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1.  Introduction

When developing mobile wireless network systems (i.e., wireless

networking algorithms, node architectures, and network infrastruc-

tures), the designer is presented with numerous design alternatives.

There are many factors which impact the analysis, performance and

validation of these design alternatives. These factors range from

having to support different patterns of node mobility to integrating

the traffic generators, networking algorithms, and operating system

capabilities.

 

A few operating system kernels and languages have been

designed to support wireless and mobile communication [1], and a

number of protocols have been devised to solve the numerous

topology setup and maintenance, media access control, and trans-

mission problems in the mobile environment [10]. Commercial

radios designed to be hooked up with laptops for wireless multime-

dia transmissions are available in the market.   Although solutions

to different facets of the wireless mobile information system design

are appearing, relatively little effort has been devoted to under-

standing the performance impact of the interactions among differ-

ent components of the system.   

Analysis, simulation and measurement have all been used to

evaluate the performance of network protocols and multimedia sys-

tems. Measurement-based approaches are useful only after the sys-

tem has been deployed. Although they offer the most accurate

evaluations of performance problems, they are often inadequate

because it may be infeasible to modify the deployed system to

experiment with many design parameters. Even when such modifi-

cations are feasible, the cost of the necessary software and hard-

ware modifications may be exorbitant. Analytical models offer the

opportunity to quickly examine a large parameter space to identify

efficient configurations; however for complex systems with many

interacting components, analytical models may either be inaccurate

or computationally intractable. For complex, heterogenous systems,

simulations are often the only realistic alternative to performance

prediction.

 

The primary drawback with detailed simulation models is that

they are frequently slow. Experience with many existing network

simulators has shown that a performance study of wireless proto-

cols for even small networks (tens of nodes) can take many days;

running such simulations for networks involving a large number of

mobile elements is clearly infeasible. Recent experience with paral-

lel execution of models for personal communication systems has

shown that parallelism offers significant potential to improve the

execution time for these models; it is likely that these techniques

can also be exploited to improve the execution time for simulation

models of wireless networks. This paper describes a simulation

environment for wireless networks that is built using the Maisie [3]

simulation language. Maisie has been implemented on both sequen-

tial and parallel architectures. The paper describes the environment

and presents experimental results using sequential execution of the

models. The environment is currently being ported to a parallel

architecture.

 

The remainder of the paper is organized as follows: Section 2

begins with a description of the primary components which make

up mobile wireless systems. Section 3 describes the new simulation

environment used to analyze the performance of such systems; we

see how the environment and various models of the system are built

using an existing message-passing based simulation language

called Maisie. Section 4 presents the results of a simulation study to

evaluate the performance of a specific mobile wireless multimedia

system that is being designed at UCLA. Experiments to validate the

simulation are also presented. In Section 5 we see the related work

in this area, and Section 6 is the conclusion.
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2.  Mobile Wireless Systems

We provide a common reference model for these systems by

decomposing them into two primary subsystems: network and

node. The node level is used to describe the hardware and software

capabilities of the (possibly) mobile node including its radio char-

acteristics and its interface to the network operating system. The

network level describes the architecture of the communication net-

work which may be wirelined, wireless or a hybrid. In this section,

we describe each of the layers in detail, and develop simulation

models for these layers in Section 3.

2.1 Mobile Wireless Networks

Figure 1 is an example of a mobile wireless network. This net-

work is composed not only of a static wired backbone and a few

wireless cells, but also a set of nodes which are able to support

instant infrastructure, self-configuring, and multi-hop functionality.

We include throughout this paper the study of instant infrastructure

networks [14], nodes and their algorithms since support for this

architecture requires additional flexibility in the simulation envi-

ronment and illustrates the complex environment in which the

mobile wireless network systems can operate.

2.2 Mobile Wireless Nodes

The design of mobile wireless nodes/terminals have been studied

by various groups [17][14]. In this section we describe the compo-

nents which make up the node architecture and the implementation

of the network control functions, multimedia support, communica-

tion substrates, and the interfaces between them. Our focus is on

one of the elements shown in Figure 1, namely the wireless node; it

is represented by the mobile node components shown in Figure 2.

In the following subsections, we will describe various components

and algorithms which make up the mobile wireless nodes.

2.2.1  Applications

The standard set of TCP/IP protocol suite applications support

text based services like remote login or file transfers. New applica-

Fig. 1. Mobile Wireless Networks
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tions are now appearing which support multimedia (e.g., Netscape

and video conferencing applications). Multimedia support is neces-

sary not only for acquisition and presentation of video, speech, and

data but also for coding/decoding for efficient transmission through

the wireless network. To demonstrate multimedia effects over

mobile wireless networks, a video conferencing application has

been developed. This application (VideoTALK) brings together

video, which uses UDP, and data, which uses TCP, into a single

application on the laptop. To test the performance of the system for

these applications, testing tools were developed to measure

throughput, delay, packet loss, and to track adaptive parameters in

the communication device (radio) such as code, power, and spread-

ing factor (i.e. chips/bit). A topology analyzer program (TOPO)

was developed which can be used in the simulation environment or

in the implemented system to graphically display the virtual topol-

ogy of the wireless multihop subnet. These tools and applications

are used for experimentation and validation with simulation.

2.2.2  Operating System

The operating system is responsible for integrating all these net-

work control components together. The choice of an operating sys-

tem, such as Microsoft Windows, PC-Disk Operating System

(DOS), Mac OS, or UNIX, can have significant impact on the

node’s capabilities and performance. However, these systems are

not designed for ease of programmability or flexibility in the imple-

mentation and validation of networking algorithms and thus do not

lend themselves to a flexible mobile wireless network system which

can be used for experimentation or prototyping. An operating sys-

tem is desired which is compatible with existing platforms (but still

provides functionality such as multi-tasking and packet processing

Fig. 2.  Mobile Node Components

OS

Kernel

Packet Driver Interface

Multimedia Applications Video 
Coding

Hardware

System
Operating

Wired 
Communication

 

End-End 
Transport 

& Connectivity
Internetworking 

Control

Control

Subnetwork
Control

Network Algorithms

Socket Interface

Communication
Substrate 

Link
Control 

Hardware 

Wireless
Communication
Hardware

Communication
Substrate 

Link & Mobility
Control 

Speech

Hardware
Coding



capability useful to network control algorithms) and can be easily

modeled in the simulation environment. A network operating sys-

tem is able to function on a layer on top of an existing native operat-

ing system and provide the required network functionality and

services. A public domain network operating system, NOS (also

known as KA9Q developed by Phil Karn), has readily available

source code and meets the flexibility requirements[5]. We use NOS

as the operating system in our mobile wireless system (see Figure

2). It runs on top of DOS and includes its own multitasking sched-

uler. The benefit of this multitasking operating system is that each

algorithm or protocol necessary to support this network can be

developed as its own process. The multitasking kernel allows these

algorithms and protocols to multitask, sharing the CPU, and yet

provide semantics such as wait and signal semaphores for inter-pro-

cess (inter-algorithm) communication. Time processing routines,

such as TDMA, are able to sleep a process for a defined period of

time, and can be used to allow other protocols and algorithms to run

without halting or consuming unnecessary CPU processing time.

Memory buffers (mbufs as found in BSD UNIX system buffers) are

used to minimize overhead by allowing memory blocks to be linked

together for performing encapsulation, packetization, etc.

