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Abstract: Multi-access edge computing (MEC) is a key technology in the fifth generation (5G)
of mobile networks. MEC optimizes communication and computation resources by hosting the
application process close to the user equipment (UE) in network edges. The key characteristics of
MEC are its ultra-low latency response and real-time applications in emerging 5G networks. However,
one of the main challenges in MEC-enabled 5G networks is that MEC servers are distributed within
the ultra-dense network. Hence, it is an issue to manage user mobility within ultra-dense MEC
coverage, which causes frequent handover. In this study, our purposed algorithms include the
handover cost while having optimum offloading decisions. The contribution of this research is
to choose optimum parameters in optimization function while considering handover, delay, and
energy costs. In this study, it assumed that the upcoming future tasks are unknown and online
task offloading (TO) decisions are considered. Generally, two scenarios are considered. In the first
one, called the online UE-BS algorithm, the users have both user-side and base station-side (BS)
information. Because the BS information is available, it is possible to calculate the optimum BS for
offloading and there would be no handover. However, in the second one, called the BS-learning
algorithm, the users only have user-side information. This means the users need to learn time and
energy costs throughout the observation and select optimum BS based on it. In the results section,
we compare our proposed algorithm with recently published literature. Additionally, to evaluate
the performance it is compared with the optimum offline solution and two baseline scenarios. The
simulation results indicate that the proposed methods outperform the overall system performance.

Keywords: fifth generation (5G); sixth generation (6G); handover (HO); multi-access edge computing
(MEC); mobility management; task offloading (TO)

1. Introduction

The technological evolution is currently increasing with the creation of new and up-to-
date technology that obtains information from carried data. Based on Cisco’s new annual
Internet report, 5G will support more than 10% of the world’s mobile connections by 2023.
There will be nearly 30 billion devices/connections by 2023—5% of those will be mobile [1].

The emergence of the modern multi-access edge computing (MEC) technology is a key
discovery in the fifth generation (5G) and future sixth generation (6G) mobile networks be-
cause it optimises communication and computation resources effectively [2–6]. This process
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employs edge resources near the user equipment (UE) to reduce latency while enhancing re-
liability and stability [7,8]. The offloading task sends computational tasks/data to the MEC
server for processing [9,10]. Once the MEC executes the received task, it is responsible for
sending the results back to the appropriate user. Edge computing has several advantages,
such as decreased end-to-end latency, increased multimedia bandwidth, computation-rich
resources, and enhanced flexibility. The drawback with most UEs is resource limitation
due to computation requirements, even though new and improved hardware is available.
However, MEC could solve this issue by hosting the computational tasks.

This study proposes two algorithms for choosing the best parameters in the optimi-
sation function. Online algorithms are used to enhance the performance evaluation. The
handover (HO) time cost is also considered in the formulation of the optimisation function
while making optimum offloading decisions. The two algorithms presented in this work
assume that the upcoming future tasks are unknown, and online task offloading (TO)
decisions are therefore considered. The proposed methods are not model-based and can
be implemented in any mobility scenario. In the first algorithm, called the online UE-base
station (BS) algorithm, the users have both the user-side and BS-side information. In the
second algorithm, BS-learning, users only have user-side information. The overall simula-
tions are conducted using the MATLAB tool, and are verified in the case where the BS-side
information is known. Our proposed method exhibits near to optimum performance. For
the scenario based on observation and learning, the results reveal a decrease in performance
due to additional costs, such as the HO time cost. The energy performance is also compared
with other related papers, proving that in terms of the energy budget, our two proposed
methods exhibit near to the optimum solution.

The remainder of this paper is organised as follows: A comprehensive literature
review with the motivation of this work is provided in Section 2. Section 3 provides the
system model analysis. Section 4 presents the problem formulation and the optimisation
problem. Section 5 discusses the proposed online task offloading decision algorithms,
problem formulation, and proposed online algorithms. Section 6 displays the simulation
setting and numerical results. Finally, Section 7 includes the conclusion of this paper and
additionally future tasks that can be employed for improving this manuscript.

2. Literature Review and Motivation of This Work
2.1. Literature Review

Recently, various studies have been published in the MEC domain, and this section
provides a comprehensive review of these publications.

The mobility management that has been widely used in various applications such
as IoT generates realistic mobility patterns [11,12]. In [13], a mobility-aware hybrid flow
rule cache scheme is presented for tackling the problem of forwarding node. From another
point of view, edge computing can provide the solutions for the cloud limitations in the
current communication systems [14].

