
1

Mobility and Intruder Prior Information Improving
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Abstract—Barrier coverage problem in emerging mobile sensor
networks has been an interesting research issue due to many
related real-life applications. Existing solutions are mainly con-
cerned with deciding one-time movement for individual sensors to
construct as many barriers as possible, which may not be suitable
when there are no sufficient sensors to form a single barrier. In
this paper, we aim to achieve barrier coverage in sensor scarcity
scenario by dynamic sensor patrolling. In specific, we design a
periodic monitoring scheduling (PMS) algorithm in which each
point along the barrier line is monitored periodically by mobile
sensors. Based on the insight from PMS, we then propose a
coordinated sensor patrolling (CSP) algorithm to further improve
the barrier coverage, where each sensor’s current movement
strategy is derived from the information of intruder arrivals
in the past. By jointly exploiting sensor mobility and intruder
arrival information, CSP is able to significantly enhance barrier
coverage. We prove that the total distance that sensors move
during each time slot in CSP is the minimum. Considering
the decentralized nature of mobile sensor networks, we further
introduce two distributed versions of CSP: S-DCSP and G-
DCSP. We study the scenario where sensors are moving on
two barriers and propose two heuristic algorithms to guide
the movement of sensors. Finally, we generalize our results to
work for different intruder arrival models. Through extensive
simulations, we demonstrate that the proposed algorithms have
desired barrier coverage performances.

Index Terms—Mobile Sensor Networks; Barrier Coverage;
Periodic Monitoring Scheduling; Coordination Sensor Patrolling;
Distributed algorithms

I. INTRODUCTION

Wireless sensor networks (WSNs) are widely recognized

as effective surveillance tools for various applications [2]–[8].

Due to real operational limitations such as human inaccessibil-

ity, sensors are usually deployed randomly, e.g., dropped by an

airplane, in or near a region of interest (ROI). Random sensor

dropping causes the WSNs to have topological weaknesses
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Fig. 1. (a) Full barrier coverage by static sensors; (b) and (c) Barrier coverage
by mobile sensors.

such as sensing holes, communication bottlenecks and network

partitions. Mobile sensors (e.g., Packbot [9] and Khepera [10]),

integrating advanced robotics and sensing technologies, have

recently developed to overcome these drawbacks. Unlike tra-

ditional static sensors, they have locomotion and are thus able

to autonomously improve network performance by adjusting

their initial positions to desired ones [11]–[13].

In this paper, we consider a particular scenario, where

sensors are not designated to monitor events inside the ROI but

to detect intruders that attempt to penetrate the ROI. A real-life

example is to deploy sensors on the boundary of a country’s

territory to identify and prevent illegal entrance to the country.

Because sensors are placed within a thin belt region along

the ROI boundary acting like a barrier to intruders, the

coverage provided by them is referred to as barrier coverage
[14]–[17]. Existing solutions to barrier coverage in mobile

sensor networks implicitly assume the availability of sufficient

sensors. They focus on how to move the available sensors one

time to construct as many barriers as possible with a minimum

aggregate moving distance [18], [19]. These solutions fail to

work if a single barrier can not be formed no matter how the

sensors are moved due to sensor scarcity. This situation is very

likely in reality for budget limitation as it is costly to equip

a large number of sensors with locomotion. For example, it

may be economically impractical to afford mobile sensors in

order to provide full barrier coverage on the boundary of a

country’s territory. Therefore, it is highly desirable in practice

to design a cost-effective barrier coverage, i.e., using mobile

sensors as few as possible to meet the requirements.

Fig. 1 shows an example of straight-line barrier coverage.

Eight sensors are needed to form a complete barrier according

to Fig. 1(a). If only four sensors are available as depicted in
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Fig. 1(b), a complete barrier can not be formed by moving each

sensor only once. This is illustrated in Fig. 1(c) where the four

sensors reach their final positions by the one-time movement

indicated by the arrowed lines in Fig. 1(b), with inevitable

coverage holes that render some intruders undetected. To

improve the barrier coverage performance, it would be better

to let mobile sensors patrol along the line dynamically, so that

each sensor can be present for intruder detection at different

locations with different time.
However, it is a challenging task to design sensor patrolling

algorithms for achieving desirable barrier coverage perfor-

mance. From Fig. 1(b) and Fig. 1(c), there are three intruders

trying to cross the barrier line, and sensors have no idea

about their arrivals and trajectories. If the sensors move in

the directions displayed in Fig. 1(b), only one intruder can be

detected (see Fig. 1(c)). In this example, the intruder detection

performance will actually be better if they do not move (two

intruders rather than one will be detected). This implies if

sensors do not know whether their movement will increase the

chance of detecting intruders, they probably should stay rather

than move blindly. Therefore, the mobility of each sensor

has to be carefully controlled in order to effectively increase

barrier coverage. The above example indicates the importance

of taking into account intruder arrival information for sensor

movement scheduling, which is the motivation of this research

work.
We consider the barrier coverage problem where m sensors

are needed to guarantee full barrier coverage and there are

only n mobile sensors available (n < m). We first model

the arrival of intruders at a specific location as a renew

process, in which the next intruder’s arrival time is correlated

with the current one. The barrier coverage performance is

characterized by average intruder detection probability. We

formulate the problem as a dynamic programming problem

where the movement strategy of all sensors should be made in

each time slot dynamically to maximize the intruder detection

probability, based on current locations of sensors and intruder

arrival information collected in the past time slots. We pro-

pose two sensor patrolling algorithms to solve this problem:

periodic monitoring scheduling (PMS) and coordinated sensor

patrolling (CSP). In PMS, each point of interest in the barrier

line is periodically monitored by sensors n times every m time

slots, while in CSP the probability of intruder arrival at each

point is calculated dynamically, and a coordinated movement

strategy is derived accordingly. We then generalize our results

to work for other intruder arrival models such as Markov chain.

Our main contributions in this paper are as follows.

• We analyze the average intruder detection probability and

average sensor moving distance in PMS. We find in PMS

the best strategy is to let sensors stay stationary at n fixed

points. This conclusion confirms the importance of in-

truder arrival information for sensor mobility scheduling

to improve barrier coverage, and inspires the design of

CSP.

• We determine the number of mobile sensors required to

guarantee a predefined average intruder detection prob-

ability in CSP. We prove that the average per sensor

moving distance in each time slot is the minimum.

As CSP is a centralized algorithm, we present its two

distributed variants: S-DCSP and G-DCSP.

• We discuss the barrier coverage under scenario where

sensors are moving on two barriers. We design two algo-

rithms, I-CSP and J-CSP, to guide the sensor movement

in order to detect intruders as many as possible. We

generalize our results to work for different intruder arrival

models.

The remainder of the paper is organized as follows. We

give a brief discussion about the literatures of barrier coverage

in Sec. II. We formulate the problem in Sec. III and present

PMS along with its performance analysis in Sec. IV. With the

insight gaining from PMS, we propose CSP in Sec. V and its

two distributed variants S-DCSP and G-DCSP in Sec. VI. We

study two-barriers scenario and propose two algorithms in Sec.

VI-C. We generalize our results in Sec. VII. Simulation-based

performance evaluation is presented in Sec. VIII, followed by

the closing remarks in Sec. IX.

