
This is an Open Access document downloaded from ORCA, Cardiff University's institutional

repository: http://orca.cf.ac.uk/100342/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Bittencourt, Luiz F., Diaz-Montes, Javier, Buyya, Rajkumar, Rana, Omer Farooq and Parashar,

Manish 2017. Mobility-aware application scheduling in fog computing. IEEE Cloud Computing 4

(2) , pp. 26-35. 10.1109/MCC.2017.27 file

Publishers page: http://dx.doi.org/10.1109/MCC.2017.27 <http://dx.doi.org/10.1109/MCC.2017.27>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page

numbers may not be reflected in this version. For the definitive version of this publication, please

refer to the published source. You are advised to consult the publisher’s version if you wish to cite

this paper.

This version is being made available in accordance with publisher policies. See

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications

made available in ORCA are retained by the copyright holders.

1

Mobility-aware Application Scheduling

in Fog Computing
Luiz F. Bittencourt, Member, IEEE, Javier Diaz-Montes, Senior Member, IEEE, Rajkumar Buyya, Fellow, IEEE,

Omer F. Rana, Senior Member, IEEE, Manish Parashar, Fellow, IEEE

Abstract—Fog computing provides a distributed infrastructure
at the edges of the network, resulting in low-latency access and
faster response to application requests when compared to central-
ized clouds. With this new level of computing capacity introduced
between users and the data center-based clouds, new forms of
resource allocation and management can be developed to take
advantage of the Fog infrastructure. A wide range of applications
with different requirements run on end-user devices, and with
the popularity of cloud computing many of them rely on remote
processing or storage. As clouds are primarily delivered through
centralized data centers, such remote processing/storage usually
takes place at a single location that hosts user applications and
data. The distributed capacity provided by Fog computing allows
execution and storage to be performed at different locations. The
combination of distributed capacity, the range and types of user
applications, and the mobility of smart devices require resource
management and scheduling strategies that takes into account
these factors altogether. We analyze the scheduling problem in
Fog computing, focusing on how user mobility can influence
application performance and how three different scheduling
policies, namely concurrent, FCFS, and delay-priority, can be used
to improve execution based on application characteristics.

Index Terms—Distributed computing, Distributed manage-
ment, Middleware, Scheduling algorithms.

I. INTRODUCTION

Computing requirements of mobile users continue to in-

crease, as computing and communication capabilities of smart

and wearable devices and in-vehicle systems continue to

improve. Many applications rely on remote resources to off-

load and complete tasks, primarily through the use of a large-

scale computing facility hosted within a data center. Such

cloud systems are also able to support applications by storing

data and processing tasks offloaded by mobile or fixed devices.

With increasing focus on Internet-of-Things (IoT), the myr-

iad of devices (expected to be) scattered everywhere and con-

nected to the Internet, producing and consuming data, requires

scalable resource management at unprecedented levels [1]. The

data dynamism and heterogeneity resulting from this expected

explosive expansion of connected devices, commonly referred

in a broad sense as Big Data, also requires new processing

models and infrastructures to support its main dimensions –

data volume, velocity, and variety. One key aspect of this

Luiz F. Bittencourt was with the Institute of Computing, University of
Campinas, Brazil, e-mail: bit@ic.unicamp.br

Omer F. Rana was with the School of Computer Science & Informatics,
Cardiff University, UK

Javier Diaz-Montes and Manish Parashar were with the Rutgers Discovery
Informatics Institute, Rutgers University, USA.

Rajkumar Buyya was with th CLOUDS Lab, Computing and Information
Systems, University of Melbourne and ManjraSoft, Australia

new era is that both data consumption and production are

heavily distributed and at the edges of the network – i.e.

closer to/at end-user devices. While the centralized data center

model of cloud computing can cope with many types of

applications and large amounts of data, its infrastructure and

network connection to the edge are not designed to handle this

Big Data phenomenon. In this context, computing and data

management models that support computing capacity at the

edges of the network are now a focus of significant research.

Mobile clouds, vehicular networks, and fog computing are

examples of new distributed computing models that leverage

edge capacity closer to data production [2].

With data being also generated at the edge, both data

generation and consumption can occur at many different places

and times. In this context, different applications can have

different requirements, especially in terms of response time.

Currently, applications often rely on the cloud to have data

and processing support, which may not be suitable for lower

latency requirements. Moreover, execution of applications in

cloud data centers does not take user mobility into consid-

eration, and data/processing of an application can occur at a

geographically distant data center. On the other hand, in a

distributed computing scenario at the edges of the network,

data distribution and processing can be maintained closer

to the user, reducing network traffic to data centers and

improving application response times as a result of lower

network latency/delay.

