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Abstract: The spread of the coronavirus disease 2019 (COVID-19) has important links with population
mobility. Social interaction is a known determinant of human-to-human transmission of infectious
diseases and, in turn, population mobility as a proxy of interaction is of paramount importance to
analyze COVID-19 diffusion. Using mobility data from Google’s Community Reports, this paper
captures the association between changes in mobility patterns through time and the corresponding
COVID-19 incidence at a multi-scalar approach applied to mainland Portugal. Results demonstrate a
strong relationship between mobility data and COVID-19 incidence, suggesting that more mobility is
associated with more COVID-19 cases. Methodological procedures can be summarized in a multiple
linear regression with a time moving window. Model validation demonstrate good forecast accuracy,
particularly when we consider the cumulative number of cases. Based on this premise, it is possible
to estimate and predict future evolution of the number of COVID-19 cases using near real-time
information of population mobility.

Keywords: COVID-19; mobility; containment measures; cases estimation; predictive model

1. Introduction

The coronavirus disease 2019 (COVID-19) has spread across the world and one year
after the first confirmed case more than 100 million cases have been accounted worldwide,
more than 2 million of them resulting in death. In March 2022, two years after the pandemic
declaration, the number of confirmed cases has risen to nearly 500 million and fatalities
have surpassed 6 million.

The spread of the disease, caused by the transmission of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), occurred quicker and to a greater extent than
previous coronavirus epidemics [1]. In this sense, it forced countries to adopt epidemic
containment measures [2]. In an increasingly globalized world, mobility is responsible for
reducing epidemiological differences between regions [3], with travel restrictions being
among the first non-therapeutic strategies to contain the spread of pathogens [4]. Therefore,
being mobility the main driver of human contact and intrinsically associated with social
interaction [5], essential to SARS-CoV-2 transmission, the main objective of non-therapeutic
measures, widely adopted to stop human to human transmission, has been travel restric-
tions to force population to stay at home to reduce contacts [1,6]. Thus, reduced mobility is
associated with decreasing transmission of COVID-19 [7–10].

Several studies show a strong relationship between COVID-19 cases and people
mobility, identifying commuting behaviors as a spatial determinant of COVID-19 pat-
terns [11–16]. Nonetheless, other authors have specifically analysed mobility based on
near real-time information. The use of this kind of data is not new to epidemiological
studies which shows good performance for trends and spatial patterns identification [17,18].
Regarding this pandemic, the work of Jia et al. [19] was pioneer in the identification that
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information on population mobility is epidemiologically informative of COVID-19 diffu-
sion. Using mobile phone data, the authors identified that population movement within
China explains with significance the geographical patterns of COVID-19 transmission. The
study of Badr et al. [20] demonstrates a strong correlation between population mobility
patterns and variation of COVID-19 incidence in 25 counties of the United States (US)
and Kraemer et al. [6] proved the importance of mobility and travel restrictions in reduc-
ing COVID-19 transmission in China. In addition, the authors assessed that epidemic
magnitude is also predictable from the volume of human movement. Yilmazkuday [21]
research quantified the importance of travel between counties in the US concluding that
where the population tends to stay at home more, there is less uncontrolled evolution of the
pandemic and less chance of infection. In the European context, Cartenì et al. [22] related
mobility habits with the evolution of the number of new infections over a 21-day horizon,
identifying a direct relationship between road traffic in Italy and incidence of COVID-19.
For Portugal, Mourão and Bento [23] and Alves [11] identified a positive relationship of
contiguity between territorial units and the progression of pandemic spread, highlighting
the importance of intermunicipal and interparish commuting for contagion, in line with the
conclusions of Sousa et al. [15], and Casa Nova et al. [24] assessed the dynamic correlations
between Google’s community reports and COVID-19 cases.