II. RELATED WORK

In this section, we introduce the recent results on barrier

coverage. Please refer to [20]–[25] for results on other types

of coverage. S. Kumar et al. [14] introduced the concept of

barrier coverage. They defined the notion of k-barrier cover-
age, and proposed algorithms to decide whether a belt region

is k-barrier covered or not after sensor deployment. They also

introduced two probabilistic barrier coverage concepts: weak
barrier coverage and strong barrier coverage. The minimum

number of sensors required to ensure weak barrier coverage

with high probability has been derived, while the issue of

strong barrier coverage is still open.

The barrier coverage problem is very difficult to solve in a

decentralized way due to its globalized nature. Chen et al. [26]

addressed this challenge by introducing the concept of local

barrier coverage. Although local barrier is not equivalent to

global barrier in general, they showed that it does approximate

global barrier in some cases like extremely thin belt regions.

Liu et al. [15] proposed a distributed algorithm to construct

multiple disjoint barriers for strong barrier coverage when

sensors are distributed according to Poisson point process.

The results hold for any thin belt area of irregular shape,

and have the advantages of reduced delay and communication

overhead compared with a centralized solution. Chen et al.
[27] investigated the quality of barrier coverage. Their work

can identify when the barrier performance is less than a

predefined value and where a repair is needed. Saipulla et al.
[28] studied the barrier coverage problem when sensors are

deployed along a line. The tight lower-bounded probability

of the existence of barrier coverage was derived. Yang and

Qiao [29] studied the weak barrier coverage by exploiting the

sensing collaboration between sensors.

In mobile sensor networks, node mobility has been exploited

for autonomous barrier coverage formation and improvement.

Saipulla et al. [19] studied how to relocate sensors with limited

mobility to improve barrier coverage after random sensor

deployment. They investigated the effects of the density and

mobility of sensors on the barrier coverage improvement, and
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Fig. 2. An illustration of the region Ω. When sensors are placed in the optimal
locations (see Fig. 2(b)) along the dash line, Ω can be barrier covered.

proposed an algorithm to check the existence of barrier cover-

age. Shen et al. [18] studied energy-efficient sensor relocation.

A centralized algorithm was proposed to compute the optimal

positions for all sensors to form a barrier coverage, provided

that the initial positions of the sensors are known as a prior.

Bhattacharya et al. [30] addressed how to optimally move

sensors to the boundary of the ROI to form a barrier coverage.

Keung et al. [16] focused on providing k-barrier coverage

against moving intruders. They adopted the classical kinetic

theory of gas molecules to analyze the inherent relationship

between barrier coverage performance and a set of network

parameters such as sensor density and intruder mobility. Bisnik

et al. [24] considered a scenario where stochastic events arrive

at a collection of discrete points along a closed curve, and

investigated how the event staying time impacts the event

capture performance. They did not consider the temporal

correlation between events.

All aforementioned works are concerned with the situations

where there are sufficient sensors to build at least one complete

barrier coverage. They may not work in the case of sensor

scarcity. In this paper, we take the first step to improve barrier

coverage in the sensor scarcity situation by letting sensors

collaborate with each other to wisely schedule their visits to all

points according to the temporal correlation between intruder

arrival times. Our work offers a radically new cost-effective

barrier coverage solution.

III. PROBLEM FORMULATION

We consider a belt region of interest Ω with two long

parallel boundaries. Without loss of generality, let Ω be a

rectangle of length l, as illustrated in Fig. 2(a). Intruders may

attempt to cross Ω from one boundary to reach the other.

Mobile sensors are used to detect intruders.

An intruder is detected by a sensor when the distance

between them is less than the sensing range rs. When traveling

around, two sensors can communicate with each other as

long as the distance between them is no greater than the

communication range rc. The perfect disc models of sensing

and communication are used for ease of presentation. The

results presented in the rest of the paper can be easily extended

to other complex models, e.g., [31].

Given that Ω is known, the optimal sensor locations for

barrier coverage can be pre-calculated according to the existing

work on deterministic deployment [14], and sensors only

need to move to those deployment points. The optimal sensor

locations are the points equally spaced with a distance 2rs

on a barrier line (see an illustration in Fig. 2(b)). Denote the

number of optimal deployment points by m and the number

of available mobile sensors by n. When n ≥ m, the problem

is trivial and has been extensively investigated (see Sec. II for

a discussion). We therefore focus on the case of n < m.

The operation time of the mobile sensor network is divided

into time slots of equal length. As there are not sufficient

sensors, at each time slot sensors have to patrol among the

m points dynamically so as to enhance the overall barrier

coverage performance. At the beginning of each time slot, n
points are selected for sensors to monitor; sensors then move

to these points and stay there for the rest of the time slot. We

assume the time required for decision making and movement

is very short and negligible.

Intruders are assumed to arrive stochastically at each point

j, j = 1, 2, · · · ,m (precisely, in the circle of radius rs centered

at j). At any point j, the intruder interarrival time x is a ran-

dom variable with a distribution of cumulative function F (x).
In many application scenarios, there is temporal correlation

between intruder arrival times [32], e.g., when an intruder

arrives, the probability that an intruder arrives again in the

next few time slots becomes small. Weibull distribution well

characterizes this temporal correlation of the intruder arrival

time, and has been widely adopted to model many real world

random events [33]. The density f(x) and cumulative F (x)
functions of a Weibull distribution are given by

f(x) =
β

λ
(
x

λ
)β−1e−( x

λ )β , (1)

F (x) = 1− e−( x
λ )β , (2)

where x ≥ 0, λ > 0, and β ≥ 1. Note that when

β = 1, Weibull distribution becomes the well-known Poisson

distribution. Suppose that the intruder interarrival times are

independent and identically distributed (i.i.d.) and an intruder

arrives at time slot τ . The probability pt that the next intruder

arrives at time slot τ + t depends only on the interarrival time

t and is given by pt = F (t)−F (t−1). For easy presentation,

we assume that intruder arrival models at all points follow

the same Weibull distribution. We note that our results in this

work can be directly applied to the heterogeneous case, i.e.,

intruder arrival models at different points are different.

Denote by atj the state of intruder arrival. atj = 1 if an

intruder arrives at point j during time slot t, or atj = 0
otherwise. Denote by ut

j the state of sensor presence at point

j. ut
j = 1 if there is at least one sensor staying at j at time

slot t, or ut
j = 0 otherwise. We characterize the state of point

j at time slot t as stj = (atj , u
t
j). An illustration is plotted

in Fig. 3. If an intruder arrives at point j during time slot t

Fig. 3. States of point j at different time slot t.

and a sensor happens to be there at that slot, i.e., atj = 1 and

ut
j = 1, the intruder is detected. Let Lt

i represent the distance

that each sensor i, i = 1, 2, · · · , n, moves in time slot t. We

define the following two important performance metrics.
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Definition 1 (Average intruder detection probability):
Given a sequence of states stj , j = 1, 2, · · · ,m and

t = 1, 2, · · · , the average intruder detection probability γ is

defined as

γ = lim
t′→∞

t′∑
t=1

m∑
j=1

atju
t
j

t′∑
t=1

m∑
j=1

atj

.

Definition 2 (Average sensor moving distance): Given

a sequence of moving distances Lt
i, i = 1, 2, · · · , n and

t = 1, 2, · · · , the average sensor moving distance L is defined

as

L = lim
t′→∞

t′∑
t=1

n∑
i=1

Lt
i

t′ × n
.

With these two definitions, the barrier coverage problem can

be formulated as how to move n mobile sensors to monitor

m points dynamically so as to maximize γ and meanwhile

minimize L, i.e.,

max γ while min L (3)

s.t.

