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Abstract

We present a device-free indoor tracking system that uses received signal strength (RSS) from 

radio frequency (RF) transceivers to estimate the location of a person. While many RSS-based 

tracking systems use a body-worn device or tag, this approach requires no such tag. The approach 

is based on the key principle that RF signals between wall-mounted transceivers reflect and absorb 

differently depending on a person’s movement within their home. A hierarchical neural network 

hidden Markov model (NN-HMM) classifier estimates both movement patterns and stand vs. walk 

conditions to perform tracking accurately. The algorithm and features used are specifically robust 

to changes in RSS mean shifts in the environment over time allowing for greater than 90% region 

level classification accuracy over an extended testing period. In addition to tracking, the system 

also estimates the number of people in different regions. It is currently being developed to support 

independent living and long-term monitoring of seniors.
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INTRODUCTION

A number of different sensing technologies have been proposed to perform indoor 

localization ranging from RFID, infrared, ultrasonic transducers, RSS and ultra-wide-band 

(UWB) time-of-flight measurements. Typically, systems and approaches require the user to 

carry some type of physical device or tag. The focus of this paper is on the development of a 

device-free (or tag-free) system that works passively in the background and allows for 

indoor tracking without the person needing to carry any device. Applications where a 

device-free solution is desirable range from smart-home systems, security and intrusion 

detection, to virtual reality gaming. Our particular interest is in long-term health monitoring 

of seniors in support of independent living. Passive or ambient monitoring allows a 

caregiver or family member to observe deviations in patterns of activities of daily living 

while providing automatic notification if a change in health status or emergency event has 

occurred [24]. With traditional tag-based systems, seniors and especially those with 

cognitive decline, often forget or prefer not to wear their tags.

Previous approaches to device-free localization have included a variety of techniques and 

sensors. Video based tracking can often be effective, though performance may degrade with 

complicated background clutter and loss of privacy is a major concern for many 

applications. Simple contact switches or infrared (IR) motion sensors may be employed to 

determine room-level location. However, this approach does not provide accurate activity 

and mobility information and is inaccurate when more than one individual is in the living 

space. More accurate localization is possible using arrays of IR motion sensors, but such 

systems are expensive and complicated to install [6]. Ultra-wideband (UWB) or Doppler 

radar systems can be used to see through walls, although they require expensive equipment 

that limits their use in practice. A review of alternative sensors and approaches, including 

pressure sensors, load cells, thermal IR, ultrasound, and electric field capacitance, is 

provided in [13, 22].

The use of radio frequency (RF) attenuation is perhaps the most promising approach to 

device-free localization due to the availability of either existing Wi-Fi sensor networks or 

custom low-cost low-power transducers that provide measurements of RF attenuation in the 

form of received signal strength (RSS). Generally, the use of RF involves characterizing 

how a person affects the reflection or absorption of signals between multiple transmitters 

and receivers called access-points (AP). The direct path between any two access-points is 

referred to as a link or path. Early demonstrations of device-free localization were 

performed in small highly controlled spaces [31, 39]. Subsequent publications in this area 

include [1, 9, 12, 15, 16, 22, 29, 34, 37, 40], as well as our own prior work [7, 33]. RF based 

methods can be categorized into tomographic imaging, link-based, and location based 

fingerprinting, as briefly reviewed below.

Radio tomographic imaging RF methods use hundreds of RSS measurement links typically 

by uniformly positioning access-points every meter or less around the perimeter of a room 

[1, 9, 11, 19, 38, 40]. An image map is created by measuring and modeling the attenuation 

between pairs of access-points. While these systems can be highly accurate in ideal 
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situations, they are usually based on line of sight (LOS) measurement models with accuracy 

degrading due to multipath in real-world living spaces.

Closely related to tomographic approaches are link-based RF localization methods that 

involve modeling the path-loss between pairs of access-point [10, 12, 22, 27, 35, 40]. 

Determining if a subject is on the LOS allows localization to be geometrically constrained to 

the link. Given sufficient number of links, variants of this approach have been quite 

impressive, allowing highly accurate localization and tracking using Bayesian approaches as 

well as methods for self-calibration of the link models [26, 27, 34]. Performance, however, 

is dependent on having a sufficiently large number of access-points and links (e.g., Ke, 

2014, used 28 nodes with 378 links to cover a roughly 6.5m × 6.5m area, [12]). Concerns 

again exist over the impact of clutter in the home causing multipath and its effect on the 

path-loss modeling.

Another category of RF based approaches includes fingerprint-based methods. Similar to 

RSS device or tag-based localization, these methods involve a calibration phase in which a 

localization fingerprint or radio-map is learned by having a person stand (or walk) at a fixed 

number of known waypoints in the space. The advantage of this approach is that fewer 

access-points and signal paths are required, as a person does not need to stand directly on a 

link between two access-points. Multipath does not need to be analytically modeled and is 

implicitly accounted for in the data-driven calibration phase. Youssef et al., have developed 

a number of such systems over the years [15, 16, 18, 25, 26, 29, 39]. The Nuzzer system 

[29], for example is capable of better than 2 m location accuracy in a small office 

environment. The system is trained offline in which a person stands still for 60 seconds at 53 

known locations spaced 2 meters apart while RSS data is recorded from only 6 paths. A 

Gaussian distribution is fit for the mean of the RSS data under an independence assumption 

for use in a discrete Bayes classifier. Spatial averaging is then used between regions to 

achieve better than 2-meter localization accuracy on standing data (results are not reported 

for walking data). The Nuzzer system also includes using variance thresholds to determine 

the number of people (up to 3) in different zones of the office. In Xu, 2013, the authors 

developed a system using absolute mean features with data collected for calibration using 

both standing and walking data [37]. The approach uses a conditional random field (CRF) to 

provide a Markov model of walking between regions. Experiments were performed in a 

150m2 office with 13 transmitters and 9 receivers (119 links). Using a technique to 

sequentially cancel the effects of multiple people, tracking results were achieved for up to 4 

people with an average location accuracy of 1.3m.