In this sense, increased mobility is related to a positive variation in incidence and
is a good predictor of the number of COVID-19 cases, with several authors developing
methodologies to predict the number of cases from population mobility data. Some support
their analysis on Google’s “COVID-19 Community Mobility Reports” [7,24–27], because
there is no repository with comparable volume of mobility information accessible as open
data. The vast number of published papers that used this data is indicative of the quality
of Google’s information, even though the information acquisition has a biased population
sample. Other authors use alternative information on public transport use and road traf-
fic [22], from social networks such as Facebook [28] and from cell phone geolocation [29,30].
Another important repository for changes of near real-time mobility data was Apple’s
Mobility Trend Reports [31], that categorized mobility according to the mode of travel
(walking, driving and transit) and was used to assess similar associations [5,32]. However,
this repository has been discontinued and is no longer available online since April 2022.
The pandemic process has prompted the discussion about the conditions and determinants
that justify spatial inequalities in the dissemination of COVID-19, highlighting the need for
relevant information to understand the trends, processes and patterns of spatial diffusion in
order to support public health decision making to contain this disease. This article, part of
COMPRI_MOv project (FCT-ID:613765655), investigates the association between changes
in mobility and the number of COVID-19 cases in Portugal. In addition to investigating
the linear correlations between mobility and the number of new cases, it seeks to assess
whether it is possible to estimate the number of cases, for different geographical scales,
from mobility patterns, laying the foundation for a predictive model. The distinctive as-
pect of this article lies on the exploration of human mobility and the confirmed cases of
COVID-19, through linear multiple regressions using a rolling time window, generating the
prediction of the near future number of cases based on open data, allowing a more effective
preparation of health services response.

The diffusion of COVID-19 in Portugal reveals heterogeneous spatial-temporal pat-
terns, although with a geography consolidated in the metropolitan areas, along the most
urbanized municipalities of the coast and regional district capitals [11,33]. For several
periods Portugal recorded a higher incidence rate than the average European context which
makes it a relevant case study in order to understand which specific situations and contexts
potentiated high transmission in the country. For this reason, it is of paramount importance
to assess to what extent mobility patterns had local effects at multiple scales as determinants
of COVID-19 spread.

This article is organized in four parts. The first corresponds to this introduction, fol-
lowed by materials and methods, where study area, data and methodologies are presented.
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The third represents the results obtained which are discussed in part four, together with
the final considerations and conclusions resulting from this research.

2. Materials and Methods
2.1. Study Area

The method proposed in this work was applied to mainland Portugal (Figure 1).
The study area is located in the southwest of Europe (between latitudes 33◦ and 43◦ N,
and longitudes 32◦ and 6◦ W), with a total land area of approximately 89,015 km2. With
approximately 10.3 million residents in 2021 (the latest census year), Portugal is the 11th
most populated country in Europe.
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Figure 1. Study area at district regions level (Portugal mainland).

The study used three levels of geographical disaggregation: mainland Portugal, the
district regions and 4 municipalities (Lisbon, Oporto, Amadora and Vila Nova de Gaia).

2.2. Estimation Methodology

The methodological approach to estimate the number of COVID-19 cases was based
on a multiple linear regression. For this purpose, the epidemiological data and the six
mobility variables made available by Google [34] (variation from the reference value in
retail and leisure places, grocery stores and pharmacies, parks, public transport stations,
workplaces and homes) were considered as follows:

Yi = β0 + β1Xi1 + β2Xi2 + . . . + βpXip + εi (1)

where Yi represents the estimated number of COVID-19 cases for the date i, β0 is the
constant term, Xi are Google mobility explanatory variables, βp are the slope coefficients
for each variable and εi is model’s error term.