⎧⎨
⎩

m∑
j=1

ut
j = n, t = 1, 2, · · ·

ut
j = 0 or 1, j = 1, 2, · · · ,m, t = 1, 2, · · ·

Because we measure barrier coverage performance by average

intruder detection probability γ, we will use them interchange-

ably without ambiguity. To ease the presentation, we will also

use “monitor” and “occupy” interchangeably to indicate that

a sensor is located at a point.

IV. PERIODIC MONITORING SCHEDULING

In this section, we present a periodic monitoring scheduling

(PMS) algorithm to solve the barrier coverage problem formu-

lated in Sec. III. PMS is easy to implement and is featured

with absence of coordination among sensors.

Recall that there are m points, and we only have n, n < m
mobile sensors to monitor these points. During each time slot,

there will be m − n points that are not monitored by any

sensor. The basic idea of PMS is to let sensors monitor points

periodically. Let T denote the number of continuous time slots

that a sensor will stay after it reaches another point. In PMS,

initially a designated sensor moves to point j, j = 1, 2, . . . , n
and stays there for T time slots. Afterwards, the sensor at

point j moves to point mod (j + n,m) and stays there for

T time slots. The process continues until all the sensors run

out of energy.

Let m′ = m
gcd(m,n) , where gcd(·) is the greatest common

divisor function. In PMS, the minimum scheduling period is

m′T . During every m′T time slots, each point j is monitored

by sensors for n′ = n
gcd(m,n) time slots. The ratio of the

number of time slots during which there is a sensor monitoring

point j to the total number of network operation time slots is

therefore n
m . An illustration of PMS (m = 5, n = 3 and

T = 1) is shown in Fig. 4. The algorithm is sketched in

Algorithm 1.

Theorem 1: In PMS, γ = n
m and L = 2rs(mn′+nm′−2nn′)

m′T .

Algorithm 1 Periodic monitoring scheduling (PMS)

1) Initially:

Assign each sensor a unique ID i ∈ [1, n]
Assign each point a unique ID j ∈ [1,m]

2) At time slot t = 0:

Let sensor i moves to point i
3) At time slot t = t+ T :

For every point j, the sensor at point j moves

to point jt, where

jt = Mod(j + n,m).
4) Terminate if all sensors run out of energy

Fig. 4. An illustration of the periodic monitoring scheduling algorithm.

Proof: In PMS, each point is periodically monitored by

sensors regardless of the intruder arrival. This is equivalent

to the case where sensors have no prior knowledge about

intruders. Denote the steady-state probability of intruder arrival

at each slot by p̄. γ can be calculated as γ = np̄
mp̄ = n

m .

According to PMS algorithm, sensor at point j will move

2rsn distance to another point j′, j′ = mod (j+n,m), when

j + n ≤ m, and 2rs(m − n) distance when j + n > m. For

every m′T time slots, a sensor will move 2rs(m−n) distance

for n′ times and 2rsn distance for m′ − n′ times. Therefore,

the average sensor moving distance L is

L =
n′ × 2rs(m− n) + (m′ − n′)× 2rsn

m′T

=
2rs(mn′ + nm′ − 2nn′)

m′T
,

which completes the proof.

Remarks. From the proof of Theorem 1, γ remains the same

no matter how sensors are moved. When T goes to infinity,

L approaches zero. Notice that T does not have impact on γ.

This indicates that it is better to let sensors stay at n fixed

points and leave the remaining m−n points never monitored,

when no intruder arrival information is available.

V. COORDINATED SENSOR PATROLLING

In this section, we propose a centralized coordinated sensor

patrolling (CSP) algorithm by exploiting the temporal corre-

lation of intruder arrival times to improve average intruder

detection probability γ. Its two distributed variants will be

introduced in the next section.

A. Preliminaries

To improve γ, the points with high probability of intruder

arrival should be selected for sensors to monitor at each time

slot. Thus we start with intruder arrival analysis.
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Fig. 5. The intruder arrival probabilities and conditional intruder arrival
probabilities at different slots for different values of β.

Theorem 2: When the intruder arrival times are i.i.d. with a

cumulative function of F (·), the probability qt that an intruder

arrives at time slot τ + t is

qt = pt +
t∑

k=2

∑
t1+t2+···+tk=t

pt1pt2 · · · ptk , (4)

where τ is the last intruder arrival time, pt = F (t)−F (t− 1)
and t1, . . . , tk are positive integers.

Proof: We can obtain qt sequentially. When t = 1, q1
is equal to p1. When t = 2, the probability that an intruder

arrives is subject to the following two cases: i) there is only one

intruder arrival during slots τ+1 and τ+2, and it arrives at slot

τ+2; and ii) there are two intruder arrivals, one arriving at slot

τ+1 and the other at slot τ+2. Hence, q2 is given by p2+p21.

In general, there may be k intruders, k = 2, · · · , t, arriving

during time interval [τ+1, τ+t]. The cases that k−1 intruders

arrive during interval [τ+1, τ+ t−1] and one intruder arrives

at slot τ+t can be characterized by t1+t2+· · ·+tk = t, where

t1, · · · , tk are the number of slots between intruder arrivals.

Then, qt can be computed as

qt = pt +
t∑

k=2

∑
t1+t2+···+tk=t

pt1pt2 · · · ptk , (5)

which completes the proof.

It is important to note the difference between pt and qt, i.e.,

pt is the probability that the next intruder arrival is at slot τ+t
given the last intruder arrival time is τ ; whereas, qt quantifies

the probability that there is an intruder arriving at slot τ + t.
When τ = 0, the values of qt are plotted in Fig. 5(a), where β
is a model parameter (see Eqn. (1) and (2)). From this figure,

we observe the following important phenomena:

• After an intruder arrives at a point, the probability that

an intruder will arrive again at the same point in the next

few time slots is very small.

• When t is very large, values of qt will converge to a

constant, implying that the probability that an intruder

arrives at this time slot is the same as that at different

time slots when we do not have intruder information for

a long time.

Corollary 1: The probability qIt that the first intruder after

time τ + I arrives at time slot τ + I + t is

qIt = pI+t +
I∑

k=1

∑
t1+t2+···+tk<=I

(pt1pt2 · · · ptk)pI+t−I′ ,

where I ′ = t1 + t2 + · · ·+ tk.

Corollary 2: When no intruder arrives during [τ+I+1, τ+
I+t−1], the conditional probability q̂It that an intruder arrives

at time slot τ + I + t is q̂It =
qIt

1−
t−1∑
k=1

qIk

.

Notice the difference between Corollary 1 and Corollary 2.

The former describes the general probability about an event

arriving at slot τ + I + t, while the latter quantifies the

conditional probability based on the knowledge of event arrival

during [τ + I +1, τ + I + t− 1]. The values of q̂It are plotted

in Fig. 5(b), from which we have the following observation:

• As the continuous duration of no intruder arrival at a point

increases, the probability that an intruder will arrive at the

point increases.

This observation together with previous two observations serve

as the design basis of CSP, which is to be elaborated in the

next subsection. Note that qt, q
I
t and q̂It are independent on τ .

Notice that the results in Fig. 5(a) and 5(b) are obtained

from simulations. From the expressions of qt and q̂It , we see

that there is an exponentially increasing number of possibilities

of t1, t2, · · · , tk as t or I grows. This computational complex-

ity makes it difficult for providing numerical results. Since the

analysis is easy to follow, it is also not necessary to verify the

theoretical findings by comparing the simulation results with

numerical results.

