
Mobile Web Service Provisioning

Satish Narayana Srirama1, Matthias Jarke1,2, Wolfgang Prinz1,2
1RWTH Aachen, Informatik V

Ahornstr.55, 52056 Aachen, Germany
2Fraunhofer FIT

Schloss Birlinghoven, 53754 Sankt Augustin, Germany
{srirama, jarke}@i5.informatik.rwth-aachen.de

wolfgang.prinz@fit.fraunhofer.de

Abstract

This paper, discusses the confluence of two major

recent trends in distributed information systems
engineering: the evolution from static content via
personalized adaptive information provisioning to Web
Services, and the emergence of mobile terminals with
sufficient speed to serve as parts of information
systems. The combination of both trends yields the idea
of mobile Web Services. While a few pioneering mobile
Web Service client systems have appeared recently,
this paper explores the logical next step. Whether it is
feasible to use mobile terminals such as Smart Phones
also as Web Service providers (“Mobile Hosts”). We
first discuss the desirability of such Mobile Hosts, then
discuss the challenges for design and implementation,
and finally present a prototype implementation that
has been developed and evaluated in cooperation with
a major mobile phone vendor.

1. Introduction

It is well accepted by now that the Internet can be
seen as a large-scale distributed information system
with numerous information users and providers. From
the view-point of information systems engineering, this
has influenced three major trends:

• the evolution from static content to Web Services,
• the evolution from client-server systems to peer-

to-peer and pervasive computing systems, and finally –
in conjunction with novel developments in wireless
communication technology –

• the trend from stationary to mobile distributed
information management.

Web Services are software components that can be
accessed over the Internet using established Web
mechanisms and protocols such as SOAP and HTTP

[2]. Public interfaces of Web Services are described
using Web Service Description Language (WSDL).
Examples of Web Services range from simple requests,
such as stock quotes or user authentication, to more
complex tasks, such as comparing and purchasing
items over the Internet.

With the introduction of Third and Interim
Generation mobile communication technologies in the
cellular domain like UMTS, GPRS/EDGE, the speed
of wireless data transmission has increased
significantly. Also processing power and device
capabilities of mobile phones have increased
drastically, thereby enabling better applications and
usage of mobile devices in different application
domains.

Combining these developments it is a logical next
step to turn mobile devices into wireless Web Service
requestors (clients). This enables communication via
open XML Web Service interfaces and standardized
protocols also on the radio link, where today still
proprietary and application- and terminal-specific
interfaces are required. Mobile Web Service clients
lead to manifold opportunities to mobile operators,
wireless equipment vendors, third-party application
developers, and end users. It is easy to imagine that in
the future mobile applications based on Web Service
clients will generate a large percentage of all Web
Service requests, and the first such solutions are
currently appearing on the market. [5, 9]

However, in a sense, this role of mobile Web
Service clients is still basic and the combination of
cellular and Web Services domains would only be
completed if it would become feasible to also offer
standard Web Service providers on small mobile
devices. In this paper, we explore this idea based on
experiences from a cooperation project with a major
mobile phone provider in which the prototype of such a

Mobile Host was developed and tested on a smart
mobile phone. The paper is organized as follows:

Section 2, defines the concept of mobile Web
Service provisioning, whereas section 3 describes uses
and use cases for Mobile Hosts. Section 4 discusses the
challenges faced in designing and implementing such a
Mobile Host, and outlines a general solution
architecture. Section 5 describes our prototype
implementation and its evaluation results, and section 6
discusses conclusions and further research.

2. Basic architecture of mobile Web
Service provider (“Mobile Host”)

The basic architecture for Web Services is built

upon its three components: Service Requestor (Client),
Service Provider and Service Registry. The service
provider publishes its Web Services with the service
registry. The service requestor searches (“Find”) the
UDDI registry for the services, and the UDDI
compatible service registry refers the respective
WSDL. The service requestor accesses the described
Web Service, using SOAP. [1]

Similar to this, the basic architecture of the mobile
terminal as Web Service provider can be established as
shown in figure 1 with the Web Service provider (from
now on: “Mobile Host”) being implemented on the
Smart Phone.