The time between changes in mobility and the change in the number of new confirmed
cases was considered in this work with a lag of 14 days. The time lag must accommodate
the incubation and the period needed for official reporting and communication of cases.
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In similar approaches with daily mobility data, authors have been considering a lag from
7 to 28 days [7,18,20,25] in relation to the date of the cases. This means that, for example,
with a 14-day lag the number of infected people on September 1 were related to mobility
previously recorded, more precisely on August 18. Different lags were considered, in an
exploratory test, but a 14-day lag was the best fit for the Portuguese case. For the choice of
the 14-day block in the modeling, blocks of different periods (7 and 21 days) were tested
(Table 1).

Table 1. Linear regression lag tests for mainland Portugal for the period under analysis.

Fit Measure 7-Day Lag 14-Day Lag 21-Day Lag

R 0.580 0.657 0.635
R2 0.336 0.431 0.403
AIC 4253 4220 4230

Considering the high volume of daily data for the different geographic aggrega-
tions (country, districts and municipalities), a script (Appendix A) was implemented in
Python [35] to reduce data analysis processing time (Figure 2). To fit a linear model with
coefficients w = (w1, . . . , wp) that minimize the residual sum of squares between the
observed targets in the dataset, and the targets predicted by the linear approximation,
scikit-learn library was used [36].
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Figure 2. COVID-19 cases estimation flowchart.

The regression analysis was performed with two different procedures: one supported
in 14-day blocks, advancing at a step of 14 days (p14), and another, from the immediately
preceding 14 days, with a window rolling forward at a step of 1 day (p1) (Figure 3).

Using the regression parameters of a 14-day block, it is possible to predict the evolution
of the number of infected people in the future at least up to 14 days. The regression
parameters used for forecasting are also of two different types, those resulting from the
14-day block, a 14-day step, and those from the 14 days immediately preceding, a 1-day step.
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For mainland Portugal, the period analyzed was between March 2020 and March 2021,
while for the geographical level of the districts and municipalities the period was between
September 2020 and March 2021, due to epidemiological data availability.

2.3. Dependent Variable

The epidemiological information was acquired from Directorate-General of Health
(Direção-Geral da Saúde, DGS) reports [37]. The availability of official national epidemi-
ological information from this source is a great limitation to its use because of the need
to collect information manually, which is more prone to errors, and requires manual data
editing prior to any analysis and modelling process, or good notions of programming
languages for developing scripts for automatic acquisition. This is not one of the best exam-
ples in data sharing policy compared to other European countries. Example of excellence
is the Italian Civil Protection data repository [38] which provides information ready to
be processed in CSV/Excel/JSON file formats (https://github.com/pcm-dpc/COVID-19,
accessed on 14 March 2022).

In addition, another limitation of DGS data, already explored by Marques da Costa
et al. [39], is data inconsistencies, for example, loss of synchronization (the sum of new
cases differs from cumulative), incorrect allocation of cases to territorial units, breaks in
the periodicity of disclosure, temporally overlapping series or interruption of disclosure of
certain indicators. Specifically, information at the municipal scale has experienced several
problems with the maintenance of the data series. Initially it was made available as the
daily number of cumulative confirmed cases. Later, the periodicity changed to weekly, and
in November 2020, this indicator was replaced by the incidence at 14 days per 100 thousand
inhabitants. This change required calculations to determine the actual number of new
cases, however, as the availability occurs weekly representing a period of 14 days, there is
an overlap in the series which introduces uncertainty into the calculated data that cannot
be validated in an objective way. Since March 2022 municipal data is no longer available
through DGS reports.

https://github.com/pcm-dpc/COVID-19
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Although the information presents quality issues for this study, it is still official
information, which is the only that the authors considered.

The cases of COVID-19 as the dependent variable are represented by the number
of new cases per day. It refers to the daily variation of newly detected confirmed cases
of COVID-19, normally reporting to the previous two to three days, except if testing or
reporting took longer.

Number of Cases

During the first year of incidence of COVID-19 in Portugal, there were three waves of
differentiated magnitudes (Figure 4), with unequal territorial expressions (Figure 5).
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In the following sub-chapters, the evolution will be described in periods.