The architecture of our mobile wireless system test-bench is set

up to maximize the flexibility for supporting various types of

mobile system components. Our current test-bench uses a NEC

Versa 486 33Mhz laptop and a docking station to support the cus-

tom interfaces and hardware. The network operating system is able

to run on any laptop as long as it supports DOS and the required

interface cards. A Packet Interface (PI) card is used as the network

interface card to integrate the wireless communication hardware

into the system. To provide a standard interface to the network

operating system, a packet driver interface is used, based upon

FTP’s packet driver specification. This interface allows inter-

changeability among various network interface cards (like the PI

card or a PCMCIA card) without having to change the details of the

network operating system to support a new or different communica-

tion substrate. A packet driver is loaded which corresponds to the

correct Network Interface Card (NIC) and its capability. There are

also other communication hardware drivers/interfaces such as the

NDIS or ODI drivers which can be used to integrate the communi-

cation hardware with the operating system.

2.3 Mobile Wireless Algorithms

2.3.1  Transport and Internetworking Control

Since internetworking requires compatibility with existing net-

works and TCP/IP is so widely used through the Internet, the TCP/

IP protocol suite has been implemented without need for modifica-

tions. Since the Internet Protocol can be used in conjunction with

various communication substrates, much of the new mobile wire-

less algorithm development takes place below the network layer.

The network layer is responsible for supporting various communi-

cation substrates such as internet routing, segmentation, etc. Above

the network layer, the transport protocols (TCP and UDP) provide

the required support for end-to-end reliability, congestion control,

etc. These transport protocols interact with the applications

described in the previous section by using sockets to buffer the bit

stream so packetization can take place. Additional services are also

being developed to support multimedia over mobile hosts [13].

Although wireless communication is useful to support mobile

communication, wired connections can support a much higher

bandwidth and are less prone to errors then wireless radios. There-

fore, wired connections should be utilized whenever possible.

Wired connections, such as ethernet, can utilize standard communi-

cation hardware, such as a PCMCIA card, for networking. To sup-

port a combination of wired and wireless communication, provide

wireless multihop functionality, and support instant infrastructure

networking, a node needs to be able to function in three different

modes (gateway, multihop, or end node) as shown in our common

reference model (Figure 3). A node functions as a gateway when

both wired and wireless connections are available. In the gateway

mode, it will forward packets between the wired and wireless

domains as necessary. In the multihop mode, it will follow the sub-

network routing protocol to provide wireless multihop communica-

tion within the instant infrastructure subnet. Other mobile wireless

network systems do not provide instant infrastructure or wireless

multihop capability, but do support wireless mobility throughout an

internet.

The IETF Working Group for Mobile IP has developed an Inter-

net Draft for IP Mobility Support [12]. The primary focus of this

group has been on protocol functionality and standards, rather than

performance analysis. By incorporating the Mobile IP type protocol

into this simulation environment, feedback can be provided to

developers on its performance as a function of various mobility

environments, network connectivity substrates (wireless and

wired), and various traffic loads. The Mobile IP protocol can also

be integrated with numerous other system components.

The analysis of the Mobile IP protocols will be useful to validate

and enhance the simulation environment and can utilize the proto-

typing implementation path. In addition to protocol designers, the

prototype can provide immediate feedback to interested groups that

are developing protocols in conjunction with Mobile IP to support

other network and operating system functionalities.   

Fig. 3. Common Reference Model
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2.3.1  Instant Infrastructure Subnetwork Control

The functionalities which support instant and reconfigurable net-

works are new and have been added into the network algorithms

under subnetwork control (see Figure 2). Many of the proposed

schemes for supporting instant and reconfigurable network topolo-

gies are based upon TDMA to control channel contention. A clus-

tering algorithm [10] was implemented which is heavily based on

TDMA control and synchronization to test the feasibility and over-

head of implementing this functionality in software.

2.4 Link Layer Control

Algorithms developed for link layer control fall into a separate

category from other networking algorithms. These algorithms are

not typically implemented inside the operating system, usually

existing in hardware or programmable processors as part of the

NIC. For maximum flexibility, simplicity of implementation, and to

provide a path between simulation and implementation, these algo-

rithms could be implemented as part of the algorithms in the operat-

ing system. To experiment and determine where an algorithm

should be implemented, the simulation environment can utilize

models or actual code of the link layer control algorithms. 

The link layer control components typically include algorithms

such as media access control (e.g., CDMA, TDMA, and CSMA/

CA). The link and mobility control layer shown in Figure 2 sup-

ports a new function unique to instant infrastructure mobile wire-

less networking. Mobility support is provided by setting

appropriate hardware parameters such as the CDMA code or trans-

mit power level dynamically. Measurements such as Signal to Inter-

ference Ratio (SIR) are fed back from the radio into the link control

algorithms for power control to minimize the power consumption,

reduce interference, and provide admission control such as

described in [7].

2.5 Wireless Communication Hardware

Numerous wireless radio modems are available commercially

[9]. Many of the algorithms being designed for mobile wireless sys-

tems are built to support a particular device or manufacturer. Algo-

rithms which are not designed for a specific radio face the problem

of trying to predict their performance over a wide parameter space

of available radio alternatives. The best way to validate over a wide

parameter space of various radios is to utilize the models of the var-

ious radios in the simulation environment and experiment with

actual implementation when feasible.

As an example of the complexity and trade-offs associated with

developing wireless networking algorithms with wireless commu-

nication hardware, we experiment with two wireless communica-

tion hardware devices. We use the Proxim RangeLAN2 wireless

frequency hop spread spectrum radio, which is commercially avail-

able, and a custom direct sequence spread spectrum radio, designed

and implemented at UCLA [8]. The UCLA radio is used to support

instant infrastructure networking through adaptive hardware control

and feedback with the networking algorithms. This radio is cur-

rently able to operate at speeds from 7 to 32 Kbps depending on the

desired spreading factor. Although other radios are able to support

higher data rates, this radio provides unique control over various

hardware parameters such as the spreading (chips/bit), code, power,

and even acquisition time. In Table 1 we can see the spreading fac-

tor (chips/bit), data rate, and acquisition time trade-offs. It should

take anywhere from 500 to 1000 data bits to acquire the signal so a

preamble is sent before each packet according to the desired acqui-

sition time. Since the radio transmits at a fixed rate of 1 Mchips/sec,

and we are able to vary the number of chips/bit, we are able to

achieve the various data rates described above. In order to increase

the resilience to noise and interference, a parameter can be set on

the radio to increase the spreading factor (chips/bit) at a cost of

decreasing the data rate. By using more chips/bit (slower data rate)

we are also able to potentially have higher node capacity in the

wireless sub-net. It is up to the network control algorithms, with

development and analysis support from the simulation environ-

ment, to dynamically determine what these parameters should be

set at for optimum network efficiency. 

3.  Simulation Environment

We have designed a general purpose parallel environment for the

simulation of mobile wireless network systems and to provide an

implementation path for networking algorithms. The simulation

environment can be used to evaluate the effectiveness and perfor-

mance of algorithms as a function of the application requirements,

mobility patterns, and radio characteristics. The simulator is being

built on top of an existing message-passing based parallel simula-

tion language called Maisie [3]. Maisie is a message-based discrete

event simulation language that provides a rich set of modeling con-

structs to facilitate the design of concise network models. The

Maisie simulation environment has been implemented on a variety

of workstations, networks of workstations and distributed memory

multicomputers (like the IBM SP1) and on a shared memory Sparc

1000. In the following sections we will see how the Maisie con-

structs are used to develop various modules in the network simula-

tion environment.

