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ABSTRACT Fog computing is an extension of cloud computing, which emphasizes distributed computing

and provides computing service closer to user equipments (UEs). However, due to the limited service

coverage of fog computing nodes (FCNs), the moving users may be out of the coverage, which would cause

the radio handover and execution results migration when the tasks are off-loaded to FCNs. Furthermore,

extra cost, including energy consumption and latency, is generated and affects the revenue of UEs. Previous

works rarely consider the mobility of UEs in fog computing networks. In this paper, a generic three-layer

fog computing networks architecture is considered, and the mobility of UEs is characterized by the sojourn

time in each coverage of FCNs, which follows the exponential distribution. To maximize the revenue of UEs,

the off-loading decisions and computation resource allocation are jointly optimized to reduce the probability

ofmigration. The problem ismodeled as amixed integer nonlinear programming (MINLP) problem, which is

NP-hard. The problem is divided into two parts: tasks off-loading and resource allocation. AGini coefficient-

based FCNs selection algorithm (GCFSA) is proposed to get a sub-optimal off-loading strategy, and a

distributed resource optimization algorithm based on genetic algorithm (ROAGA) is implemented to solve

the computation resource allocation problem. The proposed algorithms can handle the scenario of UEs’

mobility in fog computing networks by significantly reducing the probability of migration. Simulations

demonstrate that the proposed algorithms can achieve quasi-optimal revenue performance compared with

other baseline algorithms.

INDEX TERMS Fog computing, mobility, Gini coefficient, resource optimization, utility function.

I. INTRODUCTION

The rapid development of mobile communication technol-

ogy has motivated a plenty of novel service coming true

(e.g., augmented reality (AR), Internet of Things (IoT), Inter-

net of Vehicles (IoV), intelligent camera, etc). Most of the

services exhaust the capabilities of current wireless sys-

tems, including the throughput, fronthaul/backhaul capacity,

bandwidth capacity and computation capacity, which arouses

an increasing number of scholars to promote the develop-

ment of the fifth generation (5G) wireless systems. User

equipments (UEs) themselves cannot satisfy their require-

ments because of the limited computation resource and

battery power. With the arise of the cloud radio access net-

works (C-RANs), strong computing capability are available

such that the terminal nodes can compute their tasks locally

or remotely [1]. The idea of moving the local load such
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as computing and caching from UEs to the cloud servers

is proposed to improve the spectral efficiency and energy

efficiency performance of the system in a centralized manner.

Nevertheless, due to the remote location, it should be noted

that the constrained bandwidth with limited capacity and long

time transmission make it difficult for the traditional central

cloud to support some services like the latency-sensitive ones.

In order to solve these problems, the concept of fog radio

access networks (F-RANs) is proposed [2] as a middle com-

puting layer between the UEs and C-RANs. The key idea

behind fog computing is the distributed computing among

the UEs. Since fog computing nodes (FCNs) are located close

to UEs, the offloading process for execution can significantly

reduce the communication delay, save backhaul bandwidth

between FCNs and cloud servers (CSs). So the structure of

FCNs network can improve the network capacity [3].

So far, many researchers focus on fog computing to pro-

mote the performance in terms of energy efficiency and time

delay of F-RAN. Some papers focus on the tasks offloading
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and resource allocation optimization in the scenario of fog

computing [4]–[11]. The works in [4]–[7] focus on the

offloading strategies, of which papers [7] and [8] mainly lay

emphasis on the partial offloading strategy in fog comput-

ing. The authors of [9]–[11] jointly optimize the offloading

decisions and resource allocation. Cooperation and matching

problems in three-layer fog computing architecture networks

are studied in [12]–[19].

However, the papers mentioned above mostly ignore the

mobility of UEs. Due to the mobility, UEs will cause the

radio handover and service migration when moving out of

the coverage of a FCN. The process of migration may cause

additional cost of energy consumption and time delay, and

the migration failure may occur due to late migration or early

migration or migration to FCN with much higher latency.

Besides, the target FCN may not have adequate available

capacities to support new UEs, so the new migrated tasks

should wait in line for execution, which increases the time

delay and occupies the storage space.

A few papers in fog computing investigate the mobility

of UEs [20]–[25]. Besides, the mobility-aware computation

offloading in vehicular networks has beenwidely investigated

in many papers [26]–[28]. Especially, the authors in [28]

leverage a follow-me edge concept for enabling lightweight

live migration which means services should follow the user

mobility. To ensure the service continuity after migration,

they proposed three mechanisms to improve the end user

experience which consider the moving path of mobile users

like vehicles, UAVs. But as we know, themovement ofmobile

users is generally irregular and unpredictable in most of the

time, especially in scenes with complex bewilderment of

passages. Thanks to the development of machine learning,

the user’s preference stay time in a certain area is available,

which provided a basis for task offloading and task migration.

