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Abstract 

Background: The home address is a common spatial proxy for exposure assessment in epidemiological studies but 

mobility may introduce exposure misclassification. Mobility can be assessed using self-reports or objectively meas-

ured using GPS logging but self-reports may not assess the same information as measured mobility. We aimed to 

assess mobility patterns of a rural population in the Netherlands using GPS measurements and self-reports and to 

compare GPS measured to self-reported data, and to evaluate correlates of differences in mobility patterns.

Method: In total 870 participants filled in a questionnaire regarding their transport modes and carried a GPS-logger 

for 7 consecutive days. Transport modes were assigned to GPS-tracks based on speed patterns. Correlates of meas-

ured mobility data were evaluated using multiple linear regression. We calculated walking, biking and motorised 

transport durations based on GPS and self-reported data and compared outcomes. We used Cohen’s kappa analyses 

to compare categorised self-reported and GPS measured data for time spent outdoors.

Results: Self-reported time spent walking and biking was strongly overestimated when compared to GPS measure-

ments. Participants estimated their time spent in motorised transport accurately. Several variables were associated 

with differences in mobility patterns, we found for instance that obese people (BMI > 30 kg/m2) spent less time in 

non-motorised transport (GMR 0.69–0.74) and people with COPD tended to travel longer distances from home in 

motorised transport (GMR 1.42–1.51).

Conclusions: If time spent walking outdoors and biking is relevant for the exposure to environmental factors, then 

relying on the home address as a proxy for exposure location may introduce misclassification. In addition, this misclas-

sification is potentially differential, and specific groups of people will show stronger misclassification of exposure than 

others. Performing GPS measurements and identifying explanatory factors of mobility patterns may assist in regres-

sion calibration of self-reports in other studies.
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Background
Environmental epidemiological studies aim at evaluat-

ing risks to human health from environmental exposures. 

Human mobility may affect exposure of persons to different 

environmental substances, especially if exposure levels dis-

play strong spatial, or spatio-temporal variation. Examples 

of such exposures are ultrafine particles of air pollution 

[1], electromagnetic fields [2] or livestock-associated expo-

sures, such as zoonotic micro-organisms and endotoxins 

[3–6]. Personal exposure is often approximated by assign-

ing exposure levels on a single location—usually the home 

address—to study participants, although this may lead to 

misclassification of exposure. Exposure misclassification 

can bias risk estimates, and this bias is often towards the 

null, in particular when misclassification is non-differential 

[7–10]. �is essentially means that health effects from envi-

ronmental exposures may remain undetected.
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In this study we assessed modes of transport, in par-

ticular the duration people spent in motorised or non-

motorised transport, and the distance from home for 

these movements. Mobility patterns can be assessed 

in multiple ways, using e.g. questionnaire data [11–14] 

or time activity diaries [14, 15]. Since the 1990s, Global 

Positioning Systems (GPS) are available that allow for 

objective measurement of a persons’ movements [16–

18]. Measurements with GPS devices and activity dia-

ries are time consuming and thus, questionnaires to 

assess mobility are often still the method of choice when 

studying large groups of people. However, self-reports 

of mobility assessed with questionnaires may be subject 

to bias and misclassification [11–14], especially if par-

ticipants answer in a socially desirable way [19, 20]. In 

addition, the majority of studies addressing mobility are 

performed among city dwellers [14]. Living in a rural area 

is likely associated with different mobility patterns [21] 

and also with different exposures to area-specific emis-

sions, e.g. from livestock farms in the vicinity (Fig.  1). 

Furthermore, people living in rural areas might spend 

more time outdoors [21].

In the present study, the main aim was to assess the 

different modes of transport of a rural population in the 

Netherlands using GPS measurements. Secondary aims 

were to explore if we could identify characteristics that 

explained differences in patterns of transport modes 

between participants, and to compare self-reported 

mobility to GPS measured mobility patterns.

Methods
Study population

�e current study was embedded in the Dutch “Livestock 

Farming and Neighbouring Residents’ Health Study” 

(Dutch acronym; VGO). �e VGO study focusses on the 

health of non-farmer residents living in an area with a 

high density of livestock farms in the Netherlands. In a 

population-based cohort of 2494 participants (farmers 

were excluded a priori) [22], a medical examination was 

conducted by trained fieldworkers (March 2014–Febru-

ary 2015) [23] General Practitioners’ (GPs) Electronic 

Medical Records (EMRs) were available for 2426 par-

ticipants (97%) via the Netherlands Institute for Health 

Services Research (NIVEL, see also http://www.nivel.nl/

en), one of the partners in the VGO study. Assessment 

included a questionnaire (VGO questionnaire) on health, 

lifestyle factors and the participants’ occupational and 

residential history. NIVEL provided, when VGO partici-

pants gave permission, information regarding asthma, 

history of heart diseases and beta-blocker usage. VGO 

cohort members who agreed to be invited for follow-up 

research were eligible to participate in the GPS study. 

