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Abstract—We propose an approach where wireless devices,
interested in establishing a secret key, sample the channel impulse
response (CIR) space in a physical area to collect and combine
uncorrelated CIR measurements to generate the secret key. We
study the impact of mobility patterns in obtaining uncorrelated
measurements. Using extensive measurements in both indoor and
outdoor settings, we find that (i) when movement step size is
larger than one foot the measured CIRs are mostly uncorrelated,
and (ii) more diffusion in the mobility results in less correlation in
the measured CIRs. We develop efficient mechanisms to encode
CIRs and reconcile the differences in the bits extracted between
the two devices. Our results show that our scheme generates
very high entropy secret bits and that too at a high bit rate. The
secret bits, that we generate using our approach, also pass the 8
randomness tests of the NIST test suite.

I. INTRODUCTION

Growing work shows physical layer characteristics of wire-

less links such as multipath properties are different at dif-

ferent locations, and can be considered to be signatures of

wireless links. For example, Fig. 1 shows two channel im-

pulse response(CIR) [1], [2] magnitude measurements taken

at different locations. From the figure, the two measurements

are quite different due to varied channel conditions at the

two locations. The fact that these link signatures can be
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Fig. 1. Multipath properties at two locations.

measured almost symmetrically between two ends of a wire-

less link [3], but cannot be measured from another distinct

location has led researchers to suggest using these for secret

key establishment [4], [5], [6]. Secret key extraction from

link characteristics has the potential to provide an inexpensive

alternative to quantum cryptography [7], [8].

However, an adversary can be at one of the genuine wireless

endpoints’ locations and measure the same link signature.

Once the adversary steals some signature measurements it

has a good chance to determine the key generated with the

link signature measurements. We call the attack launched

in this manner the location locking attack. To avoid this

problem, existing work [5] has relied upon the movement in

the environment or the movement of the devices exchanging

the keys to perturb the wireless channel in an unpredictable

manner. Such unpredictable channel is expected to produce

unpredictable secret keys. Very interestingly, Jana et al. [9]

showed that in static scenarios, an adversary can actually

cause predictable movement in the environment and thus fool

the endpoints to extract deterministic secret keys that it can

extract itself. Alternatively, instead of depending on movement

in the environment, devices can themselves move to cause

variations in the wireless channel that gets translated into

secret keys. However, the device must continue to move during

key extraction. In this paper, we propose a different approach.

Instead of extracting keys from the temporal variations in

the channel, the wireless devices measure the wireless link

signatures at different unpredictable locations and combine

these measurements to produce strong secret keys. We use

the CIR as our wireless link signature1. Essentially, in our

approach, the wireless devices sample the CIR space in a

physical area to collect uncorrelated CIR measurements.

To understand our approach at a high level, consider two

devices Alice (A) and Bob (B), as shown in Figure 2. Assume

that these devices are mobile and are at different locations

at different times. Let ✂☎✄ be the CIR measurement of the

link between A and B when they are at any pair (denoted✆
) of specific locations. Let ✂✝✄ be measured accurately only

by devices A and B and no other device that is not at the

location of A or B or very close by. The two devices, A and

B, measure the CIR at different location pairs. Both A and B

use a previously agreed upon and publicly known function ✞
of these measurements, ✞✠✟✡✂☞☛✍✌✎✂✑✏✒✌✓✂✕✔✖✌✘✗✙✗✘✗✓✂✝✚✜✛ , to compute the

shared key. An important assumption here is that an adversary

can at best be at some of these locations where the CIR is

measured but not all and hence will not be able to compute the

secret key if ✢ is reasonably large. As long as the movement of

Alice and Bob is not fully retraceable, the change of location

does not need to happen at short time intervals. Note that

by using the samples in the CIR space, we do not preclude

1In this paper, our CIR is actually a vector of 25 channel impulse responses
measured over time.
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the benefits of channel variations caused by movement in

the physical✣ environment or that of A and B. Our novel use

of spatial sampling will significantly strengthen any existing

technique [5], [10] and make them more robust.

X1
X2

Xn

Device A

Device B

Fig. 2. Wireless devices A and B are shown to be measuring ✤✦✥ s at different
locations.

One of the important requirements for generating strong

keys is to pick ✂✝✄ s that are uncorrelated with each other.

However, the correlation among ✂ ✄ s depends on the multipath

characteristics of the physical environment, the step size of

movement, and in general the mobility model. We investigate

three mobility models - random walk, Brownian motion, and

Levy walk, in this paper. We also develop efficient mechanisms

to encode CIRs and reconcile the differences in the bits

extracted between A and B. Specifically, we propose a new

Jigsaw encoding scheme that keeps the mismatch rate in

reciprocal measurements, at A and B, low even when CIRs

are quantized with increasing bit numbers. We adopt Reed-

Solomon forward error correction to reconcile the bits that do

not match at A and B, and also analyze the computational

complexity of this process. Using extensive measurements in

both indoor and outdoor settings, we find that when movement

step size is larger than one foot the measured link signatures

are mostly uncorrelated. When using step sizes drawn from

continuous uniform, Levy, and Gaussian distributions in the

adopted three mobility models, we find more diffusion in

the model results in less correlation in the measured link

signatures. We also find that our scheme generates very high

entropy secret bits and that too at a high bit rate. The secret

bits, that we generate using our approach, also pass the 8

randomness tests of the NIST test suite [11] that we conduct.