Although there are some ways to reduce the cost of

migration, such as live migration [28], [36], the process of

migration still causes the extra cost more or less. Unlike the

previous papers, this paper explores the ways on how to avoid

the extra migration, which means completing the execution

of the task in the current FCN before the UE leaving the cov-

erage, by integrating the mobility and migration. Therefore,

motivated by the previous works in [20]–[28], we propose

a mobility-aware task offloading and migration scheme in a

generic three-layer computing networks architecture in this

paper. We intend to minimize the probability of migration

in order to maximize the revenue of UEs by optimizing

the offloading decision, FCNs selection and computation

resource allocation. The problem is modeled as a Mixed

Integer Nonlinear Programming (MINLP) problem, which

is NP-hard. The problem is divided into two parts and two

algorithms are proposed to solve the sub-problems separately.

The distinct contributions of this paper are as follows:

• Amobility-aware task offloading and migration scheme

is proposed based on a generic multilayer fog sys-

tem [29]. Since leaving the coverage of FCNs without

finishing the offloaded tasks will lead to the migration

of the execution results. The offloading and computation

resource allocation are jointly optimized based on the

UEs’ mobility to reduce the probability of migration.

• A fog computing model with mobility is proposed based

on the sojourn time in each coverage of FCNs, which

follows the exponential distribution. Themobility model

is motivated by [30] and [31], which only considered the

current state of the number of UEs. The mobility model

of UEs is used to predict the sojourn time in order to

reduce the probability of migrations.

• A utility function considering the energy consumption

and computation delay is derived when executing the

computation tasks. The revenue that a UE can realize

by offloading its task to the FCN is defined by the

utility function. Therefore, the problem is formulated as

a revenuemaximization problem for each UE.We define

that the revenue gain can be realized from computation

offloading compared with local computing.

• The problem is formulated as a MINLP problem,

which is also an NP-hard problem. The problem is

divided into two sub-problems. A Gini Coefficient

based FCN selection algorithm (GCFSA) is proposed

to optimize the offloading decisions, and a distributed

resource optimization algorithm based on genetic algo-

rithm (ROAGA) is implemented to solve the optimiza-

tion problem of computation resource allocation.

• Extensive simulations show the performance of the

proposed scheme compared with the other baseline

schemes, which demonstrates that the proposed scheme

considering mobility can significantly reduce the prob-

ability of migration and improve the revenue of UEs.

II. RELATED WORKS

A. JOINTLY CONSIDER THE OFFLOADING AND RESOURCE

ALLOCATION IN FOG COMPUTING NETWORKS

The main focus on fog computing is offloading decisions

and resource allocation. A socially aware dynamic com-

putation offloading scheme is proposed in [4] by using a

game theoretic approach to minimize the social group exe-

cution cost in fog computing system with energy harvesting

devices. By using lexicographic max-min fairness, delay-

aware task offloading is studied in [5]. Besides, a two-step

fair task offloading (FTO) scheme is proposed in [6], aiming

at decreasing the energy consumption and task delay in the

fog computing networks. A partial offloading approach based

on edge computing is proposed in [7] with the goal of reduc-

ing fog node energy consumption, average task delay and

increasing network lifetime. A suboptimal partial offloading

technique is proposed in [8] with the goal of improving

network lifetime and reducing energy consumption and task

processing delay.

Jointly optimizing the offloading decisions and resource

allocation is investigated in the following papers. To tackle

a joint radio and computational resource allocation prob-

lem, student project allocation (SPA) game and user-oriented

cooperation (UOC) are used in [9]. A joint computation
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offloading and resource allocation method is proposed in [10]

under the strict required latency in cloud based two-tier wire-

less heterogeneous network (HetNet). The offloading deci-

sions and the allocation of computation resource, transmit

power and radio bandwidth are optimized jointly in [11].

B. COOPERATION AND MATCHING PROBLEMS

IN THREE-LAYER FOG COMPUTING

ARCHITECTURE NETWORKS

A generic fog computing architecture includes three lay-

ers, UEs, fog nodes and cloud servers. Cooperation among

fog nodes and cloud servers draw a lot of attention. In order

to reduce delay in a mixed fog and cloud computing sys-

tem, a low-complexity iterative suboptimal algorithm called

FAJORA is proposed in [12], jointly optimizing offloading

decisionmaking and resource allocation. A delay-minimizing

collaboration and offloading policy for fog-capable devices

is proposed in [13]. And a near-optimal resource allocation

mechanism is proposed in [14] to improve the quality of

experience for users. Reference [15] proposes a maximal

energy-efficient task scheduling (MEETS) algorithm utiliz-

ing the effective collaborations among neighboring fog nodes

via cognitive spectrum access techniques. The interaction

between the cloud/fog providers and the miners in a proof

of work-based block chain network is studied in [16] using a

game theoretic approach.