Our approach to device-free tracking is most closely related to the RF fingerprint methods. 

In our prior work [33] in a cluttered office environment using only 9 links with 5 access-

points, we demonstrated region level localization (2–3 meter accuracy) and the ability to 

determine whether one or more people were in a room. Similar to the above-mentioned 

fingerprinting methods we used mean and variance features during standing and walking in 

order to train a neural network (NN), k-nearest neighbors (KNN), or Gaussian mixture 

model (GMM) classifiers. Subsequent to that work we were able to increase the resolution 

of our localization to less than 1m accuracy by using a finer grid of standing waypoints 

during training. However, a critical finding was that localization accuracy degraded 
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significantly over time, i.e., if a week or more separates the collection of testing and training 

data. Similar findings are reported in [14]. The issue is that mean RSS features that are 

relevant during standing phases vary considerably over time due to changes in the 

environment (e.g., a chair is moved), physical disturbances nearby (e.g., unknown changes 

in an adjacent office or apartment), or typical fluctuations in transceiver operation and un-

modeled RF interference. Simply normalizing or subtracting by a background RSS mean 

when no one is in the room is not sufficiently effective at alleviating this issue due to the 

non-linear effects of RF multipath and signal transmission.

Our current approach addresses the robustness issue and adds additional system and 

algorithm capabilities. Instead of localizing the person we track the person during motion. 

The intuition is that if a person is standing there is high probability that they are not moving 

between regions and there is no need to localize them beyond their previously estimated 

location. We need only to track the sequence of changes between regions during motion. We 

use a hierarchical NN classifier to first determine whether there are 0, 1, 2, or more than 2 

people in a room to be tracked. If the algorithm determines that only 1 person is in the room, 

we use a separately trained NN to estimate the probability whether a subject is standing or 

moving. Since localization is not performed during standing, short-term mean features that 

are prone to degradation are explicitly removed from use and only short-term variance 

features used (other features are also compared for robustness). Further we use a hybrid NN-

HMM classifier to track the sequence of motion between different regions and between 

standing versus walking. The HMM model of motion assumes equal probability of a person 

moving to adjacent regions or staying in the same region. The fixed probability transitions 

are then adjusted by blending with the classification probability of a person standing or 

moving. A second NN classifier provides the posterior probability of being in a specific 

region given RSS features. Finally, a Viterbi algorithm is used to determine the maximum-

likelihood sequence of regions that a person moves through in the environment.

As described above, the system is capable of classifying whether there are 0, 1, 2, or more 

people in larger regions (room level). This is useful for monitoring caregiver and social 

interaction, as well as for automatically parsing single-person data for long-term studies. 

The NN-HMM approach is then used only when 1 person is in the room for more accurate 

localization and tracking. In addition, we use the same passive RSS access-points to 

accurately determine walking speed. Walking speed and changes in walking speed have 

been shown to be important health indicators and may be used in detecting the onset of 

cognitive decline. For estimating walking speed we use both the timing and shape of the 

RSS as detected between two links placed across a hallway or using a single link in a 

doorframe. Walking speed estimation is better than 8 cm/s root-mean-square error (RMSE) 

relative to a GAITRite gait mat used for ground truth. Details on the walking speed 

component can be found in our recent publication [8].

Our new approach to device-free localization is also being developed as part of a complete 

indoor mobility assessment and tracking system, called MobileRF, in collaboration with the 

company EmbedRF. MobileRF includes a tag-based multi-patient mobility assessment mode 

in which the tag is worn by the patient(s) and localization performed using ultra-wideband 

(UWB) ranging in combination with sigma-point Kalman filtering (SPKF) for tracking and 
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simultaneous localization and mapping (SLAM) for self-calibration [7, 23]. Additional 

inertial sensors (3D gyroscopes and accelerometers) allow for more detailed assessment of 

gait features. The tag-based mode can also be used for ground-truth during the calibration 

phase of the device-free approach. In this paper, we focus on describing only the device-free 

solution for performing indoor tracking.

METHODS

In this section, we describe the hardware and software data acquisition system, the facilities 

and procedures used for testing, and the tracking algorithm design.

Hardware

Wall-mounted access-points (APs) correspond to miniature transceiver modules 

manufactured by EmbedRF (see Figure 1). The APs are configured to wirelessly 

communicate with each other as well as to a central hub (also containing an EmbedRF 

transceiver). The hardware consists of a small 8-bit microcontroller (PIC 16F690), a Texas 

Instruments radio transceiver (CC1101), and some passive components. RF energy inside 

the room absorbs and reflects differently depending on where a person is located. Any 

motion of a person through the room disrupts the radio field, which changes the RSS 

readings recorded by the access points and hub.

