurs when the mobile camera “sees” a clear view of a 
document page; while events corresponding to page turns 
must be discarded. In this regard, we note related work by 
Yamada et al. [3] wherein a static overhead camera 
captures video of a user interacting with a document in a 
controlled office setting. Page turn events are detected via 
a series of frame differencing operations, and hand 
detection is accomplished by detecting regions with 
predefined skin color in the video frames. The key 
distinction is that in our application, video is captured by a 
mobile device in arbitrary environments; and hence our 
algorithm must be more robust with respect to capture 
conditions such as camera shake, widely varying lighting, 
etc. 
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A key component of our algorithm is the ability to analyze 
and predict image quality. There is a significant body of 
literature in this area [6-13]. In our application we are 
primarily dealing with document images containing 
significant text content, hence we seek a metric that 
measures text quality [9,10,12]. Furthermore, since the 
user can capture video of arbitrary printed matter, we are 
interested in the class of “no-reference” IQ analysis 
techniques that do not require the presence of a reference 
image to compare against [7,8,10,11]. Additionally, since 
mobile capture can engender a wide range of distortions 
such as camera motion, focus blur, and lighting effects, the 
use of hand-crafted rules for characterizing these 
distortions often do not generalize well. Finally the 
technique must be computationally efficient to lend itself 
to a mobile implementation. Considering all these factors, 
we adopt an unsupervised feature learning technique 
developed by Ye et al. [8,10] that predicts optical 
character recognition (OCR) performance of document 
images. We then extend their approach to address the 
video frame selection problem. 

3. Page Selection Algorithm 
Our algorithm comprises the following cascade of 
operations that successively eliminate unwanted frames 
from the video sequence: 

1. Detection and removal of frames involving page 
turning and hand presence.  

2. Use of inertial sensor data to remove frames 
exhibiting camera motion. 

3. Calculation of IQ scores using a machine learning 
technique.  

The frame with the highest IQ score for each page is 
selected. An inadequate page IQ score triggers appropriate 
feedback to the user for possible re-capture. The above 
three steps are described in further detail below. 

3.1. Detection of Page Turn and Hand Interaction 
The first task is to detect page turn events as these frames 
must be eliminated, and furthermore, they mark the 
boundaries of video segments corresponding to individual 
pages.  
The input video is subsampled in the spatial and temporal 
dimensions in order to constrain computational cost. The 
absolute difference between adjacent frames is computed, 
followed by Gaussian smoothing using a 3×3 kernel and 
σx = σy = 0.5. This yields large blobs corresponding to 
large-scale motion in a page turn event.   

          
 
Figure 1. Binarized blob images corresponding to page-turn (left) 
and non-page-turn (right) events 

Morphological erosion using a circular structuring element 
of diameter 7 pixels is then applied to remove fine-scale 
motion arising from shake and/or jitter. The resulting 
image is binarized with an empirically determined 
threshold, and blobs are accumulated over a number of 
successive frames via a logical OR operation. In our 
application, integration over 6 frames provides a reliable 
indicator of page turns.  Fig. 1 shows the binarized blob 
images corresponding respectively to a page-turn and non-
page-turn event. Fig. 2 shows a plot of the stacked blob 
size as a function of frame number for a 4 page simplex 
document. The three prominent peaks correspond to true 
page-turn events. 

 
Figure 2. Stacked blob size vs. video frames for a 4 page simplex 
document. 

 
Figure 3. Hand interaction detection: (a) reference frame (b) test 
frame containing hand interaction. 

The next event that we wish to detect and remove is partial 
occlusion from the user’s hand interacting with the 
document. This normally occurs just prior to a page turn, 
and is not necessarily caught by the aforementioned 
motion detection algorithm. We search for frames 
occurring just prior to page-turn that exhibit significant 
luminance change with respect to a reference frame 
posited to have no hand interaction. Specifically, the frame 
is divided into 3 × 3 sub-blocks and the standard deviation 
σ of luminance values within each sub-block is computed 
for both reference and test frames (see Fig. 3). If the 
difference in σ is larger than a predefined threshold then 
the frame is marked as a hand-interaction event and 
eliminated. The reference frame is randomly selected from 
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the first few frames immediately after a page turn event 
(where we do not expect to see hand interaction). In the 
case of the first page, the reference is selected randomly 
from the first 1-2 seconds of capture. The main advantage 
of this simple approach is its time-efficiency which is 
critical for mobile devices.  