WS Mobile Web
Service provider

Service Registry

(WSDL,UDDI)

Service Requester

(Client)
Service Registry

(WSDL,UDDI)

Service Requester
(Client)

Bind(SOAP)Publish

Find

WS Mobile Web
Service provider

WS Mobile Web
Service provider

Service Registry

(WSDL,UDDI)

Service Requester

(Client)
Service Registry

(WSDL,UDDI)

Service Requester
(Client)

Bind(SOAP)Publish

Find

Figure 1. Basic architectural setup of Mobile

Host
Even though the Web Service provider is

implemented on the Smart Phone, the standard WSDL
can be used to describe the services, and the standard
UDDI registry can be used for publishing and un-
publishing the services. This of course presents the
challenge to design the mobile terminal with the same
general architecture as on any standard desktop system,
even under the low-resource considerations of the
Smart Phone.

Alternate architectures for mobile Web Service
provisioning are also possible with SOAP complaint
proxy or gateway in between the Mobile Host and the
Web Service requester. The communication between
the client and the proxy is using SOAP and the

communication between the proxy and the Mobile
Host would be using a protocol, efficient for the data
transport across the mobile networks. Many such
proprietary protocols and implementations have
evolved like WSOAP, gSOAP, eSOAP, etc. The
following paragraphs give a brief discussion of two of
these protocols.

Wireless SOAP (WSOAP) [12] is basically a set of
optimization techniques. The WSOAP aims to provide
static encoding based on SOAP schema, leverages
WSDL service description to create adaptive encoding
for WS interfaces, limits computational cost, and
concentrates on functional message equivalence rather
than exactness. This protocol can be extremely useful
between mobile devices and gateways where the
resources are very limited as WSOAP can reduce
SOAP message sizes by 3-12 times.

The gSOAP toolkit is a platform-independent
development environment for C and C++ Web
Services [13]. gSOAP provides transparent SOAP API
through the use of compiler technology that hides
irrelevant SOAP-specific details from the user. The
compiler automatically maps native and user-defined C
and C++ data types to semantically equivalent SOAP
data types and vice-versa. As a result, full SOAP
interoperability is achieved with a simple API.

We are considering this option of using SOAP
proxy in our study, which handles the security and the
scalability issues, there by providing better QoS for the
Mobile Host. For scalability issues, compression
technologies with Fast Web Services [14] are being
considered. SOAP compression is highly efficient in
the mobile Web Services domain, because of the poor
connectivity and high communication costs of the
mobile networks. [16]

But the processing of these proprietary protocols
might require additional resources like processing
power and time, delaying the response time of the
Mobile Host. In addition having such a proxy or
gateway might affect the interoperability of the Web
Services. Moreover for the study addressed by this
paper, we considered only the basic architecture, as we
wanted to check the feasibility and performance
analysis of having such a standard Mobile Host on the
Smart Phone.

3. Applications of Mobile Host

Mobile Hosting of Web Services opens up a new set

of applications that has not been explored very much
up to now, since a realization seemed beyond the
resource capabilities of present mobile terminals. In the
subsections below, we therefore explore usability and
usefulness of mobile Web Service hosting.

Generally speaking, the Mobile Host has the
following major potential advantages over the
currently discussed mobile Web Service client
solutions:

• As a Mobile Host, the mobile terminal becomes a
multi-user device where the owner/carrier of the device
can work in parallel with users of the Web Service
without explicit effort on his/her side.

• From a commercial viewpoint, there is a reversal
of payment structures. While traditionally the
information-providing Web Service client has to pay to
upload his or her work results to a stationary server
(where then other clients have to pay again to access
the information), in the Mobile Host scheme
responsibility for payment shifts to the actual clients --
the users of the information/services provided by the
Mobile Host.

• Another commercial aspect is the possibility for
small mobile operators to set up their own mobile Web
Service business without resorting to stationary office
structures, thus going one step further in the move
from central to P2P architectures.