Testing facilities and experiments

The experiments and results reported here were performed in two different locations. The 

first site was the OHSU Point-of-Care Laboratory (PoCL) (see Figure 2 floor plan). The 

PoCL is a simulated apartment consisting of three rooms, a bedroom, bathroom and 

combined kitchen / living room; the space is filled with furniture and appliances typical for a 

home environment including a kitchen sink, dish washer, couches, television, bed, and 

bathroom with toilet and shower. The small apartment is approximately 9m × 7.5m in size 

and had 9 APs and 1 hub installed resulting in 17 RSS links. The PoCL was divided into 

M=7 regions for tracking (see Figure 2). The second site used to further confirm 

performance was the Portland State University Biomedical Signal Processing Laboratory 

(BSPL). The BSPL is a multi-purpose electronics laboratory and open office space of 

dimension 5m × 4m. In the BSPL, 5 APs and 1 hub were used resulting in 9 RSS links; M=4 

quadrants were used for testing tracking (floor plan is not shown due to space limitations).

The RSS links for the PoCL are also illustrated as arrows in Figure 2. Note that not all AP to 

AP RSS paths were measured because the system is designed to have all access points run at 

ultra-low power levels on a single set of AA batteries for over a year. To achieve this long 

battery life, the transmission of the signal is started by the initiator, which sends a signal to 

all other APs and directly to the hub. The APs receive this signal and then transmit directly 

to the hub. The initiator transmits data every 250 milliseconds (ms). Each of the APs 

including the initiator is asleep for most of the time except when they wake up periodically 

to listen and then transmit. The transmission is done at 915 MHz to avoid interference from 

Wi-Fi or other 2.4 GHz and 5 GHz signals typical in a home environment and the data bytes 

transmitted are kept to a minimum of 10 bytes per payload, again to minimize battery drain. 
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The power drain of the system is an order of magnitude less than ZigBee and Wi-Fi based 

systems.

An example of the raw RSS outputs as a person moves through the PoCL is shown in Figure 

3. It is important to note that the disruption in the RSS does not require a person to be 

directly in the line-of sight (LOS) between two access-points. Multipath and other 

disturbances are actually beneficial for this approach.

Software data acquisition system

Custom software was used for the data collections running on a PC computer and written 

using C#.NET. The software collected the transceiver data using a hub connected to the 

laptop USB port. A user can use the software to designate regions that are used during 

tracking, waypoints that are specific locations within a region, as well as general activities, 

e.g. sitting, standing, or walking. Different scripts can then be run, which automatically 

direct the participant using a text-to-speech module through a specified sequence of 

instructions. A typical calibration script instructs the person to move to region 1 (entry area) 

and walk around, then move to way point 1 and stand there, then move to region 2 (TV area) 

and move around etc. until the user has moved to all of the required regions and waypoints. 

The scripts are fully customizable and can direct a person to perform other activities of daily 

living, e.g., opening and closing the refrigerator, washing dishes, sitting on the couch, or 

walking paths at different speeds through specific sequences of waypoints. The RSS data 

acquired during this calibration script are time aligned with the instruction labels and then 

can be used to train or test the classifier and tracking system as described further below.

Pre-processing and feature extraction

The raw RSS information acquired at a 250 ms sample rate for each link serves as the data 

input to the tracking system. An example plot of the RSS for each link is shown in Figure 3.

Critical to classification performance is finding feature representations for the data that 

allows for high discrimination while maintaining high generalization between users and over 

time. Raw RSS data signals are first converted from dBm into power (mWatts):

(1)

Next, “background subtraction” is performed in which the long-term mean of the 

background RSS (when no one is in the space) is subtracted from the raw RSS power values. 

The background-subtracted data contains information about RSS variability due to the 

person’s presence inside the room, while attempting to eliminate other variability due to 

room geometry, furniture location, and static multipath. Note that this subtraction only 

partially eliminates the effects of static changes in the space due to the inherent nonlinear 

nature of RF path-loss and multipath effects. This is a key point. While it is intuitive that a 

person’s specific location in a room will cause a mean shift in the observed RSS level, the 

absolute amount of this shift may not be consistent over time due to many factors. We found 

that on numerous occasions, the mean RSS level for one or more links would suddenly shift 

and/or drift in level during the course of a single trial. It is unlikely that this was a hardware 
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or data acquisition issue with the transceiver (Texas Instruments CC1101) as there are no 

reports on this being typical of the part. These shifts are likely caused by environmental 

factors or outside RF interference. Mean shift are even more problematic during longer term 

studies involving over a month of time, where changes in furniture location (simply moving 

a dining room chair or leaving a door open in a different position) can cause changes in both 

the absolute background RSS level as well as the relative shift due to a person’s presence in 

a specific location. Figure 4 demonstrates instances of mean level shifts of RSS for a) when 

a chair is moved, and b) over a 10 hour period.

In our preliminary work, we investigated use of short-term mean RSS features. Several 

experiments were performed in which subjects were instructed to stand at fixed waypoints 

spaced on a grid of less than 1m separation. Collections were performed in a cluttered office, 

empty room, and outdoors. Our findings were that when using only mean features, sub-

meter accuracy in localization (with greater than 80% region level accuracy) was only 

possible in the ideal case when training and testing data was collected immediately 

following each other. Within a month of separation, accuracy fell to well below 50%.