In the fog computing networks, fog nodes are commonly

distributed among theUEs. So thematching problem between

UEs and fog nodes is also an issue to be solved. A multi-

objective optimization algorithm is proposed in [17] with the

consideration of queuing theory in fog computing system.

Reference [18] introduces a deferred acceptance algorithm

with matching game, which lessens the worst total comple-

tion time, mean waiting and mean total completion time per

task. And [19] uses Stackelberg game and many-to-many

matching game to jointly optimize the utility of all fog nodes.

C. MOBILITY-AWARE IN FOG COMPUTING NETWORKS

Mobility is a significant issue of fog computing networks.

Some papers study the problems of UEs’ mobility in

vehicular networks and D2D networks. Some papers study

the mobility prediction and matching problems. A ser-

vice popularity-based smart resources partitioning (SPSRP)

scheme and a mobility and heterogeneity-aware partitioning

algorithm are proposed in [20]. By integrating bandwidth

and the mobility of robots with the offloading decisions,

meanwhile, using genetic algorithm, an offloading method is

proposed in [21] to improve QoS and minimum consump-

tion of resources. A hybrid mobile task offloading method

is proposed in [22], including local execution, D2D and

cloud execution, to minimize the total task execution cost.

The authors in [23] investigate the problem of mobility-

assisted opportunistic computation offloading by exploiting

the contact patterns regulated by these devices’ mobility to

determine the amounts of computation to be offloaded to

other devices. The authors in [24] propose a mobile access

prediction algorithm based on tail matching subsequence.

Based on the predicted result, a mobility-aware offloading

decision method is proposed considering the job completion

time, energy consumption and offloading success rate. The

works in [25] investigate the task offloading problem in a

mobile edge network in order to reduce the latency with the

consideration of the task properties, the user mobility and

network constraints.

Besides, in vehicular networks, the authors in [26] con-

ceive the idea of utilizing vehicles as the infrastructures and

proposed a Vehicular Fog Computing (VFC) architecture.

The authors discussed four scenarios of utilizing moving

and parked vehicles as communication and computational

infrastructures and carry on a quantitative analysis of the

capacities of VFC. The works of [27] propose a solution for

latency and quality optimized task allocation in VFC. A joint

optimization problem is formulated and solved with a trade-

off the service latency and quality loss.

FIGURE 1. An illustration of the UEs mobility in the three-layer fog
computing networks.

III. SYSTEM MODEL

A generic three-layer fog computing network architecture

is illustrated in Fig. 1, including the cloud layer, fog layer

and the user layer. A large number of UEs are in the user

layer, which have the mobility and require large amount

of computation resource. Fog layer also consists of a large

scale of fog computing nodes (FCNs), which are widely

deployed among the users. So they can provide the compu-

tation resource to users in close proximity. But due to the

limited resource and service coverage, only a few UEs can

be served. Cloud servers (CSs) lie in the cloud layer, which

are in charge of the FCNs. As shown in Fig. 1, the mobility

of UEs is considered, and due to the limited service coverage

of FCNs, a moving UE has the chance to leave coverage of

the serving FCN. If the tasks have already been offloaded to

the FCN but still unfinished when the UE left the coverage

of FCN, the execution results will bemigrated to another FCN

through the CS, which will cause the extra cost, including the

energy consumption and time delay.

In this paper, the migration process refers to migrating the

results of tasks from the previous FCN to the FCN which
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TABLE 1. Parameter notations.

can connect with the UEs. The computation results will be

transmitted from the previous FCN to the cloud server and

then transmitted to the destination FCN. The process is in

charged by the cloud server. And due to the small size of the

results, the migration process won’t overload the relay node.

A. FOG COMPUTING ARCHITECTURE

In the proposed system, UEs are widely distributed around

the FCNs, which follow the random distribution. Set NF =

{1, . . . ,F} to represent the set of FCNs in networks. And

the set of UEs can be expressed as Nu = {1, . . . ,U}. Each

UE is assumed to have only one task to operate at the same

time. Each computation task Zu is characterized by a tuple

of three parameters, {Du, fu,T
max
u },∀u ∈ Nu, in which, Du is

the data size of the task necessary to transmit for the program

execution (including the input parameters, program codes and

system settings) from UEs to FCNs, and fu = εDu specifies

the required computation resource to complete the task. Fur-

thermore, Tmax
u represents the maximum latency allowed for

Zu to be completed. In this paper, the computation resource

is characterized by the number of CPU cycles [32]. Each

task of UEs can be executed locally or offloaded to FCNs.