• From a management perspective, the Mobile Host
supports more directly the concept of ad-hoc computer-
supported cooperative work (CSCW), playing and
learning in mobile settings, as studied in many current
projects.

Of course, this additional flexibility generates a
large number of interesting research questions which
need further exploration.

2

3

4

1

A

B

2

3

4

1

A

B

Figure 2. Guided parcel service scenario

As an example, the Mobile Host can be used for
providing detailed location information of the mobile
terminal, such as GPS [10] data and voluntary personal
profile information describing the user of the device
[15]. Such location based services can be used in
applications like guided parcel service, where the client
can exactly track his parcel throughout the delivery
process. The cars in figure 2, used for the parcel
delivery, are equipped with Mobile Hosts, which
provide location details to the client. [6]

4. Mobile host design

The design of a Mobile Host faces some tricky
challenges as very little research exists so far how to
offer service provisioning on strictly resource-limited
devices. After summarizing these challenges, we
describe the solution concept developed for our Mobile
Host system in general terms. The discussion has to get
into some technical detail, but we believe that this kind
of approach can also carry over to many other of the
forthcoming Ambient Intelligence applications of
mobile information systems and may therefore be
worthwhile presenting here.

4.1. Challenges

When preparing this study, we were surprised to see
that the state-of-the-art in mobile information
provisioning (as opposed to mobile information
requesting) seems to be still in its infancy. More
recently Nokia has defined and is trying to address this
issue with its Nokia Web Services Framework. [15]

Traditionally, mobile systems typically have been
designed as client-server systems in which thin clients
such as PDAs or data-capable cell-phones use wireless
connections to gain access to resources (data and
services) provided by central servers. Even though the
emergence of wireless ad-hoc networks and powerful
mobile devices makes it possible to design mobile
systems using a peer-to-peer architecture, the concepts
are still very fresh and require further research. The
approach described below is intended as a contribution
to address this need.

The key challenges addressed in our approach are
threefold: to keep the Mobile Host fully compatible
with the usual Web Service interfaces such that clients
will not notice the difference; to design the Mobile host
with a very small footprint that is available in the
Smart Phone world (for example, the footprint of our
fully functional prototype is only 130 KB); and to limit
the performance overhead of the Web Service
functionality such that neither the services themselves
nor the normal functioning of the Smart Phone for the
user is seriously impeded.

Considering these challenges in addition to the
architectural and use case requirements identified in
section 2 and section 3, the mobile Web Service
provider for Smart Phones should provide the
following features:

• A standard Web server handling HTTP requests,
• A basic Web Service provider handling requests

from Web Service requestors using SOAP over HTTP,
• Capability to handle concurrent requests,
• Support for deployment of services at runtime,

• Support for the performance analysis.
Three additional challenges – the “grid-building” of

multiple Mobile Hosts in a mobile P2P information
system, the mobile management of Web Service
evolution, and the security management – are subject
of our current research but not yet within the scope of
this paper.

4.2. Architecture

The Mobile Host has been developed as a Web
Service handler built on top of a normal web server.
The Web Service requests sent by HTTP tunneling are
diverted and handled by the Web Service handler.

Figure 3 shows the core architecture of the Mobile
Host. At the HTTP interface, the Mobile Host listens
for incoming HTTP GET/POST requests on a sever
socket. When the Mobile Host gets a request, the
server socket accepts it, creates a socket for
communication, and initiates a new thread of execution
by creating an instance of the request handler. The
request handler extracts the incoming message from
the input stream of the socket, and checks for Web
Service requests sent via HTTP tunneling. If it is
normal HTTP request, the request handler processes
the HTTP request just as the standard web server, and
returns the response by writing to the output stream of
the socket.

Request Handler

SOAP Processor

KSOAP

KXML

Service Handler

MPS WS GPS

W S Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

Request Handler

SOAP Processor

Request Handler

SOAP Processor

KSOAP

KXML

KSOAP

KXML

Service HandlerService Handler

MPSMPS WSWS GPSGPS

W S Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

HTTP
Interface

(Java
ServerSocket
Listener)

HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

File
System
File
System

External
devices
like GPS
Receiver
etc.