Because of these factors, we concluded that using the mean RSS level as a feature is 

problematic for our long-term study. Our application goal was to develop a robust system 

that can be deployed in a person’s home with minimal calibration and re-calibration. In the 

current system, we addressed this issue in two ways, 1) we used only RSS variance features 

and we explicitly did not use mean level RSS features in our classification procedure, and 2) 

we developed a hybrid NN-HMM classifier to track the sequence of motion and avoided 

explicit localization when a person was determined to be standing still. Specifically, our 

primary feature used for tracking was the short-term (5 second (s) window) variance of the 

RSS signal. A sliding window was used such that the variance features were updated at 

every 250 ms. The full feature vector then consisted of the concatenation of all variance 

features for each RSS link. This relatively simple change in the feature set had a significant 

effect on our overall results as will be described later. Note that we also investigated 

different time windows for calculating the variance (1 s, 2 s, etc.) as well as short-term 

Fourier Transform based spectral features, Principal Component Analysis (PCA), and Linear 

Discriminant Analysis (LDA); however, we did not find any significant advantage over 

using the simple 5 s sliding window variance.

Classification and tracking algorithms

In this section, we describe a hierarchical tracking algorithm that works by (1) first 

estimating the number of people in a room, (2) next identifying whether a person is standing 

or walking, and (3) lastly tracking the person using a hybrid NN-HMM. Steps 1, 2, and 3 all 

utilize different NN classifiers that must be trained on data acquired during a calibration run. 

Both the NN and HMM designs are described below.

Neural network design and training

Three separate feed-forward NN classifiers were trained and used in the system, (1) NNp 

estimates the probability of 0, 1, 2, or more than 2 people being present in a room, (2) NNs 

estimates the probability of whether a person is standing still or walking, and (3) NNr 
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estimates the probability of a person being in a region in the room. We define the following 

notation. Define Ri to be the ith region, R1 ≤Ri ≤RM, where M is the total number of regions 

in the space. Let xt = [RSSw(1), RSSw(2),…. RSSw(N)], be the vector of all RSS 

measurements at time t after mean background subtraction, where N is the total number of 

links. The vector of short-term variance features (5 s sliding window) derived from xt at 

time t is denoted as θt. Calibration data, which involves the known number of people, 

standing versus walking, or region location, was used to train each of the 3 NNs. During 

training, the hidden layer structures of the classifiers as well as the appropriate weights were 

determined using 10-fold cross validation. Additional specifics on the calibration data used 

and network structure for each NN is provided in the Results section.

Once trained, a NN takes a feature vector, θt as input and produces an output that can be 

interpreted and used as posterior probabilities, specifically, the first network,

(2)

gives the probability of detecting the number of people, p=Pi, given θt at time t. The next 

network,

(3)

gives the probability of standing (s = S1) vs. walking (s = S0) at time t. Finally,

(4)

gives the probability of being in region r = Ri at time t given θt. A hard classification can be 

made by selecting the maximum output for a given classifier. Specifically,

(5)

Note that in practice we only make a hard decision for the first classifier that determines the 

number of people. The hybrid NN-HMM uses the probability estimates from NNs and NNr 

to perform tracking as explained subsequently.

We compared alternative classifiers, including k-nearest neighbor, Gaussian mixture 

models, and support vector machines. All yielded comparable results, however, the standard 

NN provided slightly better performance and had the advantage of easily providing posterior 

probability estimates. The NN is also computationally and memory efficient to implement 

after training for real-time use.

Hybrid NN-HMM design

The HMM performs maximum likelihood sequence estimation by combining the probability 

of standing vs. walking (output from NNs) and the probability of the person being in a 

region (output from NNr) with a probabilistic transition model of a person moving from one 

region to another. A Markov-model is assumed, in which the hidden states are the regions. 
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The transition probability matrix Aij is denoted as the probability of moving from region rj 

to ri

(6)

The observations emitted from each state of the HMM model are the features θt. The 

observation probability is derived from NNr(θt) and denoted as the likelihood of observing 

the feature vector θt at time t given a region ri

(7)

The initial probability of starting a walk from a region Ri is given as πi = p(ri) R1 ≤ ri<RM.

For the transition matrix, we assumed that the person was equally likely to move to any of 

the regions surrounding the current region as well as staying within that region. For 

example, if there are 4 directions a person can move from a given region, the transition 

probabilities to each region will be 1/5 since there is also a probability that they will stay 

within that region. The states and transitions probabilities for the PoCL are illustrated in 

Figure 5. Note that future work might involve learning the transition probabilities from 

observed patterns of a person walking over time.

The above transition matrix and probabilities assume a person is moving. Whereas a 

traditional HMM uses fixed transition probabilities, we dynamically adjust the probabilities 

based on the NNs output that determines the probability of a person standing versus 

walking. Thus we redefine the region transition probabilities at time t by combining the state 

transition matrix Aij conditioned on whether a person is standing versus walking,

(8)

where p(s=S1), t is denoted as probability of standing at time t, i.e., the output of NNs, and,

(9)

implies that the probability equals 1 of staying in the same location given a person is 

standing. Similarly, observation probability B(θt) is modified to obtain B′(θt),

(10)

which implies the region based classifier is less informative (equal probabilities) when a 

person has high likelihood of standing.