3.2. Camera Motion Detection 
The use of the smartphone’s inertial sensors to detect and 
recognize user movement is an area of active exploration 
[4, 5]. In our application, we use inertial sensor data as 
auxiliary input to eliminate frames with significant camera 
motion during video capture. The iPhone 4S emits 
acceleration data calibrated for gravity (G) (i.e. with the 
effect of gravity removed) in x, y, and z directions. We 
record and compute the magnitude of the 3D acceleration 
vector at the instant that each video frame is grabbed. 
Frames whose acceleration magnitude exceeds an 
empirically determined threshold of 0.02G are eliminated. 
Fig. 4 plots acceleration magnitude for a sample video 
capture. Also shown are portions of two frames exhibiting 
low and high acceleration magnitudes respectively. The 
inertial sensor clearly offers a simple and effective way to 
eliminate frames with objectionable motion blur.  

3.3. Image Quality Prediction 
Ideally, the frames that have survived up to this point 
should be free of page turn and camera motion effects, but 
may still vary significantly in quality due to effects of 
camera focus, shadows, etc. We thus propose the use of an 
additional measure of document IQ for ranking and 
selecting the best frame for each page.  An absence of high 
quality frames can also be used to provide an alert that the 
user may need to recapture certain pages.  

We first describe the approach taken by Ye et al. [10] 
followed by an important extension we have developed for 
the purpose of video frame selection. The original 
algorithm comprises two phases: unsupervised feature 
learning and document classification.  

3.3.1 Unsupervised feature learning. In this phase, 
training data is generated by acquiring image frames from 
representative mobile video captures of printed text 
documents. The images are processed through an OCR 
engine to obtain OCR accuracy scores based on known 
ground truth. Patches of size M×M are extracted at 
random locations from the training images. In order to 
avoid selecting patches in non-informative regions, only 
patches whose pixel variance exceeds a threshold are 
selected.  

 

    
Figure 4. Top: Acceleration magnitude recorded during capture 
of a document. Bottom: video frames corresponding to 2nd 
frame (high motion) and 11th frame (low motion).  

Patches are normalized to zero mean and unit standard 
deviation, reshaped into M2×1 vectors, and whitened using 
Zero Component Analysis to minimize correlation 
amongst vector elements. The resulting vectors vi are 
clustered using K-means clustering, to produce a 
codebook {d1, …, dK} that captures representative 
document features such as edges and corners under 
varying types and degrees of distortion such as blur, 
contrast, noise, etc. (see Fig. 5.). 

Next, a similarity measure si is computed between image 
patch vi and the codebook entries di via inner products: 

              si = [vi.d1, …, vi.dK]T              (1) 

The positive and negative elements of si are separated into 
a modified vector ci of dimension 2K as follows: 

ci = [max(si[1],0), …,max(si[K],0),  
          max(-si[1],0), …, max(-si[K],0)]T                 (2)  

This kind of rectification has been shown to improve the 
performance of prediction [8]. Finally, the feature 
descriptor for the entire image is computed as an 
aggregate of local patch descriptors ci. Ye et al. 
recommend a max-pooling strategy, while in our 
experiments we have found that the average of the ci is a 
more robust feature. The number of local patch descriptors 
to be used in the aggregation affects both the quality of the 
IQ prediction and computation time, and should be 
balanced appropriately.  Fig. 5 summarizes the three step 
process involved in feature computation.  

3.3.2 Document classification. The image features from 
the previous step are used to train a linear SVM [14] on 
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two broad classes: high-quality and low-quality 
documents. In [10], the two training classes are defined by 
selecting non-overlapping ranges of OCR scores. They 
also propose an alternate approach using support vector 
regression (SVR) to predict a continuum of OCR scores. 

 

 
Figure 5. Steps involved in feature computation for learning IQ 
score 

It should be noted that the intensive feature learning 
computation and SVM training are performed offline. The 
real-time operations are patch extraction, similarity 
measure computation, aggregate pooling, and linear SVM 
classification which are all efficient. 