First wave

Similar to in most European countries, the first wave presented low severity because
of early general lockdowns based on the uncertainty and lack of knowledge about the
disease. It is important to note that testing at this stage was still very limited. Mobility
levels reached their minimum at lockdown (Figure 6). Geographically, the diffusion process
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took place from the metropolitan areas of Lisbon and Porto to the remaining coastal cities
and slowly inland without affecting all municipalities of mainland Portugal. Hierarchical
diffusion processes stand out as the main responsible in this phase, followed by expansion
by contagion.
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Summer

Between June and August 2020, the country experienced the period after the first
lockdown and the number of infections were low and controlled in a national context. In
terms of mobility, work from home was still in place and was a period of school holidays.
However, the municipalities around Lisbon demonstrated a differentiated behavior with
an incidence about two times higher than the rest of the regions combined, although it
maintained stricter restrictions compared to the rest of the country. Mobility patterns came
close to pre-pandemic levels.

Second wave

Started in the north of the country but reached the rest of the territory with special
emphasis also on the municipalities of the Lisbon metropolitan area and other major cities.
The rise in cases matched with increased mobility associated with returning to school and
face-to-face work after the summer holidays. Simultaneously coincides with the reduction
of non-pharmaceutical interventions that limited social interaction.

Third wave

Has started immediately after the end of the second wave and the number of new
cases registered the highest values to date in Portugal. This was the wave of greatest
magnitude, during the first year, with record cases in every municipality. In this context
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the most relevant mobility component in the propagation was possibly associated with
Christmas celebrations and New Year’s festivities.

2.4. Independent Variables

Google mobility data [34] from COVID-19 Community Mobility Reports (https://
www.google.com/covid19/mobility/, accessed on 11 April 2021) represents the percentage
change in mobility, based on the median of the first 5 weeks of 2020 (3 January to 6 February
2020), considered representative of the pre-pandemic mobility patterns. The statistics are
created with aggregated and anonymized datasets of users who have enabled the Location
History setting on Google technology applications.

The variation is determined based on people’s visits and length of stay in places such
as retail and recreation, grocery and pharmacy, parks, transit stations, workplaces, and
residential places. Retail and recreation congregates spaces such as restaurants, cafes,
shopping centers, theme parks, museums, libraries and movie theatres. Grocery and
pharmacy concerns essential goods such as grocery markets, food warehouses, drug stores,
pharmacies and similar. Parks data considers national parks, beaches, plazas and public
gardens. Transit data comes from public transport hubs. Workplaces represents places of
work and residential are residential areas (Figure 6).

Residential-related mobility recorded its maximum differences comparing pre-pandemic
levels during the lockdown periods but remained above the reference value throughout
most of the data series, with some peaks associated to mobility restrictions. Frequency of
workplaces had the opposite evolution, with abrupt negative changes during lockdowns
and almost permanent negative variation throughout the period represented. The use
of public transport hubs never recovered to the pre-pandemic values but fell to a lesser
extent in the period coinciding with the beginning of the second wave, associated with
greater mobility with the return to work and school after summer holidays. Parks recorded
a frequency well above the reference value, especially in the summer (attention to the
different axis) and negative variations coincide with periods of lockdown or very high
incidence. Grocery and pharmacy and retail and recreation appear to have a similar
evolution, although the first recorded values above the referential during more time in the
summer and the latter had a more abrupt negative change during lockdowns.

Comparing mobility behavior with the evolution of the number of cases in mainland
Portugal, it is visible that the increase of the number of new cases is related to changes in
mobility variables.

3. Results
3.1. Estimation Results
3.1.1. Model Adjustment

Our results confirm that mobility is positively associated with COVID-19 infection. The
relationship between mobility variables and the occurrence of new cases was established
according to two methods: by 14-day blocks (step 14, p14) and by the sequence of the
14 days immediately preceding (step 1, p1).