Medical Ethical approval was obtained for the VGO 

study from the Medical Ethical Committee of the Univer-

sity Medical Centre Utrecht (protocol number 13/533).

Study design

From September 2014 to January 2016, eligible subjects 

were invited to participate in the GPS study. �is means 

that while some participants used GPS loggers in the 

winter, others used it in the summer. Our dataset there-

fore pertains to a whole year sample across all seasons. 

Participants filled in a questionnaire (Q1, see Additional 

file 1: 11. Questionnaire (Q1)) that inquired about partic-

ipants’ usual mobility habits regarding different transport 

modes and time spent outdoors during a regular week. 

Upon return of Q1, GPS trackers and a second question-

naire (Q2) were sent to participants, including instruc-

tions on how to carry the GPS logger for 7 consecutive 

days. Participants were asked to put the GPS logger next 

to their keys, in their bag or jacket, so they would not for-

get it when they left the house. After the GPS-measure-

ment week, Q2 about study adherence and start and end 

dates of GPS tracker carriage was filled in and GPS log-

gers were returned to the study centre.

GPS data

We used TracKing Key Pro GPS loggers (Land Air Sea 

systems Woodstock IL, USA). �ese devices enable con-

tinuous logging at 1-s intervals. GPS loggers are equipped 

with a motion sensor, providing data logging only when 

a participant is moving, thus reducing battery depletion. 

We set our measurements to 1 s measurement intervals, 

and the median total logging duration was 187  h (IQR 

143–235 h). Data obtained from GPS loggers were date, 

time, X and Y coordinate and speed (km/h). �ese GPS 

loggers were previously tested and showed a high posi-

tional accuracy when being outdoors [18].

Questionnaire data

Q1 included items regarding usual duration of time spent 

outdoors (hours per day) during the week and weekend, 

occupational status (being employed/self-employed: 

yes/no), working from home (yes/no), working days 

(number), having an outdoor occupation (yes/no), num-

ber of outdoor working hours (hours per workday) and 

outdoor activities during leisure time (walking, biking, 

sports, spending time close to home, other, in hours per 

week). Furthermore, transport modes for commuting 

were asked separately for transport during work hours 

and during leisure time. Transport modes were strati-

fied by spring/summer, autumn/winter and addition-

ally divided into the sub-categories public transport, 

car, moped/motorcycle, electric bike, bicycle, on foot 

and other transport modes. Duration of these transport 

times was provided in minutes per day for commuting 

http://www.nivel.nl/en
http://www.nivel.nl/en
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Fig. 1 The research area, this map illustrates the rural situation within our research area. Not only are there many farms present in our research area 

(‘VGO area’ map) these farms are also very close together, with multiple farms per kilometre close to roads <50 m (‘Detail VGO area’ map)
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and work-related transport, and in minutes per week for 

leisure–time transport, participants could report multi-

ple travel modes per trip, therefore alternating mobility 

patterns should have been captured (Additional file 1: 11. 

Questionnaire (Q1), an English translation of Q1).

Q2 inquired whether and when participants had left 

the GPS logger at home during the measuring period and 

if people had deviated from their normal weekly move-

ment patterns.

Additional participant characteristics and potential 

explanatory factors for differences in mobility patterns 

(gender, age, educational level, job status, dog and live-

stock ownership, hay fever, BMI (measured), smok-

ing status, asthma status, COPD status (self-reporting 

combined with spirometry data from VGO health sur-

vey) and cardiovascular health (recent heart attacks, 

arrhythmia, ill heart functioning and beta-blocker 

usage) were obtained from the VGO health assessment 

and the VGO baseline questionnaire completed at the 

time of the health assessment (March 2014–February 

2015) [22, 23].

Meteorological data

Meteorological data on precipitation and temperature 

over the whole measurement period were retrieved from 

the Royal Netherlands Meteorological Institute. Data 

from the weather station Eindhoven was used, because 

this was the most centrally located station of the study 

area [24]. Percentage of time with rainfall (between 6.00 

and 22.00 h) and the average temperature were calculated 

for the measurement period of each participant.

Data cleaning

We received GPS files from 940 participants. Of these, 

34 had to be excluded due to device failure. Two par-

ticipants did not adhere to the study protocol in that 

they either did not carry the GPS or did not fill in Q2. 