Latency factor is an important specification in a vehicular network that results in
delays, generated from the high mobility of vehicles [15,16]. Data traffic is expanding with
the increase in massive connectivity. The favourable characteristics of MEC technology are
suitable for emerging 5G networks as they include ultra-low latency response and real-time
applications [17,18]. It is expected that mobile broadband will increase to 8 billion by 2025.
In 2017, the European Telecommunications Standards Institute (ETSI) changed the name
‘mobile edge computing’ to ‘multi-access edge computing’ for addressing non-cellular
operators. MEC servers can now be deployed with a radio access network (RAN), BSs,
Wi-Fi access points, and fixed connections [19]. The 3GPP includes MEC technology in
the 5G network with the technical specification of 3GPP TS 23.051. Figure 1 presents a
comprehensive summary of MEC servers with RAN, BSs (e.g., 4G, 5G, and 6G), Wi-Fi
access points, and fixed connections.
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Figure 1. From cloud to network edges.

The MEC technology can be employed in various applications such as video analyt-
ics, location services, and data caching, which allows for flexible and rapid innovative
applications. It can also be used in an autonomous vehicular network, sharing information
with roadside units (RSU) and pedestrians without involving any cloud servers [20–22].
The development of MEC at the network edge is critical. The devices and sensors of the
IoT require significant storage, computation resources, and suitable bandwidth, as the
ever-increasing data have caused limited computational resources [23].

The MEC technology has two main challenges [4,9]. The first challenge is appropri-
ately allocating MEC resources, as multiple users are within the coverage region of the MEC
server. Once the computational resource is allocated to a user, it will then decide whether to
offload the task or execute it locally. Multiple BSs are available for a single user. Choosing
the optimum BS for offloading is the current research topic in various MEC-related stud-
ies [24–28]. The most common solution is to develop a utility cost function that determines
the optimum solution based on the optimisation methods. Because resource allocation,
communication, computation, and user mobility must all be considered, joint optimisation
problems and analysis should be accomplished. Most joint problems are non-convex and
NP-hard [29–31].

The second main challenge in MEC-enabled 5G networks is that MEC servers are
distributed within ultra-dense networks [3,32]. Managing user mobility within the small-
scale coverage of the MEC server is a significant issue [33–36]. In the recently published
literature, MEC often neglects user mobility and assumes they are constant due to complex-
ity [37–39]. Tables 1 and 2 present the summary of mobility management and the related
studies in this field in a comprehensive view, respectively. Table 2 demonstrates that our
proposed method, in comparison with other reported methods including machine learning
approach, is advanced as energy consumption of UEs, handover delay, and task offloading
are concurrently considered. In simple words, what is lacking in the previous studies is
concurrently considering these parameters. Our method leads the way of designers in
mobility-aware offloading decisions.
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Table 1. Summary of mobility management challenges in MEC.

Ref. Topic Challenges

[40] Pre-configuration
- Pre-allocation: To enable MEC systems for reducing end-to-end delay during

high mobility;
- Reallocation group: To share application information among MEC server for HO scenario.

[4,41] HO prediction - To choose essentially an optimum server sequentially as vehicles move;
- To study the HO in urban areas due to the higher uncertainty.

[42,43] Densification

- To manage the mobility of users in an ultra dense network (UDN);
- To provide small-scale coverage results: frequent HOs, HO process power consumption,

and radio resource constraint;
- To prepare real-time information for long-term optimisation.

[44] Network diversity - To offload tasks to MEC servers over 2G, 3G, 4G, 5G, WLAN, or and overlapping mobile
WiMAX networks by UEs. (These various types of networks causes overlapping).

[44,45] Self optimization
- To make HO decision in MEC, where the HO control parameter needs to be

assigned optimally;
- To optimise both HO and task offloading in MEC result conflicts in optimisation function.

Table 2. Summary of related studies on handover decision optimisation in MEC.

Ref. Topic HO TO Limits Contribution

[41] Task offloading Yes Yes The energy consumption of
UEs are not considered.

- Task offloading decision was
formulated as MDP to minimize
delay considering handover,
migration, communication
and computation;

- Addressed the uncertainty of
transition probabilities.

[4] Joint optimisation Yes Yes

- Only one handover is
considered for each UE;

- Not applicable for 3D
random mobility
(limited for 1D road)

- Mobility-aware computation
offloading was proposed in
MEC-based vehicular networks.

[24,46] Joint optimisation No Yes - No handover;
- No mobility model.

Service caching placement and
computation offloading is considered.