Denote S = {su, u ∈ Nu} to be the set of the offloading

decisions, in which su = {0, 1}. su = 1 means that the

task Zu will be offloaded to one of the FCN to execute and

su = 0 specifies the task being operated locally at UE. In this

paper, we consider the system with OFDMA as the multiple

access scheme in the uplink [39]. Assume that one FCN

can connect with multi UEs simultaneously as long as they

are in the service coverage of the FCN. Each UE can only

connect with one FCN at the same time even if it is in the

overlap service coverage. Therefore, set auf = 1 to represent

that UE u choose to offload its task to FCN f . Define the

ground set A that contains all the FCN selection variables as

A =
{

auf |u ∈ Nu, f ∈ NF
}

. A feasible selection policy must

satisfy the constraints below
∑

u∈Nu
auf ≤ K (1)

∑

f ∈NF
auf ≤ 1 (2)

where K is the maximum number of sub-channels of each

FCN. Therefore, the number of UEs that each FCN can serve

is at most K at the same time. Besides, (2) constrains that

each UE can only connect with one FCN. Since the OFDMA

is considered in the system. There are several uplink sub-

channels accessed to the FCN, and they are orthogonality

to each other. Each UE can only be allocated with one sub-

channel to avoid the interference. Additionally, let Uf =
{

u ∈ Nu|auf = 1
}

be the set of UEs offloading their tasks to

FCN f to execute. Furthermore, set Uoff = ∪f ∈NFUf as the

set of UEs that offload their tasks.

Consider the revenue of UEs when executing the compu-

tation tasks on FCNs. The revenue of UEs can be realized

by offloading the tasks to the FCNs. We define that the

revenue gain can be realized from computation offloading

compared with local execution, where the cost of executing a

task consists of energy consumption and computation delay.

Next, the local computation model and FCN computation

model will be discussed separately.

B. LOCAL COMPUTATION MODEL

OnceUE u decides to perform its task locally on its ownCPU,

i.e., su = 0, the energy consumption E localu and the executing

time T localu can be expressed as follows. Set clocalu as the local

computing capacity of UE u, i.e., CPU cycles. So far, the local

executing time T localu can be given by

T localu =
fu

clocalu

, ∀u ∈ Nu (3)

To obtain the energy consumption of a UE when its task

is performed locally, a widely adopted calculation model

of the energy consumption per CPU cycle is used as E =

κc2 [33], [34], where κ is the effective switched capacitance

depending on the chip architecture [35] and c is the required

computation resource, which is the chip frequency. Then,

based on the model, the energy consumption E localu of the task

Zu in such case is calculated as

E localu = κ

(

clocalu

)2
fu, ∀u ∈ Nu (4)

After that the corresponding overhead of local execution

can be derived as

qlocalu = λEu E
local
u + λTu T

local
u , ∀u ∈ Nu (5)

where λEu and λTu represent the constant weight coefficient of

energy consumption and time delay for the task Zu of UE u

to make offloading decisions, respectively. Assume that λEu +

λTu = 1 and λEu , λ
T
u ∈ [0, 1]. These coefficients depend on the

UEs and the type of tasks. If λEu < λTu , it means that the task

Zu of UE u is more sensitive to the executing delay. Such tasks
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includes video streams, communication online, etc. On the

other hand, if the battery of UE u is at a very low state, λEu is

supposed to be larger than λTu , even λ
E
u = 1 under the extreme

case.

C. FOG COMPUTATION MODEL

In this case, when UE u offloads its task Zu to one of

the FCNs, the total processing delay T Fuf consists of: (i) the

transmission time t
up
uf from UE u to the FCN f on the uplink,

(ii) the executing time texeuf to deal with the task Zu at FCN f ,

and (iii) the transmission time from the FCN back to the

UE on the downlink. In this paper, the size of the execution

result is assumed to be generally much smaller than the input,

and the channel condition of downlink is much better than

that of the uplink. Therefore, the delay of transmitting the

execution result back to the UE can be omitted, which are also

considered in [33]. Specially, the proposed algorithm in this

paper can still be appropriate for the cases when the delay of

the transmission on the downlink can’t be ignored, only if the

downlink channel conditions and the size of execution results

are given.

Each FCN can serve multiple UEs at the same time. Each

UE can have access to multiple FCNs only if the SINR of

transmission from UE u to FCN f satisfies the following

constraint

SINRuf ≥ SINRth (6)

where SINRth is the threshold to guarantee the revenue

of UEs. Therefore, the set of UEs which can be accessed

to FCN f is denoted as U c
f =

{

u ∈ Nu|SINRuf ≥ SINRth
}

.

Suppose that UEs transmit their tasks to FCNs with the

maximum transmission power, i.e., P = {Pu|u ∈ Nu}. The

sub-channel gain on the uplink from UE u to FCN f is guf ,

and the set G can be defined as the set of all sub-channels

between the UEs and FCNs, G =
{

guf |∀u ∈ Nu,∀f ∈ NF
}

.