3.3.3 Extensions for video application. The original 
algorithm poses two important limitations for our 
application. First, the output of the SVM predictor is 
binary valued, and therefore does not provide an informed 
way to select among a set of video frames wherein 
multiple frames will invariably produce identical classifier 
outputs. The use of SVR could address this issue, however 
this method is highly sensitive to the probability 
distribution of OCR scores in the training data. We 
observed a sparse distribution with strong peaks in certain 
score intervals, and very low counts in others, which is 
insufficient for SVR training. The second limitation is that 
the IQ prediction is global, i.e. it is obtained from pooling 
descriptors across the whole page. In our experiments we 
frequently encountered images where effects such as focus 
blur and shadows were highly localized.  

To address these issues, we extend the IQ prediction 
framework as follows. The image is divided into spatially 
non-overlapping sub-blocks, and the IQ predictor is 
applied to each block. Rather than returning a binary label, 
SVM returns the geometric margin, i.e. the signed distance 
from the input feature vector to the separating hyperplane 
given by: 

               qi = wTxi + b                                   (3) 

where xi is the feature corresponding to the i-th subblock;  
qi is the margin, and w and b are the SVM hyperplane 

parameters. The sign of qi indicates the output class to 
which the image is assigned, and the magnitude conveys 
the confidence of the assignment. The optimal sub-block 
size trades off the extent of patch feature aggregation vs. 
the spatial resolution of the IQ metric, and was obtained 
via cross-validation experiments.  

Our proposed extension thus provides both a meaningful 
continuously valued prediction as well as spatial 
dependence, thereby overcoming the two limitations of the 
original technique. In our implementation, we obtain a 
frame quality score Q by averaging the qi across sub-
blocks, and then select the frame with maximum Q for 
each page. 

4. Experiments 
The proposed algorithm was implemented as an iPhone 4S 
application. Video was captured in HD resolution and 
spatially subsampled by a factor of 4 in both x- and y- 
directions, and temporally subsampled to 6 frames per 
second within the app prior to processing. The image 
processing and IQ prediction algorithms were 
implemented using OpenCV Version 2.4.9. OCR on 
images was performed with ABBYY FineReader [15] and 
character level accuracy was obtained using the ISRI-OCR 
evaluation tool [16]. Parameters in our experiments were 
set using cross-validation on the training set.   
 

 
(a) 

   
                     (b)                                        (c) 

Figure 6. Image segments extracted from training data set 
showing (a) high quality (b) focal blur (c) shadow 

4.1. Image Quality Prediction  
A data set was collected comprising smartphone video 
footage of a variety of multi-page text-intensive 
documents with different font sizes and styles, producing a 
total of 4800 video frames. The video was captured under 
a variety of representative lighting conditions and 
distortions such as shake, translation, motion, glare, 
shadow etc. Fig. 6 shows examples of training image 
patches corresponding to different capture conditions.  
We randomly selected a set of 1448 images for learning 
the IQ score.  We used a patch size of M=11 and 
codebook size of K = 50 for feature learning. A total of 
1000 local patch descriptors were aggregated to obtain the 
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image feature. A two-class linear SVM classifier was 
trained with one class containing high quality samples 
with OCR accuracy greater than 90%, and the other 
containing low quality samples with OCR accuracy less 
than 10%. The images were then divided into 2×3 spatial 
sub-blocks, SVM margins were computed as in Equation 
(3), and averaged across sub-blocks to obtain a predicted 
score Q. Fig. 7 is a plot of Q vs. true OCR accuracy for a 
number of training samples. Superimposed on this plot is a 
logistic fit given by the function: 
 

    (4) 
 
where parameters a and b are obtained via least squares 
regression. The root-mean-square error of the logistic fit 
for an independent set of samples was 14.7 (where the 
quantity being predicted is percentage OCR accuracy on a 
scale from 0-100).  Clearly the model cannot predict OCR 
score to a very fine precision. Note also that prediction 
error generally is higher in the mid-range of OCR 
accuracies, thus reducing the confidence of prediction in 
this regime. 

 
Figure 7. Plot of OCR accuracy vs. predicted IQ score (red 
circles) and logistic fit (blue curve). 
 