In addition, we applied two exclusion criteria: First we 

excluded persons who had carried the GPS for less than 

24  h (N =  19) and second, we excluded persons where 

the self-reported outdoor time exceeded 3SD of the study 

population (N  =  16). Excluded people reported >64% 

of their time as being outdoors, which we considered as 

unrealistic extreme values. One person did not return Q2 

and was therefore excluded as well (Fig.  2). In addition, 

if a participant indicated in Q2 that they had not carried 

the GPS logger for a specific day, this day was removed 

from the analyses. More detailed information is provided 

in Fig.  3. Note that excluded participants did not differ 

strongly regarding general characteristics (age, sex, edu-

cation level), compared to participants who remained in 

the analyses.

Processing of spatial data

Home addresses (street, postal code, address) were geo-

coded using Dutch cadastral data (BAG data). A draw-

back of GPS-tracking is loss of accuracy when a GPS 

tracker has no clear view of the sky, especially when being 

indoors [18] resulting in a point cloud (Additional file 1: 

1. Example pictures for spatial analysis, Supp. Figure 1). 

�erefore, point clouds around the home were filtered 

by excluding all coordinates logged within a 60 m radius 

around a home location; this distance was based on vis-

ual inspection of point clouds around a range of home 

addresses. Other GPS measurements were classified 

as indoors when at least 45 points were located within 

the outline of a building polygon. �ese polygons were 

then supplied with a 20  m buffer and all points within 

this buffer were classified as indoors for further analy-

ses. Again, this cut-off was based on visual inspection: 

Fewer than 45 indoor points were more likely to appear 

as linearly-ordered points, indicating smaller spatial 

inaccuracies when passing a building (Additional file  1: 

1. Example pictures for spatial analysis, Supp. Figure 2), 

while cloud patterns of coordinates were more likely indi-

cating indoor locations, and were often located in public 

buildings such as sports facilities or supermarkets.

940 GPS tracks

906 GPS tracks

887 GPS tracks

19 tracks, less then 24h 

measurement �me 

1 track lack of adherence to 

study protocol (no Q2 data)

34 tracks, removed because of a 

device failure (readout errors, 

wrong sampling interval, missing 

data)

886 GPS tracks 

16 tracks, outliers (3 SD’s) for Q1 

based outdoor �me 

870 GPS tracks 

suitable for analyses

Fig. 2 Data cleaning flowchart
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GPS data (points) 

1-second interval (when moving), Date, Time, X and Y coordinate, Speed

If point falls within 60m buffer around home address or 20m of other indoor 

loca�on (building polygon with >45 GPS points included), GPS point is 

considered indoors 

GPS data (points) assigned outdoors

Date, Time, X and Y coordinate, Speed, Distance from home calculated for 

every point 

Transport mode assignment for every point, based on episodes 

-Walking 

-Biking 

-Motorised transport 

GPS not carried for a day? (Q2) 

Day removed from analysis and 24h 

subtracted from total measuring 

�me

Total dura�on per transport mode summed and divided by total measuring 

�me  

Percentage of �me per transport mode and distance from home 

GPS data divided in episodes, using stops as cuts between episodes (episode 

minimal 3 consecu�ve  1 sec. measurements) 

GPS data (points) assigned outdoors: Time differences calculated (>1 sec. 

difference indicated as stop). Speed = 0 also defined as stops. 

Algorithm applied to iden�fy transport modes, using speed (median and 95
th

percen�le), accelera�on, decelera�on  

GPS data (points) assigned indoors

Not considered in further analyses

Fig. 3 Schematic of GPS processing
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For every point the time differences with the previous 

point was calculated, if the difference was more than 1 s or 

speed was 0 km/h, then the point was indicated as a stop. 

�ese stops were then used to separate individual mobility 

episodes. �e speed profile of each episode was analysed 

using a previously developed algorithm that assigns type of 

transport mode to speed patterns, based on a combination 

of speed, acceleration and deceleration [25]. �ree types of 

transport modes were assigned to speed profiles: walking, 

biking or motorised transport. For each transport mode, 

total duration was assessed and was divided by the total 

tracking time, resulting in the percentage of time spent per 

specific transport mode. We analysed our data on a 24 h 

scale, this means we aimed to evaluate on average 168 h 

(24 × 7) per participant. Distances from the home address 

were calculated for each GPS coordinate, by calculating 

the distance between the GPS coordinate and the bor-

der of the 60 m buffer around the home address. Figure 3 

shows a schematic of GPS processing.