External
devices
like GPS
Receiver
etc.

Bluetooth
/ IR

HTTP
request

Request Handler

SOAP Processor

KSOAP

KXML

Service Handler

MPS WS GPS

W S Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

Request Handler

SOAP Processor

Request Handler

SOAP Processor

KSOAP

KXML

KSOAP

KXML

Service HandlerService Handler

MPSMPS WSWS GPSGPS

W S Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

HTTP
Interface

(Java
ServerSocket
Listener)

HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

File
System
File
System

External
devices
like GPS
Receiver
etc.

External
devices
like GPS
Receiver
etc.

Bluetooth
/ IR

HTTP
request

Figure 3. Core architecture of the Mobile Host

If the message comprises a Web Service request, the
Web Service Handler component of the Mobile Host
processes the message. The request handler reads the
HTTP message body and de-serializes the SOAP
request to Java objects, using the SOAP processor. The
request handler passes these objects to the service
handler, which extracts the service details and invokes
the respective service. The business logic of the service

method is then executed and the service handler returns
the response to the request handler.

The Web Services deployed on the Mobile Host can
access the local file system, or any external devices
like a GPS receiver, using Infrared, Bluetooth etc., and
can implement business logic.

The request handler serializes the response and
prepares the HTTP response message, which is
returned to the client as a HTTP response by writing to
the output stream of the socket.

Considering the low-resource constraints of Smart
Phones, no deployment environment can be easily
provided. Hence, all services have to be deployed at
the installation of the Mobile Host. Alternatively, the
Mobile Host was configured to look for services at
other locations apart from the main JAR location,
where the services could then be deployed at runtime.

4.3. Mobile terminal access

Once a Web Service is developed & deployed with

the Web Service provider implemented on a mobile
terminal (MT), the mobile terminal, that is registered
and connected within the mobile operator network,
requires some means of identification and addressing,
that allows the Web Service to be accessible also from
outside the mobile network operator’s network domain.

Generally, computers and devices in a TCP/IP
network are identified using an IP address. The IP
address, that is required for the data transfer to and
from Smart Phones (as for any other IP communication
client as Web servers, Intranet workstations, etc.), is
assigned during the communication configuration
phase. Typically, the IP address assigned to mobile
devices using GPRS is only temporarily available, and
is known only within the mobile operator’s network,
which makes it difficult to use the IP address in the
client applications.

The study has identified different means of
resolving the IP address in HSCSD (High-Speed
Circuit Switched Data) dial-up connection, GPRS
environments and thereby making the data
transmission with a mobile terminal, possible. A
detailed discussion of these methods is beyond the
scope of this paper. [6]

5. Implementation and evaluation of a
Mobile Host prototype

5.1. Implementation details

To prove the feasibility of the Mobile Host in the
scope for peer-to-peer, ad-hoc, distributed mobile
information networks, a prototype mobile Web Service

provider was developed for the Java enabled Smart
Phone, SonyEricssson P800.

The P800 Smart Phone supports two types of Java
namely PersonalJava and J2ME CLDC/MIDP 1.0.
After the analysis of both the development platforms,
PersonalJava was selected for the implementation of
the Mobile Host as, PersonalJava is faster in
processing and has a richer application environment
and can interact more extensively with the P800 phone
software than J2ME. [4]

Using PersonalJava may have affected the
portability of the Mobile Host on different Smart
Phones, but this was not a big constraint, as the main
interest was to prove the feasibility of mobile Web
Service provider on some given Smart Phone.

Apart from this, the dedicated mobile Web Service
provider required means for handling the SOAP
requests from the WS clients. As the service provider
was targeted at mobile terminals with limited
resources, the parser should have a small memory
footprint. With this intent, after an extensive search
and analysis of different resources in the WWW, the
kSOAP [3] toolkit from enhydra.org was chosen.

kSOAP is an open source API for SOAP parsing. It
is based on kXML. kSOAP provides a SOAP parser
with special type mapping and marshalling
mechanisms. Both kSOAP and kXML are thin, easy to
use, and well documented, and hence can be used for
resource-constrained devices like mobile phones. Most
recently kSOAP is redesigned to kSOAP 2 and the
Mobile Host was upgraded to this new version, without
much effort.