The proposed simulation environment has a number of unique

features: first, it is being designed to make effective use of the facil-

ity for parallel model execution that is supported by Maisie. This

potential for parallel execution of the models will allow us to inves-

tigate much larger networks than would otherwise be feasible. Sec-

ond, the environment will support automatic migration of the

simulation models to operational code by providing a common set

of interfaces to widely used network operating systems and their

models. Third, the simulation environment includes a facility for

interactive control of key model parameters like mobility, transmis-

sion power, etc. This facility will allow an analyst to interactively

chips
per 
bit

Data 
Rate

(kbps)

Optimistic
 ACQ 
Time

Conservative
 ACQ 
Time

31 32.258 15.5 ms 31 ms

63 15.873 31.5 ms 63 ms

127 7.824 63.5 ms 127 ms

Table 1: UCLA Radio Parameters



evaluate the impact of various changes to the hardware and protocol

parameters. Lastly, the environment is modular and extensible, in

the sense that different components of the mobile network can be

modeled at different levels of detail. Thus, it can be useful to

develop in a simulation which utilizes several different levels of

detail [2]. 

The modeling environment is designed to allow the primary

components of the wireless network system to be simulated at dif-

ferent levels of detail. Thus, it might be useful to initially have an

approximate but fast model of all components and then refine the

details of some of the components that appear to be the primary bot-

tleneck(s). Our aim is to decompose the model in order to allow

maximum flexibility in experimentation with alternative implemen-

tations of a given functionality (e.g. mobility patterns of the node)

as well as to support a ‘‘plug and play’’ capability that generates

composite models constructed from pieces that model system com-

ponents at widely differing levels of detail.

3.1 Mobile System Simulation Modules

Our model of the mobile, wireless network system is broken

down into two levels with the following primary components:

Network Level

• Node Mobility Models (MOM)

• Channel Models (CHM)

Node Level

• Wireless Radio Models (RFM)

• Operating System Models (OSM)

• Application-specific traffic models (SOURCEM)

• Network Algorithm Models (NAM)

The MOM components are responsible for movement patterns of

the nodes, such as the speed in which the nodes move, and their

motion pattern, such as Brownian random motion or drift. The

CHM components are responsible for the transmission media

including the range in which two nodes are able to communicate

with each other, and environmental effects such as multi-path fad-

ing, shadowing, and interference.

The RFM components are responsible for the physical layer

modeling of the radio frequency modem and includes the raw chan-

nel bandwidth, modulation techniques, and acquisition delays. The

OSM simulates the relevant portion of the operating system, such

as the WAMIS Network Operating System (WAMISNOS) kernel,

and is involved in interfacing with the application (e.g. delivery of

incoming messages) or with the network (e.g. transmission of

remote messages). The OSM components include multi-tasking

process scheduling, packet manipulation routines, time control, and

interfacing such as between the SOURCEM and NAM and between

NAM and RFM.

The SOURCEM components can be broken down into the source

and destination streams (e.g., hard disk, keyboard, camera, screen,

microphone, or speaker) corresponding to the voice, video and data

traffic, control of these streams via the application, and the trans-

port mechanism (e.g., TCP, UDP, or Virtual Circuits) which the

application chooses to use. The NAM components are broken down

into internetwork models such as IP, instant infrastructure subnet-

work control (such as clustering), and mobility control (such as

power control, logical link control, and media access control). 

Figure 4 illustrates how the mobile wireless system simulation

models fit in with the common reference model described earlier

(Figure 3). 

Before providing examples of how the various models can be

developed using Maisie in Section 3.3, a brief overview of the

Maisie simulation language is provided in the following section.

3.2 The Maisie Language

A Maisie program is a collection of entity definitions and C func-

tions. An entity definition (or an entity type) describes a class of

objects. An entity instance, henceforth referred to simply as an

entity, represents a specific object in the physical system and may

be created and destroyed dynamically. An entity is created by the

execution of a new statement and is automatically assigned a

unique identifier on creation. For instance, the following statement

creates a new instance of a manager entity and stores its identifier in

variable r1. 

r1 = new manager{N}; 

An entity can reference its own identifier using the keyword self.
Entities communicate with each other using buffered message-pass-

ing. Maisie defines a type called message, which is used to define

the types of messages that may be received by an entity. Definition

of a message-type is similar to a struct; the following declares a

message-type called req with one parameter (or field) called count.

 message req {int count; };

Every entity is associated with a unique message-buffer. A mes-

sage is deposited in the message buffer of an entity by executing an

invoke statement. The following statement will deposit a message

of type req in the message buffer of entity m1. The message will

have time stamp clock+t, where clock is the current value of the

simulation clock.

invoke m1 with req(2) after t

Fig. 4. Mobile System Simulation Models
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If the after clause is omitted, the message is time stamped with

the current simulation time. If required, an appropriate hold state-

ments (described subsequently) may be executed to model message

transmission times or a separate entity may be defined to simulate

the transmission medium. An entity accepts messages from its mes-

sage-buffer by executing a wait statement. The wait statement has

two components: an optional wait-time (tc) and a required resume-

block. If tc is omitted, it is set to an arbitrarily large value. The

resume-block is a set of resume statements, each of which has the

following form: 

mtype(mi) [st bi] statementi;

where mi is a message-type, bi an optional boolean expression

referred to as a guard, and statementi is any C or Maisie statement.

The guard is a side-effect free boolean expression that may refer-

ence local variables or message parameters. If omitted, the guard is

assumed to be true. The message-type and guard are together

referred to as a resume condition. A resume condition with mes-

sage-type mi and guard bi is said to be enabled if the message buffer

contains a message of type mi, which if delivered to the entity

would cause bi to evaluate to true; the corresponding message is

called an enabling message.

With the wait-time omitted, the wait statement is essentially a

selective receive command that allows an entity to accept a particu-

lar message only when it is ready to process the message. For

instance, the following wait statement consists of two resume state-

ments.   The resume condition in the first statement ensures that a

req message is accepted only if the requested number of units are

currently available (the keyword msg refers to the message that was

most recently removed from the message buffer of the entity.) The

second resume statement accepts a message of type free from its

buffer: 

wait until
{  mtype(req) st (units >= msg.req.count)     

  /* signal requester that request is granted */

  or  mtype(free) /* return units to the pool */

}

Maisie also provides a number of pre-defined functions that may

be used by an entity to inspect its message buffer. For instance, the

function qsize(mt) returns the number of messages of type mt in the

buffer. A special form of this function called qempty(mt) is

defined, which returns true if the buffer does not contain any mes-

sages of type mt, and returns false otherwise. In general, the resume

condition in a wait statement may include multiple message-types,

each with its own boolean expression. This allows many complex

enabling conditions to be expressed directly, without requiring the

programmer to describe the buffering explicitly. 

If two or more resume conditions in a wait statement are enabled,

the time stamps on the corresponding enabling messages are com-

pared and the message with the earliest time stamp is removed and

delivered to the entity. If no resume condition is enabled, a timeout

message is scheduled for the entity tc time units in the future. The

timeout message is canceled if the entity receives an enabling mes-

sage prior to expiration of tc; otherwise, the timeout message is sent

to the entity on expiration of interval tc. Thus the wait statement can

be used to schedule conditional events. A hold statement is pro-

vided to unconditionally delay an entity for a specified simulation

time. For instance, the statement hold(t) will suspend the corre-

sponding entity for t units in simulation time.

3.3 Simulation Environment Modules

The simulation environment models are broken down into two

categories: global and local. The global models are responsible for

modeling the interaction among the nodes at the network level. The

global models include the mobility (MOM) and channel (CHM)

models. The local models are responsible for modeling the func-

tionality inside a node. Local models inside a node (inter-node) can

be highly integrated. The global models are used for all inter-node

communication.

Let us now look at the details of some of the responsibility of

each module is and an example model of one of the components.

3.3.1  MOM

The mobility models include, but are not limited to, the following

components:

• tracking location of the nodes

• speed of the nodes

• direction of motion

In order for the channel model to track the location, and thus

have the channel model be able to determine which nodes are able

to send packets to each other, the x and y coordinates of each node

are tracked. Since the mobility model is responsible for tracking the

location of each node, a node can not simply update its position

locally but must send a message to the mobility model to have it

update the node’s new location so the channel model which is coor-

dinating communication in that area can utilize the node’s location

information. 