This paper discusses the problem of resource allocation

considering the hierarchical infrastructure composed of edge

capacity and cloud data centers, analyzing application classes

along with different scheduling policies. To address this

challenge, we introduce a number of scheduling approaches

that consider user mobility and edge computing capacity,

in the context of a Fog Computing infrastructure [1]. We

discuss the benefits of combining the application classes with

scheduling policies in scenarios that illustrate these scheduling

approaches, especially in the context of user mobility.

The next section presents the Fog Computing model con-

sidered in this paper, while Section III discusses related work.

Section IV introduces the application model and two example

applications, which are used in the evaluation further in the

paper. Section V presents different allocation policies and

simulation results. Section VI discusses resource allocation

challenges for Fog Computing, and Section VII concludes the

paper.

2

II. FOG COMPUTING MODEL

User applications that access the public cloud do so through

an access point that allows data exchange through the core

network to reach the cloud data center. With the introduction

of computing capacity at the edge of the network, these

access points can be extended to also provide computing

and storage services: the cloudlets. Figure 1 illustrates the

cloudlets concept within the hierarchical infrastructure of the

fog. This Fog computing architecture presents a hierarchical,

bi-directional computing infrastructure: edge devices commu-

nicate with cloudlets and cloudlets communicate with clouds.

Cloudlets can also communicate with each other to perform

data and process management in order to support application

requirements, and to exchange Fog control/management data

(such as user device and application state).

Fog
Cloudlet CloudletCloudlet

Cloud

Cloudlet

Fig. 1. Fog computing: cloud, cloudlets and edge devices/applications
ecosystem.

In fog computing, processing and storage capacity is one

hop away from the data production/consumption, which can

benefit different types of applications:

• Applications with low latency requirements, such as

pedestrian and traffic security, surveillance, applications

for vision/hearing/mobility impaired users, online gam-

ing, augmented reality, and tactile computing can benefit

from lower latencies as a result of a single hop connection

to a cloudlet.

• Applications that currently rely on the cloud can also ben-

efit from lower delays and response times when adopting

a fog-based deployment if their data and processing is

carried out by a nearby cloudlet. This can also reduce

data traffic to the cloud.

• Raw data collected by many devices often does not need

to be transferred to the cloud for long-term storage: data

can be processed/filtered/aggregated to extract knowledge

and produce reduced data sets, which in turn are to be

stored; or it can be processed and utilized right-away to

other edge devices in the so-called sensor/actuator loop.

In both cases the Fog computing paradigm can reduce

network traffic from the edge to data centers.

Cloudlets can provide reduced latencies and help in avoid-

ing/reducing traffic congestion in the network core. However,

this comes at a price: more complex and sophisticated re-

source management and scheduling mechanisms are needed.

This raises new challenges to be overcome, e.g., dynamically

deciding what, when, and where (device/fog/cloud) to carry

out processing of requests to meet their quality of service

requirements. Furthermore, with smart and wearable devices,

such mechanisms must incorporate mobility of data sources

and sinks in the fog. Traditional resource management and

scheduling models for distributed systems do not consider mo-

bility and timeliness of data production and consumption in the

resource management and allocation process. Fog computing

scheduling must bring users location to the resource allocation

policies to uphold the benefits of fog computing proximity to

the user.

III. RELATED WORK

Resource management and scheduling in Fog computing is

a new topic that combines aspects from sensor networks, cloud

computing, mobile computing, and pervasive computing fields.

In Fog Computing, sensors and other devices pervasively

present at the edge of the fog generate data and consume

data that have to be processed using the cloudlets and the

clouds. Each of those fields has a plethora of literature, well

documented by researchers [3], [4], [5].

Fog computing has been discussed as a platform to provide

support for Internet of Things (IoT) and analytics. Bonomi et

al. [1] discuss many aspects of a fog infrastructure, including

the interplay between fog and cloud systems. The authors

claim that fog computing can better address applications and

services that do not fit well in the cloud, such as low-latency

or geo-distributed applications. In this paper we advance this

discussion by introducing strategies that can be adopted in the

presence of different application classes.

In [6] the authors propose a programming model to support

fog computing applications, which includes event handlers

and an application programming interface (API). Programming

models are complementary to the presented work, as they rely

in application scheduling strategies to decide where to allocate

the functions created by users.

Satyanarayanan et al. present GigaSight [7], a virtual

machine-based cloudlet infrastructure to support video storage

analytics at the edge. One motivation for the proposal is

to avoid overwhelming metropolitan networks with a large

amount of video streams sent to cloud providers. GigaSight

applications can share the cloudlets with other types of ap-

plications, where a proper resource allocation can improve

performance.