The model adjustment was tested with data from new cases from 1 September 2020
and the first mobility data in the corresponding previous 14 days, that is, from 18 August
2020. The results point to a strong relationship between observed and projected data
according to the mobility change values of the previous 14 days.

For the national context (Figure 7), there is a strong adjustment of the cumulative curve
of estimated cases with the observed cumulative cases of COVID-19, being, as expected,
particularly closer when the estimated values result from the p1 model.

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
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Figure 8. Daily values of real new cases and estimated according to the two methods, since 1
September, Portugal. Source: Prepared from DGS, 2020; Google, 2020.

The data aggregation level and the size of the territorial units are important for the
estimation process. The adjustment for Lisbon municipality (Figure 9a–d) is very strong,
for both p1 and p14 models.

The observation of the results for the municipalities of Oporto and Vila Nova de Gaia
(Figure 10a–d) also shows the robustness of the method when more extreme behaviors occur,
such as those that occurred on November 3rd and January 18th in these two municipalities,
revealing a good sensibility of the model to abrupt changes in case counting.
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Figure 10. Observed and estimated new daily values according to the two methods, since 1 September,
municipality of: (a) Lisbon; (b) Oporto; (c) Vila Nova de Gaia; (d) Amadora. Source: Prepared from
DGS, 2020; Google, 2020.

The results are significant and follow the evolution trend, except in moments where the
incidence reached extreme values. It is more important to predict the trend than the exact
number of new cases. The ability to project a given volume of COVID-19 incidence allows
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a sufficient degree of knowledge about the future evolution of the pandemic, essential for
its management in terms of implementation of public health measures. It is also noted that
adjustments vary with the spatial scale under analysis (data aggregation).

3.1.2. Linear Correlations

To analyze the correlations between mobility and the number of cases, 3 dates were
chosen corresponding to the previous phase, during and after the 3 pandemic waves. In
general, it appears that the correlations on all dates are significant (>0.5), with special
emphasis on 15 March 2020 and 20 February 2021 (Table 2). The day with the lowest
correlation (0.26) corresponds to 11 October 2020, obtained using the p14 model.

Table 2. Correlation between the mobility and epidemiological indicators during the COVID-19
pandemic waves in Portugal mainland.

Previous During After

Model 15 March
2020

25 September
2020

10 January
2021

15 April
2020

10 November
2020

25 January
2021

15 May
2020

5 December
2020

20 February
2021

p1 0.98 0.79 0.75 0.57 0.42 0.80 0.60 0.65 0.90
p14 0.41 0.86 0.63 0.73 0.26 0.92 0.76 0.64 0.70

In order to verify regional differences in the correlations, the analysis was disaggre-
gated at the district level (Table 3). The first aspect to be highlighted is the absence of
mobility data for some municipalities, which made it impossible to analyze all munic-
ipalities and as an alternative we considered the 18 Portuguese districts. On all dates
the correlations are significant, with emphasis on 25 January 2021, which in both models
shows correlations greater than 0.6. In geographic terms, although there is no significant
differentiation, it is observed that the districts of Aveiro, Braga, Santarém and Porto have
higher average correlations than the other districts. With little significant correlations in all
dates, the less populated district of Bragança stands out. The p1 model, as expected, shows
mostly higher correlations than the p14 model on four of the six days analyzed.

Table 3. Correlation between the mobility and epidemiological indicators during the COVID-19
pandemic waves in Portugal districts.