The rest of this paper is organized as follows. In the next

section, we provide estimations of the size of the channel

impulse secret key space. In Section III we define the ad-

versary model. In Section IV we present a mobility assisted

secret key establishment protocol and propose a new encoding

scheme and discrepancy reconciliation method that work with

the protocol. Finally, in Section V, we evaluate the protocol

and examine the impact of mobility and different mobility

models on signature randomness and key extraction. The

related work are given in Section VI and conclusions are drawn

in Section VII.

II. CHANNEL IMPULSE RESPONSE SECRET SPACE

Before developing our sampling and key extraction strate-

gies, we first obtain an estimate of the size of CIR secret

Dataset 1 ✧✍★
Dataset 2 ✩✍✪
Dataset 3 ✩✖✫

TABLE I
SIZE OF SIGNATURE SPACE IN DIFFERENT ENVIRONMENT

space. This number tell us how many unique channel CIR

measurements are possible in a given physical environment.

For obtaining this number, we use the mutual information

between the CIR measurement and the location where the

measurement is taken. The details of the methodology to

obtain the mutual information from measurement data are

described in [12] and not a contribution of this paper. We apply

the methodology to obtain mutual information to three data

sets that we collect. These data sets essentially contain the CIR

measurements and the location information in three different

environments. Our measurement campaign for obtaining these

data sets will be described in Section V. Here, we only

present the estimates of the CIR secret space for the three

environments.

Table I shows the CIR secret space estimates for the three

data sets in bits. An estimated size of 34 bits means that ✬ ✔✮✭
unique CIRs can be obtained from this physical environment.

Now, 34 bits by itself is not a very large number and most

computers can very quickly try out all the ✬ ✔✯✭ possibilities.

However, when we use multiple 34 bit values in the function ✞ ,

we can obtain much longer keys. For example, if we organize

the ✬✒✰ uncorrelated measurements (ideally, these should be

✬✖✰ independent measurements) and permute them2, we will

increase the shared secret size by bits equivalent to ✬✖✰✲✱ .
This is because to break the secret an attacker will have

to try ✬✒✰✳✱ permutations in the worst case. Using Stirling’s

approximation [13], ✬✒✰✳✱ corresponds to about 61 bits thus

increasing the shared secret space to roughly 61+34 = 95 bits.

We can increase the size even more by increasing ✢ .

III. ADVERSARY MODEL

We consider an adversary that can overhear all the com-

munication between the two devices A and B. Our adversary

can also be in some of the locations where the transmitter or

the receiver has been in the past or will be in the future,

but the adversary does not know or cannot access all the

locations visited by the transmitter and the receiver. We assume

that the adversary cannot cause a person-in-the-middle attack.

Essentially, we do not address the issue of the authentication of

the endpoints (A and/or B) in this paper. We expect our secret

key extraction scheme to be used in conjunction with some

of the fingerprinting-based authentication being developed

elsewhere (e.g., [14], [15], [9]).

Our adversary is also not interested in causing any Denial-

of-Service attacks. Some existing approaches propose to se-

cure or hide the location where signature measurements are

taken. For example, in [6] the authors suggest to define a

2This means that ✴✶✵✷✤✹✸✍✺✻✤✽✼✾✺✻✤❀✿✙✺❂❁✎❁❂❁✻✤❀❃❅❄❇❆❈✤❉✸✮❊❋✤✽✼✍❊❋✤●✿✾❊✶❁✎❁✎❁❂❊❋✤✦❃ .
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threat region about the legitimate user and physically guarantee

that an attacker is not within this region. We do not make any

such assumptions.

IV. MOBILITY ASSISTED KEY ESTABLISHMENT

In this section, we first describe the our simple secret

key establishment protocol between A and B that counters

the threat that may arise from the adversary described in

Section III. Next, we present the important building blocks

of the protocol including CIR quantization, bit extraction, and

encoding. Finally, we explain how to use Reed-Solomon (RS)

error-correcting code to reconcile bit mismatch between the

two communicating parties and ensure information (key bits)

confidentiality at the same time.

A. Key Establishment Protocol

Our key establishment protocol between A and B is divided

into three phases. Fig. 3 shows the message exchange of the

protocol. In the first phase, called SIGGEN (short for signa-

ture generation), A and B exchange SIGGEN and SIGACK

messages to allow them to measure a sufficient number of

reciprocal CIR. Note that due to hardware differences and

the differences in time instances at which the channel mea-

surement is performed at A and B, the measured CIR is not

perfectly reciprocal. We will address this imperfect reciprocity

below. Between each pair of SIGGEN and SIGACK message

exchange, A and B individually, or both move to a new

location.