The output of the NN-HMM is the maximum-likelihood sequence of regions,
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(11)

Applying Bayes formula,

(12)

where p(ri,t) is expressed recursively,

(13)

using the transition probabilities defined earlier. A Viterbi search algorithm is then used to 

estimate the most likely path of the person moving through a set of regions. The pseudo-

code to compute  using the NN-HMM method and Viterbi search is given below:

Initialization:

○ πi =1, R1 ≤ ri ≤ RM assuming all regions are equally likely at the start of the 

walk.

○ Viterbi initialization:

ψ1 (i) = 0

where B′ (θ1) is obtained from NNr(θ1)

• Recursion:

while t ≤ T

○ Run NNp and obtain p(pj,t| θt) so that P ̂
t = argmax[p(pj,t|θt)] P0 ≤ p ≤ 

P>2

if P̂t = 1 (single person case)

▪ Run NNs and obtain p(sk,t | θt) s = S0, S1

▪ Compute probability of standing p(s=S1),t = p(st = S1 | θt)

▪ Compute new transition matrix 

▪ Run NNr to obtain B(θt)
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▪ Viterbi recursion:

1 ≤ i ≤ M

▪ t = t + 1

else (zero person and multi-person case)

▪ Reject the data

▪ t=t+1 end

end

• Termination:

○

• Viterbi back-tracking:

○ Optimal sequence of regions can be obtained by backtracking

RESULTS

A number of subjects performed several experiments over multiple days and weeks at each 

location to calibrate and test the accuracy of the different classifier components and overall 

hybrid NN-HMM tracking system. Results on multi-person classification, standing versus 

walking, and region based tracking are presented below.

Single vs. multi-person detection

The first level classifier NNp discriminates between 0, 1, 2 or greater than 2 person 

occupancy. In the PoCL, data was collected for 30 minutes in which either 1, 2 or 3 people 

were asked to walk around the entire location. When 2 or 3 people were present, normal 

interactions were simulated whereby the subjects walked in different rooms, walked in the 

Paul et al. Page 11

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2014 December 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



same room, followed one another, stood still, etc. Classification performance was evaluated 

using independent datasets for training and testing. The number of hidden nodes for NNp 

determined using cross validation was 5 for both PoCL and BSPL. Classification accuracy 

was about 90% using the RSS 5 s sliding window variance features. Table 1 shows 

classification performance in terms of a confusion matrix for the PoCL. Note that 

determination of 1 vs. multi-person was performed at a 4 Hz rate. However if a full 5 minute 

segment of data was used to make the estimation based on a simple majority vote of the 4 

Hz classifier decisions, the accuracy increased to 100%.

A second test on multi-person detection was also performed in the BSPL, in this case to 

determine whether it was possible to discriminate both the number of people (1 or 2) and in 

which of 4 regions each was located. We found that our classifier was able to perform the 

task successfully 92% of the time using the 5 s sliding window.

Standing vs. walking classification

Once the NNp has determined that only one person is in the space, the NNs determines 

whether the person is standing or walking. Data were collected in the PoCL and BSPL in 

which a person either stood at a waypoint or walked in each region for approximately 30 s. 

Again, the 5 s sliding windowed variance features were used as input to the classifier, which 

made a decision at a 4 Hz rate. The number of hidden neurons was 3 as determined by 

performing cross validation on the PoCL and BSPL data. Table 2 demonstrates the 

performance based on a confusion matrix. Classification accuracy was over 95%. Only 

classification results for the PoCL are shown, as classification accuracy was approximately 

the same at the BSPL. Note that in practice the use of this classifier is not a “hard” decision, 

but rather to estimate the probability that a person is either standing or walking for use in 

hybrid NN-HMM tracking.

Region-level tracking

The full hybrid NN-HMM tracking system combines both the output of the standing vs. 

walking classifier NNs and the region based classifier NNr. The NNr was trained by using 

calibration data collected in the PoCL or BSPL in which a person walked randomly in each 

region for approximately 60 s. The number of hidden nodes was determined to be 20 and 10 

for the PoCL and BSPL NNr, respectively. The HMM incorporates the transition model and 

is used to perform maximum-likelihood sequence estimation to obtain the most likely path 

the user has taken. The classifier performance is expressed based on percentage of time the 

estimated region matched the true region. Note that the dimension of each region was on 

average 2.7m × 2.7m. Data collection and feature representation was as before.

Total performance averaged over all regions is shown for both PoCL and BSPL in Table 3. 

To evaluate robustness, this table also shows performance when training and testing were 

performed on the same day, separated by a week, and separated by a month. Table 4 and 

Table 5 provide confusion matrices whose diagonal elements show accuracy of each region 

and off-diagonal terms exhibit misclassification. Table 3 also includes performance 

comparisons when mean features were used with and without the variance features. Note 

that same NNr calibration dataset and 5 s sliding window as variance features were used to 
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compute mean features. As evident, classifier performance when using only short-term 

variance features did not significantly degrade over time. In contrast, the use of mean 

features resulted in significantly poorer performance. The test facilities at PoCL and BSPL 

were actively used by other research groups for experiments in between our evaluations. 

This resulted in the movement of furniture, bookcases, and overall floor-plan layout on 

numerous occasions. Also there were multiple instances when APs were taken down from 

walls and then replaced between data collections. Over the course of a month, the hub AP 

was moved several feet, which may account for some of this performance loss over the 

period. Overall, system tracking remained robust (when using only the variance features), 

and accuracy was sufficient for health monitoring.