Jennings and Stadler [3] discuss resource management ob-

jectives and challenges in cloud computing. Many aspects are

covered by them, including resource management functions

and network-aware resource allocation, which are also relevant

to fog computing. Edge devices in the fog introduce partic-

ularities that must be considered, among which application

requirements and mobility are discussed in the remainder of

this paper.

Multi-clouds are platforms that aggregate computing re-

sources from different cloud providers [8]. While multi-clouds

3

can help in decreasing latencies to the final users, they are not

able to provide really low latencies as the ones advocated by

Fog Computing with its 1-hop away cloudlet infrastructure.

Thus, the hierarchical combination of Fog and Clouds (stan-

dalone or federated) still offers advantages in terms of latency

and network traffic.

The European Telecommunications Standards Institute

(ETSI) have launched the Mobile-Edge Computing (MEC)

initiative to create standards for mobile edge computing plat-

forms, having proposed a blueprint [9] and also documents

presenting technical requirements, terminology, and service

scenarios. A first specification is expected to be delivered by

the end of 2016. In terms of resource allocation and schedul-

ing, offloading decision in mobile devices is important [5].

Kosta et al. [10] present ThinkAir, a framework to offload

mobile applications to the cloud. ThinkAir is able to parallelize

execution using virtual machines, achieving reduced execution

times and energy consumption in the mobile device. In a

Fog Computing scenario, the offloaded modules should be

allocated according to the application requirements, as we

discuss further in this paper.

IV. APPLICATIONS IN FOG COMPUTING

The fog architecture is hierarchic, where processing and

storage location decision is subject to application constraints

and user geo-location. While the former can be specified in

different ways, as in the form of quality of service (QoS)

constraints, the latter depends on human (or other autonomous

system) behavior. Ultimately, user behavior determines the

time & position of a computing device, which along with

QoS constraints can be used to create application classes

that are relevant for resource management and scheduling in

a fog computing environment. By acknowledging different

application classes, one could employ different scheduling

policies, algorithms, or mechanisms to deal with each class.

A. Application model

To illustrate how resource management in fog computing

can benefit applications by considering geo-location and dif-

ferent application classes, we identify two types of apps:

near real-time and delay-tolerant. For the former, we describe

the electroencephalography (EEG) tractor beam game; for the

latter, a video surveillance/object tracking application [11].

In the EEG tractor beam game (EEGTBG), players try

to gather items by concentrating on them. A player that

has a better concentration on an item can attract it towards

him/herself. Fast processing and low response times achieved

by edge computing devices can give players a true online,

real-time experience.

The EEGTBG application has 5 modules (Figure 2b):

EEG sensor, display, client, concentration calculator, and co-

ordinator. The EEG headset senses user concentration and

streams raw data to the client module. The client module

filters/forwards consistent data to the concentration calculator

module, which computes the concentration level of the user.

The concentration level is sent to the client module, which up-

dates the game display to the player. The coordinator module

gathers and distributes measured concentration among players.

The EEG sensor, display, and client modules are placed in the

mobile device (e.g., smartphone). The concentration calculator

and the coordinator modules can be placed in the cloudlets or

at a cloud data center.

The video surveillance/object tracking application (VSOT)

relies on a set of distributed intelligent cameras that are able to

track movement, having 6 modules (Figure 2a): camera, mo-

tion detector, object detector, object tracker, user interface, and

pan, tilt, and zoom (PTZ) control. The camera streams video

to the motion detector module, which filters the incoming

stream and forwards video in which motion was detected to the

object detector module. The object detector module identifies

the moving objects, sending object identification and position

information to the object tracker, which in turn computes the

desirable PTZ and sends the command to the PTZ control

module. We consider that the motion detector and the PTZ

control modules are always placed in the camera, while the

user interface is always in the cloud. The object detector and

object tracker are the two modules that should be placed by

decision making policies in a cloudlet or at a cloud data center.

For more details of the application models utilized in this

paper, please refer to [11].

Camera

PTZ control

Motion
detector

Object
detector

Object
tracker

User
interface

(a) Video surveillance/object tracking (VSOT) application modules.

EEG

Client

Display

Concentration
Calculator

Coordinator

(b) Electroencephalography tractor beam game (EEGTBG) application modules.

Fig. 2. Example applications and their modules.