In order to model speed (such as stationary, walking speed, run-

ning speed, driving speed, or even flying speed) and direction of

motion (such as drift or a semi-random walk), the channel model

can select a random step size which it is able to move within. Once

the new position is selected and forced to remain within the space

(grid) of the simulation, its new position is updated.

To get a feeling for an example model of mobility, the following

Maisie fragment shows how the speed of a mobile can be modeled

with a semi-random direction.

entity mom{}

{

  for (;;)

  {

    wait until
       mtype(move) 

      {

        id=msg.move.id;

        position[id].x =

               position[id].x-(int)lrand48()%(SPEED*2+1)+SPEED;

        position[id].y =

              position[id].y-(int)lrand48()%(SPEED*2+1)+SPEED;

       if(position[id].x<0)  position[id].x=0

          else if(position[id].x>max_x) position[id].x=max_x;

       if(position[id].y<0)  position[id].y=0

         else if(position[id].y>max_y)  position[id].y=max_y;



      }

     or mtype(done)

     {

       break;

      }

  }

}

3.3.2  CHM

The channel model is responsible for determining which nodes

are able to communicate with each other and what the received

information or quality of information should look like. The CHM

components can include, but are not limited to, the following:

• Distance/Range

• Shadowing (such as Log-normal)

• Attenuation (such as Free-Space)

• Multi-path (such as Raleigh Fading)

Once the channel models determine the effects of transmitting

data through the wireless channel, the radio RFM models can inter-

act in a realistic manner.

The following Maisie fragment represents a portion of code in

the channel model to model radio broadcasts. The model uses the

transmit power and current location of each node to determine

which nodes receive an incoming packet. The actual packet (mes-

sage) is sent to the appropriate node via the invoke statement.

entity chm{}

{

   ...

    wait until  mtype(broadcast)

   {

    b = msg.broadcast;

    for (i=1; i<=num_nodes; i++)

        if (i != b.id)

            if (sqrt(pow((double)(position[b.id].x - position[i].x), 2.0) + 

pow((double)(position[b.id].y-position[i].y), 2.0)) < (double) 

COMM_RANGE)

               invoke pktdrvr[i] with pktin{b.id,b.info};  

    }

    ...

}

In order to simulate the packet transmission time through the

channel, the transmitter should advance the simulation clock by the

time needed to send the bits out the radio. This can be done using

the Maisie hold statement.

hold(TXTIME);

The transmit time (TXTIME) is determined by the RFM and is

based upon factors such as the bandwidth, packet size, and physical

layer headers.

3.3.3  RFM

The RFM module is a local model which is responsible for the

data link and physical layer modeling inside the node layer of the

radio frequency modem, and includes, but not limited to, the fol-

lowing components:

• link level media access control algorithm

• NIC interfacing overhead

• acquisition delays

• raw bandwidth (data rate)

• modulation techniques (spread spectrum direct sequence 

or spread spectrum frequency hop)

Any time a packet is to be sent over the wireless channel, the

media access control algorithm is responsible for determining if or

when that packet can be transmitted. A common media access con-

trol algorithm is the Carrier Sense Multiple Access/Collision

Avoidance algorithm such as found in the IEEE 802.11 specifica-

tion. This will impose a delay and bandwidth overhead for every

packet sent. This algorithm can be modeled inside the simulation

environment to not only test feasibility and performance but also to

see the implication on other aspects of the node and network. The

analyst could also choose not to model the CSMA/CA algorithm

itself but simply provide a metric in the RFM as the setup time

before a packet can be transmitted and include this as part of the

signal acquisition time (pre-amble). 

Other link level control algorithms such as CRC checking, pre-

amble, bit stuffing, etc. can be modeled at various levels of details.

The model can include the details of the bits being transmitted or

model this overhead by holding the RFM from being able to trans-

mit for the period of time it would take to do such link level control

processing.

The raw bandwidth affects how long it takes for a packet or bits

in the packet to propagate to the next node dependent on certain

parameters of the radio being used. Given the packet size, we can

use the data rate to model how long it will take for the packet to be

transmitted through the wireless channel. 

For the UCLA radio described, the RFM parameters include

50ms for acquisition (pre-amble) of each packet, 10ms for tail pro-

cessing (post-amble) on each packet, and a raw channel rate of 32

Kbps. The actual transmission time through the air can be deter-

mined in conjunction with the channel model since the transmission

time (TXTIME) can be calculated as follows:

The modulation technique used, whether it be DSSS or Fre-

quency Hop Spread Spectrum (FHSS), both effect the simulation

environment. In a DSSS modem, the amount of spreading (chips/

bit) of the original signal, or in a FHSS modem, the number of fre-

quency bands which overlap, and thus the number of available

(CDMA) codes affect the usefulness and reliability of the wireless

channel (CHM) and simulation as a whole.

The most critical part of the simulation environment which inte-

grates the various components and can have a significant impact on

the simulation as a whole is the operating system.

3.3.4  OSM

The Operating System Model has three primary components:

• kernel model

• application interface model

• network interface model

TXTIME AcqTime
PktSize 8•
DataRate

---------------------------- TailTime+ += (1)



 

The kernel model provides the basic functionality needed to sim-

ulate a multi-tasking OS kernel. It models a (dynamic) set of inter-

acting processes, where each process is simulated by a Maisie

entity and the inter-process communication and synchronization is

simulated by appropriate message communication among the corre-

sponding entities.   Henceforth, we use the term ‘‘kernel entity’’ to

mean a Maisie entity that is simulating a NOS kernel process. 

 The KA9Q kernel uses interrupts to interface with many of its

drivers; hence the kernel entity used in the simulation environment

models also supports interrupts. The entity may (dynamically)

specify the set of enabled interrupts. A common source of interrupts

in the kernel is the arrival of a packet for the corresponding entity.

We present a short Maisie fragment to illustrate the handling of an

interrupt called ‘‘pktin’’ by a kernel entity called ‘‘wproc’’. The

wait statement on the following fragment models an interruptible

activity. The time specified in the wait statement is initially set to tc,

which models its execution time in the absence of any interrupts. If

an interrupt (pktin) is received during this interval, the entity sus-

pends normal operation, executes a pre-specified routine to handle

the interrupt, and suspends itself for ti time units, where ti models

the time taken to execute the interrupt handling routine in the phys-

ical kernel. Note that this model assumes interrupts cannot be

nested, because a hold statement is used to simulate service of the

interrupt. It is possible to instead use an interruptible wait statement

to model nested interrupts. After executing the hold statement, the

entity again executes the wait statement with an updated wait-time

to complete the simulation of the original activity. For simplicity all

time units are expressed as integers in this fragment. The function

clock() returns the current value of the simulation clock.

entity wproc{id,pktdrvr,ipalgptr,tc,ti}

int id; /* My Node ID */

ename pktdrvr; /* Pointer to Packet Driver Interface */

ename ipalgptr; /* Pointer to IP Protocol Processing Routine */

int tc; /* Initial Execution Time */

int ti; /* Interupt Handling  Routine Time */

{

  message pktin{int pkttype; int len; int id; int info;} pkt;

  int newlen, remtime, endtime;

 

  for (;;)

  { endtime=clock()+tc;

    remtime=tc;

    for(;;)

     wait remtime until  
     { mtype(pktin)

       { pkt=msg.pktin;

         if (pkt.pkttype==clust_type)

           clust_got_pkt(id,neighbor,I_am_ch, pkt.id,pkt.info)

         else if (pkt.pkttype==ip_type)

           ip_got_pkt(id,newlen,pkt.id,pkt.info, pktdrvr,ipalgptr);

         remtime=endtime-clock();

         hold(t1);

       }

       or mtype(timeout)   break;

     }

  }

}

The application interface model interacts with the SOURCEM

model to both accept a message for delivery to another node and

also to deliver an incoming message. In either case, the kernel pro-

vides the interface needed by the application to the network and

simulates the software delays that are typically suffered by the mes-

sage as it passes through the kernel of an operational OS. This delay

can be simulated either by doing a detailed (and hence time-con-

suming) simulation of the various kernel modules, or approximated

by simply delaying the message by a randomly distributed value,

where the distribution is chosen to reflect the aggregated behavior

of various kernel modules.