In the second SIGCHK (short for signature check) phase,

upon receiving the SIGCHK message from A, B quantizes

all CIR it has measured and removes any duplicates. He

then encodes the remaining quantized CIRs to produce both

message symbols and parity symbols. Next, in the SIGFEC

(short for signature forward error correction) phase, B sends

only the parity symbols to A in multiple SIGFEC messages.

Upon receiving all the SIGFEC messages, A quantizes the

corresponding CIRs that she had measured and encodes them

to produce message symbols. B informs A about which CIR

measurements to use. This is done with the help of sequence

numbers. A then combines her message symbols with parity

symbols she receives from B to obtain a bit stream that is

identical to that of B. In the final KEYGEN (short for key

generation) phase, A and B generate a new secret key with

the reconciled bit streams and verify that they indeed have the

same key through a simple challenge response exchange.

We describe the mechanisms to quantize link signatures

and extract bits and to perform encoding and error correction

in the following subsections. The estimate of the CIR secret

space (as in Section II) and the size of the required secret

key determine how many CIR measurements are necessary for

secret key extraction. To convert the bit stream obtained from

the CIR measurements, we utilize a key compression function.

This compression function uses the 2-universal hash family

to perform Privacy Amplification [16]. Privacy amplification

minimizes the possible correlation among input bits of the bit

stream and compresses the raw bits to the chosen key size with

Fig. 3. Mobility Assisted Key Establishment. The sequence numbers used
by different messages are denoted as msn and csn.

a target function. We use SHA-256, SHA-384, and SHA-512

as the target function to produce keys of 256, 384, and 512 bits.

For a given fading environment and protocol configuration, not

every measured CIR can be reconciled, so our protocol cannot

ensure successful secret key establishment all the time and

hence is opportunistic. We use a Bloom filter3 [17] for finding

duplicates among quantized CIRs in an efficient manner in the

SIGCHK phase above.

B. Quantization and Bit Extraction

Because CIRs are continuous random variables, we must

quantize them in order to use them for secret key generation. In

this paper, we adopt the widely-used uniform quantization [18]

to quantize CIR measurements. In order to quantize CIR into

integer vectors that can be easily converted to binary bits,

we first normalize each CIR with its maximum element value.

Channel impulse response normalization is also avoids the im-

pact of the intentional manipulation of the transmitting power

by an attacker or to filter out the effect of the slow temporal

changes in the average signal power. Next, to quantize the

normalized CIR to ✬■❍ discrete values with equal intervals,

we multiply these values with ✬❏❍ and then round them to the

nearest integers in the range of ❑ ✰❇✌✯✬■❍▼▲❖◆✍P . We simply convert

integers in the resulting vector to their binary representation

to extract the initial bits that we use later for secret key

generation.

C. Jigsaw Encoding

Although uniform quantization is simple and easy to im-

plement, we find when increasing the quantization bit number◗ from ◆ to ❘ , the rate of the discrepant elements in the

quantized CIRs, that are not measured the same at A and

3A Bloom filter is a space-efficient probabilistic data structure that is often
used to test memberships in a set.
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Quan Bits ❙ ✩ ✧ ★ ❚ ❯ ✫ ❱
UniQuan Mean ❲✒❁ ❲✍❲✍❯✍★ ❲✒❁ ❲✍✪✍❲✍❱ ❲✒❁ ❙❳✪✍❚✍✩ ❲✒❁ ✧✍❯✍❯✍❲ ❲✒❁ ★✍❱✍✩✍★ ❲✒❁ ❯✍★✖✫❳❯ ❲✒❁ ✫❳❚✍❯✍❲ ❲✒❁ ❱✍★✍★✍❱
JigEnc Mean ❲✒❁ ❲✍❲✍✧✍✩ ❲✒❁ ❲✍✩✍✧✍✩ ❲✒❁ ❲✍✧✍❲✖✫ ❲✒❁ ❲✍✧✖✫❳★ ❲✒❁ ❲✍✧✖✫❳✩ ❲✒❁ ❲✍✧✖✫❳✪ ❲✒❁ ❲✍✧✍❱✍❲ ❲✒❁ ❲✍✧✍❱✍❲
JigEnc Std ❲✒❁ ❲✖❙❳✩✍✧ ❲✒❁ ❲✖❙❳✪✍❯ ❲✒❁ ❲✍✩✍✧✍❯ ❲✒❁ ❲✍✩✍✩✍❱ ❲✒❁ ❲✍✩✍✧✖❙ ❲✒❁ ❲✍✩✍✧✍❲ ❲✒❁ ❲✍✩✍✧✖❙ ❲✒❁ ❲✍✩✍✧✍✩

TABLE II
DISCREPANCY RATE IN RECIPROCAL LINK SIGNATURE MEASUREMENTS
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(a) Uniform Quantization (b) Jigsaw Encoding

Fig. 4. Comparison of the uniform quantization and the jigsaw encoding, showing (a) a pair of reciprocal link signatures that are uniformly quantized, and
(b) one signature of the pair that is uniformly quantized and then encoded with the Jigsaw scheme. The dark colored patterns represent random numbers from
the one-map and the light colored patterns stand for numbers from the zero-map.