Both applications – EEGTBG and VSOT – can be set up in

a fog infrastructure to take advantage of lower latency due to

the use of cloudlets. VSOT is able to work satisfactorily under

data center-distance latencies (> 100 milliseconds). On the

other hand, higher delays in EEGTBG can impact the players

real-time perception, making the game unreal and impairing its

playability. We consider that VSOT and EEGTBG belong to

two different classes of applications (delay-sensitive and delay-

tolerant) that can benefit from a fog computing infrastructure.

B. Mobility scenario

With the rapid use of mobile (smart) devices, fog computing

infrastructure must be able to accommodate variable demands

in the cloudlets, while relying on elasticity in cloud computing

4

systems to offload processing and/or storage when necessary.

This scenario is illustrated in Figure 3, where three cloudlets

are connected to a gateway that provides access to a cloud-

based data center. For illustration purposes, let us assume that

Cloudlet 2 is located in a city center and it supports a number

of smart cameras that run the VSOT application. Let us also

assume the other two cloudlets are along a path between the

suburbs and the city center. During rush hours (for instance),

users usually move towards the city center, and thus Cloudlet 2

will receive more load from incoming users. In our scenario,

this load is characterized by EEGTBG players with their smart

phones.

If many EEGTBG players move to the region where

Cloudlet 2 is located, it can become overloaded (processor,

storage, and/or networking). Ideally, Cloudlet 2 should have

enough capacity to handle the load from all its users, including

the additional EEGTBG users that move towards its region.

However, during many hours of the day this cloudlet would

be underutilized by the VSOT application alone, which would

mean low resource utilization and unnecessary energy con-

sumption, in addition to potential operational and maintenance

cost. To avoid such waste in resource use, Cloudlet 2 can

be planned to support demand of applications in the lower-

delay class, while also running other applications whenever

feasible. Therefore, resource management policies to allocate

resources between cloudlets and cloud should be able to handle

variable demand whilst taking application characteristics and

users mobility into account.

Fog

Cloud

Gateway

...

Cloudlet 2Cloudlet 1 Cloudlet 3

Fig. 3. Mobility scenario: mobile concentration game users (EEGTBG)
move and compete for the same cloudlet resources with existing surveillance
(VSOT) application.

V. ALLOCATION POLICIES FOR FOG COMPUTING

Different application requirements along with the mobile

nature of fog users calls for enhanced policies that can opti-

mize computing resource utilization and offer quality of ser-

vice accordingly. We illustrate how three different scheduling

strategies can impact applications quality of service in a fog –

namely the Concurrent, the First Come-First Served (FCFS),

and the Delay-priority strategies. The comparison is intended

to show how the prioritization of low delay applications

(delay-priority) would improve application execution when

compared to standard resource sharing techniques (concurrent

and FCFS). These algorithms should run in a cloudlet when

a new application request arrives, deciding where this request

should run: in the cloudlet or in the cloud. This decision can

be based on both the current cloudlet load (e.g. CPU) and the

request requirements (e.g. delay), as detailed below:

• Concurrent strategy: application requests that arrive at a

cloudlet are simply allocated to such cloudlet, regardless

of capacity or current usage.

• First Come-First Served (FCFS) strategy: requests are

served in the order of their arrival, until there are no

more computing resources available. For the sake of sim-

plicity, we only consider CPU capacity, but multi-criteria

decision-making is often considered in the scheduling

literature. When the cloudlet becomes full (i.e., remaining

CPU capacity is smaller than application requirements),

applications start to be scheduled for execution at the

cloud data center.

• Delay-priority: applications requiring lower-delay are

scheduled first; the next class of application requests is

scheduled in the cloudlet until there is no CPU capacity

available, and the remaining applications are scheduled

in the cloud.

The strategies implement a module merging mechanism as

described in the Edge-ward placement algorithm [11], where

modules of the same application are grouped to be placed at

the same device. In this merging mechanism, when a module

is moved to another device, all modules of the same kind are

also moved to the same device.

A. Evaluation Setup

To evaluate the different strategies in a fog computing

scenario, we carried out simulations using iFogSim [11]. The

iFogSim was chosen for two reasons: (i) it runs on top of the

well-established CloudSim simulator, which has been widely

utilized and tested in the literature; and (ii) it is a simulator that

allows the hierarchical composition of edge devices, cloudlets,

and clouds, also supporting the measurement of application

delays. The evaluation aims at analyzing the performance of

the applications in terms of delay as well as assessing how

allocation policies influence network traffic. We have set up

the scenario depicted in Figure 3 with four VSOT applica-

tion instances running in Cloudlet 2 and twelve EEGTBG

application users in cloudlets 1 and 3. Initially, six EEGTBG

users are playing the game in locations close to Cloudlet 1

and other six players are closer to Cloudlet 3. We move

the EEGTBG players one by one to Cloudlet 2, emulating a

mobility behavior, in order to assess any quality of service

degradation resulting from poor resource allocation. Since

EEGTBG has low-latency requirements, we consider that a

player in a cloudlet only plays against players in the same

5

cloudlet. Results shown focus on the analysis of Cloudlet 2,

which receives applications from moving users.