Processing of Questionnaire data

In Q1 we asked for mobility per season (spring/sum-

mer and autumn/winter), the reported durations for 

these seasons were linked to the seasons in which par-

ticipants performed the GPS measurement, the months 

October–March were considered as autumn/winter and 

April–September as spring/summer. We expressed data 

from Q1 pertaining to self-reported transport modes in 

percentages of time spent per week. Time spent outdoors 

was calculated by adding the durations for all reported 

transport modes (commuting, work-related and leisure 

time) together with time involved in outdoor activi-

ties. To compare questionnaire and GPS datasets, time 

spent outdoors close to home (e.g. gardening, house hold 

duties, child care, etc.) was subtracted from the total 

reported time outdoors, as by removing all points within 

60 m around a place of residence, we were not able to dif-

ferentiate erroneous GPS locations from time spent out-

doors in close proximity to the home.

Statistical analysis

Participants were first assigned to an outdoors group 

based on tertiles of time spent outdoors as provided 

from their Q1 responses and GPS data [‘little’ (Q1 ≤9.5%, 

GPS ≤2.4% of time), ‘sometimes’ (Q1 9.5–17.5%, GPS 

2.4–4.2% of time) and ‘often’ outdoors (Q1 >17.5%, GPS 

>4.2% of time)], see Additional file  1: 5. Percentages of 

time spent outdoors, for distributions of time spent out-

doors. �ey were subsequently assigned to an outdoors 

group based on identical cut-off values using the tertiles 

derived from GPS measurements. Cohen’s kappa analy-

ses were then used to compare self-reported data with 

GPS measured categories of time spent outdoors.

We evaluated six different models with the following 

dependent variables: percentage of time spent outdoors, 

percentage of time spent in non-motorised and in motor-

ised transport, mean distance from home while walk-

ing, biking and in motorised transport. We chose these 

outcome variables because they might be interesting for 

exposure assessment in future studies and differences in 

exposure due to walking, biking and motorised transport 

have been analysed extensively before [26].

�e following factors were used in the models as inde-

pendent variables, these were a priori expected to influ-

ence time spent outdoors in active transport modes 

negatively: Chronic Obstructive Pulmonary Disease 

(COPD) [27], asthma [28], previous heart diseases [29, 

30], higher Body Mass Index (BMI) [classified as being 

overweight (>25–30  kg/m2) or obese (>30  kg/m2)] [31–

33], current smoking [32] and having any symptom in a 

broad spectrum of health symptoms (Additional file  1: 

2. Data used for explanatory variable analysis, Supp. 

Table  1, and 12. Items from VGO study questionnaire 

(VGO questionnaire)), attributed to the presence of live-

stock in the vicinity [34]. In contrast, we expected for-

mer and never smokers and people using beta-blockers 

to be more physically active, the latter on doctors’ advice 

[35]. We also evaluated whether age (<45, 45–55, 55–65 

and >65  years, see Additional file  1: 3. Age distribution 

of participants in VGO GPS study, Supp. Figure 3, for an 

age distribution), gender, educational level (low, medium, 

high) [30], working status (job: yes/no), having an out-

doors occupation and the number of workdays per week, 

were associated with mobility patterns [36]. Furthermore, 

we expected that people were more frequently outdoors 

if they reported more time spent outdoors close to home 

(hours per week) [37], owning a dog (yes/no) [38, 39] 

or keeping hobby farm animals (yes/no) [37]. �e influ-

ence of weather conditions, namely average temperature 

during the measuring period (<5, 5–10, 10–15 (refer-

ence group), 15–20, 20–25, >25, all in °C, see Additional 

file 1: 4. Distribution of avarage temperature during GPS 

measuring period, Supp. Figure 4, for a temperature dis-

tribution) and average rainfall during the measuring 

period (percentage of time with rainfall between 6.00 and 

22.00 h, during measurement) were also evaluated.

Univariate linear regression analyses were performed, 

followed by multiple linear regression with full models 

that included all possible explanatory factors for differ-

ences in time spent outdoors and distances from home, 

we used log-transformed data, since data was log nor-

mally distributed (data not shown). Supervised stepwise 

backwards selection (SSBS) models, always including 

age, gender and educational level, were performed in R. 

Final SSBS models were selected on the basis of the lowest 

Akaike’s Information Criterion (AIC). Additional file 1: 6. 
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Supplementary Table 2 (percentage of time) and 7. Sup-

plementary Table  3 (distances from home address) dis-

play model outcomes with back transformed coefficients 

and associated 95% Confidence Intervals (CI), which can 

be interpreted as Geometric Mean Ratios (GMR) [40]. 