B, grows dramatically. Table II lists the discrepancy rate in

a sample bi-directional measurement set. The row “UniQuan

Mean” shows the rates with only uniform quantization. In this

row the rate increases from ✰✶✗ ✰✒✰✖❨✒❩ to ✰❇✗ ❘✖❩✒❩✖❘ . Even quantized

with only ❬ bits, there are ◆✍❭✶✗ ❪✒✬✳❫ of elements in each pair

of reciprocal CIRs that do not agree with each other. Because

reciprocal measurements should be very similar, these results

suggest that the simple uniform quantization cannot preserve

reciprocity and even increase the discrepancy rate in quantized

CIRs.

Fig. 4(a) shows a pair of reciprocal link signatures that are

uniformly quantized. It appears the two link signatures are very

similar, whereas they have 14 out of 25 elements (❪✖❨✲❫ ) that

do not agree. The high discrepancy rate results from the fact

that each element is represented only by a single quantized

value. For example, the elements at the delay ❘ are ✬✒❬ and

✬✖❩ . They agree on the first ✬✖❬ units and differ only at the last

unit. Because they are represented with the sum of these units,

their similarity is hidden. To solve this problem, we propose to

further encode each uniformly quantized value with multiple

values. We call the new encoding scheme Jigsaw Encoding. In

this scheme, we make use of two random number maps that

are shared between the two parties. Each map is a matrix of ✬❏❍
rows and L columns where ◗ is the quantization bit number

and L is the link signature length. The matrix elements are

random numbers of ❴ bits with the first bit as the sign bit.

All random numbers in the first map has the sign bit of one so

it is called one-map. All random numbers in the second map

has the sign bit of zero so it is called zero-map. We patch

the two maps together to form a jigsaw map. We define the

joint points of the jigsaw map by quantized element values

of the CIR. For example, the A-to-B link signature in Fig.

4(a) is encoded with the new method in Fig. 4(b). Because

the element at the delay ❘ is ✬✖❩ in this signature, the method

encodes this value in a column of random numbers with the

first ✬✖❩ numbers chosen from the one-map (depicted with

dark colored patterns) and the last ❵ numbers (since signature

elements are quantized in ❑ ✰✶✌❂❬✳◆✾P ) from the zero-map (depicted

with light colored patterns). The numbers are chosen according

to their positions in the ❘■❛❝❜ columns of the two maps. If we

apply the same method to the B-to-A signature in Fig. 4(a),

at the time delay ❘ they will have ❬✒✰ numbers agree (23 from

the one-map and 7 from the zero-map) and only ◆ number

discrepant. Therefore, the additional Jigsaw encoding helps

to expose reciprocal similarity greatly. The big improvement

is illustrated by the discrepancy rates at the second row of

Table II. This improvement is achieved by replacing a single

quantized element value with an array of random symbols.

The original value is encoded as the partitioning index that

divides the array symbols into groups from the two maps. We

utilize random symbols instead of some constant value for two

reasons. First, we will encode random numbers in the Jigsaw

map further in the RS scheme described below which has a

requirement of the number of bits per symbol. Second, because

the RS scheme treats input symbols as the coefficients of a

polynomial to generate output symbols, if all input symbols

only have two constant values, they would compromise the

error-correction strength of the scheme.

D. RS Error Correction

We adopt the RS forward error correction (FEC)

scheme [19] to reconcile any discrepancies in reciprocal mea-
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surements of CIR. FEC works by sending redundant data in

addition to messages so that the receiver can detect and correct

errors within some bound. Our adoption of FEC is a little

different from its conventional use. We send only redundant

data (parity symbols) because the other party already has its

own encoded CIR, although with some errors.

The RS code works by determining a degree ❞✑▲❡◆ poly-

nomial and treating every ❞ symbols of the input message as

the coefficients of the polynomial. It encodes the coefficients

by evaluating the polynomial at various points. Each output

codeword has ❢ symbols including ❞ input symbols followed

by ✬❤❣❥✐ parity symbols. ✐ is the error-correction capability

of the (p,k) RS code. This relation is described in Eq. 14. In

addition, the codeword length ❢ is determined by the symbol

bit-number ❴ as shown in Eq. 2.

✐❧❦ ❢❈▲♠❞
✬ (1)

❢ ❦ ✬❏♥♦▲♣◆ (2)

q ❦ ✐
❞ (3)

In our adoption of the RS code, the sender transmits the

parity symbols of codewords in the link layer payload. Because

link layer error control (i.e. retransmission of erroneous pack-

ets) is provided in wireless networks, we assume these symbols

are always received correctly at the other party. Therefore, the

inconsistent symbols can only appear in the input message

portion (the reciprocal signature) of the codewords. This situ-

ation leads to the definition of the link signature discrepancy

rate q in Eq. 3.