Each cloudlet had a processing capacity of 4, 000 MIPS

(millions of instructions per second) and was connected to

the gateway through a link with 10, 000 Kbps bandwidth and

4 milliseconds latency. The link between the gateway and

the cloud had 10, 000 Kbps bandwidth and 100 milliseconds

latency. Mobile and camera devices were connected to the

cloudlets through a link with 10, 000 Kbps bandwidth and 2

milliseconds latency.

The scheduling decision-making takes place before the

application executes, thus the actual CPU capacity used by

each application module is not precisely known at scheduling

time. At scheduling time, strategies must check if a cloudlet

has enough free CPU capacity to handle each application

module. In the scenario we considered, each module needed,

during execution, at most the CPU capacity shown in Table I.

TABLE I
MAXIMUM CPU REQUIREMENTS (IN MIPS) ESTIMATED FOR EACH

APPLICATION MODULE.

VSOT EEGTBG

object motion object user client concent. coord.
detector detector tracker interface calculator

550 300 300 200 200 350 100

During execution, each application uses at a given time

CPU capacity that depends on the interaction between its

modules (i.e., how much data it receives from/sends to other

modules, which triggers CPU-intensive actions). These esti-

mations come from the application description, which models

the application as a directed graph, or workflow, with its

attributes, as commonly found in the scheduling literature [11],

[12]. Precise estimation, however, is a challenging issue and

it is a focus of research per se. For some applications input

characteristics (e.g., video/image quality) and historical data

are good indicators to estimate future performance, while

other applications exhibit unpredictable behavior and estimat-

ing their future performance does not provide very accurate

results.

B. Results

Each application has a processing loop among its modules

that must be accomplished to display the results. The loop

delay is the time taken for an application loop to execute. In

the VSOT application this loop starts with the camera sensors

producing the video stream, goes through the motion detector,

object detector, object tracking, and finally PTZ control, mea-

suring how long it takes for a object to be detected, tracked,

and the camera adjusted to have better images of this object.

In the EEGTBG application, the loop comprises the EEG

sensor transmission to the mobile phone, the client selection

of consistent readings, the concentration calculator, the client

again, and the display. This measures the time taken between

the sensed concentration level and the display of the current

game status to the user.

Figures 4a and 4b respectively show the delay of the

VSOT and EEGBTG application loops for the three different

scheduling strategies according to the number of users that

have moved from cloudlets 1 and 3 to Cloudlet 2. When

only one EEGBTG player has moved to Cloudlet 2, all three

strategies have the same results for both applications. When

the second player moved to Cloudlet 2, different scheduling

strategies start to impact the applications differently. VSOT

loop is delayed with the Concurrent and Delay-priority strate-

gies, while maintaining a low delay with the FCFS strategy.

This means that scheduling using the Concurrent strategy is

bringing resource contention to Cloudlet 2, with the VSOT

application experiencing a very high delay in its control loop,

resulting in quality of service degradation and consequent

application misbehavior, which is avoided by FCFS by moving

EEGTBG modules to the cloud. On the other hand, the Delay-

priority moves VSOT modules to the cloud as a result of the

higher-priority EEGTBG application arrival, thus increasing

the VSOT loop delay to an acceptable level of about 200

milliseconds while maintaining the EEGTBG delays as lower

as possible.

The scheduling decision in fogs impacts in the total network

use. Figure 4c shows the total amount of data transmitted in the

network for the different scheduling strategies. The Concurrent

strategy results in lower network use, as it maintains all

modules in the cloudlet and no communication between the

cloudlet and the cloud is necessary. However, this comes at the

expense of application delays, as discussed before. The FCFS

strategy results in an increase of network use as EEGTBG

players arrived at Cloudlet 2 and their modules are moved

to the cloud. The Delay-priority strategy results in increased

network use as it moves VSOT, a more network-intensive

application, to the cloud. When 12 players arrive, the VSTO

application is moved back to the cloudlet and the network use

is reduced.