Finally, we performed sensitivity analyses (Additional 

file 1: 8. Buffer sizes around the home address, 60 m buffer 

versus 20 m buffer, Supp Figure 6 and Supp. Table 4) on 

indoor buffer sizes, using 20  m instead of 60  m buffers 

around the home address. No substantial differences were 

observed for measured times spent outdoors (Additional 

file 1: Supp. Table 4) and therefore, the initial 60 m buff-

ers were retained for all analyses. In Q2 we asked whether 

people had deviated from their normal weekly movement 

patterns since this can affect our SSBS model estimates. 

We ran a sensitivity analyses of our SSBS models by run-

ning the models using only participants that indicated to 

have had a ‘normal week’. Overall we found no material 

effects on our model estimates (Additional file 1: 9. Sup-

plementary Table 5 and 10. Supplementary Table 6) and 

therefore preferred to report on our full study population.

Spatial data was processed using ArcGIS ArcMap 10.2 

(ESRI, Redlands, CA, USA), statistical analyses were per-

formed using R 3.2.3. (R Foundation, Vienna, Austria).

Results
From September 2014 to January 2016, 1517 individu-

als were invited, 1001 (66.0%) agreed to participate in 

the VGO GPS study and were sent a GPS tracker. A total 

of 940 GPS tracks contributed to the current analyses, 

since not all GPS trackers were returned, and 870 tracks 

remained after data cleaning steps (Fig.  2). �e median 

total GPS measurement duration of all participants was 

187 h (IQR 143–235 h), no movement was detected for 

median 180 h (IQR 136–228 h) and movement was regis-

tered for median 6 h (IQR 4–8 h).

Mean age of the participants was 57  years (range 

20–72 years), 45% were male and 68% were employed or 

self-employed. Characteristics of participants are pro-

vided in Table 1. Based on GPS data, participants spent 

a median of 5.5  h/week outdoors: 0.3  h/week walking, 

1.1 h/week biking and 3.0 h/week in motorised transport. 

Median distance from home was 2.0 km for walking (IQR 

0.7–7.0), 2.0 km for biking (IQR 0.8–4.4) and 7.4 km for 

motorised transport (IQR 4.1–14.3) (Table 2).

�e (Q1) reported time spent outside was considerably 

longer compared to GPS measured time spent outside, 

indicating substantial overestimation (median 4.0 times 

longer). Especially walking and biking durations were 

longer based on self-reported compared to GPS meas-

ured durations (median 13.7 and 2.8 times overestimated, 

respectively), while time spent in motorised transport was 

similar (median 1.2 times higher), see Table 2 and Fig. 4. 

�e Cohen’s kappa analyses showed a very low agreement 

between self-reported and measured time spent outdoors 

(kappa of 0.09 and 0.01, based on tertiles in GPS and Q1 

data, and for using the same cut-off values of GPS data to 

categorise self-reported data, respectively).

Results of our models evaluating individual characteris-

tics on GPS measured mobility patterns are provided in the 

Additional file  1: Supplementary Tables  2 (percentages of 

time) and 3 (distances from the home address). Given the 

discrepancy of self-reports and GPS-measured informa-

tion, we refrained from evaluating correlates of self-reports.

For the overall percentage of time spent outdoors, cold 

average temperatures during the measurement period 

(below 5 °C) was associated with spending less time out-

doors (GMR 0.80–0.81), women spent less time outdoors 

compared to men (GMR 0.85–0.87). People owning a dog 

spent more time outdoors compared to non-dog-owners 

(GMR 1.15–1.16).

Compared to study participants with a low educational 

level, participants with medium or high educational level 

tended to use motorised over non-motorised transport. 

We found that obese people (BMI > 30 kg/m2) spent less 

time in non-motorised transport (GMR 0.69–0.74) and 

people with more workdays spent more time in motor-

ised transport (GMR 1.06–1.12).

Regarding distances from home while walking we 

observed that higher educated people tended to walk 

further away from their home (medium educational level 

GMR 1.31–1.51, high educational level GMR 1.54–1.93), 

while owning a dog decreased the distance walked from 

home (GMR 0.51–0.58).

People using beta-blockers walked and biked less far 

from home than people not using these drugs (walking 

GMR 0.60–0.71, biking GMR 0.60–0.63). Dog-owners 

also remained closer to the home while biking, compared 

with non-dog-owners (GMR 0.73–0.76).