Alternative SOAP implementations like gSOAP,
eSOAP were not considered for the implementation as
they were developed in C++ and their compatibility
with Symbian C++, supported by P800 could not be
addressed easily.

The Mobile Host was developed as a combination
of 5 core classes and 9 basic services, within a small
memory foot print. It also has extensive support for
performance analysis.

5.2. Evaluation

Once the Mobile Host was developed, it was
extensively tested for performance issues like the
memory load, server-processing load etc. The
evaluation of the system was conducted using services
like Mobile photo album service, which allows the
Web Service client to browse the pictures taken by the
mobile, the Location (GPS) data provisioning service
and some more basic services like echo, ‘ls’ services
and etc.

The test setup comprised a Mobile Host developed
and deployed on the P800 Smart Phone and a
standalone Apache Axis WS client. The client calls for
different services (Within the context of this paper, it is
assumed that the client knows the exact location (URI)
of the service and the service description;) deployed on
the Mobile Host and the performance of the Mobile
Host was observed, by taking timestamps and memory
foot prints, while the Mobile Host was processing the
WS request. The tests were conducted both in HSCSD
and GPRS environments.

As the test cases for the mobile photo album
service, 15 different images were selected with
memory sizes ranging from 3KB to 100KB, and the
client can browse through these pictures. The location
(GPS) data provisioning service uses an external GPS
device for providing the GPS [10] data.

The evaluation showed that service delivery as well
as service administration can be done with reasonable
ergonomic quality by normal mobile phone users. As
the most important result, it turns out that the total WS
processing time at the Mobile Host is only a small
fraction of the total request-response time (<10%) and
rest all being transmission delay. Figure 4 shows the
time delays of different activities, for the Location data
provisioning service. The results clearly showed that
the processing capability of the Mobile Host can be
increased by increasing transmission rates and the
results are in harmony with the performance analysis
of the mobile Web Service clients [11].

Figure 4. Time delays for the GPS provisioning

service
In terms of performance, the key question was

whether a reasonable number of clients could be
supported by the Mobile Host with an overhead that
would not prevent the main mobile user from using his
or her Smart Phone in the normal fashion (either to
supply the services or just for usual local phone
functions). The results of this analysis are very
encouraging and the Mobile Host was successful in
handling 8 concurrent accesses for reasonable service

Durations for activities

5300

1719

219
47

297
47

250 203 94
0

1000

2000

3000

4000

5000

6000

 No Threads

D
ur

at
io

n
in

 M
S

Total time at client
Time at server
Request s tream reding time
Request processing time
Deserialization
SOAP Diversion
Service time
Serialization
Stream push at server

like location data provisioning service, with a response
size of approximately 2KB.

The study of the memory footprints revealed that
memory usage was not a problem with Mobile Host, as
most of the time, the amount of free memory was at
least 20% of the total memory allocated for the JVM
(max value approximately 330 KB) and the “Out of
Memory error” was never encountered during the
execution of the tests. Approximately 200 data traces
were observed as the experiments were repeated
several times in order to have statistically valid results.

6. Conclusions and future work

This paper proposed to use modern low-resource
mobile terminals such as Smart Phones not just as Web
Service requestors, but also as Mobile Hosts that can
themselves offer services in a true mobile peer-to-peer
setting. A number of use cases, some of them
experimented with in our prototype implementation,
demonstrated the potential of this new approach. A
prototype Web Service provider demonstrated the
technical feasibility of our approach in terms of
resource consumption, standard compliance, and
performance. The approach truly paves scope for the
P2P, ad-hoc and distributed mobile information
networks.