Then, the expression of SINRuf between UE u and FCN f is

given as

SINRuf =
Puguf

σ 2 +
∑

i∈NF\{f }

∑

j∈Ui
ajiPjgji

(7)

where σ 2 is the background noise variance, which is con-

sidered as the Gaussian white noise. The second term at the

denominator represents the accumulated interference from all

the UEs accessed to other FCNs on the same sub-channel.

Therefore, the transmission rate ruf can be expressed as

ruf = wlog2(1 + SINRuf ), ∀u ∈ Nu, ∀f ∈ NF (8)

where w is the bandwidth of sub-channel. So far, when the

task of UE u is offloaded to FCN f , the transmission time t
up
uf

can be derived as

t
up
uf =

Du

ruf
, ∀u ∈ Nu, ∀f ∈ NF (9)

Consider that the total computing capacity of each FCN

is cF , and let Cf =
{

cFuf |u ∈ Uf

}

be the computa-

tion resource allocation strategy on FCN f . Furthermore,

setCoff = ∪f ∈NFCf as the set of the total allocation strategies.

Therefore, the constraint of cFuf must satisfy the following

expression

∑

u∈Uf
cFuf ≤ cF , ∀f ∈ NF (10)

And the executing delay t
up
uf can be given as

texeuf =
fu

cFuf
, ∀u ∈ Nu, ∀f ∈ NF (11)

Therefore, the total processing time on FCN f is derived as

T Fuf = t
up
uf + texeuf , ∀u ∈ Nu, ∀f ∈ NF (12)

Furthermore, the energy consumption on transmission can be

expressed as

E
up
uf = Put

up
uf , ∀u ∈ Nu, ∀f ∈ NF (13)

Thus the total cost of performing the task of UE u on FCN f ,

i.e., qFuf is given as

qFuf (c
F
uf ) = λEu E

up
uf + λTu T

F
uf , ∀u ∈ Nu, ∀f ∈ NF (14)

D. FOG COMPUTING MODEL WITH MOBILITY

Consider the limited service coverage of FCNs and themobil-

ity of UEs, the sojourn time, which represents the mobility

of UEs, in the coverage of different FCNs are limited and

different. According to [30], [31], the sojourn time of UE is

modeled by an exponential function. Set tsuf as the sojourn

time of UE u in the coverage of FCN f . Therefore, the prob-

ability density function (PDF) of sojourn time tsuf , denoted

by fτuf (t), is given as

fτuf (t) =
1

τuf
e
− t
τuf , t ≥ 0, ∀u ∈ Nu, ∀f ∈ NF (15)

where τuf denotes the average sojourn time of UE u in

the coverage of FCN f . Due to the UEs’ different mobility

trace and characteristics, τuf is varied among the UEs in

different FCNs. In particular, the sojourn time tsuf of each

UE in different FCNs are assumed to be independently and

identically distributed (i.i.d). For simplicity, assume that τuf
follows the Gaussian i.i.d here [31]. In reality, the reliable

τuf can be acquired by gathering the information of UEs with

machine learning tools.

Considering the mobility of UEs, when the tasks are

offloaded to the FCNs, according to the relationship between

the processing delay and the predicted sojourn time of UEs,

the total cost of performing the tasks on FCNs are different

in two cases, which will be discussed as follows.

Case 1:When the task Zu is offloaded to FCN f , the sojourn

time of UE u in the service coverage of FCN f is longer than

the processing delay, i.e., tsuf > T Fuf , which means that the

execution result can be transmitted back directly to the UE.

In this case, migration of the result won’t occur. According

to (15), now that the sojourn time tsuf follows the exponential

43360 VOLUME 7, 2019



D. Wang et al.: Mobility-Aware Task Off-Loading and Migration Schemes in Fog Computing Networks

distribution, the probability of case 1 can be denoted as

P
τuf

(tsuf > T Fuf ). And the total cost of UE u on FCN f is

q
F,1
uf = qFuf (c

F
uf ), ∀u ∈ Nu, ∀f ∈ NF (16)

Case 2: Due to the mobility of UEs, if the sojourn time

of UEs is shorter than the transmission time, the process of

offloading can’t succeed. Therefore, UEs whose sojourn time

is shorter than the transmission time will be sorted out to

execute locally, which is analyzed in next section. As for the

other UEs, if the task Zu offloaded to FCN f and the sojourn

time of UE u is shorter than the processing delay on FCN f ,

the probability of which is P
τuf

(tsuf ≤ T Fuf ), the execution

result will firstly be migrated to the FCN which can commu-

nicate with UE u through the CS, and then transmitted back

to UE. The process of migration will cause the extra cost of

energy consumption and time delay, which should be paid

by UEs. For the sake of simplicity, the cost of migration is

assumed to be only relative to the size of the task, which can

be expressed as q
mig
u = δDu [30]. In addition to the task size,

the cost of migration is also associated with the type of the

task the distance between the FCNs and so on in practice [36].