 Similarly, the network interface model will determine the trans-

mission mode of the message (e.g., datagram or bit stream) and pro-

vide the message to the NAM in an appropriate format from the

network interface.   A driver such as the packet interface driver is

typically used as the NIC interface. Note that the kernel delays can

be simulated either in the application or the network interface

model (or both), depending on the analyst and the application being

simulated. The applications are represented in the system as the

source model.

3.3.5  SOURCEM

The SOURCE models are composed of, but not limited to, the

following components:

• source & destination streams

• application control

• end-to-end transport mechanisms

One of the primary uses of the mobile wireless network nodes are

to exchange data, voice, or video. The input or source of the data,

voice, or video usually comes from either the hard disk, memory,

keyboard, microphone, or camera. The output or destination usually

goes to either the hard disk, memory, screen, or speaker. Depending

upon the analyst’s need, it is typically not required that the actual

data, voice, or video images be sent from one source stream to the

destination but rather modeled based upon certain characteristics.

The characteristics modeled for the hard drive and memory include

read and write access time, models of the voice streams include the

rate and silence characteristics, and models of the video stream usu-

ally include the frame size, frame rate, and other control informa-

tion such as frame delimiters.

The application control component is responsible for controlling

the source and destination streams in conjunction with the transport

protocols. The application affects the environment such as by deter-

mining if, when, and what data, video, or speech should be sent.

Typical applications used in the mobile wireless system imple-

mented include the standard TCP/IP applications such as FTP and

telnet along with custom multimedia applications such as a video

conferencing (VTALK) application. 

In order to deliver the streams of data, video, and speech an end-

to-end transport mechanism is used. These protocols typically

include TCP and UDP for data and usually virtual circuits for multi-

media in order to provide bandwidth allocation. Typical functional-

ity of the transport protocols include providing flow control, error

detection and possible retransmission of lost or corrupted data, and



acknowledgment of data received. As an example, we can see in the

following Maisie fragment the functionality of TCP and FTP used

in a file transfer to send data, check for acknowledgments of sent

data, and retransmit lost packets upon a time-out.

 for (i=MSS;i<FILE_SIZE-MSS;i=i+MSS)

 {

   wait RTO until /* RTO = Round-trip TimeOut */

   {

     mtype(ack); /* Packet Received */

     or mtype(timeout) /* Pkt or ACK Lost */

       i=i-MSS; /* Resend last packet */

   }     

   /* Generate ftp packet */

   sendpacket(pktdrvr, ftp_type, id, 0, i, MSS); 

                  /* Type, From, To, Info, Len */

   num_pkts_out[id]++;      

}

In order to model the source and destination streams, application

control, and transport mechanism, traffic generators are used to

generate the data streams corresponding to the voice, video, or data

traffic expected to be generated by the different types of applica-

tions.  Table 2 lists a set of example applications. For each applica-

tion, the transport protocol that is commonly used, typical packet

size, traffic type, and metric to be optimized is listed.

3.3.6  NAM

The network algorithm model components are the focus for those

developing wireless and mobile networking algorithms. We break

the Network Algorithms Models into the following layers:

• network layer

• sub-network layer

• data link layer

The network layer components include the internetworking func-

tionality. The Internet Protocol is commonly used either in its

entirety or just a model of IP to provide functions such as domain

Appl. Trans.
Pkt. 
Size

Traffic
Burstyness Goal

FTP TCP Large Low Max.

Throughput

telnet TCP Small High Min. 

Delay

vtalk:

data

 &

video

TCP

UDP

Small

Large

High

Low

Min 

Delay

Max 

Throughput

video V.C. Large Low Max. 

throughput

speech V.C. Small High Delay & 
Throughput

Table 2: SOURCEM Characteristics

addressing, routing, segmentation, and reassembly. Other protocols

modeled in this layer include the ICMP for control messages and

Mobile IP [12] for mobility tracking and support of roaming

through the internet. 

The wireless subnet, whether it be a base station and its clients or

a wireless multihop cluster are found in the sub-network layer. The

subnetwork layer models are used to model the topology creation

(instant infrastructure), reconfigurability, adaptive channel assign-

ment (CDMA), and wireless multihop routing.

As an example of a NAM, below is a Maisie fragment for the

clusterhead election algorithm found in [10]. The basic idea of the

algorithm is that between any two nodes that can communicate, the

node with the lowest ID should become the clusterhead with the

restriction that two clusterheads can not communicate directly;

however, they can communicate via a gateway by multi-hopping

between the two clusters. 

entity clust_proc{id,pktdrvr,neighbor,I_am_ch}

int id; 

ename pktdrvr; /* From OSM */

int *neighbor; 

int *I_am_ch;

{

  for (;;)

  {

    hold(RESET_TIMEOUT);

    /* Reset neighbor and clusterhead tables */

    for (i=1; i<=N; i++)

    {

      neighbor[i]=-1;

      I_am_ch[i]=0;

    }

    /* Send “I’m here” msg to all neighbors */

    invoke pktdrvr with broadcast{id, 0};

    /* Wait to hear responses from neighbors */

    hold(RESPONSE_TIME);

    /* Run the Clusterhead election alg. */

    I_am_ch[id] = 1;

    for(i=1;i<id;i++)

      if ((I_am_ch[i]==1)&&(neighbor[i]==1))

      {   I_am_ch[id] = 0; break; }

    /* Broadcast Clustering Packet Update */

    /* I_am_ch (1) = Not CH;    I_am_ch(2) = CH */

    invoke pktdrvr with 

           broadcast{id,I_am_ch[id]+1};

  }

}

The clust_proc Maisie fragment first initializes the neighbor sta-

tus upon a reset timeout. Then each node broadcasts a message

using the invoke statement in order to determine connectivity and

find out who their neighbors are. The hold statement is used to wait

for responses from other nodes. Starting with the lowest ID, the

algorithm iteratively determines who can be clusterheads. Finally,

the neighbors are told whether or not each node thinks it is a clus-

terhead. 



next packets once it received the ACK was around 8ms, whereas

the response time from when a packet arrived into WAMISNOS on

the receiver side until an ACK could be generated averaged around

37ms. Since the source had to receive the ACK and transmit the

packet, in order to estimate the input processing time of a packet for

the OSM, we found the average processing time to be 23ms

((37+8)/2). 

For every packet received we would enforce a Maisie hold of

23ms for WAMISNOS processing and similarly we would hold for

23ms for every packet sent out through WAMISNOS.

4.1.2  SOURCEM & NAM

The modeling of the file transfer application and TCP protocol

are done in the SOURCEM module as we saw in Section 3.3.5 and

the various parameters are shown in Table 3.

Parameters in TCP which are customizable or tunable include:

the backoff algorithm (exponential or linear), initial round trip time

(IRTT), maximum segment size (MSS), and the window size

(WINDOW). The backoff algorithm is designed to provide conges-

tion control throughout the network. The most fair algorithm used

is an exponential backoff algorithm. However, since congestion

would not occur in a point to point file transfer (only 1 link) this

backoff algorithm was replaced with a linear backoff algorithm.