✐❧❦
q ❣r✟s✬ ♥ ▲♣◆✖✛
◆✉tr✬✝❣ q (4)

✈ ❦ ✬ ❍✙✇②①✖③⑤④✶⑥⑦✮⑧⑩⑨✕❶ ✬ ❍✙✇❸❷✡④✲❹⑦✙❺ ❹ ❻✜❷ ✇
✏✘❼ ④ ⑧ (5)

Note that the use of FEC also has security implications.

There are predominantly two concerns with the use of FEC.

First, it might be possible for a third party to use the parity

symbols and correct its own CIR to match the actual CIR

between A and B. Second, the parity symbols might them-

selves give away information on the actual bits of the CIR. We

address the first problem by constraining the error-correction

capability ✐ , for a given symbol size ❴ , to limit the reciprocal

rate to q , as governed by Eq. 4. If the measured CIR of the

attacker has more errors than the reciprocal discrepancy q , the

public parity symbols will not be able to turn the attacker’s

CIR into the legitimate CIR. To address the second problem,

we make the discovery of the coded link signature using brute

force and public parity symbols computationally infeasible.

The reciprocal CIRs can have up to ✐ inconsistent symbols

among a total of ❞ symbols. This means that the two parties

share at least ❞✹▲r✐ message symbols in order to convert one

signature into the other. Without this shared information, an

attacker will have to find the joint points of ❽❿❾ ❛✏ ⑧ columns

4For the convenience of analytical reduction, we ignore the requirement for➀
to be an odd integer here. The approximation can cause

➀
off by a value

smaller than 2.

( ◗ is the quantization bit number) in the jigsaw map to obtain

❞☎▲♠✐ correct symbols. Given ✬■❍ possible values each joint

point can take, to have all correct joint points at the same

time, the computational complexity
✈

would be as large as

defined in Eq. 5. For ❴➁❦➂◆✾✰ and ◗ ❦➃❪ , it is larger than

✬ ☛➄✔✮✔ . For ❴➅❦➆◆✍✰ and ◗ ❦➇◆➈✌❂✬ , it is in the order of ✬ ✭✯✏✮➉ .
It should be noted that due to the exponential decrease of☛✏ ⑧ the complexity drops very fast with larger quantization bit

numbers, and because its maximum value is ✰❇✗ ❪ , symbols must

have more than 8 bits to obtain a complexity larger than ✬ ☛s✏✮➊ .
V. PROTOCOL EVALUATION

In this section, we evaluate the proposed protocol in three

steps. First, we assess the impact of device mobility on

measured link signatures. Then, we investigate its impact

on key generation. Finally, we evaluate the quality of the

generated keys.

A. Mobility Models

To study the impact of device mobility, we use three

mobility models. These three models are among the most

popular mobility models used for evaluating wireless research.

Fig. 5 shows sample trails of these three models. Fig. 5(a)

exhibits a trail of the Random Walk model [20]. It is created by

starting from a random location in the specified area, walking

toward another randomly selected location in the area in each

step, and repeating. Fig. 5(b) displays a trajectory of the Levy

Walk model [21]. This model is also created with a sequence

of steps. Each step is defined by a uniformly distributed

direction and a step size drawn from a Levy distribution as

defined in the following Eq. 6. The exponent ➋➌❦➍✰✶✗ ❘ in this

example.

✞✘➎②➏❂✟✡➐⑩✛⑩❦ ◆
✬❿➑

➒

❾ ➒➔➓
❾ ✄ ❛❝→ ❾↔➣ ↕ ❛ ➣➛➙❏➜ ✐ (6)

When ➋➝❦➞✬ in the Eq. 6 the Levy distribution reduces to

a Gaussian distribution. Using this distribution for the step

size, we can create a Brownian Motion model as demonstrated

by Fig. 5(c). This model depicts the random movement of

particles suspended in a liquid or gas. It can be seen from

Fig. 5 that the three mobility models demonstrate decreasing

diffusion, so they form a valuable suite to study the impact

of device mobility. Although researchers have established the

similarity between the Levy Walk pattern and the outdoor

human mobility, it will be valuable to study the other two

simpler models. Moreover, it is also known the Levy Walk

model does not account for social constraints and geographic

restrictions [21].

B. Measurement Campaign

We collect five sets of measurements for this study. The

first two sets are collected at multiple discrete locations along

the trails generated by the three mobility models. We take the

first set of measurements in a large lobby of an engineering

building on the University of Utah campus (Indoor Trail set).