B. The algorithmic details

CSP is executed at the beginning of each time slot to

determine the movement strategy for each sensor based on

the information collected in the past time slots. It runs in

two steps: point selection step, deciding which n points to

be selected for monitoring at current time slot in order to

maximize γ; and coordinated movement step, determining how

to move sensors to the selected n points with minimum total

moving distance. Below, we will elaborate on the two steps

of CSP. Their pseudo codes can be found in Algorithm 2.

According to the three observations while analyzing qt and

q̂It in the Sec. V-A, there are three principles for point selection

at the first step in order to yield a high γ:

1) A sensor should move to another point if it detects an

intruder at the point in the previous time slot.

2) The point with highest qt should be selected if a sensor

wants to find a point to monitor.

3) A sensor should not leave its current point until it detects

an intruder.

By principle (1), a sensor is marked available if it detects an

intruder at the previous time slot, or unavailable otherwise. By

principle (3), the points where unavailable sensors are located

are selected. Denote the total number of available sensors by

n̄. When n̄ = 0, i.e., no sensor is available, the algorithm does

nothing at the current slot. Let Ij be the number of continuous

time slots during which a point j has not been monitored

by any sensor since last sensor visit. Ij = 0, if a sensor is

currently located at point j. Among the points j with Ij > 0,

j = 1, 2, · · · , n, the n̄ points with largest q
Ij
t are selected in

light of principle (2). Since there are n−n̄ unavailable sensors

at n− n̄ points, n points are selected in total.
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Algorithm 2 Coordination Sensor Patrol algorithm (CSP)

1) t = 0; Set Ij = 0, for point j = 1, 2, · · · ,m. Each

mobile sensor randomly selects a point to monitor.

2) t = t+ 1;

a) Set Ij = Ij +1 if there is no sensor monitoring at

point j at last slot; and Ij = 0, otherwise.

b) If a mobile sensor detects an intruder at slot t− 1,

the mobile sensor claims itself as available. Count

the total number of available sensors n̄. If n̄ = 0,

let t = t+ 1, go to Step 2).

c) Compute q
Ij
t for those points that are not moni-

tored by mobile sensors at slot t− 1. The n̄ points

of largest q
Ij
t are newly selected for sensors to

monitor. Together with other n− n̄ points that are

monitored by n − n̄ unavailable sensors, n points

are selected.

d) Given point set C = {j1, j2, · · · , jn}, and sen-

sor set C ′ = {i1, i2, · · · , in}, move mobile sen-

sor ik to point jk for intruder monitoring, k =
1, 2, · · · , n.

3) Continue Step 2) until all mobile sensors run out of

energy.

Let C be the set of points selected at the first step and C ′

the set of sensors. At the second step, the points in C are

sorted as {j1, j2, · · · , jn} according to their sequence on the

barrier line, from one end to the other, and the sensors in

C ′ are ordered similarly as {i1, i2, · · · , in} according to their

locations. The coordinated movement strategy is as follows:

i1 −→ j1, i2 −→ j2, · · · , in −→ jn.

According to this strategy, unavailable sensors do not nec-

essarily stay where they were in order to reduce the total

moving distance of each sensor. We will prove in the next

subsection that CSP is the optimal movement strategy in terms

of minimizing L.

C. Performance analysis

1) Total number of sensors: In a real-life barrier coverage

application, there is often a threshold requirement for the

intruder detection probability, i.e., γ ≥ γ0, given system

parameters. In the following, we derive the number of sensors

needed in order for CSP to meet this requirement.

In CSP, a sensor stays at a point until it detects an intruder

at the point. Without loss of generality, let τ be the ending

time slot of a sensor monitoring. Denote by Ī the average

inter-sensor-monitoring duration, i.e., the average number of

continuous time slots that a point is not monitored by any

sensor. According to CSP, the detection probability loss only

occurs during the Ī time slots after τ . To guarantee γ ≥ γ0 is

equivalent to ensure the detection probability loss to be less

than 1− γ0, i.e.,

q1 + q2 + · · ·+ qĪ < 1− γ0. (6)

Given γ0, by Theorem 2, we can readily find the Ī that satisfies

this Inequality. When there are multiple such Ī , we take the

largest one.

After finding Ī , we can compute the average number I of

time slots that a sensor should stay at a point for continuous

monitoring before it leaves for other points. Recall that the

intruder detection probability at time slot τ + Ī + t is qĪt .

Then, I is the expected value of t and can be calculated as

I =

∞∑
t=1

tqĪt . (7)

The average monitoring ratio (AMR) of the number of

time slots when a sensor is occupying (monitoring) a point

to the total number of time slots that the network operates is

thus given by I
Ī+I . Obviously, AMR is upper-bounded by n

m ,

where n is the number of sensors and m the number of points.

That is,
n

m
≥ I

Ī + I . (8)

By solving this inequality, we find the smallest n and then take

it as an estimate of the number of mobile sensors required for

achieving barrier coverage performance requirement.

Remarks. i) From the above derivation process of n, the

barrier coverage performance γ of the resultant mobile sensor

network is an approximation of γ0. Due to the extreme

difficulty in calculating an exact γ, we use the average Ī and

I to give an estimate. Later, through simulation we will show

such approximation estimate is efficient; and ii) it is hard,

if not impossible, to get explicit expressions for Eqn. 6 and

8. Approximate numerical results should be employed when

computing Ī and I.

2) Average sensor moving distance: Recall that at the co-

ordinated movement step of CSP, we sort the selected deploy-

ment points as j1, j2, · · · , jm, and the sensors as i1, i2, · · · , in
according to their locations. To simplify the presentation,

we also use ik to denote the location of sensor ik for

k = 1, 2, · · · , n when there is no ambiguity.

Let i′1i
′
2 · · · i′n be a permutation of i1i2 · · · in. It represents a

movement strategy, in which sensor i′k is scheduled to move to

point jk. Let Lt(i′1i
′
2 · · · i′n) denote the total moving distance

of all sensors by the strategy at slot t, i.e., Lt(i′1i
′
2 · · · i′n) =

n∑
k=1

di′kjk . To minimize the average sensor moving distance,

we need to find a permutation i′1i
′
2 · · · i′n such as to minimize

Lt(i′1i
′
2 · · · i′n). We have the following optimality theorem.

Theorem 3: CSP yields an optimal mobility scheduling so-

lution in terms of minimizing average sensor moving distance

at each time slot.

Proof: CSP adopts the movement strategy i1i2 · · · in at

each time slot. We denote it by G0. In order to prove G0 is

optimal, we have to show Lt(i′1i
′
2 · · · i′n) ≥ Lt(G0) holds for

its any permutation i′1i
′
2 · · · i′n.

For any two items a and b in a sequence, we define a < b
if a precedes b. In G0, we then have i1 < i2 < · · · < in.

Let gkk′ , k < k′, denote a permutation operation that swaps

the k-th and k′-th items in a sequence. The permutation of

G0 by this operation can be expressed as Gkk′ = G0 ◦
gkk′ = i1 · · · ik−1ik′ik+1 · · · ik′−1ikik′+1 · · · in. We first show
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Fig. 6. Six cases about relationships between sensors jk , jk′ and ik , ik′ .
For each case, sensors ik and ik′ can move to either jk or jk′ .

the following inequality holds for any ik and ik′ satisfying

ik ≤ jk′ ,

Lt(Gkk′) ≥ Lt(G0).