The round trip time is used for determining what the time-out

should be for retransmitting lost packets. This round trip time is

based upon an adaptive algorithm which is constantly measuring

and adapting to the current round trip time. A stability parameter is

specified which weights the current round trip time with the aver-

age round trip time. Since TCP is responsible for packetizing the

data bit stream, the maximum segment size specifies the maximum

packet (segment) size which TCP can generate. IP uses a MTU

which specifies the largest packet that can be sent over a particular

network or link. If the segment size is larger then the packet size

then IP does segmentation and reassembly of the packet. So, we set

the MSS to be 40 bytes less (to compensate for headers) then the

MTU. Finally, the window size specifies how much data can be out-

standing before an acknowledgment is required. The benefit of hav-

ing a large window is to handle the case when the latency of the

path is significant compared to the bandwidth. That is, if you can fit

more than 1 packet on the path at a time, then it is useful to have a

window so the bit pipe can be filled. For our wireless radios, the

latency is insignificant compared to the bandwidth so the window

should be set to equal the MSS.

Description Value

SOURCEM TCP Backoff 

Algorithm

Linear

SOURCEM File Size 1751560 Bytes

SOURCEM MSS 3960 Bytes

NAM MTU 4000 Bytes

NAM Header Size 71 Bytes

Table 3: SOURCEM & NAM Parameters

The data link layer models are used to provide mobility and link

level control such as power control [7] (utilizing various power lev-

els available on the radio and adapting the SIR measurement),

media access control via a TDMA based time frame[10], error con-

trol such as the spreading factor which the radio transmits on, the

CRC functions, and possibly even the Reed-Solomon forward error

correction, and lastly the logical link control such as providing a

hop by hop based acknowledgment scheme such as described in

[16]. These models can be refined or simplified as desired.

4.  Example Study

In this section, we provide results and comparisons from experi-

mentation and simulation of a point to point file transfer over a

wireless network to determine where the bottlenecks lie in the node

performance. Our example study uses the FTP application, which is

built upon TCP, to determine file transfer throughput. The TCP

parameters were customized to maximize the possible efficiency

and surface node performance limitations. Admittedly these are

very elementary models for the general purpose simulation environ-

ment that has been described, but it allows us to illustrate the inter-

action of the various models in the simulation environment. 

In order to validate the network algorithms being developed for

mobile wireless systems, a prototyping test-bench is set up to test

the instant infrastructure networking capabilities of the Wireless

Adaptive Mobile Information System (WAMIS) research project at

UCLA [14]. These nodes are also used as a test-bench for experi-

mentation and validation of multimedia coding algorithms and pro-

totype wireless communication hardware.

To validate the simulation models, actual measurements were

done using 2 486-based laptops hooked up with the UCLA

designed radios running WAMISNOS to provide a point to point

wireless link. WAMISNOS is built upon KA9Q NOS, which

includes the complete TCP/IP protocol suite. WAMISNOS pro-

vides several custom protocols and algorithms for adaptive instant

infrastructure wireless networking, customizable parameters for the

various algorithms, and performance hooks and measurement tools

for analysis. 

4.1 Simulation Models

We have developed several simple modules in this simulation

environment to model the functionality and performance of the var-

ious components including the network operating system (OSM),

FTP application and TCP transport protocol (SOURCEM), network

algorithm header effect and Maximum Transmission Unit (MTU)

limitations (NAM), two wireless radio modems (RFM), and the

reliability of the wireless channel (CHM).

4.1.1  OSM

In order to model the performance of the WAMIS Network Oper-

ating System (WAMISNOS) running on the 486 laptop, experimen-

tation was done to find out the average processing time for

incoming and outgoing packets. In Section 4.3.4 we will examine

how the measurements were done in more detail and their effect.

We found that the average time for the transmitter to transmit the



The effects of customization on the performance is significant.

With standard parameters used on most TCP/IP implementations,

the overhead with UCLA’s Radio approaches 99% (depending upon

link errors, back-off algorithm, etc.) Given that customization can

be achieved through better integration of the protocols and link

level implementation. This paper attempts to identify the remaining

bottlenecks.

4.1.3  RFM

The UCLA Direct Sequence Spread Spectrum Modem/Radio

used in experimentation and simulation operates at a fixed chip rate

of 1.032Mchips/sec. With a spreading factor of 32chips/bit, it is

able to achieve a data rate of 32.258 Kbits/sec. A packet interface

card is used to connect the radio with the computer and a packet

driver is used to connect the packet interface card with the WAMIS

Network Operating System. The various rates and customized

parameters for this experiment are shown in table 4.

Based upon the radio experiments with indoor channel models,

we found the average packet loss to be around 0.15. A packet is lost

any time the CRC checksum fails, the radio fails to acquire the sig-

nal in time, or there is data corruption such as from interference or

background noise.

4.2 Validation

Table 5 compares the performance of the FTP application as pre-

dicted by the simulation model with actual measurements. We find

the simulation results come close to those found in experimenta-

tion. The majority of the difference lies in the accuracy of the TCP

model. A fixed RTO (Retransmission Timeout) was used for every

packet that was lost whereas in the experiment, TCP determines

Description Value

Raw Channel Rate 32.258 Kbits/sec

Maximum Trans. Unit 4000 Bytes

Acquisition Time 200ms

Tail Time 10ms

Media Access Control CSMA

CHM Packet Loss Rate .15

Table 4: UCLA Radio & WAMISNOS Parameters

Sim. Exper.

Data Bytes 1751560 1751560

Packets In 444 589

Packets Out 443 569

Time (ms) 823023 942710

Table 5: Simulation & Experimentation Comparison

this parameter dynamically. We also found that through experimen-

tation the packets were not always filled as was the case in the sim-

ulation. This can probably be attributed to the stream processing

functions in WAMISNOS which could be modeled in the simula-

tion environment as part of the SOURCEM.

4.3 Performance Breakdown Analysis

Table 6 presents a breakdown of the various sources of overhead

in the FTP application as determined by experimental measure-

ments. We first examine the sources for each component and subse-

quently compare the experimental results with the simulation

results.

4.3.1  SOURCEM Efficiency

When using the UCLA Radio for the file transfer of the

1.7Megabyte file it took 942.71 seconds (as reported by the applica-

tion), with an overall throughput of 1,858 Bytes/Sec. or 14,864 bits/

sec. This means that the efficiency of the file transfer was about

46%. We use the following calculation to determine the efficiency:

We see that the largest percentage of our breakdown is the user

data (efficiency) which is 46%. At first this seems very good that

the user is able to achieve 46% utilization of the link bandwidth,

however the link bandwidth is only 32Kbits/sec so the user is able

to achieve 14.7Kbps. If we were able to increase the channel rate,

even at the cost of decreasing the link efficiency, we could achieve

a better user throughput. This means that the largest bottleneck in

getting better performance is the limitation in the transmission rate

(raw channel rate) of the radio (32Kbits/sec.). 

4.3.2  RFM Acquisition Time

The second major bottleneck is the acquisition (25%). Each time

a packet is transmitted the radio has to go through an acquisition of

the channel which is done by adding on 200ms worth of preamble

data to the beginning of each packet. It is possible to shorten this

preamble time but the error rates and thus retransmission of the data

increase dramatically causing overall poorer performance. Besides

modifying the required time to acquire the channel, this overhead

can be reduced by decreasing the number of packets transmitted.