Table 1 General characteristics of study population

Data obtained from Q1 (a) and VGO baseline questionnaire (b) [22, 23]

Variable Participants

Total respondents in data analysis (N) 870

Ageb [mean, (range)] 57.0 (20.4–72.0)

Sexb [N males, (%)] 391 (44.9)

Education  levelb: low [N (%)] 217 (24.9)

Medium [N (%)] 391 (44.9)

High [N (%)] 262 (30.1)

Job  statusa [N, working (%)] 592 (68.0)

Number of workdays per  weeka (mean, range) 2.1 (0-7)

Working from  homea [N (% of people with job)] 144 (24.3)

Outdoor  occupationa [N (% of people with job)] 70 (11.8)

Outdoor  occupationa [Hours per day(mean, range)] 4.6 (1–16)
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People with COPD and people with more workdays 

tended to travel longer distances from home in motor-

ised transport (GMR 1.42–1.51 for people with COPD 

and GMR 1.06–1.09 for each workday). Higher outdoor 

temperatures (20–25  °C) were associated with shorter 

distances travelled in motorised transport.

Discussion
We assessed mobility of a rural population of 870 persons 

in the Netherlands and found that participants signifi-

cantly overestimated their time spent outdoors in active 

transport when self-reported data pertaining to “usual 

mobility patterns” was compared to GPS measured 

Table 2 Data obtained from the GPS track and Q1

Time values are transformed into hours per week, distances are in km from the home address, distance values were only available from the GPS measurements. Time 

outdoors is a combination of time walking, time biking, time in motorised transport and other time outdoors

Variable Time in hours/week, distances in km

GPS Questionnaire

Time indoors [Median (IQR)] 162.5 (159.8–164.5) 146.0 (133.9–154.2)

Time outdoors [Median (IQR)] 5.5 (3.5–8.2) 22.0 (13.8–34.1)

Time walking [Median (IQR)] 0.3 (0.1–0.8) 4.0 (2.0–9.0)

Time biking [Median (IQR)] 1.1 (0.3–2.4) 3.0 (1.0–8.0)

Time in motorised transport [Median (IQR)] 3.0 (1.4–5.2) 3.5 (1.8–6.6)

Distances from home while walking [Median (IQR)] 2.0 (0.7–7.0)

Distances from home while biking [Median (IQR)] 2.0 (0.8–4.1)

Distances from home motorised transport [Median (IQR)] 7.4 (4.1–14.3)

Fig. 4 Boxplots for hours per week spent: indoors, outdoors, walking, biking and in motorised transport for GPS (blue) and Q1 (purple) data. Medians 

and interquartile ranges are provided in Table 2, these boxplots illustrate the great differences between GPS measured and self-reported data
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data. In addition, there was low agreement between self-

reported and measured categories of low, medium or 

high amount of time spent outdoors in active transport 

(kappa of 0.09). Finally, we identified a range of (partici-

pant) characteristics that were associated with differ-

ences in mobility patterns of our study population.

Strengths

Strengths of our study include the large dataset of GPS-

measured as well as self-reported mobility patterns. To 

the best of our knowledge, there are few previous studies 

with such extensive datasets. Most studies that focus on 

GPS measurements included fewer than 300 participants 

[14, 41]. Few larger studies with GPS measurements 

(Schuessler and Axhausen 2008 N = 4882 and Bohte and 

Maat 2009 N = 1104) [42, 43], did not evaluate charac-

teristics that explain observed differences in mobility 

patterns. Our study was embedded in a larger ongoing 

cohort study, providing additional information for all 

participants including health data, work and leisure time 

activities and data about the socio-economic situation 

of all participants. �is extensive dataset enabled us to 

explore correlates of a range of individual characteristics 

with mobility patterns of our rural study population.

Limitations

GPS data has been suggested to add to environmental 

epidemiological studies, because exposures with a high 

spatial variability may be more accurately assessed [18]. 

�is is certainly true in the case of GPS logging while in 

clear view of the sky; in this case, spatial accuracy has 

been reported to be very high (~2.5  m) [18, 44]. How-

ever, when a GPS is used indoors, the spatial accuracy 

of the measurements is strongly reduced [45]. �erefore, 

we used buffers around indoor locations to assign these 

points as being indoors. �is procedure thus clearly does 

not capture all aspects of mobility, but mobility close to 

home may have gone undetected. Note, however, that 

applying differently sized home buffers to differentiate 

indoor from outdoor points did not strongly affect our 

results. We used GPS measurements as a ‘gold standard’, 

although GPS measured locations can also have errors. 

However, we knew from previous work that in general, 

the accuracy is very high (<10 m) in 85% of the time even 

when used in an urban area [18]. Since we performed 

our study in a rural area, with less high-rise buildings, we 

expected that GPS positional error would not have a sig-

nificant effect on our findings. Nevertheless, our inabil-

ity to correctly differentiate measured locations to being 

either inside or in close proximity to the home likely 

misclassifies time spent in gardens as indoors. Other 

researchers have attempted to avoid this spatial accuracy 

problem by combining GPS measurements with other 

measurements, such as temperature [46] or a combina-

tion of accelerometer, magnetometers and light and tem-

perature sensors [47]. Such a procedure may however 

increase problems with study adherence if participants 

have to carry multiple devices, in addition to generating 

further data analysis complexity.