The moving distance of all sensors but ik and i′k are the

same in the two strategies Gkk′ and G0. We thus only need to

consider the moving distances of these two particular sensors.

In G0, sensor ik moves to point jk, and sensor ik′ moves to

point jk′ ; in Gkk′ , sensor ik′ moves to point jk, and ik moves

to point jk′ . We denote the moving distance of sensor ik and

ik′ in G0 by Lt(ikik′) and that in Gkk′ by Lt(ik′ik). There

are six different cases of the relation between locations of jk,

jk′ , and ik, ik′ . They are illustrated in Fig. 6.

In case 1, points jk and jk′ are both on the left of sensors

ik and ik′ . The total moving distance of sensors ik and ik′ in

G0 is Lt(ikik′) = dikjk +dik′ jk′ = dikjk′ +djk′ jk +dik′ jk′ =
dikjk′ + dik′ jk = Lt(ik′ik).

In case 2, point jk is on the left of sensor ik (including jk =
ik) and point jk′ is between sensors ik and ik′ . We compute

Lt(ikik′) = dikjk + dik′ jk′ and Lt(ik′ik) = dikjk′ + dik′ jk .

Because dikjk′ + dik′ jk = dik′ jk′ + 2djk′ ik + dikjk , we have

Lt(ikik′) < Lt(ik′ik).
In case 3, points jk and jk′ are both between sensors ik and

ik′ . We may easily have Lt(ikik′) = dikjk+dik′ jk′ = dik′ jk′ +
2djk′ jk + dikjk = dik′ jk + dikjk′ < Lt(ik′ik). Similarly, we

can have the same result Lt(jkjk′) ≤ Lt(jk′jk) in the other

cases. Therefore, we conclude Lt(Gkk′) ≥ Lt(G0).
Next, we prove the theorem by induction. Let G denote

a movement strategy i′1i
′
2 · · · i′n. When n = 2, we have

Lt(i1i2) ≤ Lt(i2i1), and thus Lt(G0) ≤ Lt(G). Suppose

Lt(G0) ≤ Lt(G) holds in the case n = N − 1. We now

consider the case n = N .

When i1 = i′1, we know di1j1 = di′1j1 . As the conclu-

sion holds when n = N − 1, we have Lt(i2i3 · · · in) ≤
Lt(i′2i

′
3 · · · i′n). Hence, Lt(G0) ≤ Lt(G) is true. We next

show Lt(G0) ≤ Lt(G) is true when i1 �= i′1. Note that

G0 can be transformed into i′1i2 · · · in by a finite series

of permutation operations gk1,k1+1, gk2,k2+1, · · · , gkw,kw+1.

Since Lt(G0) ≤ Lt(G0 ◦ gk,k+1) ≤ · · · ≤ Lt(G0 ◦
gk1,k1+1 ◦ · · · ◦ gkw,kw+1) = Lt(i′1i2 . . . in), and by induction

Lt(i2i3 · · · in) ≤ Lt(i′2i
′
3 · · · i′n) holds, we obtain

Lt(G0) = Lt(i1 · · · in) ≤ Lt(i′1i2 · · · in)
= di′1j1 + Lt(i2i3 · · · in)
≤ di′1j1 + Lt(i′2i

′
3 · · · i′n)

= Lt(i′1i
′
2 · · · i′n) = Lt(G).

VI. DISTRIBUTED CSP (DCSP) AND TWO BARRIERS CASE

In this section, we introduce two distributed CSP algorithms,

i.e., S-DCSP and G-DCSP. In particular, the latter is a gen-

eralization of the former. We also discuss about the scenario

where sensors move on two barriers to monitor intruders.

A. Simple DCSP (S-DCSP)

S-DCSP consists of two phases: i) an initialization phase,

and ii) a dynamic movement phase.

1) Initialization: In the initialization phase, the sensors are

assumed to be connected, and one of them is elected as leader.

The leader is responsible for distributing the preference level

(initially it equals to 1) of each sensor among the points,

indicating how the sensor likes to monitor the points. It first

sorts all the points according to their positions along the barrier

line. Then it performs preference distribution for all the sensors

one by one, in the increasing order (starting from 1-st sensor).

For sensor i, 1 ≤ i ≤ n (the i-th sensor), the leader assigns a

preference level 0 ≤ plji < 1 to point j, 1 ≤ j ≤ m (the j-th

point) sequentially in the increasing order (starting from 1-st

point), subject to the constraint
∑m

j=1 pl
j
i = 1.

When considering point j, the leader compares the sensor

preference plj =
∑n

i=1 pl
j
i aggregated on point j with n/m.

Denote by p̂li the remaining preference level of sensor i. If

plj < n/m, the leader sets plji = min{p̂li, n/m − plj} and

deducts this amount of preference from p̂li, i.e., p̂li = p̂li−plji ;

otherwise, it precedes to consider the next point. As soon as

p̂li becomes 0, it sets the preference level of sensor i for the

rest points to 0 and starts to serve the next sensor. According

to this preference distribution method, sensor i will be in

favor of nearby points and may have zero preference to points

relatively far. For example, when n = 3 and m = 5, we have

the following sensor preference distribution:

• pl11 = 3
5 , pl21 = 2

5 , pl31 = pl41 = pl51 = 0;

• pl22 = 1
5 , pl32 = 3

5 , pl42 = 1
5 , pl12 = pl52 = 0;

• pl43 = 2
5 , and pl53 = 3

5 , pl13 = pl23 = pl33 = 0.

At the end of the initialization phase, sensor i is associated

with a point set MSi, to which it has a non-zero preference

level. In the above example, MS1 = {1, 2}, MS2 = {2, 3, 4}
and MS3 = {4, 5}. The leader informs sensor i about MSi,

which are the points that sensor i will move to monitor

in the following dynamic movement phase. Notice that i)

each point finally has exactly n/m amount of aggregated

sensor preference, which lets the algorithm yield an average

monitoring ration (AMR) equal or nearly equal to the value

n/m; and ii) sensor i and i+1 may have a common point in
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their MSi and MSi+1 (as shown in the previous example),

and sensor i and sensor i′, i′ = 1, · · · , i− 2, i+2, · · · ,m, do

not have a common point to monitor.
2) Dynamic movement: In the dynamic movement phase,

each sensor i moves between points in MSi. For each point

j, j ∈ MSi, sensor i maintains the number of time slots,

denoted by Iij , for which it has not monitored point j since its

last visit. At the beginning of each time slot, sensor i makes

decision whether to move and where to move. It will decide to

stay at its current point if it did not detect an intruder at the last

time slot, or move to another point otherwise. In order to find

a new point to move to, sensor i calculates the intruder arrival

probability q
Iij
t for every point j, j ∈ MSi. The point with the

largest plji × q
Iij
t is selected. Once the movement destination

is determined, it moves immediately and stays there for the

current time slot.

Due to independent decision making, collision may occur,

i.e., two adjacent sensors i and i + 1 may select the same

point j, j ∈ MSi ∩MSi+1 for monitoring. If sensor i moves

to point j and finds (through location communication) that

the point has been monitored by sensor i+ 1 for at least one

time slot, it will set Iij = 0, recalculate q
Iij
t , j ∈ MSi and

find another point to monitor. If sensor i and i+ 1 both start

to monitor point j at the current time slot, they will enter

a competition for monitoring j. In the competition, sensor i

and sensor i+1 generate random numbers from [0,
plji

plji+plji+1

],

and [0,
plji+1

plji+plji+1

], respectively, and exchange their numbers

through local communication; the one with the larger random

number wins, and the other has to set Iij = 0, and recalculate

q
Iij
t to find another point for monitoring. The competition is

repeated in case of tie.