25 September 2020 10 January 2021 10 November 2020 25 January 2021 5 December 2020 20 February 2021
District p1 p14 p1 p14 p1 p14 p1 p14 p1 p14 p1 p14

Aveiro 0.446 0.515 0.770 0.693 0.661 0.661 0.727 0.824 0.776 0.340 0.408 0.611
Braga 0.832 0.730 0.761 0.751 0.705 0.705 0.730 0.825 0.559 0.380 0.597 0.535
Bragança 0.396 0.248 0.593 0.630 0.427 0.309 0.885 0.702 0.682 0.398 0.493 0.255
Castelo Branco 0.544 0.110 0.465 0.580 0.572 0.572 0.648 0.714 0.567 0.499 0.899 0.410
Coimbra 0.694 0.609 0.505 0.421 0.374 0.374 0.662 0.903 0.514 0.632 0.745 0.498
Évora 0.318 0.585 0.602 0.553 0.283 0.283 0.760 0.915 0.483 0.883 0.619 0.429
Faro 0.242 0.387 0.425 0.620 0.600 0.600 0.817 0.757 0.497 0.613 0.844 0.447
Leiria 0.642 0.298 0.764 0.542 0.356 0.356 0.734 0.813 0.461 0.663 0.764 0.508
Lisboa 0.498 0.486 0.838 0.602 0.320 0.320 0.794 0.792 0.321 0.659 0.694 0.775
Porto 0.472 0.650 0.793 0.694 0.697 0.697 0.707 0.779 0.404 0.506 0.544 0.568
Santarém 0.472 0.650 0.793 0.694 0.697 0.697 0.707 0.779 0.404 0.506 0.544 0.568
Setúbal 0.490 0.458 0.897 0.443 0.354 0.354 0.843 0.846 0.314 0.632 0.677 0.313
Vila Real 0.578 0.336 0.698 0.627 0.496 0.496 0.729 0.809 0.303 0.834 0.477 0.434
Viseu 0.280 0.493 0.339 0.426 0.377 0.377 0.806 0.932 0.372 0.668 0.678 0.868

Correlations appear lower when there were information gaps in the mobility data
series at the time of processing. The procedures for completing these gaps may have
contributed since the samples are smaller in these regions and therefore may be far from
representing the real patterns.

According to Table 3, Braga presents a higher correlation average in the third wave,
which is the moment when models performed best in most municipalities with Évora
reaching 0.92 of correlation coefficient.
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There is an increase in model’s adjustment with the pandemic progression since in
the first two waves not all municipalities had yet confirmed cases and the spatial patterns
revealed “coastalization” and “bipolarization” [11]. High disparities within districts can be
responsible for weak associations in the first moments. The growth of the fit of regression
models as the disease spreads over space and time is also evident in Sousa et al. [15] study
for mainland Portugal.

3.1.3. Forecast of Values for the following 14 Days

A prediction of the values at 14 days was performed, following the two methods, those
of blocks of 14 days and those of 14 days immediately preceding. That is, from the last
known regression parameters, mobility values were used, and the values of the following
14 days were forecasted. The adjustment is significant, as can be seen for mainland Portugal
and municipalities of Lisbon, Porto and Amadora (Figure 11a–d).
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Figure 11. Observed and predicted cumulative cases according to the two methods: (a) Portugal;
(b) Lisbon; (c) Porto; (d) Amadora. Source: Prepared from DGS, 2020; Google, 2020.

Although the prediction method has some difficulty in adjusting to sudden changes
in epidemiological data (number of new cases), the method allows to obtain a significant
14-day forecast with good adjustments to reality.

Negative values have been predicted with step14 that result from the need for the
model to adjust after periods of high incidence, considering that there is no daily moving
window. The projection of negative values is not necessarily a problem, since this is the
way that the model adjusts to peak variations.

3.2. Validation of Models

Figure 12a,b are histograms of the absolute differences between observed and esti-
mated number of cases, calculated for models p1 and p14. The absolute errors for the p1
(Figure 12a) and p14 (Figure 12b) models applied to mainland Portugal, show a higher
error interval in the p14 model compared to the p1 model.
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Figure 12. Absolute error distribution: (a) for p1 model; (b) for p14 model.

In both cases the higher frequency of errors is associated with low error values. Al-
though p1 has a higher adjustment, as the correlations show, the absolute error has lower
frequency in p14, although in this one the amplitude of errors is higher.