Therefore, the total cost of UE u in case 2 can be expressed as

q
F,2
uf = qFuf (c

F
uf ) + qmigu , ∀u ∈ Nu, ∀f ∈ NF (17)

From (16) and (17), the cost of performing the task Zu in two

cases is expressed as

qFuf =

{

q
F,1
uf , P

τuf
(tsuf > T Fuf )

q
F,2
uf , P

τuf
(tsuf ≤ T Fuf )

, ∀u ∈ Nu, ∀f ∈ NF

(18)

Therefore, the expectation of the cost qFuf is denoted as the

total cost of performing the task Zu, which is derived as

q̄Fuf = P
τuf

(tsuf > T Fuf )q
F,1
uf + P

τuf
(tsuf ≤ T Fuf )q

F,2
uf

(19)

P
τuf

(tsuf ≤ T Fuf ) =

∫ TFuf

0

1

τuf
e
−

ts
uf
τuf dtsuf

= −e
−

ts
uf
τuf |

TFuf
0 = −e

−
TF
uf
τuf + 1 (20)

P
τuf

(tsuf > T Fuf ) = 1 − P
τuf

(tsuf ≤ T Fuf ) (21)

IV. PROBLEM FORMULATION AND SOLUTION

A. PROBLEM FORMULATION

As aforementioned, the revenue of UE u is related to the

energy consumption and computation delay. The less energy

consumption and computation delay are, the higher rev-

enue is. Therefore, define the revenue as the amount of total

cost subtraction acquired by the UE if it offloads its task to

the FCN. LetQu be the cost reduction when the task Zu is exe-

cuted on FCN. Therefore, given the offloading decision Uf ,

the expression of Qu is given as follows

Qu(su, auf , c
F
uf ) =

{

qlocalu −
∑

f ∈NF
auf q̄

F
uf , su = 1

0 , su = 0

(22)

To this end, based on the above analysis on the revenue

of UEs, an optimization problem of maximizing UEs’ rev-

enue is formulated under the resource and delay constraints

as follows

P1 : max
S,A,Coff

∑

u∈Nu

Qu(su, auf , c
F
uf )

s.t. C1 : t
up
uf < T Fuf ≤ Tmax

u , ∀u ∈ Nu

C2 :
∑

u∈Uf
cFuf ≤ cF ,∀f ∈ NF

C3 : auf = {0, 1}, ∀u ∈ Nu, ∀f ∈ NF

C4 : auf = I (cFuf ), ∀u ∈ Nu, ∀f ∈ NF

C5 :
∑

u∈Nu
auf ≤ K , ∀f ∈ NF

C6 :
∑

f ∈NF
auf ≤ 1, ∀u ∈ Nu

C7 : su = {0, 1}, ∀u ∈ Nu

C8 : su =
∑

f ∈NF
auf , ∀u ∈ Nu (23)

In (23), constraint C1 guarantees that the processing time on

FCN won’t exceed the maximum latency. C2 constrains that

the amount of computation resource distributed to UEs which

are accessed to FCN f won’t exceed the total computation

resource of FCN f . C3 and C7 limit the range of the variable

auf and su. In C4, I (·) is the indicator function. If ‘‘·’’ > 0,

let I (·) = 1; otherwise, set I (·) = 0. C4 guarantees that the

FCN won’t distribute the computation resource to the UEs

which decide to perform locally. C5 indicates that the number

of UEs that each FCN can serve is at mostK at the same time,

which is depend on the number of sub-channels. C6 con-

straints that one UE can only access to one FCN to offload

its task. And C8 shows that if UE decides to offload its task,

it must be allowed to access to one of the FCNs.

Equation (23) shows that revenue of UEs is concerned

with the offloading decisions, FCN selection and computa-

tion resource allocation. Furthermore, UEs’ mobility has a

strong effect on the revenue of UEs. If the execution results

of the offloaded tasks cannot be transmitted back to the UEs

directly, the FCN needs to migrate the results to another

FCN through the CS. The process of migration may cause

the cost of energy consumption and time delay, and the

migration failure may occur due to late migration or early

migration or migration to FCN with much higher latency.

All of these are related to the value of q
mig
u . So in some

cases q
mig
u can be very large, which will reduce the revenue

substantially. Therefore, in order to maximum the revenue

of UEs, the impact of the migration cost should be reduced,

which can be realized by improving the probability of case 1

occurring, i.e., P
τuf

(tsuf > T FCNuf ).

By making the offloading decisions properly, selecting the

suitable FCNs and allocating the specific resource according

to UEs’ different sojourn time, the probability of migration

occurring will be reduced significantly. Then the cost of

migration will be saved and the revenue will be improved.