B. General DCSP (G-DCSP)

We generalize S-DCSP to obtain a new DCSP algorithm,

named by G-DCSP. In G-DCSP, sensors are assumed to be

clustered. Depending on applications, clustering can be done

in different ways. Denote the number of clusters by ñ and the

set of sensors in each cluster k by SCk, k = 1, 2, · · · , ñ. Let

n′ = ñ − Mod(ñ, n). The following is a simple clustering

method:

SC1 = {1, 2, · · · , 	n
ñ

},

SC2 = {	n
ñ

+ 1, · · · , 2	n

ñ

},

...

SCn′ = {(n′ − 1)	n
ñ

+ 1, · · · , n′	n

ñ

},

SCn′+1 = {n′	n
ñ

+ 1, · · · , (n′ + 1)	n

ñ

+ 1},

...

SCñ = {m− 	m
ñ

, · · · ,m}.

G-DCSP extends the initialization phase of S-DCSP by

requiring each cluster SCk to compute the union M̃Sk of

the point sets which are assigned to its member sensors, i.e.,

M̃Sk = ∪t∈SCk
MSt. This computation can be performed

Fig. 7. Network topology under two-barriers case.

by the cluster head of SCk, which then passes the results

to its cluster members. In the dynamic movement phase, at

the beginning of each time slot, the sensors in SCk go to a

rendezvous point to fuse their information, find points among

M̃Sk to monitor using the centralized CSP algorithm, inform

each other about the points that they decide to monitor and

then move to their selected points. The rendezvous point is a

point that minimizes the total moving distance of the sensors

for rendezvous. It is computed by the sensors locally since

they know each other’s monitoring points in the previous time

slot. Monitoring collision is possible as there may be common

points in two clusters’ point sets. It can be resolved in the same

way as in S-DCSP.

Remarks. In S-DCSP, each sensor works independently after

the initialization phase and do not rely on the information of

other sensors. In G-DCSP, sensors are clustered, and sensors in

the same cluster have physically meet and communication in

order to make protocol decision. S-DCSP involves less com-

munication and movement cost than G-DCSP, while G-DCSP

has a better performance γ than S-DCSP. They should be

selected for use according to application-specific requirements.

C. Two-Barriers Case

So far, we have considered the case where mobile sensors

are moving along a single barrier to detect intruders. We con-

sider two deployment barriers in this subsection to investigate

if the performance of barrier coverage can be improved. Cases

of k, 3 ≤ k ≤ n, deployment lines can be solved in a similar,

possibly more complex way.

Assume there are two deployment barriers in the region Ω.

n1 sensors are assigned to move along the barrier 1 and n2

sensors to move along the barrier 2, n1+n2 = n. Intruders try

to cross the region from one entrance side to the destination

side. Without loss of generality, we suppose intruders will first

pass through barrier 1 and then barrier 2. Intruders are assumed

to arrive at the barrier 1 according to Weibull distribution and

if not detected by sensors at the barrier 1, they will proceed to

pass through barrier 2 at next slot. As intruders can across the

region Ω along an arbitrary path, the intruders appearing at

point j, j = 1, 2, · · · ,m, can appear at any point at barrier 2.

We consider a simple case in this section, i.e., intruders choose

the shortest path to cross the region and therefore intruder at

point j, j = 1, 2, · · · ,m, will proceed to pass through point j
at barrier 2. General case will be included in our future work.

Other network settings are the same as those in the single

barrier case.

We introduce two sensor movement strategies: i) Inde-

pendent CSP (I-CSP), in which sensors on two different

barriers act independently and use CSP algorithm to guide

their movement, and ii) Joint CSP (J-CSP), in which the
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information of intruder arrival at the barrier 1 can be exploited

for movement strategy design on the barrier 2. We elaborate

I-CSP and J-CSP in the following.

I-CSP. Initially, n1 sensors are placed at points 1 to n1 on

the first barrier, and n2 sensors are placed at points m−n2+1
to m. Sensors at barrier 1 employ the CSP algorithm to guide

their movement dynamically. Sensors at barrier 2 do not know

the intruder detection at barrier 1, and thus assume that the

intruder arrival distribution at each point j is the same as that

of the point j on the barrier 1. The CSP algorithm is then used

to obtain the monitoring points for sensors on the barrier 2.

J-CSP. The initial position of each sensor in J-CSP is the

same as that in I-CSP. Sensors on two barriers jointly exploit

the intruder arrival information. Specifically, sensors on the

barrier 1 calculate Ij (defined in Sec. V-B) for each point j
at each slot t by employing CSP algorithm. n1 points with

largest q
Ij
t on the barrier 1 are selected for sensors to monitor

at slot t. Then these q
Ij
t information are transmitted to sensors

on the barrier 2 to calculate the points to be monitored in the

next slot. Initially at the first slot, sensors at barrier 2 stay at

points m− n2 +1 to m, as they do not have any information

about q
Ij
t .

Remark. In I-CSP, sensors on barrier 1 and barrier 2 adopts

CSP to find monitoring points independently. It is possible

that a sensor monitors point j on the barrier 1 at slot t − 1
and some sensor stays at point j on the barrier 2 at slot t.
The sensor at point j on barrier 2 at slot t is redundant since

intruder arriving at point j on barrier 2 at slot t can be detected

at the slot t− 1 by the sensor at point j on the barrier 1. This

will never happen to CSP for the single barrier approach. In J-

CSP, the movement of sensors on the barrier 2 depends on the

information gathered by sensors on the barrier 1. The more

information gathered by sensors on the barrier 1, the better

the overall barrier coverage performance will be. Therefore,

it is advisable to allocate sensors on the barrier 1 as many

as possible. This is also validated by the simulation results

in Fig. 18, where γ increases as the number of sensors on

the barrier 1 increases. Summarily, CSP has a better barrier

coverage performance than I-CSP and J-CSP.

VII. GENERALIZATION: DIFFERENT INTRUDER ARRIVAL

MODELS

In this section, we discuss how to generalize our results

obtained in the previous sections.

A. Different Intruder Arrival Models

In the previous sections, we adopt the Weibull distribution

to model the intruder arrival model. In this subsection, we

study how to modify our results to other types of intruder

arrival models. We only focus on CSP since other algorithms

(S-DCSP, G-DCSP, I-CSP and J-CSP) can be studied in the

same way.

In CSP, we try to allocate sensors to monitor the points

with high intruder arrival probabilities. There are three cases

to calculate the probability of intruder arrival at current slot

for each point: i) a sensor was monitoring at the point at last

slot and an intruder was detected; ii) a sensor was monitoring

Algorithm 3 Modified Coordinated Sensor Patrolling algo-

rithm (MCSP)

1) t = 0; Set Ij = 0, for point j = 1, 2, · · · ,m. Each

mobile sensor randomly selects a point to monitor.

2) t = t+ 1;

a) Set Ij = Ij +1 if there is no sensor monitoring at

point j at last slot; Ij = 0, otherwise.

b) If Ij > 0, calculate the intruder arrival probability

at point j, (T Ij )s1. If Ij = 0 and a mobile sensor

detected an intruder at slot t−1, the intruder arrival

probability at point j is T11; otherwise, the intruder

arrival probability at point j is T01.

c) Find the n points with highest intruder arrival

probabilities. Denote the point set by C.

d) Points in set C = {j1, j2, · · · , jn} are sorted

according to their sequences on the barrier line.