[25,29] Proactive
network association No Yes

- No handover;
- No mobility model;
- No UE

energy constraint.

- Online proactive caching
is considered;

- Based on the MDP and Lyapunov
optimisation, a two-stage online
decision algorithm for proactive
network association was innovated.

[9] Task offloading No Yes
Mobility model has no
handover cost (i.e., dedicated
as a future work)

- Mobility-aware multi-user
offloading optimisation for MEC;

- UEs energy consumption
is included.

[30] Handover
management Yes Yes

The system model only
reduces number of handovers
No handover delay or cost
is optimized.

Existing work focused on cloudlet
placement and user-to-cloudlet
association problem.
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Table 2. Cont.

Ref. Topic HO TO Limits Contribution

[43] Ultra-dense network Yes Yes

The parameter in
optimization function leads
into sub-optimum
MEC and lower performance

Minimized average delay subjected to
communication, computation, and
handover under the limited energy
budget of users.

[31] Ultra-dense network No Yes No handover (mentioned as
challenge but not considered).

Computation offloading for multi-access
MEC in UDN is investigated

[8] Fog computing No Yes
Mobility model has no
handover cost (mentioned as
challenge but not considered)

Task offloading and migration schemes
are studied in fog computing

[33] Fog computing Yes Yes
The energy consumption of
UEs is not considered (i.e.,
dedicated as a future work)

- Offloading delay and handover cost
are considered as
performance metrics;

- The RSU considered the targeted
node based on vehicle mobility and
dynamic computation resources.

[47]
Deep reinforcement
learning
task scheduling

No Yes

The tasks are completed
before handover (i.e., only
controls HO)
No handover cost

- DRL is used for offloading
scheduling in VEC;

- The trade-off between task latency
and energy consumption is
considered by scheduling tasks to
wait in the queue.

[48]
Mobility management
using
reinforcement learning

Yes Yes The energy consumption of
UEs is not considered.

An online RL was proposed to optimize
handover decisions by predicting user
movement trajectory and periodic
characteristics of the number of users.

[49] Edge autonomous
energy management No No Only energy managed

An RL-based droplet framework is used
Droplets learn energy consumption
statistics of the devices.

Our work Mobility-aware
offloading decision Yes Yes

In the offloading process, the
BSs are considered to be
all ON.

- Concurrently considering HO delay,
UE energy, and TO.

- Optimized parameters are used to
increase overall performance.

- User-centric approach learns
BS-side information without
prior knowledge.

The conventional MEC-based offloading methods are not powerful enough, and
advanced optimisation methods are required. Xuefei presents a method, the Markov
decision process (MDP), for reducing the amount of delay in high mobility vehicular
networks [41]. Another method of joint optimisation is presented in [50,51] for vehicle
random mobility. In [52], the boundless simulation area (BSA) model for configuring
the vehicles’s mobility is presented, which is based on the Markov chain. For the IoT
technology, a proactive network association can be a sufficient solution for reducing latency
in MEC systems [53,54]. As a solution for reducing the handover in MEC-based networks,
in [55], a region partitioning approach is presented, where this method is evaluated for
both random and real traces. In another work [56], the dynamic service placement is
employed, where offline algorithms are used for determining the optimal service for
minimizing the average cost. To support the energy-constrained devices such as IoT
sensors, the wireless powered MEC networks are integrated with simultaneous wireless
information and power transmission (SWIPT) techniques in [57]. In another work [58], the
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task offloading and wireless power transformation (WPT) are jointly optimized. Moreover,
the authors proposed a resource allocation scheme to minimize energy consumption.

There are important limitations in the previous summarized literature in that these
works do not include HO cost in the optimisation function. Additionally, either energy
factor or delay is considered in these methods where the optimum parameter cannot be
selected effectively.

2.2. Motivation of This Work

This work considers user mobility while having optimum offloading decisions. To
support service continuity, the host MEC should reallocate the task to the target MEC server.
During the task offloading, if users move from the coverage region of a base station, it will
cause handover that leads to additional cost. Hence, our problem formulation includes the
handover cost. Below is a summary of the two employed algorithms.

In the first algorithm, calculating the optimum BS for offloading is possible because
the BS information is available. No handover will be presented, making the performance
close to the optimal offline solution. However, we must ensure that users’ total energy
consumption will not exceed its budget as the energy budget is limited.