Therefore, in the next part, a Gini Coefficient based FCN

selection algorithm (GCFSA) is proposed to jointly optimize
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the offloading decisions and FCN selections, and a dis-

tributed resource optimization algorithm based on Genetic

Algorithm (ROAGA) is implemented to solve the optimiza-

tion problem of computation resource allocation. As a result,

the probability of migration can be reduced and meanwhile

the revenue of UEs can be improved.

B. GINI COEFFICIENT BASED FCN

SELECTION ALGORITHM

Acceding to [37], the concept of Gini Coefficient is applied

to solve the offloading decision and FCN selection problem.

Inspired by the unique function of gini coefficient, we pro-

posed a FCN selection function based on the Gini Coefficient.

In this paper, the income of each UE is defined by the selec-

tion function and different UEs have different contribution

to the total income. We use the selection function to obtain

the set Uf =
{

u ∈ Nu|auf = 1
}

, where the selected UEs can

contribute to the majority of revenue, including the energy,

time and migration. In general, the process of GCFSA can be

divided into three steps, which are described as follows

• Step 1: Pre-offloading. According to the relationship

between the sojourn time and the transmission time,

if the average sojourn time of UEs is shorter than the

transmission time, the tasks should be executed locally.

• Step 2: Gini Coefficient calculation. Based on the

results of Step 1,in this step, a selection function is

derived to calculate the income of each UE in each FCN.

Sort the UEs in each FCN according to the value of

income. The Gini Coefficient of each UE is calculated to

help the FCNs to decide the maximum number of UEs

which can be offloaded.

• Step 3: Matching Selection. Considering that each UE

can be accessed to multi FCNs, sort out the best FCN

which maximizes the revenue of the system for each

UE according to the income of UEs when connecting

to different FCNs, under the constraints C5 and C6

of (23), and the maximum number of UEs which can be

offloaded to each FCN obtained from Step 2. And finally

get the set Uf =
{

u ∈ Nu|auf = 1
}

for each FCN.

1) PRE-OFFLOADING

If the task is decided to be offloaded to FCN, the Basic

Offloading Requirement is defined as follows

Definition 1: (Basic Offloading Requirement, BOR) If the

task Zu is offloaded to the FCN to execute, the requirements

should satisfy the following two constraints, t
up
uf < τuf and

qFCNuf < qlocalu .

The UEs which satisfy the BOR, can be offloaded to

FCN to execute. If t
up
uf > τuf , the task will be terminated

during the process of transmission with a high probability

because the sojourn time in the coverage of FCN f is so short.

If qFCNuf < qlocalu , it means that even the entire computation

resource are allocated to the offloaded task, the cost cannot

be saved. So this kind of task should be executed locally and

let the FCN serve the more valuable UEs. Therefore, parts of

Algorithm 1 The Gini Coefficient Based FCN Selection

Algorithm

Input: U c
f , Nu, NF , Zu.

Output: A.

1: for f = 1 : |NF | do

2: Step 1 Pre-offloading:

3: Initialize: Bf = ∅

4: for u = 1 : |U c
f | do

5: if t
up
uf < τuf & qFCNuf < qlocalu then

6: Bf = Bf ∪ {u}

7: end if

8: end for

9: Step 2 Gini Coefficient calculation:

10: Calculated the income ψuf , u ∈ U c
f

11: Bf
sorted in ascending order
−−−−−−−−−−−−−→ Bsf

12: Calculate the Gini Coefficient Gf and the number of

selection If by equation (26)–(28)

13: Get the offloading space B
s,o
f from (29)

14: end for

15: Step 3 Matching Selection:

16: Initialize: auf
17: while

∑

f ∈NF
auf > 1, ∃u ∈ Nu do

18: for u = 1 : |Nu| do

19: if
∑

f ∈NF
auf > 1 then

20: fmax = arg max
f ∈{f |auf =1}

{ψuf }

21: for f ∈ {f |auf = 1}\fmax do

22: auf = 0

23: Add the first unselected UE from the set
{

Bsf ,i|i =

∣

∣

∣
Bsf

∣

∣

∣
− If , . . . , 1

}

24: end for

25: end if

26: end for

27: end while

the UEs are sorted out to execute locally in advance, which

reduces the problem scale of (23).