The Delay-priority strategy is effective in providing reduced

delays for applications in the lower-delay class. However,

when the 12th user moves to Cloudlet 2, the cloudlet does

not have enough free CPU to handle all users. As a result,

the Delay-priority strategy moves the EEGTBG modules to

the cloud, increasing its delay. At this moment, the VSOT

application is moved back to the cloudlet, thus presenting

lower delays again. In this case, Cloudlet 2 has not enough

capacity to handle the low-delay demand it is subject to, and

therefore a cloudlet with more resources would be needed to

avoid quality of service degradation.

Figure 5 shows the number of application modules sched-

uled on each device with the three different strategies. The

Concurrent strategy (Figure 5a) simply increases the number

of EEGTBG modules in the Cloudlet 2 as players arrive, main-

taining all VSOT modules in the cloudlet as well, and this is

reflected in the increasing in application loop delays previously

presented in Figure 4. The FCFS strategy (Figure 5b) also

maintains all VSOT modules in the cloudlet, but EEGTBG

modules are moved to the cloud after the second player arrival

to Cloudlet 2. The Delay-priority strategy has a more complex

behavior (Figure 5c). It starts moving VSOT modules from

the cloudlet to the cloud when the second EEGTBG player

arrives, and after that all VSTO modules stay in the cloud

until the 12th EEGTBG player arrives. At this time, EEGTBG

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0 1 2 3 4 5 6 7 8 9 10 11 12

D
e
la

y
 (

m
s
)

of users moved

VSOT application loops

Concurrent
FCFS

Delay-priority

(a) Delay for the VSOT application for three different scheduling strate-
gies.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2 3 4 5 6 7 8 9 10 11 12

D
e
la

y
 (

m
s
)

of users moved

EEGTBG application loop

Concurrent
FCFS

Delay-priority

(b) Delay for the EEGTBG application for three different scheduling
strategies.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

0 1 2 3 4 5 6 7 8 9 10 11 12

T
o
ta

l
n
e
tw

o
rk

 u
s
e
 (

K
B

y
te

s
 t
ra

n
s
fe

rr
e
d
)

of users moved

Total network use

Concurrent
FCFS

Delay-priority

(c) Total network use with the different strategies.

Fig. 4. Application loop delays (a and b) and network usage (c) according
to the scheduling strategy.

modules are moved to the cloud because Cloudlet 2 does

not have enough CPU capacity to handle all users, and then

VSOT is moved back to Cloudlet 2. Meanwhile, the number of

EEGTBG modules in the cloudlet increases with the players

arrival up to the 8th user arrival. When the 9th player arrives at

Cloudlet 2, the Delay-priority strategy detects there is no room

for all 18 application modules (i.e., 9 concentration calculators

plus 9 coordinators), so it groups concentration calculators in

the cloudlet and coordinators in the cloud. When the 12th

player arrives, the cloudlet is not able to handle all them at the

same time: all EEGTBG modules are then sent to the cloud,

and the VSOT application is moved back to the cloudlet.

VI. CHALLENGES AND FUTURE DIRECTIONS

Fog computing brings challenges at many levels, starting

from cloudlet placement, ownership, and business model.

As soon as cloudlets are deployed, they bring many new

interesting challenges to resource allocation and scheduling.

Among those, we consider application classification and user

mobility as two key aspects to be associated with scheduling

in providing efficient resource management.

Application classification must provide the scheduler with

information about application requirements, which will allow

the scheduler to prioritize the cloudlet use and optimize other

objectives (e.g., reduce network use, reduce cloud costs). With

that information, a fog scheduler can decide which application

should run in the cloudlet and which should run in the cloud.

Moreover, application classes could also allow a system-

level scheduler to prioritize applications within a cloudlet,

allowing smaller granularity control over the delays observed

by applications at each class.

Understanding users’ behavior and mobility patterns can

improve resource management by better planning the applica-

tions scheduling beforehand. This planning is crucial to avoid

application delays during user movement. For example, in the

scenario discussed in this paper the VSOT application must

be moved from Cloudlet 2 to the cloud when EEGTBG users

arrive. If a predictive mechanism is able to accurately deter-

mine when this migration should start, the VSOT application

can experience lower delays for as long as possible, and the

EEGBTG players would not experience larger delays if VSOT

is moved only after their arrival at Cloudlet 2. Note that this

planning can also involve data movement, depending on the

application being migrated. In this case, planning should also

consider the time taken to move data between cloudlets or

from cloudlets to the cloud (and vice-versa).

Although mobility can be reasonably predicted in gen-

eral [13], prediction misses will eventually occur from lack

of information or user unpredictable behavior. Scheduling

strategies to deal with mobility prediction failure are also an

interesting problem to be studied in the fog computing context.