For video frame selection, the IQ score is computed for all 
frames that survive the filters discussed in Sec. 2.1 and 
2.2. For each document page, the frame with the highest 
IQ score is selected, and the corresponding score is 
referred to as the page score.  Additionally we define two 
thresholds thigh and tlow to categorize pages into one of 3 
broad classes based on their score: “high quality”, 
“medium quality”, and “low quality”.  If the page score 
falls in the “medium” category, the user is warned that the 
page may have to be re-captured. A page score in the 
“low” category automatically launches a re-capture step. 
The thresholds are tunable, and currently set to thigh = 90% 
and tlow  = 10% in our mobile app. 

4.2. User Experience Experiments 
An experiment was conducted to assess the user 
experience when performing multi-page capture with our 
mobile video app vs. the standard process of capturing 
multiple still shots. Ten subjects participated in the 
experiment, all with experience in smartphone usage. Each 
subject was presented with five artifacts in random order: 
a duplex stapled 6-page conference paper, a simplex 
unstapled 4-page press release, a duplex 5-page brochure, 
an A3-sized bank application form (front/back), and a 
bank check (front/back). He/she was asked to capture the 
multi-page/multi-face artifact using the “still capture” 
mode as well as our video-based app. Initial training was 
given for subjects to become familiar with the interface. 
Capture sessions for each artifact were timed.  
 

 
 
Figure 8. Average time (sec) for still vs. video capture. 
 
Fig. 8 shows the average time across users for each artifact 
with the two capture modes.  In most cases, video capture 
is noticeably faster, with timing differences being more 
pronounced for documents with a larger number of pages. 
This is not surprising since the number of “clicks” is 
substantially reduced with video capture.  
 
 

 
 

Figure 9. Preference for still and video capture mode. A score of 
1 is given to the preferred mode for each subject. In case of ties, 
a score of 1 is assigned to both modes. 
We also asked subjects to vote for their preference for the 
video vs. still capture mode. Ties were permitted. Fig. 9 
plots the results of the votes, indicating again a strong 
overall preference for video capture. 
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4.3.  Quantitative evaluation 
We selected the 4-page press-release document for further 
analysis.  Page images produced with the still- and video-
capture apps by the ten subjects were run through ABBYY 
OCR. Statistics on per-page OCR accuracy are presented 
in Table 1.  It is seen that the proposed video capture app 
performs comparably with the standard still capture mode.  
 

Table 1. OCR accuracy for still vs. video capture. 
 

 75th 
Percentile 

Median 25th  
Percentile 

Still Capture 99.9  99.6 98.8 
Video Capture 99.8  98.8 87.1 

 
The Pearson linear correlation between predicted page 
scores and OCR accuracies was 0.85. Also noteworthy is 
that for two of the ten users, the predicted page IQ scores 
were in the “low” and “medium” categories, and these 
were indeed a result of poor capture. These subjects were 
prompted to repeat the capture to produce better video 
quality. The IQ score thus provides an effective instant 
feedback mechanism to users. Finally, 140 out of 150 page 
turns were correctly detected (i.e. 93 % success rate). 

5. Conclusion 
We have presented an application for acquiring an 
electronic version of a multi-page printed document using 
smartphone video capture. At the heart of the application 
is an algorithm for automatically extracting high quality 
page images from the video feed using efficient image 
processing, inertial sensor input, and an extension of a 
machine learning technique to predict page IQ.  
Experiments validate our hypothesis that video capture 
offers a superior experience while posing minimal 
sacrifice to image quality. While we have reported results 
primarily with paper documents, the technique is 
applicable for any printed material such as checks, 
business cards, credit cards, packages, etc. Also since the 
algorithm parameters have been chosen based on standard 
HD video output that is available on most modern 
smartphones, we expect the algorithm to be robust across 
different mobile platforms. 

There are several avenues for future exploration. Currently 
the processing time for page selection is approximately 
equal to the video capture duration, but can be 
significantly sped up with a parallelized (e.g. GPU) 
implementation. Image enhancement techniques such as 
super-resolution reconstruction can be explored. Another 
aspect to be investigated is improving the accuracy and 
resolution of the IQ prediction model, and extending its 
applicability from text to pictorial content. Finally it 
would be beneficial to utilize the full spatial profile of the 

IQ metric for richer user feedback, as well as to facilitate 
fusion of multiple video frames with different spatial IQ 
profiles to produce superior quality.  
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