Another limitation of our study is that we do not have 

repeated GPS measurements and that participants were 

only monitored for 1 week. Mobility patterns may change 

over time, and vary especially with season and weather 

conditions, as found across our study group. However, we 

were unable to evaluate whether there are individual dif-

ferences in the adaptation of mobility patterns to weather 

or season.

Finally, in our study protocol, we inquired about “usual” 

daily mobility and not about the actual mobility patterns 

that participants had followed during our measure-

ment week. We tried to improve match of self-reported 

and measured data by additionally asking whether par-

ticipants had deviated from their “usual” weekly mobil-

ity patterns in Q2. We found no material differences in 

the correlates of mobility patterns in a sensitivity analy-

sis of participants who had not deviated from a usual 

week compared to the full population. Nevertheless, 

this temporal mismatch may have further contributed 

to observed variance between self-reports and measured 

values.

Comparison self‑reported and GPS measured mobility

We observed a striking overestimation in self-reported 

compared to measured time spent outdoors. Total time 

spent outdoors might be underestimated since we filtered 

out GPS locations in a 60  m buffer around the place of 

residence and 20 m of other indoor locations. In particu-

lar time spent walking was significantly overestimated. 

While overestimation of self-reported time spent walk-

ing as such is in line with previous reports, the amount 

of overestimation is not [14]. Kelly et  al. performed a 

systematic review quantifying differences between self-

reported and GPS-measured journey durations. Fourteen 

publications were included in the meta-analysis and self-

reported trip durations were overestimated in all included 

studies when compared to GPS measurements, overes-

timations ranged from 9.2 to 75.4% [14]. In our analysis 

we found an overestimation of 13.7 times for walking, 2.8 

times for biking and 1.2 times for motorised transport, 

which means that only overestimation for motorised 

transport is in line with what was reported by Kelly et al. 

[14]. �ere are three underlying reasons that may be driv-

ing this strong observed overestimation for time spent 

walking. First, in our questionnaire, we inquired about 

walking durations across different activities, but we did 

not clearly ask for walking that was performed exclusively 
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outdoors, but asked instead for walking that was done 

“travelling for work”. �is could have resulted in a con-

ceptual mismatch of self-reported and measured data, 

especially if a considerable part of daily walking is done 

indoors, e.g. during shopping for work-related purposes 

or if walking for work indoors (e.g. as a waiter or cleaner) 

is perceived as “travelling for work”. However, the contri-

bution of walking time of this question to overall walking 

time had a median below 1%, and only 9.2% of all par-

ticipants reported any walking for “travelling for work”. 

Second, the algorithm we used to assign transport modes 

used the 95th percentile of speed, acceleration and decel-

eration. �is algorithm described in Huss et al. [25] was 

the best performing algorithm to assign transport modes 

to GPS data, with a kappa agreement of 0.95 for assigned 

versus actual mode of transport. �e results reported by 

these authors were based on mobility of 12 participants, 

but speed patterns used to assign mobility in our data-

set might have had a wider variation. However, the speed 

patterns while walking, biking or in motorised transport 

are so distinct that we still expect the algorithm to be 

able to assign transport modes correctly in the majority 

of the cases. In addition, our algorithm assigned “stops” 

when the GPS device was not moving, if these stops 

occurred outdoors, transport modes were not assigned, 

further contributing to an underestimation of measured 

outdoor time. We checked the cumulative duration of 

outdoor stops for each participant, and encountered a 

maximum of 3  min over the whole study population. 

�erefore, we do not expect that the use of the algorithm 

would have introduced the difference in reported and 

measured mobility patterns. �ird, our rural population 

walked only very little outdoors, across the whole group 

we measured a median of just 15  min outdoor walk-

ing per week. Very short durations, however, are easily 

misreported and several of our participants also com-

mented that average weekly durations per activity were 

difficult to estimate. Over-reporting of walking times in 

our dataset was indeed much less pronounced in per-

sons who walked more (median 4.6 times over-reporting 

in the highest tertile of walking duration), compared to 

persons who walked less. Reasons for our rural popula-

tion to walk so little may be that in general, distances in 

rural areas tend to be large and many people may thus 

choose not to walk at all for their mobility needs. Mis-

reporting walking duration may introduce exposure mis-

classification in studies that attempt to assign outdoor 

exposures to these durations and/or locations. However, 

given the very short durations of walking outdoors, the 

absolute error in exposure assignment may still be lim-

ited. Also duration of biking was over-reported by our 

participants, which highlights that in general, partici-

pants overestimate their own amount of active transport 

outdoors. Motorised transport may be easier to estimate, 

especially if linked to a fixed schedule in public transport, 

or if a large part of motorised transport is regular com-

muting. In studies with a focus on potentially differential 

concordance/discordance of reported and logged activity 

locations this disagreement between self-reported and 

GPS measured spatial data is not present [48, 49]. How-

ever, in the current study our focus was on mobility and 

activity locations were not evaluated as such.