We collect the second set of measurements on a flat square
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Fig. 5. Three Mobility Models

outside of the building (Outdoor Trail set). We collect the next

two sets of measurements on two grids of different scales. The

first grid measures 30 by 30 foot with a grid line distance of

1 foot, and the second grid is 14 by 26 inch with a grid line

distance of 2 inch. Measurements are taken at every cross

point of the grids. We refer to measurements in the first set as

Grid measurements and those in the second set as Fine Grid

measurements. The last set of measurements is taken at one

fixed indoor location (Stationary set).

We obtain all measurements with a Direct Sequence Spread

Spectrum (DS-SS) transmitter and receiver. The transmitter

sends a DS-SS signal with a 40 MHz chip rate, a 1024 code

length, and a center frequency of 2443 MHz. These signals

are essentially unmodulated pseudo noise which span the US

ISM band. The receiver correlates the received signal with he

known DS-SS signal to estimate the CIR. We rely on trail

measurements to accurately reflect the relationships between

measurements at the various points in space determined by

the mobility models. Since we can sample only a limited

number of trails, it is possible that some features disclosed by

trail measurements are not universal to the movement pattern.

Therefore, we always use grid measurements to verify results

obtained from trail measurements. Because grid measurements

cover grid areas with limited precision, we can generate

numerous ‘quantized’ trails for testing.

C. Impact of Mobility on Link Signatures

In this subsection, we investigate how various mobility

models affect correlation among measured CIRs. For this

purpose, we use the correlation coefficient between pairs of

CIRs, ✂✝✄ and ✂☎➟ , defined as

➠ ➎②➏❋➡ ➎⑩➢❀❦
➤ ✟✯✟✡✂ ✄ ▲➦➥▼➎❈✛❂✟✡✂ ➟ ▲➦➥▼➎➧✛✯✛➨ ✏➎

However, instead of using just a single value given by the

above equation, we plot the histogram of all the values ✟✡✂ ✄ ▲
➥ ➎ ✛✯✟✡✂✝➟➩▲❥➥ ➎ ✛✓➫ ➨ ✏➎ to study their distribution.

Fig. 6 and Fig. 7 show that the more diffusive a mobility

model is the less correlated its measurements become. In Fig.

6(a), the correlation among the CIRs of the Random Walk

model lie in [0.6, 1], while that of the Levy Walk model

and the Brownian Motion model lie in [0.7, 1] and [0.9,1],

respectively. Surprisingly, Fig. 6(b) does not show the similar

trend in correlation. In comparison to the two subfigures

of Fig. 6, we can notice the striking difference in their

correlation distributions. The correlation values of the Fine

Grid measurements predominantly concentrate to the right of

0.6, whereas the correlation values of the Grid measurements

are mostly centered at 0.4. This disparity suggests most Fine

Grid measurements are correlated but most Grid measurements

are not. The lack of a trend in Fig. 6(b) can be explained

by measurements occurring at coarsely-quantized mobile trail

points, rather than the actual trail points.

The distance between measurement points in the Grid set is

1 foot. We suspect that this coarse grid quantization has “ho-

mogenized” the three mobility models, and thus the correlation

distributions in Fig. 6(b) does not show any differences in the

three mobility models. On the other hand, because the line

distance in the Fine Grid is only 2 inch, the approximation

leads to smaller errors, and thus the different impact of the

three models is preserved and reflected on Fig. 6(a). Further,

close observation of correlation distributions in Fig. 6(b) shows

some model differences. The correlation values of the Random

Walk model spread wider than values of the other two models.

The Levy Walk model also has a somewhat wider distribution

than the Brownian Motion model. The Brownian Motion

model also shows more spikes with value close to one than

the other two models.

When we turn our attention to Fig. 7 we see clearer

indications of model impact. In Indoor Trail and Outdoor Trail

sets all measurements are taken at the exact locations of the

model trails, so there is no loss of precision. Because indoor

environments provide rich multipath environments compared

to outdoor environments, at a given spatial separation, indoor

measurements will be less correlated. The higher correlation

in outdoor environment measurements obscures the effects of

movement.

D. Impact of Mobility on Key Generation

In this subsection, we evaluate how mobility models impact

the generation of unique quantized CIRs (that we call binary

signatures). Fig. 8 compares the unique binary signature rates

in two data sets: the Stationary set where all signatures

are collected at the same location, and the Grid set where

signatures are taken while device can be moved to any location

of a grid. Our first discovery is that signatures measured

without moving indeed have a large number of duplicates.

When quantized with one bit the unique signature rate is
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(a) Fine Grid measurements
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Fig. 6. Impact of mobility on signature correlations in the two grid measurement sets.
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Fig. 7. Impact of mobility on signature correlations in the two trail measurement sets.
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Fig. 8. Impact of mobility adoption on unique binary signatures.

as low as 0.44%. Even when quantized with five bits, there

are 5% of duplicate signatures in the Stationary data set.

These results certainly show the need for removing duplicates.

According to Eq. 5 the computation for an attacker to acquire

a legitimate link signature using brute force and public parity

symbols drops very fast with larger quantization bit numbers.