Description %

1. User Data Transmission (Efficiency) 46.0

2. Acquisition Time 24.6

3. Time-outs (Packet Loss) 19.8

4. CPU Processing (Rx + Tx) 2.8

5. TCP/IP/WAMIS Headers 2.2

6. Tail Time 1.2

7. Misc. (H/W Proc, CRC Checking, Bit Stuffing...) 3.4

Table 6:  Performance Breakdown

FileSize

ChannelRate
----------------------------------

Bits

Byte
-----------×

TotalTime
----------------------------------------------------- Efficiency= (2)



The larger the packet size, the lower the number of packets, and

thus the less overhead for acquiring all the packets. One of the

major factors enforcing the packet size is the bandwidth-delay

trade-off. By increasing the packet size, we can reduce overhead

and increase bandwidth but at the cost of delays (and having to

retransmit more data). To keep the delays and memory require-

ments for storing packets to a minimum, the packet size (MTU) is

constrained to 4K in the current UCLA Radio-WAMISNOS imple-

mentation.

 

The overhead for acquisition was calculated using the following:

WAMISNOS includes the ability to monitor and the number of

WAMIS Packets, IP Packets, and TCP segments sent and received

at each node. The numbers of TCP segments sent and received

make up the TotalNumPkts since no segmentation was necessary in

IP (which would cause generation of more packets), and there were

not any WAMIS control algorithms running which would generate

additional packets to the radio. There were 569 data packets sent

and 589 acknowledgment packets sent. Each packet had a 200ms

header and the total time for the file transfer was 942.71 seconds or

24.6%.

Tail time is similar to acquisition time; it is the amount of post-

amble used on each packet. This is required to ensure that the

packet is completely sent out before the carrier signal is dropped.

Experimentation shows that 10ms is an adequate tail time. The tail

time overhead can be calculated similar to the acquisition time and

is found to be 0.012 of the total raw bandwidth.

4.3.3  SOURCEM Time-outs & CHM Packet Loss

Note that 19.8% of the throughput is lost due to time-outs. Time-

outs occur when a packet is lost (the receiver fails to lock onto the

packet or one or more bit errors occur causing the CRC check to fail

and the packet to be discarded) and then the sender must wait for

the time-out period to occur (failure to get an acknowledgment)

before the packet is retransmitted. The variable time-out period is

called the RTO and varies based upon the measured round trip time

of data flowing across the path and then a weighting is done for sta-

bilization. The base RTO varies around 2200 milliseconds. When a

packet loss does occur, the linear backoff algorithm would increase

in the time before the next packet is transmitted. The time-out starts

increasing linearly as several packet losses occur in a row. If an

exponential backoff algorithm were used, the RTO would have

grow exponentially at this point rather than linearly, making the

throughput dramatically worse. 

The following calculation was used as an estimation of the time-

out overhead.

TotalNumPkts Tx Rx+✈ ✉
AcqTime

Pkt
-----------------------×

TotalTime
---------------------------------------------------------------------------------------------------- AcqOverHead= (3)

During this test, there were 85 packets that had to be retransmit-

ted and the average base RTO was around 2200ms so we find Tim-

eoutOverHead to be 19.8%.

4.3.4  OSM Processing

Not as significant as the first three overheads, CPU Processing

does make an impact on the performance using the UCLA Radio. 

The Transmitter (Tx) is responsible for taking the bit stream and

forming the packets, and putting the header information on it. We

use a hook in the WAMISNOS system which allows us to watch at

what time (in milliseconds) when an acknowledgment of a packet

comes in from the packet driver into WAMISNOS and until the

next packet is transmitted from WAMISNOS to the packet driver.

We found that the average time is 8ms. If we multiply the number

of packets sent (569) by the amount of processing time (8ms) per

packets, we find the transmitter CPU processing overhead to be

4.5seconds or 0.5% of the total overhead., 

The receiver (Rx) has to check and remove all the header infor-

mation from the packet and verify that the data is correct (passing

the CRC check) and create a response (acknowledgment) to the

sender informing that the data was received correctly. It was mea-

sured using the trace facility built into WAMISNOS that the time

from when a packet first arrives in WAMISNOS from the packet

driver until the acknowledgment goes out WAMISNOS back to the

packet driver around 37ms. Since the TCP/IP protocols and the

WAMIS Network Operating System are both competing for CPU

time, along with other applications, protocols, etc., this number can

have a high variance, so much that it would impact the performance

of any time critical algorithms which needed to run at a particular

time, such as TDMA. Since 589 packets were received and each

had to be processed (37ms/pkt) the total overhead imposed by the

receiver CPU processing was 21.8sec or 2.3% of the overall band-

width.

The total CPU Processing time is the sender’s overhead (0.5%)

plus the receiver’s overhead (2.3%) which totals 2.8%, as is found

in Table 6.

4.3.5  NAM Headers

The application, FTP, uses TCP as its reliable connection ori-

ented transport protocol. The TCP protocol packetizes the bit

stream into segments and encapsulates it with a TCP control header.

This TCP header is usually around 20 bytes. The TCP header con-

tains information such as the source and destination port (applica-

tion), the sequence and acknowledgment number, a 16 bit

checksum, and some miscellaneous flags. TCP sends the segment

down to the IP protocol which encapsulates the segment into a

NumPktsLost RTO×
TotalTime ms✈ ✉

----------------------------------------------------- TimeoutOverHead=



packet and puts on its own header of approximately 20 bytes. The

IP header contains information such as the total length of the

packet, a 16-bit checksum, an identification field, and source and

destination IP addresses. From here, IP sends the packet down to

the WAMIS algorithms which puts on an additional 31 byte header

which contains information such as the source and destination hard-

ware node address, code and power control information, SIR con-

trol information, etc. The total TCP/IP/WAMIS headers are usually

around 71 bytes.

There were 569 data packets sent and 589 acknowledgment

packets sent and at 71 bytes per packet, the total time used up (over-

head) in transmitting header information was about 20.4 seconds

(2.2%). 

4.3.6  Miscellaneous

There are a number of other miscellaneous factors which add to

the total overhead (3.4%). It was not possible using the current

analysis and software tools to determine the exact processing time

by the software below the WAMIS Network Operating System.

This includes the time for the packet driver to activate, calculation

of a CRC check for the packet, and Carrier Sense Multiple Access.

The packet has a start of packet (STX) and end of packet (ETX)

marker so the receiver will know the exact beginning and ending of

the packet. Bit stuffing is used to ensure that none of the data inside

the packet would look like one of these delimiters. Then the data

has to be sent out of the packet interface card to the modem and

from there the processing can take place to send it out to the trans-

mitter. The opposite process has to take place on the receiving end. 

This overhead was not measured but is the remaining of the over-

heads which had not been compensated for in the analysis above.

4.3.7  Performance Breakdown Validation

We found that through customization of TCP parameters, we

were able to achieve a link efficiency of 46% (14.8Kbps) using

UCLA’s Radio with WAMISNOS. As shown in Table 7, the three

largest bottlenecks in this system are 1) the raw channel rate, 2)

Description

% of Raw

Channel Rate

(Experiments)

% of Raw 

Channel Rate

(Simulation)

1. Data Bandwidth 46.0 52.7

2. Acquisition Time 24.6 21.0

3. Packet Loss

    & Time-outs

19.8 17.0

4. CPU Processing 2.8 2.0

5. Protocol Headers 2.2 1.8

6. Tail Time 1.2 1.0

8. Other 3.4 4.4

Table 7: Performance Comparison & Validation

acquisition delays, and 3) time-outs in TCP caused by bit errors and

packet losses in the link. The magnitude and order of the perfor-

mance bottlenecks are the same in simulation as found through

experimentation with the UCLA radio and test-bench.

In order to evaluate the performance bottlenecks using a different

wireless communication hardware and driver, we used a commer-

cial radio on our test-bench to see where the bottlenecks lie on a

higher speed wireless radio using different link level networking

protocols.