Sensors C ′ = {i1, i2, · · · , in} are similarly sorted

according to their locations on the barrier line.

Move mobile sensor ik to point jk for intruder

monitoring, k = 1, 2, · · · , n.

3) Continue Step 2) until all mobile sensors run out of

energy.

at the point at last slot and no intruder was detected; iii) no

sensor was allocated to monitor the point. Our results can

be modified to scenarios with other types of intruder arrival

models as long as we can calculate the probabilities of intruder

arrival at current slot under the aforementioned three cases.

We use the well-known Markov chain model as an example

to illustrate the generalization of our results.

By a Markov chain model, there are two states at each point

at each slot, 0 means no intruder arrival and 1 means intruder

arrival. The state transition matrix T is given by

T =

(
T00 T01

T10 T11

)
. (9)

Using T , the probability of intruder arrival at current slot

for case i-iii) can be calculated as T11, T01 and (T I)s1,

respectively, where I − 1 is the number of slots since last

sensor left, T I = T × T × · · · × T︸ ︷︷ ︸
I

, s is the state detected by

the last sensor before it left and (T I)s1 denotes the transition

probability from state s to 1 in transition matrix T I . We

give the modified CSP algorithm for Markov chain model in

Algorithm 3.

B. Spatial correlations between points

So far, we have assumed that the intruder arrival times

between different points are independent and identically dis-

tributed. In scenarios where the intruder arrivals at different

points are highly correlated, exploiting such spatial correla-

tions would greatly improve the barrier coverage performance.

In this subsection, we discuss how to modify our solutions to

incorporate spatial correlations.

Let Ej denote the event that an intruder arrives at cur-

rent slot at point j, and P(E1, E2, · · · , Em) is the joint

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



10

probability that there is an intruder present at each point

j, j = 1, 2, · · · ,m. In our previously proposed algorithms,

we first calculate the intruder arrival probability at each point

j, i.e., P(Ej), and then find the points with highest P(Ej)
for sensors to monitor. Taking Algorithm 3 for an example,

when P(Ej), j = 1, 2, · · · ,m, are highly correlated, we only

have to modify the process of finding the n points with

highest probabilities of intruder arrival in Step 2c) in the

following way. Initially, find point j1 with highest P(Ej1).
Given j1, j2, · · · , jk−1, find the jk such that

jk = argmaxP(Ej |Ej1Ej2 · · ·Ejk−1
).

VIII. SIMULATION RESULTS

In this section, we conduct simulations to validate the

analysis and the performance of the proposed algorithms.

We use MATLAB to perform our simulations. The network

operation time is divided into time slots, each with 1 unit

simulated time.
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Fig. 8. Performance of γ for different T , n and β, and fixed m = 10.
Values of γ are equal to n/m for all scenarios.

A. Single Barrier case with intruder arrival following Weibull
distribution

Intruders are simulated to arrive from time to time according

to i.i.d. Weibull distribution. For all the simulations, λ = 10
(see Eqns. 1 and 2). An intruder is detected when it arrives

at a point and a sensor is monitoring there. The average

intruder detection probability γ is calculated by the ratio of

the number of detected intruders to all arriving intruders. As

there is no existing work on our problem, we use simulations

to demonstrate the performance of the proposed algorithms.

We first evaluate the performance of PMS. In the simulation,

initially n sensors are located at points 1 ∼ n. The total

number of points m is set to be 10. For every T time slots,

the sensor at point j will move to point jt = Mod(j + n,m)
for monitoring, regardless of the arrival of intruder. We first

fix n = 5 and β = 4, and vary T to show the impact of T on

γ. The results are plotted in Fig. 8. As stated in the section

IV, values of γ are equal to n/m for all different T , reflecting

the continuous monitoring time T at a point does not impact

γ. Then we vary the values of n to 4, 6 7, and 8, and conduct

the corresponding simulations. Values of γ in these cases are

still equal to n/m. At last, we set β = 5, n = 5 to investigate

the impact of β on γ in the PMS algorithm. The results in

Fig. 8 show that values of γ are the same as those in the case

β = 4, n = 5. From the simulation results, we can conclude

that PMS can not improve the performance γ no matter what

network settings are. This indicates that we have to include

intruder arrival information for the sensor movement design

in order to improve the performance γ.
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Fig. 9. Performance γ for different n and m when β = 4. For a fixed m,
γ increases nonlinearly with n.
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Fig. 10. Performance γ for different n and m when β = 2. More sensors
are required in case β = 2 to obtain the same γ than that in the case β = 4.

We then evaluate the performance of CSP. At each slot,

all the intruder arrival information obtained by each sensor

will be fused together, and the available sensors will move

to monitor the selected points. We first set β = 4, and

calculate γ for different n and m. The results are plotted in

Fig. 9. For a fixed m, γ increases nonlinearly with n. A small

increase in n/m can result in a leap in γ. For example, when

n = 5,m = 10, γ is 0.9, and when n = 7,m = 10, γ
approaches 1. Fig. 9 also indicates γ decreases when n is

fixed and m increases. Therefore, by jointly exploiting sensor

mobility and intruder arrival information, performance γ can

be significantly improved. Then we set β to be 2 and 6,

respectively, and re-conduct the simulations to investigate the

impact of β on γ. We show the results in the Figs. 10 and

11. For a fixed value of m, more sensors are required in case

β = 2 to obtain the same γ than that in the case β = 4, while

less sensors are needed in case β = 6. This is because β
in the Weibull distribution represents the temporal correlation

between two intruder arrivals. The larger the values of β, the

stronger the temporal correlation. Thus less sensors are needed

to obtain the same performance γ.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



11

2 3 4 5 6 7 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

B
ar

rie
r c

ov
er

ag
e 

γ 
(p

er
ce

nt
ag

e)

m=10
m=12
m=14
m=16

Fig. 11. Performance γ for different n and m when β = 6. Less sensors
are required in case β = 6 to obtain the same γ than that in the case β = 4.

We discuss how to decide the number of mobile sensors

to guarantee a predefined γ. As stated in Sec. V-C, for a

predefined γ0, we can estimate the required number of sensors

to guarantee the performance. For example, the ratios n/m
in cases: i) β = 2, ii) β = 4 and iii) β = 6 should

be larger than 0.6854, 0.4592, and 0.3631, respectively to

ensure γ ≥ 0.9. For a given m, the corresponding n can

be obtained. The corresponding performances γ by setting

n/m = 0.6854, 0.4592, 0.3631 respectively for cases i) β = 2,

ii) β = 4 and iii) β = 6 are plotted in Fig. 12. We can see

that when n is larger than 100, γ approaches 0.9 for all three

cases. When a large scale network is involved, the calculated

number of sensors can give an accurate estimate of the required

number of sensors; when small number of sensors are used in

the applications (e.g., n ≤ 100), extra number of sensors can

be added to guarantee the performance requirement. Therefore,

the estimate of sensors provides basic information about the

required number of sensors for a specific application. Fig. 12

also shows 31.46%, 54.08%, 63.69% sensors can be reduced

respectively to guarantee the performance γ = 0.9 in the cases

i) β = 2, ii) β = 4 and iii) β = 6. We also show the

required number of sensors for cases β = 1.2, β = 3 and

β = 5 in Fig. 12 and the corresponding values of n/m are

0.8592, 0.5456 and 0.4039. Note that when β = 1, the Weibull

distribution reduces to Poisson distribution, according to which

intruder arrivals are independent. In such case we can not

improve the barrier coverage performance by leveraging the

sensor mobility. Hence, we adopt β = 1.2 instead of β = 1.