In several previous studies regarding GPS measure-

ments for assessment of physical activity, the authors 

have not solely relied on GPS measurements, but have 

combined these with activity diaries or recall inter-

views [14, 16–18]. Oliver et al. tested the usage of GPS 

and accelerometry tools to assess transport-related 

physical activity (i.e. walking, biking); the comparative 

standard in this study were questionnaire travel logs. 

�ey included 37 participants into their study and con-

cluded that GPS and accelerometry were good tools 

to assess walking and biking activity, although per-

formance of the questionnaire data was not assessed 

[19]. Sallis et  al. compared interviewer-administered 

and self-reported questionnaires, heart-rate monitors, 

and accelerometers for activity patterns of fifth grad-

ers. Both questionnaire approaches correlated quite 

well (Pearson’s r = 0.76) but correlation between ques-

tionnaires and objective measurements (heart-rate 

monitor and accelerometer) was lower (r  =  0.50 and 

r =  0.30, respectively) [50]. �ese effects can partially 

be explained with a tendency to answer in a socially 

desirable way, resulting in over-reporting of activity 

durations, as shown by Adams et  al. [20]. �is means 

that regression calibration using measurements (GPS 

or mobile phone data) performed in a subsample of 

study participants may represent a way to calibrate self-

reports [51], although this approach has not been vali-

dated in different populations.

Explanatory variables analyses

To the best of our knowledge we are the first to identify 

several correlates of mobility patterns, which may be 

especially relevant when assessing exposure to agents 

with a high spatial variability. For example, certain emis-

sions from livestock farms are only detectable at a short 

distance: detectable levels of viable organisms have been 

found between 150 and 160  m from pig stables [4, 52] 

and at 330 m from poultry stables [3]. Even higher spa-

tial variability can be observed for other environmental 

exposures, such as particulate matter [53] or electromag-

netic fields [2]. �is means that if mobility is relevant for 

personal exposure levels, using a general approach such 

as assigning exposure to the home address, will mis-

classify specific groups of people more than others. �e 



Page 11 of 13Klous et al. Int J Health Geogr  (2017) 16:30 

identified individual explanatory factors for differences 

in mobility patterns may thus further assist in regression 

calibration efforts for other studies, or in the interpreta-

tion of previous studies that did not take such explana-

tory factors into account.

Future perspectives
Until very recently, due to financial, logistic and data 

management limitations, GPS measurements were only 

used in a limited way for data collection in mobility 

assessment. When GPS measurements were collected, 

this was generally done in small samples of people. Self-

reporting with all its disadvantages including recall bias 

[11–14] was the default method to collect movement 

data on large cohorts of people [14]. With the increasing 

capabilities of smartphones [1, 54–57], new opportuni-

ties exist to gather objectively measured data regarding 

spatial positions of people. Dewulf et  al. illustrated this 

by combining location data from mobile phone network 

providers with air pollution data from a monitoring 

network in Belgium [1]. Using smartphones for loca-

tion assessment in studies may thus help in reducing 

the amount of measurement devices a participant has to 

carry around. It may further assist in upscaling objective 

measurements to large cohort study collectives. Epide-

miological studies relying on self-reports of usual mobil-

ity patterns should be aware of possible over-reporting of 

active transport patterns. Ways to mitigate this include 

improving temporal matching by using detailed activity 

diaries instead of asking for “usual” mobility, or possibly 

to improve reporting by regression calibration methods 

[58, 59].

Conclusions
We evaluated mobility of a rural population and found 

that participants significantly overestimated their time 

spent outdoors in active transport when self-reported 

data was compared to GPS measured data. We identi-

fied several correlates of mobility patterns, which may 

be especially relevant when assessing exposure to agents 

with a high spatial variability. If active transport outdoors 

is relevant for personal exposure levels, then using a gen-

eral approach such as assigning exposure to the home 

address will introduce exposure misclassification that 

will be stronger in some groups of people than in oth-

ers. Regression calibration using measurements or these 

identified explanatory variables may represent a way to 

calibrate self-reports in future studies.
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