4.4 Extending the Example Study

In this section, we examine the performance breakdown of a

higher speed wireless radio by repeating the experiment using a

Proxim RangeLAN2 wireless radio. This experiment is able to vali-

date the performance bottlenecks which we examine under various

parameter spaces to determine the trade-off point between the vari-

ous bottlenecks. 

We repeated the experiment using the Proxim RangeLAN2/

PCMCIA Wireless LAN Adapter [18]. This radio uses Frequency

Hop Spread Spectrum, operates at a raw channel rate of 1.6 Mbps,

and uses the RangeLAN2 CSMA/CA media access protocol. By

using the packet driver for this radio, we were able to utilize this

radio as part of the test-bench in place of the UCLA radio [Figure

2]. 

The similar set of statistics were tracked for the Proxim radio as

was used in the UCLA radio performance breakdown. The break-

down analysis and comparison between the UCLA radio and

Proxim radio are shown in Table 8.

We found that the performance bottlenecks were significantly

different between the UCLA and Proxim radios. The data band-

width seen by the application decreased from 46% of the raw chan-

nel rate to 10.1%. Therefore, the Proxim radio, which is rated at 50

times faster (1.6Mbps) then the UCLA radio (32Kbps) in raw chan-

Description

UCLA 
Radio 

(32Kbps) 

Proxim  
Radio 

(1.6Mbps) 

1. Data Bandwidth 46.0 10.1

2. Acquisition & Tail Time 25.8 0.0

3. Packet Loss & Time-outs 19.8 0.0

4. CPU Processing 2.8 63.9

5. Protocol Headers 2.2 1.0

6. Miscellaneous 
 (H/W Proc.,Media Access,etc.)

3.4 24.9

7. Total 100 100

Table 8: Experimental Comparison (UCLA vs. Proxim)
[Percentage of Raw Channel Rate]



nel rate, is able to achieve only a 11 times increase (161.6Kbps) in

effective (user) data bandwidth over the UCLA radio (14.7Kbps). 

In order to examine how the effective data rate changes as a func-

tion of the raw channel rate, we are able to utilize the simulation

models and simulation environment, described earlier. The results

are shown in Graph 1. We see a very close correlation between the

simulation results shown with those found through experimentation

with the UCLA and Proxim radios.

As the raw channel rate increases, we find that the data band-

width bottleneck decreases, as a percentage of the raw channel rate.

We see in Table 8 that there is a significant increase in CPU Pro-

cessing overhead (from 2.8% to 63.9%) even though the exact same

laptops were used due to the increased raw channel rate (32Kbps

vs. 1600Kbps). Now the CPU Processing became the largest bottle-

neck for the Proxim radio. 

In order to evaluate the CPU Overhead versus Data Bandwidth

for a larger parameter space of various raw channel rates, we used

the simulation models again to obtain Graph 2.

We see how the CPU Overhead becomes a dominant factor of the

raw channel rate around 700Kbps and thus the decline in the data

bandwidth efficiency when the CPU processing time is fixed at

around 23ms per packet. In this graph, we see that the CPU Over-

head attributes to approximately 30% of the loss in bandwidth.

However, in Table 8 we found through experimentation that the

CPU Processing overhead for the 1,600Kbps Proxim was 63.9% of

the raw channel rate. The difference between simulation and exper-
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(15% Packet Loss Rate)

imentation is that in the simulation models, we assume TCP sees a

packet loss rate of 15%, and in our experiments, TCP saw no packet

loss. We attribute this to a link level acknowledgment scheme as

part of the link level protocol used inside the Proxim RangeLAN2. 

As technology advances the raw channel rate in which these

wireless radios are able to operate, so will advance the processing

speed of the laptops. To see the effect of the CPU Overhead and

Data Bandwidth as a function of CPU Process delays, we used

modified the simulation parameters in the models described earlier

to obtain the performance bottlenecks at various CPU processing

delays. The results are shown in Graph 3. Here we see trade-off

between the CPU Overhead and Data Bandwidth efficiency of the

channel as CPU processing delays (per packet) decrease and the

channel rate remains fixed at 1,000 Kbps. When the CPU process-

ing delays fall below 17ms per packet, the channel rate starts

becoming the larger bottleneck.

5.  Related Work

There are several different network simulators currently on the

market. These simulators have primarily been used for design and

performance evaluation of networking algorithms. The problem

with these simulators is the lack of full flexibility for customization

such as modeling the operating system kernel or system interfacing

found in the implemented system.

Many existing commercial network evaluation tools suffer from

the following limitations which are addressed in this simulation &

prototyping environment:

• Most tools are not tailored for wireless protocols and 

have awkward and inadequate interfaces for specifying 

wireless and mobility related parameters. 

• Models generated by existing tools are often of little use 

in generating working implementations of the protocols. 

For instance, the finite state machines used to specify 

the protocols in OPNET must be manually re-coded to 

design an operational prototype. This leads to unneces-

sary duplication of resources and is also error prone.

• As yet, no common reference model exists for most 

mobile and wireless parameters such as performance 

measurements.

• Existing prototyping tools do not provide a way to 

incorporate operational protocols into the modeling 

environment. An important component of the simulation 

environment is backporting of existing software and 

0%

10%

20%

30%

40%

01020304050

CPU Processing Delays (milliseconds)

P
er

ce
n

ta
g

e 
o

f 
R

aw
 

B
an

d
w

id
th

CPU Overhead

Data Bandwidth

Graph 3: Bottleneck vs. Processing Delay



protocols into the simulation environment for scaling 

studies and validation as well as for testing inter-opera-

tion with novel protocols. 

• Existing simulation tools are extremely slow. Models 

with even a relatively small number of mobile devices 

(e.g., personal communication systems) can take hours 

of execution time on contemporary workstations. Scal-

ability studies involving hundreds, and perhaps thou-

sands of these devices, are practically impossible using 

these tools.

In addition to the related work with commercial products, vari-

ous research projects at other universities are working on specific

simulation and implementation environments for mobile, wireless,

and networking protocols. A simulation environment was devel-

oped specially for the x-kernel [11] which successfully analyzes the

performance of the new protocol based upon various simulation

model parameters. In order to support implementation, the

approach used in the x-kernel and Scout projects at the University

of Arizona is to develop an operating system which can support the

implementation of networking protocols [1]. Of the related work,

few address the development of a simulation environment to model

the various components used in mobile wireless network systems,

and none of them support parallel simulation and a direct path

between implementation and simulation for validation and experi-

mentation.

6.  Conclusion

This paper described a software architecture for a simulation

environment for mobile wireless network systems. The environ-

ment provides clearly delineated modules to model each of the pri-

mary components of the system: network operating system, traffic

models, protocol models of the network, data, and physical link lev-

els, radio models, and mobility patterns. Each of these models can

be as simplistic or detailed as desired. The environment has been

used to perform a number of studies: this paper described only one

simple study that used the NOS, radio, and channel models to eval-

uate a point-to-point file transfer protocol over a wireless network.

The test-bench not only provides a path for implementation from

the simulation environment, but also validates the simulation

results. The test-bench and simulation environment are flexible

enough to be used for various aspects of simulating mobile wireless

network system components and their integration. The time to

achieve analysis results have been significant reduced by being able

to write models which transparently run in a parallel simulation lan-

guage and supports refinement of the models as desired.

The experiments reported in this study used only the sequential

Maisie implementations. Parallel Maisie implementations have

yielded significant performance improvements for a number of

example studies[4]. We intend to explore the viability of the parallel

implementation in improving the performance of simulation models

for wireless networks such as those described in this paper. We are

also extending this simulation environment and test-bench to sup-

port nomadic computing issues [15] and various transparent

nomadic networking protocols. 
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