In the second algorithm, the BS-side information is not available. This means that
the channel gains and the available computing CPUs are unknown. Therefore, users
must learn time and energy costs through observations. The optimum BS is determined
based on these observations. However, sub-optimum BS selection may occur due to the
variance of observation. Selecting sub-optimal BS will increase the total cost and number
of handovers. Therefore, it is essential to select optimum controlling parameters in the
optimisation function.

The novelty and contribution of this manuscript can be summarized as follows:

• Our proposed method is beneficial for the designers in the field of mobility man-
agement in MEC, as this approach considers three important parameters—energy
consumption of UEs, handover delay, and task offloading—concurrently. This jointly
consideration is missing in the reported literature;

• The proposed method is intelligent enough for finding the optimal value of alpha
presented in Equation (18), resulting in average time and total energy costs near to the
optimum offline solution;

• In our proposed methods, the offloading decision is user-centric, which is decided
on the UE-side. Moreover, Algorithm 2 initially has neither base station nor network
information. In this case, the learning process is used with optimized steps to reduce
overall delay and improve energy performance.

3. System Model

The MEC network consists of the UEs and N BSs equipped with the MEC server. The
BSs are distributed on a finite two dimensional (2D) regular grid network, each with a
supporting radius of R (as shown in Figure 2). Let N = {1, 2, . . . , N} denote the index set
of MEC servers, and ln represents the location of BS n equipped with the MEC server. The
mobile UEs create a total M task for offloading into MEC servers, denoted by the set of
M = {1, 2, . . . , M}. Let lm signify the location of task m created by a user with mobility.
Due to the densified deployment of BSs, it is assumed that each task m can be served by
multiple BSs. The set of admissible BSs to location lm can be represented as

A(m) = {n| ‖ ln − lm ‖≤ R, ∀n ∈ N} (1)
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Task Offloading

Energy Budget ρ 

Mobility?

Channel Gain 
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Figure 2. System model of mobility-aware task offloading in MEC enabled 5G network.

The users decide which candidate BSs A(m) ∈ N are appropriate to offload compu-
tational tasks based on the utility cost. It is also assumed that only one BS is responsible
for computing each task m. Hence, users will choose one BS station from A(m) for each
task m. Due to large task sizes, each task m can be divided into many sub-tasks. An online
learning approach is considered to manage the user mobility. Any random mobility model
can be applicable and suitable. The system model has been divided into three sub-models:
computation task model, network model, and mobility model. The explanations of each
sub-model follow.

3.1. Computation Task Model

Here, it is supposed that a UE generates task m to offload into the MEC server. The
computational tasks can be parameterized as triplets in (2):

χ , [dm, cm, tm] (2)

where dm specifies the total data size of task m (in bits). The computation intensity cm
refers to the number of required CPUs to accomplish computing one-bit data of a task.
The tm indicates the computation deadline time allowed for executing task m (in seconds).
As the size of the computed result is generally small, it is omitted from the equation. To
consider large input data sizes, dm can be divided into km number of equal-sized sub-tasks.
Therefore, dm = kmdsub, and dsub denote to each sub-task data size.

As the UEs decide to offload the computational task, the MEC server is responsible
for resource allocation based on available resource constraints. The computation resource
inside the MEC server is indicated based on the CPU cycle frequency. Let F(n) represent
the total computing constraint of the MEC server n, which indicates the maximum available
CPU cycle frequency of the MEC server. The computation frequency fm,n (denoted as CPU
frequency) is the total resource allocated by MEC server n into the UE with requesting task
m for computation. Accordingly, the time cost for executing a sub-task of m by the MEC
server n is given as (3):

te
m,n = dsub ×

cm

fm,n
(3)

where dsub specifies the sub-task data size. Once all sub-tasks are computed by MEC server
m, which takes a total duration of Ttot

m,n = ∑km
k=1 te

m,n, it deallocates resources so other UEs
could use deallocated CPU for their tasks.

3.2. Network Model

In this study, it is assumed that channel bandwidth ω is equally allocated among
tasks. According to [59], the data transmission rate from the UE with task m to the BS n is
obtained by (4):

rm,n = ω× log2(1 +
pmhm,n

Nσ2
) (4)
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where Nσ2 represents the noise power, pm is the transmission power of UE m, and hm,n
denotes the wireless channel gain from UE with task m to BS n at location lm, respectively.
It is assumed that users are constant during task offloading. As each task m can be divided
into multiples sub-tasks, the channel gain hm,n will remain constant. The wireless channel
gain hm,n is described as (5):

hm,n[dB] = 127 + 30× log d[Km] (5)

where d =‖ ln − lm ‖ refers to the distance between task m at location lm and BS n (in kilo-
meters). The channel model is as suggested in [60], which is for ultra-dense heterogeneous
networks, and the fading follows a Rayleigh distribution.