In order to quantitatively evaluate the accuracy of cases estimates, three accuracy
measurements, Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE), were calculated (Table 4). The p1 model has lower
errors than the p14 model in most districts. However, it is possible to verify in some districts
(Bragança, Castelo Branco, Coimbra, Évora, Porto and Santarém) that the results of the
p14 model are superior. The districts of Lisbon and Porto stand out for their high absolute
error (119 and 116) and the district of Santarém for its high absolute and relative error (622
and 0.795).

Table 4. Error measurements.

MAE RMSE MAPE
District p1 p14 p1 p14 p1 p14

Aveiro 36.137 37.402 55.104 59.308 0.179 0.176
Braga 63.284 58.088 103.662 98.798 0.024 0.006
Bragança 12.095 30.760 18.041 42.982 0.034 0.650
Castelo Branco 11.235 10.230 17.472 16.824 0.013 0.075
Coimbra 21.324 17.907 34.501 31.402 0.016 0.026
Évora 11.093 11.770 19.888 21.049 0.106 0.474
Faro 14.054 12.196 23.901 21.683 0.235 0.160
Leiria 21.539 20.064 36.611 34.347 0.243 0.218
Lisboa 119.069 108.299 181.409 179.173 0.183 0.139
Porto 116.980 104.314 212.290 220.973 0.168 0.250
Santarém 622.338 617.632 828.573 820.228 0.793 0.795
Setúbal 22.027 47.172 69.096 77.571 0.190 0.184
Vila Real 12.735 11.510 20.971 20.692 0.302 0.255
Viseu 24.343 21.490 42.762 38.650 0.262 0.212

The RSME is higher in the districts of Lisbon and Oporto, influenced by major cities
of this metropolitan regions, which have socio territorial specificities with dynamism that
tends to aggravate the transmission of COVID-19 [11,40,41] and where mobility, despite
being relevant, may not be the most relevant determinant.

Santarém district presents, by all metrics, the highest residual values followed by
Lisbon and Oporto. While the case of latter two was already explained, the atypical and
extreme case of Santarém may be explained by gaps in mobility data. Better results in
Castelo Branco, Évora and Bragança, where the number of new cases maintained a stable
tendency, never reaching high incidence values.
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4. Discussion and Conclusions

This article has explored the effects of mobility (measured by Google) on COVID-19
cases by using daily data across several geographic scales in Portugal, covering the period
between March 2020 and March 2021.

Here we have demonstrated, through freely available mobility data and official epi-
demiological data, that with linear regression models it is possible to obtain estimates
of the number of cases. Using two models (p1 and p14), in Python scripts to automate
calculations, it was found that it is possible in a simple way to obtain results for extended
data ranges and for different levels of geographic aggregation. It is important to mention
that procedures performed refer to a situation where vaccination coverage was still low
in Portugal.

The results of this work point out to the existence of a proportional relationship
between changes in mobility patterns and the propagation of the SARS-CoV-2 virus. This
association was established between the number of new cases and changes in mobility
volumes with a lag of 14 days. Based on this relationship, the projection of values for the
near future, a 14 day horizon, is possible with acceptable margins of accuracy to allow for
precautionary decisions of public health nature.

The use of mobility data in relation to the incidence of COVID-19 applied to Portugal
demonstrates a strong relationship, suggesting that more mobility is associated with more
COVID-19 cases. However, this relationship does not imply that mobility is the only cause
of transmission. This is supported by studies that claim that change in mobility patterns
in Portugal with the reduction of mobility contributes to the reduction of the disease’s
effective reproduction number [5,42] and thus the incidence is reduced in the following
weeks [43]. Other factors associated with transmission of the virus such as the use of masks,
social distance or vaccination are not part of this model. Although, the advantage of the
developed models lies in the ease of implementation and exploitation when compared
with more complex epidemiological models, and the possibility of use in contexts with
data gaps.