We conclude that by jointly leveraging sensor mobility and

intruder arrival information, we can reduce a large number of

sensors to achieve the same barrier coverage performance.

Finally, we study the performance γ of the two DCSP

algorithms: S-DCSP and G-DCSP. In S-DCSP, after being

assigned with a list of points to monitor, each sensor works

independently and communicates with those in the communi-

cation range. In G-DCSP, sensors cooperate with each other in

the same cluster, and we divide the sensors into 2 clusters. We

set m = 10, and perform simulations for S-DCSP, G-DCSP

and CSP under different n. The results are depicted in Fig. 13.

In these three algorithms, S-DCSP has the worst performance

γ, and CSP has the best. The performances γ of the three

algorithms are very close, indicating the efficiency of S-DCSP

and G-DCSP. The simulation results of the three algorithms

in Fig. 13 for case m = 14 also confirm this conclusion.
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Fig. 12. An illustration of deciding the number of sensors to guarantee a
predefined γ0.
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Fig. 13. Performance γ of S-DCSP, G-DCSP and CSP for m = 10 and
m = 14. Performance γ of the three algorithms are very close.

B. Single Barrier case with intruder arrival following Markov
chain

In this subsection, we adopt Markov chain to model the

intruder arrival with the goal of showing that the proposed

algorithms can also work for different intruder arrival models.
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Fig. 14. Performance γ of algorithm MCSP on real data collected from
spectrum usage, Vs. the number of points m and sensors n.

First, we adopt some real data collected from spectrum

usage to show some practical implications of the proposed

algorithms. The data record the channel states (i.e., occupancy

and vacancy) of spectrum ranging from 300MHz to 3000MHz

in Guangdong province, China [34]. We note that barrier

coverage approach can also be applied to the scenario where

we want to estimate the specific channel usage of some

discrete locations: viewing channel occupancy as an intruder,

we use mobile sensors (such as sensing devices piggybacked
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Fig. 15. Performance γ of algorithm MCSP Vs. different T11 and T00.

on cars) to monitor specific channel states. As the resource

is limited, we want to maximize the detection probability

of channel occupancy by mobilizing these limited sensing

devices. We adopt the Markov chain to model the real data, and

Fig. 14 gives the barrier coverage performance of the modified

CSP (MCSP). Again, we can see MCSP can achieve a high

barrier coverage performance with a small number of sensors,

which is consistent with the results obtained in the previous

subsection.

To show the impact of intruder arrival patterns on the

barrier coverage performance, we then proceed to perform

more simulations by setting different values of the parameters

in Markov chain model. Note that there are two parameters

in the Markov chain model: T11 and T00 (see Eq. (9))1. We

fix n = 8 and m = 12 and vary the values of T11 and

T00 from 0.15 to 0.85 with an increment of 0.1, respectively.

The barrier coverage performances for all cases are plotted in

Fig. 15. In Markov chain model, T11 and T01 = 1−T00 mean

the probabilities that there is an intruder arriving in next slot

if there is an intruder or no intruder arriving at the current

slot, respectively. When T11 is close to T01, then we can not

know much about the intruder arrival based on the current

state (as the intruder arrival probabilities are close no matter

if there is an intruder arriving at current slot or not). This

is confirmed by the results in Fig. 15, where a high value

of |T11 − T01| yields a high barrier coverage performance

and the worst performance occurs when |T11 − T01| is close

to 0. For example, for curve marked as T11 = 0.15, the

barrier coverage performance decreases as T00 increases (thus

T11−T01 decreases); for curve marked as T11 = 0.55, barrier

coverage first decreases and then increases because T11 −T01

first decreases and then increases. Note that γ = 0.667 = n/m
when T11 = T01 = 0.15. This is because we do not gain

any intruder arrival information and thus could not improve

the barrier coverage performance. Based on these discussions,

we can conclude that the proposed algorithms can effectively

exploit the intruder arrival information to enhance the barrier

coverage performance.

C. Two Barriers case

We perform simulations to demonstrate if the barrier cov-

erage can be further improved by two barriers. The basic

1The values of T10 and T01 in the transition matrix can be decided by T11

and T00, respectively.

network settings are the same as those in the single barrier

case.

Denote the number of sensors monitoring on barrier 1 by

n1 and the number of sensors on barrier 2 by n2. We first

investigate the case when n1 = n2, i.e., two barriers are of

the same importance and allocated with the same number of

sensors. We plot the values of intruder detection probability

under I-CSP, J-CSP and CSP when m = 18 in Fig. 16. I-CSP

can obtain a slightly better intruder detection probability than

J-CSP when n is small, and J-CSP is more desirable when n
is large. However, the values of intruder detection probability

under I-CSP and J-CSP are both less than those of CSP,

which indicates that simply leveraging multiple barriers may

not improve the barrier coverage performance. We set m = 20,

and re-perform the simulations. The similar conclusions can

be attained, which is depicted in Fig. 17.
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Fig. 16. The values of intruder detection probability Vs. different number
of n (n1 = n2 = n/2) under I-CSP, J-CSP and CSP when m = 18.
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Fig. 17. The values of intruder detection probability Vs. different number
of n (n1 = n2 = n/2) under I-CSP, J-CSP and CSP when m = 20.

We proceed to illustrate the reason why CSP outperforms

J-CSP 2. We set the total number of points m to be 18, and

the total number of sensors to be 10. We put n1 sensors

on the barrier 1 and 10 − n1 on the barrier 2. We vary the

values of n1 from 2 to 8, and run the simulations to obtain

corresponding barrier coverage performance. The results are

depicted in Fig. 18. We can see that as the number of sensors

on the barrier 1 increases, the values of γ increase. Since CSP

is the special case when we put all sensors on the barrier 1,

this indicates CSP outperforms J-CSP in general.

2As we mentioned in Sec. VI-C, it is obvious that CSP outperforms I-CSP
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Fig. 18. The values of intruder detection probability Vs. different number
of sensors n1 on the barrier 1.

IX. CONCLUSION

We have studied the cost-effective barrier coverage problem

for the case of sensor scarcity. We first designed a periodic

monitoring scheduling (PMS) algorithm. Based on the insight

gained from PMS, we then proposed to jointly exploit sensor

mobility and intruder arrival information to improve barrier

coverage. We devised a coordinated sensor patrolling (CSP)

algorithm, and demonstrated that the proposed CSP can sig-

nificantly enhance the barrier coverage. We also presented two

distributed versions of CSP, S-DCSP and G-DCSP, to suit

the decentralized nature of WSNs. We considered 2-barriers

case, where sensors can move on two different barriers, and

proposed two sensor movement algorithms. In addition, we

generalized CSP to work for different intruder arrival models.

Our simulation results indicated that the proposed algorithms

can better improve the barrier coverage performance when we

know more about the intruder arrival information. Our solution

thus has a great potential to reduce the application budget

and provides a new cost-effective approach to achieve barrier

coverage in large-scale mobile sensor networks. We will study

the general k-barriers coverage by mobile sensor networks in

the future work.
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