Additionally, the time and energy costs of offloading a sub-task of m to BS n, respec-
tively, can be presented using (6) and (7):

to
m,n =

dsub
rm,n

(6)

eo
m,n = pmto

m,n (7)

where pm specifies power required to transmit m. The pm is assumed as given for each task,
and it depends on many parameters, including antenna gain.

3.3. Mobility Model

The large data size of tasks can be divided into multiple sub-tasks. Each sub-task can
be executed in various BSs. Changing the BSs while computing sub-tasks of m can result in
HO delay cost.

Let τh
m denote HO delay of a one-time BS switch. Considering the multiple sub-tasks,

the sequence of BS is represented by ηm = {η1, η2, . . . , ηkm}. According to [43], the HO
delay for all sub-tasks of m can be calculated as follows:

th
m,n = τh

m

km

∑
k=2

H{x} (8)

H{x} =
{

1 ηk 6= ηk−1, ηk ∈ A(m)

0 otherwise
(9)

4. Problem Formulation

In the mobile system, the UE experience during offloading decisions is determined by
both latency and energy budget. A utility function must be designed as a trade-off between
the time and energy budgets to make the appropriate decision when the BS is to offload
and perform HO due to the UE mobility. The total time cost for task m can be calculated as
the sum of execution time, task offloading time, and HO time, as in (10):

Ttot
m,η =

km

∑
k=1

(te
m,η + to

m,η) + th
m,η . (10)

The total time cost can be written as (11):

Ttot
m,η =

km

∑
k=1

(te
m,η + to

m,η + τh
mH{x}). (11)

This study only considers the task offloading energy cost of UEs. The total energy
consumption of UE for offloading task m is calculated by

Etot
m,η =

km

∑
k=1

eo
m,η . (12)
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The decision-making process cannot predict the UE trajectory after the computation
deadline time tm while considering UE mobility during task offloading. Therefore, the total
time cost needs to be less than the time constraint tm presented as

Ttot
m,η ≤ tm, ∀m ∈ M (13)

Eventually, the UE’s limited energy budget will restrict the sum of the energy cost M
tasks to be less than energy constraint ρ. The total UE energy is constrained as below:

M

∑
m=1

Etot
m,η ≤ ρ. (14)

As previously noted in Equation (1), all candidate BS η for task m should be within
coverage area with a radius of R, denoted as (15):

ηk
m ∈ A(m), ∀k ∈ {1, 2, . . . , km}. (15)

Our target is to determine the optimal offloading decision to minimize the total
time cost within a limited energy budget for all tasks M. The problem is formulated as
follows (16):

GP: min
η

1
M

M

∑
m=1

Ttot
m,η (16)

where η ∈ {η1, η2, . . . , ηM} is the variable vectors to be optimised. Constraint (13) ensures
that the task will be executed on time (subject to the computation deadline time tm).
Constraint (14) guarantees that the energy consumption is below the energy budget ρ.
Additionally, constraint (15) chooses all the candidate BSs that can serve task m.

Due to the non-linearity of the optimisation problem presented in (16) and the com-
plexity of other variables, the GP is a mixed-integer non-linear programming (MINLP)
problem [61]. An online algorithm is proposed to address the UEs’ trajectory during
task offloading.

5. Online Task Offloading Decision Algorithm

This section presents two mobility-aware online task offloading decisions for MEC,
based on the Lyapunov optimisation and without the knowledge of future tasks. The
proposed online algorithms are then compared with the offline optimal solution.

5.1. Mobility-Aware UE-BS Algorithm

This algorithm simultaneously has UEs with both the UE-side state information and
the BS-side information. The BS remains constant during the offloading of one task, as
previously noted. Having both sides’ state information helps the UE to select the optimal
BS for offloading and avoids any HOs. Within the UE-BS scenario, all sub-tasks of m will
be served by a single optimum BS η

opt
m . The main challenge for solving GP in an online

algorithm is that without having future task information, m + 1, m + 2, . . . , M, the limited
energy budget for current tasks will be spent and nothing will remain for upcoming tasks.
To overcome this issue, the solution is to define an energy queue and store the used energy
budget. By exceeding a specific amount of energy budget for task m, future tasks will be
allocated to another candidate BS η ∈ A. According to [43], the energy queue is obtained
as (17):