A key insight from our work is a strong capacity to forecast COVID-19 for 14 days
ahead, since there was a lack of studies for Portugal that projected the future evolution of
COVID-19 cases at multiple scales of analysis with mobility data. The methodology can
be used to develop an epidemiologic surveillance system that predicts the evolution of
the pandemic using “near real-time” mobility data, supporting decision-making processes
related to public health and non-pharmaceutical measures to contain the spread of COVID-
19. This approach does not have to be limited to COVID-19 and can be replicated for
other infectious diseases, as other studies for influenza [17,18], provided that the optimal
lag is effectively determined considering the epidemiological information and the type of
mobility data.

The results achieved are in line with similar works. For example, Ilin et al. [28] used
statistical models to generate 10-day forecasts of COVID-19 cases supported by Google mo-
bility data, having verified a good adjustment of the models to local data. Kishore et al. [44]
explored the use of Google data to assess the role of mobility in spreading COVID-19 infec-
tion in India. The authors observed a high correlation coefficient between epidemiological
and mobility indicators for the lockdown and unlock phases.

Better epidemiological information, in terms of dissemination format, periodicity and
spatial resolution, is necessary so that more detailed results and scientific evidence can be
achieved in the study of epidemiological phenomena, today associated with SARS-CoV2,
in the future with other infectious diseases that will certainly occur at a more or less distant
moment in time.

The work developed depends on the existence of epidemiological and mobility data.
Regarding epidemiological data, it is important to mention a critical aspect in the develop-
ment of models, which is the data quality. As noted by Tamagusko and Ferreira [42], the
number of infected individuals confirmed daily may not correspond to the disease’s reality,
because the number of confirmed infections depends on the number of tests performed, and
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the criteria adopted to test the population were not well explained. Number of cases from
official sources is highly dependent on the degree of testing performed, often with severe
territorial disparities influenced by context factors [45]. Lack of information quality control
can be responsible for biases that lead to results being subject to ecological fallacy [46]
and modifiable area unit issues are common with epidemiological data [47], especially
distribution of COVID-19 cases [48]. This bias does not allow for the identification of
cause-effect relationships, however since mobility is a proxy of social interaction, which
is the real driver for the spread of contagious diseases, we believe that the correlations
identified are a first step for future studies to explore inferring causality. Another aspect
refers to the fact that the data are not made available in a format that is easily manipulated
(human-readable and machine-readable), that can be submitted to analysis and modelling
tasks or integrated in a geographic information system, which is a limitation for fast and
accurate data usage [39].

Some delay in Google updating latest data can also constrain obtaining information
in time to allow forecasting the future for the generality of the Portuguese territory. One
aspect that deserves special attention in works that use this data is the possibility of
existing a bias related to the users who generate mobility data not representing the total
population, because the sample depends on users of Google services consenting to location
sharing. Naturally, this issue is critical in regions where the use of mobile phones is not
a common practice. Another possible limitation is the fact that mobility data were used
in raw. In contrast with other studies [5] that use techniques to smooth series weekly
patterns (influenced by weekends, holidays, etc.), no transformation or standardization
was performed, which could change the results.

A last potential limitation is the linear approach, since there are studies that use other
type of regressions, such as polynomial [49,50], to predict the trend evolution of new cases.

Having found high correlations between mobility and the number of cases, in future
research it will be important to explore the effect of different degrees of vaccination coverage
on the evolution of the number of cases as well as additional sources of mobility near
real-time data such as mobile phone or car data. Open data was indispensable in this
work and the institutions that produce and disseminate them should invest in better data
sharing policies.
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Appendix A

The code developed in Python and the processed data can be accessed in the repository
https://github.com/nmileu/compri_mov accessed on 1 May 2022.

https://covid19.min-saude.pt/relatorio-de-situacao/
https://www.google.com/covid19/mobility/
https://github.com/nmileu/compri_mov
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