In Figure 6 we show how the system tracked a person moving sequentially from region 1–7 

at PoCL. The red trace is the ground truth while the blue trace is the location estimated by 

the NN-HMM tracking algorithm. Performance was good both on same day training and 

when separated by a month. Note that when errors were made, the tracking usually quickly 

recovered, indicating that post-processing involving smoothing may be possible to further 

improve performance. We also performed experiments to evaluate the advantage of using 

the hybrid NN-HMM over simply using the single neural network NNr classifier to perform 

region level localization. Figure 7 illustrates the difference in tracking performance over the 

sequence of regions. Table 6 compares average performance over all regions and also 

includes results when using mean features for comparison. As is clear from these results, 

performance of the hybrid NN-HMM classifier improves significantly when incorporating 

prior knowledge of a person’s state within a room as well as blending the probabilities of 

standing and walking. The advantage of using variance features instead of mean features is 

also again evident.

In another evaluation, we compared effects of training/testing on a) the same person (same 

as Table 3), b) using 75% less training data, and c) training on one person and testing on a 

different person. Results are summarized in Table 7 which demonstrate another form of 

robustness of our approach. This is important for our application of tracking and mobility 

monitoring of the elderly, where a different person other than the senior might perform the 

initial calibration during set-up. A short calibration routine is desired to save on installation 

time. We also investigated the effects of reducing the number of APs. In the PoCL, we 

reduced the number of APs from 9 to 5 resulting in 8 fewer RSS links (see Figure 2). In this 

case, region level classification accuracy only reduced by 7% for same day training and 

testing and only 4% when separated by a month. This shows the ability to trade off the 

number of APs used for performance accuracy.

The final set of evaluations involved tracking a person as they walked naturally in the space 

following a pre-defined path. Continuous walks are more challenging to track as subjects 

spend only a few seconds at each region mimicking typical movement of a person inside 

their home. An example walking path at PoCL is displayed in Figure 8. In the example 

shown, we also increased the number of regions from 7 to 13 (some of the regions are now 

sub-meter dimension, with the average grid size being 1.6m × 1.6m). While the overall 

region level classification accuracy decreased by 6% relative to using 7 regions on same day 

training and testing, the estimated walking path still closely estimates the true path (Figure 
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9). Note that while we are using a 5 s window to calculate the variance features, this is a 

sliding window, which in combination with the HMM transition constraints allow us to 

accurately track a person walking through a given region even if they spend less than 5 s 

crossing the region. Additional testing involved walking in the reverse direction, at different 

speeds, as well as stopping and standing occasionally along the path. Performance was 

similar in all cases further indicating the robustness of the method.

Additional system capabilities and results

As discussed earlier, our tracking system is designed for use as part of an overall passive 

system for monitoring the elderly. Using similar neural network classification techniques, 

experiments were performed to discriminate between standing versus sitting on a couch. On 

average, we found classifier accuracy to be above 98% for same day train and test and 

around 92% when train and test were one week apart. Furthermore, using timing information 

between RSS link crossings, we were able to estimate walking speed at an RMSE of less 

than 8cm/s relative to a gait mat used for ground truth. The details of the experiments and 

results are demonstrated in a separate publication [8].

DISCUSSION AND CONCLUSIONS

In this paper, we have presented a novel solution to passive device-free tracking based on 

detecting the RSS disruptions between wall-mounted access-points. Whereas most in-home 

tracking and monitoring systems are based on wearable technology, our system does not 

require the user to carry any device or tag. One novelty of the presented algorithm is that it 

takes advantage of the dynamic changes in RSS during movement to intelligently track a 

person only when they are moving. Several classifiers are implemented. A first level neural 

network classifier determines the number of people in a room or region. When a single 

person is detected, a hybrid NN-HMM is used to optimally track the sequence of movements 

of the person from region to region. The algorithm is robust to long-term drift in the RSS 

and other changes in the environment (e.g., moving furniture) that might affect signal 

multipath. The approach specifically excludes data when more than one person is present in 

an environment, thereby making it optimal for performing movement monitoring for seniors 

either living alone or with other people. Determination of the number of people, 

classification of standing versus walking, and region level classification were all over 90% 

accurate. Experimental results further demonstrate reliable region level tracking to within 

approximately 1–2 m. We report results using a moderate number of low-cost APs.

Seifeldin et al. [29] have also presented work using a small number of APs within a real 

world environment to localize people. Results presented by this group demonstrate 

localization accuracy (< 2 m) using standard Wi-Fi RSSI radio-maps and remarkably using 

only 3 APs. This group has also shown that they can localize multiple stationary people 

within a region both within this paper and they demonstrate multi-entity localization in 

Sabek et al. [25]. The primary difference between our work and these papers is that they had 

trained and tested on people only when they were stationary whereas we train and test on 

both stationary and moving people. So while the Seifeldin and Sabek papers describe an 

algorithm that accurately localizes stationary objects, they are not tracking user’s sequence 
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of movements. Furthermore, this group does not demonstrate algorithm performance over 

long time periods during which RSS can drift. Moving objects and people affect the RSS 

differently than stationary objects; we have reported here that when tracking objects that 

alternate between moving and stationary, it is important to first estimate the movement, and 

then use RSS variance to perform tracking, specifically using our hybrid NN-HMM method. 