βm+1 = max{βm + Etot
m,ηopt

m
− ρ/M, 0} (17)

where β0 is equal to zero. By using the Lyapunov optimisation, we can define the op-
timisation problem as a trade-off between time cost and energy cost of task offloading,
represented as (18):
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Ztot
m = αTtot

m,n + βmEtot
m,n (18)

where α is a control parameter to adjust the trade-off between energy and time cost. No
handover will occur as we have both sides’ information in the UE-BS scenario and we
selected the appropriate BS for the entire time of processing task m. The total time cost
can be reduced to Ttot

m,η = ∑km
k=1(t

e
m,η + to

m,η). As all sub-tasks will be served by a single

optimum BS η
opt
m , the optimisation function in (18), can be simplified as

zm = α(te
m,ηopt

m
+ to

m,ηopt
m
) + βmeo

m,ηopt
m

. (19)

To minimize the cost zm in Equation (19) for each task m, the online UE-BS algorithm
presented in Algorithm 1 is proposed.

Algorithm 1: Mobility-aware online UE-BS algorithm
Input: A(m), dm, cm, fm,n, hm,n and α

1: if m = f J + 1, ∀ f = 0, 1, . . . , F− 1 then
2: βm ← 0
3: end if
4: Choose η∗m subject to (13), (15) by solving

min
n∈A(m)

α(te
m,ηopt

m
+ to

m,ηopt
m
) + βmeo

m,ηopt
m

5: Update βm according to (17).

Because there is no handover within this scenario, there is no need to divide tasks
into sub-tasks. Therefore, according to the optimization function in line 4, the Algorithm 1
complexity only relies on the number of candidate BS A(m), which is O(|A(m)|).

5.2. Mobility-Aware BS Learning Algorithm

In this algorithm, the UEs only have the UE-side state information. UEs are required
to learn the BS state information to make offloading decisions. Unlike the UE-BS algorithm
where all UEs stick to a single and optimum BS for all sub-tasks of m, the learning process
causes sub-optimal BS selection. Choosing sub-optimal BS will cause additional cost as
well as HOs during the learning process.

One solution for learning optimal BS is to offload all sub-tasks of m to every candidate
BS ηm ∈ A(m) and to observe the total energy and time costs. Let t̃m,n and ẽm,n represent
the observed time cost and energy cost, respectively. Based on Equation (18), the observed
optimisation function is

z̃m,n = αt̃m,n + βm ẽm,n (20)

where z̃m,n is a noisy version of zm,n with a specified variance. The main challenge in the BS
learning scenario is that UEs may offload their sub-tasks into sub-optimal BSs due to the
variance of z̃. The UE will try to offload their tasks into all BSs to learn the best optimum BS.
However, offloading many tasks is not practical and may cause frequent HOs. A possible
solution is to assign a stop parameter for the learning process. Therefore, the algorithm
will only apply to the first ks sub-task, and the remaining sub-tasks will be offloaded to
pre-determined optimal BS. The second challenge is choosing the stop learning parameter.
The large ks may cause frequent HOs and may increase costs, whereas the small ks will lead
to the selection of sub-optimal BS. The proposed Algorithm 2 presents the online UE-BS
algorithm for minimising the cost z̃m,n in Equation (20) for each task m.
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Algorithm 2: Mobility-aware online BS learning algorithm
Input: A(m), dm, cm and α.

1: if m = f J + 1, ∀ f = 0, 1, . . . , F− 1 then
2: βm ← 0
3: end if
4: for k = 1, . . . , |A(m)| do
5: connect o each BS n ∈ A(m) once.
6: Update z̄m,n,k = αt̃m,n + βm ẽm,n.
7: Update θm,n,k = 1.
8: end for
9: for |A(m)|+ 1, . . . , ks do

10: Connect to ηk
m = arg minn{z̄m,ηk

m ,k − β
√

2 ln k
θm,n,k
}

11: Observe t̃m,ηk
m

and ẽm,ηk
m

.

12: z̄m,ηk
m ,k ←

θ
m,ηk

m ,k
z̄

m,ηk
m ,k

+αt̃
m,ηk

m
+βm ẽ

m,ηk
m

θ
m,ηk

m ,k
+1 .

13: θm,ηk
m ,k ← θm,ηk

m ,k + 1.
14: end for
15: for ks + 1, . . . , km do
16: Connect to ηks

m , ∀k ∈ {ks + 1, ks + 2, . . . , km}
17: end for
18: Update βm according to (17).