Thus, the duplicate rates at small quantization numbers play

an important role. We also observe that the adoption of device

mobility greatly improve the unique signature percentage with

the average improvement of 31% as illustrated by the rates of

the Grid measurements at different quantization bit values.
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Fig. 9. Impact of mobility models on unique binary signatures.

Fig. 9 shows the impact of different mobility models on

the unique signature rate. When comparing this figure with

Fig. 8, it is clear that any movement pattern would help lower

the duplicate rate and improve signature randomness. When

quantized with one or two bits the three mobility models

demonstrate similar trend in affecting the unique signature
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rate as the trend shown in affecting the continuous-valued

signature correlation. The Brownian Motion has the least

impact in avoiding duplicate signatures, the Levy Walk has

the medium impact, and the Random Walk has the largest

impact. However, when quantized with more than two bits,

the Brownian Motion model suddenly exhibits a little more

impact than the Levy Walk model. This change may reflect

that the Levy Walk model results in signatures with bigger

differences than those of the Brownian Motion but it does not

necessarily create more changes than the Brownian Motion.

This situation is quite interesting since it does not show up

or is not clear in the continuous-valued measurements. The

Random Walk model, on the other hand, consistently yields the

highest unique signature rate with all quantization bit numbers.

E. Quality of Key Generation

We evaluate two aspects of the quality of key generation

- the quality of keys, and the efficiency of key extraction.

We assess the quality of keys using two methods. First, we

run 8 tests from the NIST test suite [11] on the secret bits

generated using the indoor Levy walk data. Table III shows

the results that we obtain from the NIST tests. Because the

P-values in all tests are larger than the threshold, ✰❇✗ ✰✳◆ , our

secret key bits show good randomness according to the tests.

Next, we compute the entropy values of the secret keys.

Fig. 10 shows the entropy for different data sets. All entropy

values of our keys are very close to ◆❿✗ ✰ indicating a high

degree of uncertainty. For comparison, we also calculate the

entropy values of keys generated using an existing method [5]

proposed by Mathur et al. All entropy values from Mathur’s

method are in the range of ❑ ✰❇✗ ❨❇✌✯✰❇✗ ❘✖P . Therefore, our method

generates keys with higher entropy in comparison to Mathur’s

method.
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Fig. 10. Entropy comparison between Mathur’s method and ours. RW, LV,
and BM represent the indoor random walk, levy walk, and Brownian motion
measurement sets. ORW, OLV, and OBM are outdoor measurement sets from
the respective models

To assess the the efficiency of key extraction, we use a

metric called Secret Bit Rate that defined as the average

number of secret bits extracted from each channel response.

Our protocol compresses reconciled signature raw bits to a

key size determined by the user. The user needs to estimate

this size according to the information entropy of the signa-

ture space in the measured environment. Because there is

no well recognized way to estimate this size yet, for our

evaluation purpose we take a simple and conservative approach

to estimate a lower bound of this size. In Fig. 11, we plot

the entropy values of the bit stream generated with different

quantization bit numbers (per channel response). We find in

all six measurement sets, the entropy values monotonously

increase with growing quantization bit numbers until they

reach a saturation point, after which they fluctuate mildly. It

seems before the saturation point, increase in the size of the

key would increase entropy while after the saturation point

adding more bits will not necessarily results in increased

entropy. Based on this observation, we consider the key size

generated with quantization bit number immediately before

the saturation point as a lower bound of the real key size.

Using the lower bound key size we compute the secret bit

rates in different measurement sets and plot them in Fig. 12.

We also plot the secret bit rates from the existing Mathur’s

method using the same measurement sets. As illustrated in

the figure, while the existing method generates ✰❇✗❝◆✍✰✕▲♠✰❇✗❝◆✍❭
bits per link signature, our method generates ✬❇✗ ❪✖❭➭▲✝❪ bits per

signature, which is more than one order of significance (note

the logarithm y axis) higher than the existing method.

1 2 3 4 5 6 7 8
0.8

0.82

0.84

0.95

0.88

0.9

0.92

0.94

0.96

0.98

1

Quantization Bit Number

E
n
tr

o
p
y

RW
LV
BM
ORW
OLV
OBM

Fig. 11. Entropy comparison between bits generated with different quanti-
zation bit numbers.

RW LV BM ORW OLV OBM
10

−2

10
−1

10
0

10
1

10
2

Measurement Sets

S
e
c
re

t 
B

it
 R

a
te

Mathur
Jigsaw RS

Fig. 12. Secret bit rate comparison between Mathur’s method and ours.