Different application classes may benefit from different strate-

gies to work around mobility prediction failures. Also, users

can be classified at different predictability levels to ensure the

right strategies are applied to each one of them. Moreover,

uncertainty in bandwidth availability and application modules

processing times can also be expected to occur, which is also

a challenging scheduling issue to be taken into account.

7

 0

 5

 10

 15

 20

 25

0 1 2 3 4 5 6 7 8 9 10 11 12

#
 o

f
a
p
p
lic

a
ti
o
n
 m

o
d
u
le

s

of users moved

Number of modules per device - concurrent

EEGTBG/Cloud
EEGTBG/Cloudlet

VSOT/Cloud
VSOT/Cloudlet

(a) Number of instances on each device (central cloudlet and cloud) using
concurrent allocation.

 0

 5

 10

 15

 20

 25

0 1 2 3 4 5 6 7 8 9 10 11 12

#
 o

f
a
p
p
lic

a
ti
o
n
 m

o
d
u
le

s

of users moved

Number of modules per device - FCFS

EEGTBG/Cloud
EEGTBG/Cloudlet

VSOT/Cloud
VSOT/Cloudlet

(b) Number of instances on each device (central cloudlet and cloud) using
FCFS allocation.

 0

 5

 10

 15

 20

 25

0 1 2 3 4 5 6 7 8 9 10 11 12

#
 o

f
a
p
p
lic

a
ti
o
n
 m

o
d
u
le

s

of users moved

Number of modules per device - delay priority

EEGTBG/Cloud
EEGTBG/Cloudlet

VSOT/Cloud
VSOT/Cloudlet

(c) Number of instances on each device (central cloudlet and cloud) using
delay-priority allocation.

Fig. 5. Number of instances scheduled at each device according to the
scheduling strategy.

With application classes and mobility patterns, scheduling

models that capture such characteristics can be developed and

more efficient resource management algorithms can be de-

signed. However, even with a theoretically efficient scheduling

algorithm for fog computing in hand, resource management

deployment still faces challenges due to uncertainties gen-

erated by the dynamicity and heterogeneity of the resources

composing the infrastructure. Given a fog infrastructure with

its cloudlets, a set of users with their predicted paths, and

the resulting scheduling that optimizes a pre-defined objective

function, mechanisms that can handle application deployment,

movement, and resource reservation must be implemented.

Resource virtualization is one promising way of dealing with

application/data movement for each user in an isolated way.

A possible implementation of such mechanisms for resource

configuration, allocation, and reservation could involve com-

puting virtualization tools such as virtual machines (VMs) or

containers, as well as networking tools such as networking

virtualization and software defined networks (SDN). More-

over, maintaining connectivity without service disruption while

migration occurs is another interesting and challenging aspect,

as proposed by the FollowMe Cloud [14].

Application execution costs in a fog utility model are also

interesting areas to explore. Given a business model for the

cloudlets (how service levels agreements are offered – how

cloudlets are commercialized and charged), schedulers should

take into account a trade-off between costs and application

quality of service. Scheduling algorithms for hybrid clouds

such as the HCOC [12] could be extended to consider the

fog computing hierarchy. Moreover, costs and delays of both

storage data transfers from/to cloud providers can also take

part in the trade-off.

The combination of advanced scheduling techniques, sup-

ported by applications classification and mobility predic-

tion, with virtualization tools within an autonomic computing

framework, such as CometCloud [15], would be able to handle

the dynamic mobile environment of a fog infrastructure and

its clients.

VII. SUMMARY AND CONCLUSIONS

Fog computing provides lower communication latencies and

computing capacity closer to the final user. For this infras-

tructure to become efficient and offer actual differentiated

service from the cloud computing paradigm, proper resource

management mechanisms must be deployed.

In this paper we introduced the scheduling problem in

the hierarchical composition of fog and cloud computing.

The dynamic scenario resulted from users mobility brings

a dynamic computing demand at edge devices, herein the

cloudlets, from a variety of applications classes with particular

requirements. We show that scheduling strategies can be

designed to cope with different application classes according

to the demand coming from mobile users, taking advantage

of both the fog proximity to the end user and the cloud

computing elastic characteristic. We also discussed challenges

that arise from the mobile, dynamic fog users behavior, raising

central research points that can be addressed in fog computing

resource management.

8

ACKNOWLEDGMENTS

We would like to thank Harshit Gupta for his support with

iFogSim. LFB acknowledges the support from grant #2015

/16332-8, São Paulo Research Foundation (FAPESP), Euro-

pean Commission H2020 programme under grant agreement

no. 688941 (FUTEBOL), as well from the Brazilian Ministry

of Science, Technology and Innovation (MCTI) through RNP

and CTIC, CNPq and CAPES. This research is supported in

part by NSF via grants ACI 1339036, ACI 1441376. The

research at Rutgers was conducted as part of the RDI2.