In Algorithm 2, the task is divided into km number of sub-tasks. Therefore Algorithm 2
has service continuity despite handover because of dividing the task into small-sized sub-
tasks. However, these division introduces additional complexity, as seen in Algorithm 2.
As noted above, the algorithm only applies into ks number of tasks, which results in
computation complexity of O(ks|A(m)|). This means the small learning step ks leads to
lower complexity. However, as noted above, the lower the ks means sub-optimal BSs
may be selected. Therefore, there is a trade-off between having optimum BS and lower
computation complexity in the algorithm.

6. Simulations Results and Discussion

This section provides the simulation experiments for evaluating the proposed methods.
Table 3 summarises the main simulation parameters with their values. The coverage region
of each MEC-equipped BS is considered to be a circle with a radius of 150 m deployed on a
regular grid network within an area of 1000× 1000 m2, as shown in Figure 3. The channel
bandwidth of BS is set to be ω = 20 MHz. The channel gain from the UE to BS is modelled
as 127 + 30 log d (km) dB [60]. All wireless communication parameters are set based on the
3GPP specification [62].

According to [43], the one-second video size should be set to dsub = 0.62 Mbits.
Let us assume that each video is 60 s to 120 s long, and km ∈ {60, . . . , 120}. According
to the following definition, dm = kmdsub, the input data size is uniformly distributed
dm ∼ U(37.2, 74.4) MBits. The same consideration holds for computation intensity, which
is uniformly distributed within U(500, 1000) cycles/bits. Each MEC server m allocates its
available computational CPU resource to its users ( fm,n), and the total used CPU should
not reach the resource constraint of that MEC server (Fn). The MEC server n uniformly
distributes the resource constraint Fn = 20 GHz to its UEs. For simplicity, it is assumed
that the available CPU frequency on all BSs are equal and are set to 25 GHz. To ensure
that execution of each sub-task is completed within its latency constraint, tm is set to be
150 ms. After reaching the total execution time of a task Ttot

m,n = ∑km
k=1 te

m,n, the MEC server
deallocates the resource fm,n and makes it available for reallocation to other users as soon
as they request it.
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Figure 3. The location of BSs and users within simulation region.

Table 3. Employed simulation parameters with corresponding values.

Parameters Value

Radius of the BS coverage area R 150 m
Availbe CPU frequency on BS Fn 25 GHz

Channel bandwidth ω 20 MHz
Channel gain from UE to BS hm,n 127 + 30 log d(km) dB

Subtask size dsub = 0.62 Mbits
Input data size of each task dm [37.2, 74.4] Mbits

Computation intensity of each task cm [500, 1000] cycles/bit
Total available computation CPU for each task m by BS n fm,n [0, Fn]

Computation deadline of each task tm 150 ms
Noise power Nσ2 2× 10−13 W

UE transmission power pm 0.5 W
One-time handover delay τh

m 5 ms
Battery capacity 1 kJ

The number of tasks varies for different simulations. We consider a fixed number of
BSs as N = 49, where all are active the entire time. It is also assumed that there is at least
one BS to provide service to each UE. The transmit power of mobile UEs are pm = 0.5 W,
and the noise power is set to be Nσ2 = 2× 10−13 W. The one time HO is τh

m = 5 ms, and
the battery capacity is J = 1 kJ.

This section compares our two proposed methods, UE-BS and BS-learning algorithms,
with the optimum offline solution as well as the two common benchmark algorithms
known as time greedy and energy greedy. The performance of the proposed methods are
evaluated and compared with the related study of [43].

Figure 4 compares the average time cost and total energy cost for all algorithms over
different task sizes M. As seen in Figure 4a, both EMM-GSI and the proposed UE-BS
algorithms have their time cost close to the optimum offline solution due to possessing
BS-side information. However, EMM-LSI and the proposed BS-learning have additional
costs due to sub-optimal BS selection and handover cost.
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Figure 4. Performance evaluation of algorithms (ρ = 410 J, log(α) = −2.2, J = {5, 15}, ks = 20 s,
σ2

observe = 0.3): (a) average time cost; (b) total energy cost.

For the higher number of task size in Figure 4b, the proposed methods exhibit slightly
better performance compared to existing studies that have energy cost near optimum for
the offline solution. The proposed methods maintain energy consumption below the energy
budget ρ while achieving relatively low time cost.

Figure 5 displays the trade-off between the average time cost and the total energy cost
for α from 10−4 to 10. The α is the controlling parameter in the optimisation solution. We
must therefore ensure it is optimally selected. The interception points indicate the optimum
α values, as presented in Figure 5.