Next steps on the technical side include a broader
and more detailed, component-oriented performance
analyses and means of improving the performance, a
user-friendly approach to the handling of mobile Web
Service evolution, and – perhaps most importantly – a
detailed study of the security implications of this
approach. Equally important is the study of specific
application domains and usability analysis; our
research mainly focuses on mobile community support
and pervasive gaming.

Connected to this is the domain of mobile gaming
which we are studying as part of the IPerG European
Integrated Project. The mobile device turns from an
interaction and information access device to a service
providing device. I.e. elements of a game can be
distributed over a network of Mobile Host users which
makes them independent of a central game host,
enabling ad hoc and on the fly reconfigurations of the
game, based on the availability of players and mobile
resources. While our research so far has focused on
making such applications feasible from the viewpoint
of mobile service provisioning, these applications will
focus more on the interplay of multiple such servers
and clients, complementing our earlier work on
requirements analysis and simulation of such
environments in the TROPOS project. [7, 8]

7. References

[1] Web Services Activity, http://www.w3.org/2002/ws/,
May 2004
[2] HTTP, Hypertext Transfer Protocol version 1.1, IETF
RFC 2616, http://www.ietf.org/rfc/rfc2616.txt
[3] kSOAP, a open source SOAP implementation for kVM,
http://ksoap.enhydra.org/, May 2004
[4] “Java support in SonyEricsson mobile phones P800 and
P802”, Jan. 2003 Developer guidelines from SonyEricsson
Mobile CommunicationsAB, www.SonyEricssonMobile.com
[5] “J2ME Web Services Specification”, JSR 172 from Java
community process
[6] S. Srirama, “Concept, implementation and performance
analysis of mobile Web Service provisioning for Smart
Phones”,MasterThesis, RWTH Aachen University, Jun. 2004
[7] G. Gans, M. Jarke, G. Lakemeyer, D. Schmitz,
“Deliberation in a modeling and simulation environment for
inter-organizational networks”, In J. Eder / M. Missikoff
(eds.): Advanced Information Systems Engineering. 15th
Intl. Conf. CAiSE 2003, Velden/Austria 2003, Springer-
Verlag, LNCS 2681, pp. 242-257
[8] G. Gans, M. Jarke, S. Kethers, G. Lakemeyer,
“Continuous requirements management for organisation
networks: a (dis-)trust-based approach”, Requirements
Engineering Journal, Vol. 8, No. 1, pp. 4-22, 2003
[9] Mark Jones and Paul Krill, InfoWorld: JavaOne:
JavaFirst brings Web Services to mobile devices,
http://www.javaworld.com/javaworld/jw-06-2003/jw-0612-
idgns-mobile.html
[10] GPS, Global Positioning System, data format available
at http://www.navcen.uscg.gov/pubs/gps/sigspec/gpssps1.pdf
[11] M. Laukkanen, H. Helin, “Web Services in wireless
networks: What happened to the performance”, in the
proceedings of the 2003 Int. Conf. on Web Services – ICWS
’03, CSREA Press, pp. 278-284.
[12] Apte, Deutsch, Jain, “Wireless SOAP: Optimizations for
Mobile Wireless Web Services”, www (2005),
http://www2005.org/cdrom/docs/p1178.pdf
[13] R. van Engelen, K. Galliva, “The gSOAP toolkit for
web services and peer-to-peer computing networks”, In 2nd
IEEE International Symposium on Cluster Computing and
the Grid, 2002.
[14]P.Sandoz, S.Pericas-Geertsen, K.Kawaguchi, M.Hadley,
and E Pelegri-Llopart, “Fast Web Services”, Aug. 2003,
http://java.sun.com/developer/technicalArticles/WebServices
/fastWS/
[15] Nokia Web Services Framework for Devices,
http://www.nokia.com/NOKIA_COM_1/Operators/Technolo
gies/Web_Services/web_services_a4_1603.pdf
[16] Min Tian, Thiemo Voigt, Tomasz Naumowicz, Hartmut
Ritter, and Jochen Schiller, “Performance Considerations for
Mobile Web Services”. Elsevier Computer Communications
Journal, Volume 27, Issue 11, 1 July 2004, Pages 1097-1105.