We demonstrate stability over the time of 1 month during which furniture were moved and 

APs were relocated, all contributing to changes in the RSS signal paths and mean levels drift 

over time.

Xu et al. [37] have introduced an algorithm called sequential counting or parallel localizing 

which is shown to simultaneously track multiple subjects. They have used 13 transmitters 

and 9 receivers to perform their tracking and results demonstrate accurate tracking 

performance for 1, 2, 3, or 4 moving subjects within two different environments. However, 

results are reported for only same day calibration and testing. This group acknowledges in 

their paper that a limitation of their algorithm involves long term drift in the RSS signals 

that can impact the accuracy of their algorithm. They note that they attempted using a 

camera to periodically take pictures of the environment to get a ground truth for a given 

subject’s location and thereby run autocorrelation. This has not been implemented in their 

paper.

Kaltiokallio et al. [10, 11] implemented a radio tomography based passive location system 

and deployed it within the homes of seniors for a week. Their system is similar to others [1, 

9, 12, 19, 40] that are accurate at localizing but require a large number of sensors. The 

localization system described by Kaltiokallio et al. uses 33 APs total and accounts for drift 

in RSS over time using a fading model; contrary to our approach which simply uses RSS 

variance and a simple calibration phase for training the NN classifiers.

In the future, we plan to add system capabilities such as determining between sitting vs. 

standing or estimating walking speed, which is only briefly mentioned in this paper. 

Classifying and reporting other activities of daily-living such as washing dishes, cooking, or 

going to the bathroom are of specific interest to monitoring seniors in their home. While a 

current limitation of our system is that it only accurately tracks location for a single person, 

future work is planned for multi-person tracking and multi-person discrimination. We also 

plan to integrate our time-of-flight body-worn tracking system [7] with the device-free 

tracking system to optimize performance. For example, the body-worn device may be used 

for semi-supervised calibration or periodic re-calibration without the need to require a 

person to walk or stand in specific locations as is done with the current calibration protocol. 

And lastly, we plan to deploy the system to a larger number of homes within the Oregon 

Center for Aging and Technology (ORCATECH) Life Laboratory [21] and use the system to 

assess mobility changes in seniors longitudinally over many years.
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Figure 1. 

(a) EmbedRF 915 MHz, wireless transceiver used for the access-points and hub (1.5 grams, 

10 byte payload, and 50 ft. range), (b) Enclosure for mounting on the walls.
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Figure 2. 

Room floor plan for the PoCL. Regions are labeled 1–7 in red and are marked with thick 

dashed lines in the figure. The APs and hub are indicated by red and blue shaded boxes. In 

some experiments, we used all APs, and in some experiments, we removed the blue APs to 

see how performance changed with a smaller number of APs. The waypoints 1–7 are labeled 

with red ‘+’ symbols. The links between transceivers are shown as black lines with arrows 

or as dashed lines for APs which were removed.
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Figure 3. 

RSS recordings as a person walks through the PoCL. RSS signals are offset by 5 mW 

increments in the plot.

Paul et al. Page 21

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2014 December 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 

Example of mean shifts in the RSS (5 sec moving average features plotted). (a) RSS was 

recorded in an empty room at first with a chair at one location (A), and then with the chair 

moved to a different location (B). The RSS path shown was not near either location A or B 

and was therefore likely due to multipath reflections. (b) Long term measurement of a single 

RSS path for 10 hours. Note the shift in the RSS mean level.
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Figure 5. 

HMM and transition probabilities for the PoCL room. State transition probabilities from 

source state to destination state are shown closer to the destination state.
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Figure 6. 

NN-HMM estimated regions (blue) are shown with ground truth regions (red) during the 

course of an experiment at PoCL. In this case, the subject moved from region 1–7 

sequentially. The subject spent approximately 1 min at each region. (a) Train and test data 

were collected on the same day (accuracy over all regions is 98.5%), (b) Train and test data 

were separated by one month (accuracy over all regions is 85%).
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Figure 7. 

Classifier estimated regions (blue) are shown with approximate ground truth regions (red) 

using data obtained at PoCL. The subject moved from regions 1–7 sequentially and 

performed walking and standing at way-points for approximately 1 min at each region. Train 

and test data were collected on the same day. Plot (a) shows the accuracy of the standalone 

NNr location classifier (76%) and plot (b) displays the hybrid NN-HMM (97.3%). This plot 

displays the performance improvement of the hybrid NN-HMM.
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Figure 8. 

Approximate walking path in black solid line is overlaid on the PoCL floorplan.
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Figure 9. 