In Figure 5a, the BS-side information is presented. In Figure 5b, the proposed algorithm
learns the total cost throughout observations. As can be seen, the interception points are
almost the same, varying between [−2.3,−2.1]. To conveniently evaluate all algorithms in
the same condition, the controlling parameter is set to be log(α) = −2.2. Due to the HO
and learning process in Figure 5b, the time and energy costs are slightly higher than those
in Figure 5a.
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Figure 5. Effect of optimization parameter α (ρ = 410 J, J = {5, 15}, ks = 20 s, σ2
observe = 0.3):

(a) online UE-BS algorithm; (b) online BS-learning algorithm.

Figure 6 reveals the performance of the algorithms for various energy budgets ρ. The
figures indicate that by increasing the energy budget ρ, all algorithms will achieve similar
performance as the time greedy algorithm. Users will have enough energy budget to
neglect cost and stick to the BS with the lowest average time cost. It must be noted that if
users do not have BS-side information they will experience performance loss (see Figure 6).

Therefore, the EMM-LSI and proposed BS-learning algorithms are not going to reach
the optimum offline cost level. As a result, EMM-LSI and the proposed BS-learning
algorithms will not reach the optimum offline cost level. The next important point is the
slope of the lines, as shown in Figure 6. The results indicate that our proposed algorithms
are near optimum for the offline solution compared to the algorithms in [43].
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Figure 6. Effect of energy budget ρ (log(α) = −2.2, J = {5, 15}, ks = 20 s, σ2
observe = 0.3): (a) average

time cost; (b) total energy cost.

7. Conclusions

Significant research has been accomplished to determine online task offloading de-
cisions in MEC while considering user mobility, and a limited energy budget has been
allocated to users. The optimisation function has been developed as a trade-off between the
time cost and energy cost, not to exceed the energy budget. The online algorithms are con-
sidered as potential solutions as future upcoming tasks are unknown. In this manuscript,
two scenarios have been presented. The first scenario is when both the user-side and
BS-side information are available. The user will be able to calculate the optimum BS and
remain for the entire task processing period. The second scenario is when users have no
access to BS information. Unlike the first scenario, users cannot calculate the utility cost
and make offloading decisions based on that. Instead, users will offload limited tasks to
each BS and observe the total time cost and energy consumption. After determining the
optimum BS, the remaining tasks are offloaded to that BS. The BS may change during
task offloading due to sub-optimum BS selection in the BS-learning algorithm, resulting in
additional costs and HOs. The simulation results indicate that our two proposed algorithms
perform slightly better than those in existing literature. Additionally, a performance loss is
provided in the second scenario due to HO, and the outcomes are similar to the optimal
offline solution.

In future work, it would be better to consider resource allocation in the problem
formulation. This requires solving NP-hard and non-convex problems. One potential
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solution is to use machine learning (ML) approaches [63,64]. Applying ML approaches
in MEC systems will be challenging because ML algorithms are extremely complex and
computation resources are in high demand. Dividing learning computations into smaller
tasks and distributing them among multiple MEC servers can be a possible solution. The
issues would then be to determine the types of computations that can be divided as well
as the method to divide while considering MEC resources. Merging the results obtained
from different MEC servers for a specific task should also be managed and assessed. Due
to UE mobility and frequent handovers among MEC servers, it is quite challenging to
integrate outputs from various sub-tasks into a single output when the UE’s trajectory
and location are dynamic. Future work should employ deep neural network (DNN) with
multi-objective functions to optimise HO and computation offloading. Additionally, for
the scenario where the UEs are far from network coverage, we can implement a device-
to-device (D2D) connection or use MEC servers inside vehicular systems. Furthermore,
for simplicity, multipath propagation was not considered here, and future work needs
to consider the multipath impact into the problem formulation. Furthermore, the BSs in
both algorithms are assumed to be all activated during the offloading process. Recent
technologies such as software-defined networking (SDN) require a programmable network
that enables developers to switch ON/OFF the BSs. In future work, it would be better to
integrate the SDN with the MEC technology. Finally, future work could also analyse the
run-time complexity of algorithms and compare it with benchmarks.
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5G Fifth Generation of Mobile Networks
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BS Base Station
BSA Boundless Simulation Area
DNN Deep Neural Network
DRL Deep Reinforcement Learning
ETSI European Telecommunications Standards Institute
HO Handover
IoT Internet of Things
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RL Reinforcement Learning
SDN Software-defined Network
TO Task Offloading
UDN Ultra Dense Network
UE User Equipment
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