9

Quan Bits ❙ ✩ ✧ ★ ❚ ❯ ✫ ❱
Frequency ❲✒❁ ❱✖❙ ❲✒❁ ❚✖❙ ❲✒❁ ★✍✪ ❲✒❁ ★✍❱ ❲✒❁ ✩✍✧ ❲✒❁ ✩✍✪ ❲✒❁ ❙❳❱ ❲✒❁ ❚✍✧
Block Frequency ❲✒❁ ✫❳❱ ❲✒❁ ✪✍✩ ❲✒❁ ★✍❯ ❲✒❁ ❯✍★ ❲✒❁ ✧✍❲ ❲✒❁ ❚✍❱ ❲✒❁ ❯✖❙ ❲✒❁ ❱✍❯
Cumulative sums(Fwd) ❲✒❁ ❱✍❚ ❲✒❁ ❱✍❲ ❲✒❁ ✫❳✧ ❲✒❁ ✧✍❚ ❲✒❁ ✩✍❲ ❲✒❁ ✧✍❱ ❲✒❁ ✩✍❯ ❲✒❁ ★✍✪
Cumulative sums(Rev) ❲✒❁ ✪✍✪ ❲✒❁ ❚✍❯ ❲✒❁ ✧✍❱ ❲✒❁ ❱✍✩ ❲✒❁ ★✍✩ ❲✒❁ ✩✍❱ ❲✒❁ ✧✖❙ ❲✒❁ ✫❳❲
Runs ❲✒❁ ❲✍✧ ❲✒❁ ★✍✩ ❲✒❁ ✪✍✪ ❲✒❁ ✩✍✪ ❲✒❁ ❯✍✧ ❲✒❁ ✫❳❯ ❲✒❁ ❚✍✩ ❲✒❁ ❙❳★
Longest run of ones ❲✒❁ ❚✍❚ ❲✒❁ ✪✖✫ ❲✒❁ ❙❳✪ ❲✒❁ ❚✖❙ ❲✒❁ ❚✍✧ ❲✒❁ ✩✍❲ ❲✒❁ ❲✍★ ❲✒❁ ❯✖❙
FFT ❲✒❁ ❱✍✪ ❲✒❁ ❱✍✪ ❲✒❁ ✪✍✩ ❲✒❁ ✫✍✫ ❲✒❁ ✪✍❱ ❲✒❁ ❱✍✪ ❲✒❁ ❙✍✫ ❲✒❁ ❲✖✫
Approx. Entropy ❲✒❁ ★✖❙ ❲✒❁ ❲✍✧ ❲✒❁ ❙✍✫ ❲✒❁ ✫✍✫ ❲✒❁ ✪✖❙ ❲✒❁ ✪✍❲ ❲✒❁ ❲✍❯ ❲✒❁ ❙❳❲
Serial ❲✒❁ ❚✍✪✒✺❝❲✒❁ ✫❳✩ ❲✒❁ ❚✍❲✒✺✡❲✒❁ ✫❳❚ ❲✒❁ ❯✍★✒✺✻❲✒❁ ✧✖✫ ❲✒❁ ✧✍★✒✺❝❲✒❁ ✧✖✫ ❲✒❁ ✪✍❯✒✺✻❲✒❁ ❱✍❱ ❲✒❁ ✪✍❲✒✺❝❲✒❁ ✪✍❱ ❲✒❁ ✩✍✩✒✺✻❲✒❁ ✧✍✪ ❲✒❁ ❙❳❯✒✺✻❲✒❁ ❙❳❲

TABLE III
NIST STATISTICAL TEST P-VALUES OF THE GENERATED KEYS.

VI. RELATED WORK

There is a large amount of literature on extracting secret

key bits from variations in received signal strength (RSS)

measurements (e.g., [9], [5], [22], [23]). These existing works

depend upon movement of the devices or in the surroundings

to cause the variations. They do not consider the variations of

RSS in space. Similarly, a few of other existing approaches [5],

[10], [24], although use the CIR, extract keys from short

term temporal variations of the CIR. We use CIR in our

research as well. As in [10], we also use forward error

correction for reconciling any mismatch in bits at Alice and

Bob. However, our work differs from these existing works

in the following significant ways. First, we use movement

only to sample the channel impulse response space at different

locations and then combine these to generate strong keys. As

long as this movement is not fully retraceable, the change of

location does not need to happen at short intervals. Second, we

examine different mobility models to see which ones are more

effective in giving us uncorrelated samples. Third, we propose

a new Jigsaw encoding scheme that keeps the mismatch rate

in reciprocal measurements, at the two parties interested in

establishing a secret, low even when channel responses are

quantized with increasing bit numbers. Last, we evaluate our

approach using extensive measurements in real environments.

VII. CONCLUSIONS

We proposed a new approach for secret key establishment

between two wireless devices where the two devices measure

the CIRs at different locations and combine these measure-

ments to produce a strong secret key. We studied the impact of

three mobility models in obtaining uncorrelated CIRs. We also

developed efficient mechanisms to encode CIRs and reconcile

the differences in the bits extracted between the two devices.

Our evaluations showed that our scheme generated very high

entropy secret bits at a high bit rate. In the future, we plan

to implement our scheme on the Universal Software Radio

Peripherals (USRPs) for real time experimentation, and to

build a thorough understanding of the strengths and limitations

of our methods.
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