REFERENCES

[1] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing: A

Platform for Internet of Things and Analytics. Springer International
Publishing, 2014, pp. 169–186.

[2] L. F. Bittencourt, O. Rana, and I. Petri, “Cloud computing at
the edges,” in Cloud Computing and Services Science, M. Helfert,
V. Méndez Muñoz, and D. Ferguson, Eds. Springer International
Publishing, 2016, pp. 3–12.

[3] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567–619, 2015.

[4] S. S. Iyengar and R. R. Brooks, Distributed sensor networks: sensor

networking and applications. CRC press, 2016.
[5] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile

cloud computing: architecture, applications, and approaches,” Wireless

Communications and Mobile Computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[6] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kold-
ehofe, “Mobile fog: A programming model for large-scale applications
on the internet of things,” in Proceedings of the Second ACM SIGCOMM

Workshop on Mobile Cloud Computing, ser. MCC ’13. New York, NY,
USA: ACM, 2013, pp. 15–20.

[7] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE

Pervasive Computing, vol. 14, no. 2, pp. 24–31, Apr 2015.
[8] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud

computing environments: Challenges, taxonomy, and survey,” ACM

Comput. Surv., vol. 47, no. 1, pp. 7:1–7:47, May 2014.
[9] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal et al.,

“Mobile-edge computing introductory technical white paper,” White

Paper, Mobile-edge Computing (MEC) industry initiative, 2014.
[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:

Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings IEEE INFOCOM, March
2012, pp. 945–953.

[11] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in internet of things, edge and fog computing environments,” CoRR, vol.
abs/1606.02007, 2016.

[12] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. Da Fonseca, “Schedul-
ing in hybrid clouds,” IEEE Communications Magazine, vol. 50, no. 9,
pp. 42–47, 2012.

[13] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability
in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[14] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, September 2013.

[15] J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar, “Cometcloud:
Enabling software-defined federations for end-to-end application work-
flows,” IEEE Internet Computing, vol. 19, no. 1, pp. 69–73, Jan 2015.

Luiz F. Bittencourt is assistant professor at the
University of Campinas (UNICAMP), Brazil. His
research interests include resource management and
scheduling in cloud and fog computing. Bittencourt
holds a PhD in computer science from UNICAMP.
He is IEEE, ACM, and SBC member. Contact him
at bit@ic.unicamp.br.

Javier Diaz-Montes is Assistant Research Professor
at Rutgers University and a member of the Rutgers
Discovery Informatics Institute (RDI2). He received
his PhD degree in Computer Science from the Uni-
versidad de Castilla-La Mancha, Spain (“Doctor Eu-
ropeus”, 2010). Before joining Rutgers, he was Post-
doctoral Fellow at Indiana University. His research
interests are in the area of parallel and distributed
computing and include autonomic computing, cloud
computing, virtualization, and scheduling.

Rajkumar Buyya is a Professor of computer sci-
ence and software engineering, a Future Fellow
of the Australian Research Council, and Director
of the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Mel-
bourne, Australia. He also serves as the found-
ing CEO of Manjrasoft. His research interests in-
clude resource management and scheduling systems
for utility-oriented computing systems. Buyya has
a PhD in computer science from Monash Uni-
versity. Hes a Fellow of IEEE. Contact him at

rbuyya@unimelb.edu.au.

Omer F. Rana (ranaof@cardiff.ac.uk) is Professor
of Performance Engineering at Cardiff University,
UK. He leads the Complex Systems research group
in the School of Computer Science & Informatics
and is director of the “Internet of Things” Lab. He
holds a PhD in Computer Science from Imperial
College (London University), UK. He is a member
of IEEE.

Manish Parashar is Distinguished Professor of
Computer Science at Rutgers University. He is also
the founding Director of the Rutgers Discovery
Informatics Institute (RDI2). His research interests
are in the broad areas of Parallel and Distributed
Computing and Computational and Data-Enabled
Science and Engineering. Manish is founding chair
of the IEEE Technical Consortium on High Perfor-
mance Computing (TCHPC) serves on the editorial
boards and organizing committees of a large number
of journals and international conferences and work-

shops, and has deployed several software systems that are widely used. He has
received a number of awards for his research and leadership. Manish is Fellow
of AAAS, Fellow of IEEE/IEEE Computer Society and ACM Distinguished
Scientist. For more information please visit http://parashar.rutgers.edu/.