Classifier estimated regions (blue) are shown. In Figure 8, the true path that the person 

followed was the following regions: 

1-2-3-4-5-6-7-6-5-11-12-13-12-11-10-9-8-9-10-5-4-3-2-1.
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Table 1

Confusion matrix in percentage in estimating 0-1-2-3 persons based on experiment performed at PoCL. (E = 

Estimated, T = True class)

E
1 persons 2 persons 3 persons no person

T

1 person 93.69 2.25 0.79 3.27

2 persons 8.59 79.01 8.19 4.21

3 persons 3.81 5.83 90.35 0.00

no persons 3.05 0.00 0.00 96.95
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Table 2

Confusion matrix in percentage to classify walking vs. standing at PoCL. (E = Estimated, T = True class)

E
Walking Standing

T

Walking 97.09 2.91

Standing 4.57 95.43
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Table 3

Classifier accuracy at PoCL (M=7) for region level localization using short-term variance only (var), mean 

and variance (mean + var) and mean only (mean) features when testing a) done on the same day, b) separated 

by 1 week and c) separated by one month. BSPL (M=4) accuracy is only shown using the preferred short-term 

variance only features.

a) Same Day b) 1 Week c) 1 Month

PoCL (var) 98.5% 95% 85%

PoCL (mean+var) 95% 90% 50%

PoCL (mean) 58% 56% 30%

BSPL (var) 95.1% 91.15% 85.5%

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2014 December 24.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Paul et al. Page 31

T
ab

le
 4

C
o
n
fu

si
o
n
 m

at
ri

x
 s

h
o
w

in
g
 c

la
ss

if
ie

r 
ac

cu
ra

cy
 u

si
n
g
 s

h
o
rt

-t
er

m
 v

ar
ia

n
ce

 f
ea

tu
re

s 
(i

n
 p

er
ce

n
ta

g
e)

 a
t 

P
o
C

L
 w

h
en

 t
ra

in
 a

n
d
 t

es
t 

d
at

a 
w

er
e 

co
ll

ec
te

d
 o

n
 t

h
e 

sa
m

e 
d
ay

. 
T

h
e 

tr
u
e 

re
g
io

n
s 

ar
e 

th
e 

ro
w

s 
w

h
il

e 
th

e 
es

ti
m

at
ed

 r
eg

io
n
s 

ar
e 

th
e 

co
lu

m
n
s.

 (
E

 =
 E

st
im

at
ed

, 
T

 =
 T

ru
e 

re
g
io

n
)

E
R

1
R

2
R

3
R

4
R

5
R

6
R

7

T R
1

9
8
.9

0
0
.0

0
1
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0

R
2

0
.5

5
9
9
.4

5
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0

R
3

0
.5

5
0
.0

0
9
3
.9

2
5
.5

2
0
.0

0
0
.0

0
0
.0

0

R
4

0
.0

0
0
.0

0
0
.0

0
9
7
.2

4
2
.7

6
0
.0

0
0
.0

0

R
5

0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
0
0
.0

0
.0

0
0
.0

0

R
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
0
0
.0

0
.0

R
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
0
0
.0

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2014 December 24.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Paul et al. Page 32

T
ab

le
 5

C
o
n
fu

si
o
n
 m

at
ri

x
 s

h
o
w

in
g
 c

la
ss

if
ie

r 
ac

cu
ra

cy
 u

si
n
g
 s

h
o
rt

-t
er

m
 v

ar
ia

n
ce

 f
ea

tu
re

s 
(i

n
 p

er
ce

n
ta

g
e)

 a
t 

P
o
C

L
 w

h
en

 t
ra

in
 a

n
d
 t

es
t 

d
at

a 
w

er
e 

se
p
ar

at
ed

 b
y
 o

n
e 

m
o
n
th

. 
T

h
e 

tr
u
e 

re
g
io

n
s 

ar
e 

th
e 

ro
w

s 
w

h
il

e 
th

e 
es

ti
m

at
ed

 r
eg

io
n
s 

ar
e 

th
e 

co
lu

m
n
s.

 (
E

 =
 E

st
im

at
ed

, 
T

 =
 T

ru
e 

re
g
io

n
)

E
R

1
R

2
R

3
R

4
R

5
R

6
R

7

T R
1

8
2
.8

7
9
.9

4
5
.5

2
1
.6

6
0
.0

0
0
.0

0
0
.0

0

R
2

3
.3

1
9
6
.6

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0

R
3

0
.0

0
0
.0

0
9
4
.4

8
5
.5

2
0
.0

0
0
.0

0
0
.0

0

R
4

0
.5

5
0
.0

0
1
4
.3

6
7
7
.3

5
7
.7

3
0
.0

0
0
.0

0

R
5

0
.0

0
0
.0

0
0
.0

0
0
.5

5
9
8
.9

0
0
.0

0
0
.5

5

R
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

1
8
5
.6

4
1
1
.0

5

R
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
3
.2

6
8
6
.7

4

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2014 December 24.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Paul et al. Page 33

Table 6

Comparison of hybrid NN-HMM versus standalone NNr at PoCL (M=7) in terms of region level localization 

with testing a) done on the same day, b) separated by one week and c) separated by one month. Performance is 

also compared when using variance only, mean and variance, and mean only features. Results at BSPL show 

similar performance.

a) Same Day b) 1 Week c) 1 Month

NN-HMM (var) 98.5% 95% 85%

NNr(var) 76% 70% 62%

NN-HMM (mean+var) 95% 90% 50%

NNr (mean+var) 74% 63% 42%

NN-HMM (mean) 58% 56% 30%

NNr (mean) 45% 40% 30%
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Table 7

Classifier performance for region level tracking comparing a) training and testing on the same person, b) train 

the classifier using 75% less data, 3) training and testing using different people. Train and test data were 

collected on the same day.

a) Same Person b) %75 data c) Diff. person

BSPL (M=4) 95% 92.2% 91.25%

PoCL (M=7) 98.5% 97% 93.88%
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