2) GINI COEFFICIENT CALCULATION

First, define the selection function to calculate the income of

UEs as follows

Definition 2: (Selection Function)

ψuf = ηuf

[

qlocalu − q̄Fuf (c
F )
]+

, ∀u ∈ Nu, ∀f ∈ NF (24)

where [x]+ = max{x, 0}, and ηuf is the weight factor of UE

u’s revenue, which is calculated as

ηuf =

(∑

u∈Bf
εFuf

∣

∣Bf
∣

∣ εFuf

)(

τuf

t
up
uf + texeuf

)

, ∀u ∈ Nu, f ∈ NF

(25)

where Bf is the set of candidate UEs of FCN f , which

can be obtained from step 1, and εFuf = fu

/(

τuf − t
up
uf

)

.
[

qlocalu − q̄Fuf (c
F )
]+

represents the revenue of UE u obtained
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from FCN f when the entire computation resource is dis-

tributed to the UE. The weight factor is proposed in order

to take the required computation resource and sojourn time

into consideration. As for the weight factor, the ratio

∑

u∈Bf
εFuf

|Bf |εFuf
is used to denote the efficiency of computation resource in

revenue of UE u. Mobility is an significant factor in affect-

ing the revenue. Considering the sojourn time related to the

computational resource, the time ratio
τuf

t
up
uf +texeuf

is introduced

as a multiplier in the weight factor. The higher ηuf you

get, the higher revenue of UEs can be obtained when being

offloaded. Therefore, the weight factor of revenue is designed

as (25).

Calculated the income of UEs in Bf for each FCN accord-

ing to the Selection Function. All the UEs in Bf are sorted

in ascending order of the value of income ψ s
f : ψ

s1
f ≤

ψ s2
f ≤ . . . ≤ ψ

s|Bf |
f . The sorted Bf is defined as Bsf .

Define the sum income belonging to FCN f as Yf =
∑|Bf |

u=1 ψuf ,∀f ∈ NF , and define the cumulative income ratio

as yif = 1
Yf

∑i
u=1 ψuf , i = 1, 2, . . . ,

∣

∣Bf
∣

∣. So far, the Gini

Coefficient of FCN f , i.e., Gf , can be obtained as

Gf = 1 −
1
∣

∣Bf
∣

∣

(

1 + 2
∑|Bf |−1

i=1
yif

)

, ∀f ∈ NF (26)

and define the number of selection of FCN f as

If = min

{

⌈

1

Gf

⌉

+

⌈

Lf
∣

∣Bf
∣

∣

(
∣

∣Bf
∣

∣−

⌈

1

Gf

⌉

)

⌉

,
∣

∣Bf
∣

∣

}

(27)

where

Lf = min

{⌊

cF

εFf ,mid

⌋

, |Bsf |,K

}

εFf ,mid =

{

ε
s,F
uf |u =

⌊
∣

∣Bf
∣

∣

2

⌋}

(28)

where ε
s,F
uf belongs to the set where εFuf is sorted in ascending

order.

The value of
⌈

1
Gf

⌉

denotes the number of UEs contributing

to the majority of total income [].
⌈

Lf

|Bf |
(
∣

∣Bf
∣

∣−
⌈

1
Gf

⌉

)
⌉

is the

correction factor of
⌈

1
Gf

⌉

. Lf is the load capacity of resources

of FCN f . And
Lf

|Bf |
is the weight factor of the difference

between
∣

∣Bf
∣

∣ and
⌈

1
Gf

⌉

. Therefore, the problem scale of (23)

can be further reduced and the offloading space of UEs for

FCN f , denoted as B
s,o
f , can be obtained from the sorted UEs

Bsf as

B
s,o
f = {Bs

f ,

∣

∣

∣
Bsf

∣

∣

∣

,Bs
f ,

∣

∣

∣
Bsf

∣

∣

∣
−1
, . . . ,Bs

f ,

∣

∣

∣
Bsf

∣

∣

∣
−If +1

}, ∀f ∈ NF

(29)

3) MATCHING SELECTION

The constraints C5 and C6 of (23) limit the number of FCNs

that each UE can connect. But the UEs selected in Step 2 can

possibly connect with more than one FCN at the same time.

Therefore, the set B
s,o
f should be further scaled to satisfy the

constraints C5 and C6 of (23).

If UE u is selected by more than one FCN, compare

the income in different FCNs, and choose the FCN which

has the largest income. Then eliminate the UE u in the

other sets of B
s,o
f and add the new UE from the set

{

Bsf ,i|i =

∣

∣

∣
Bsf

∣

∣

∣
− If , . . . , 1

}

. Do the loop operation until all

the UEs satisfy the constraint C6 in (23). Finally the set

Uf =
{

u ∈ Nu|auf = 1
}

for each FCN can be obtained. And

the UEs which are not selected by any FCNs will be operated

locally.

The complexity of GCFSA algorithm is polynomial com-

plexity, which is analyzed in the following. Firstly, the step 1,

will do the iteration for |NF ||U c
f | times to classify the inap-

propriate UEs to execute locally. Secondly, as for the step 2,

the complexity of calculation is O(|Bf |) and the complexity

of sorting process is O(|B2f ||NF |). Finally, the step of step 3,

has |NF ||U c
f | iterations to get the set Uf for each FCN.

Therefore, the computational complexity of GCFSA can be

given as O(|NF ||U c
f | + |Bf | + |Bf |

2|NF | + |NF ||U c
f |). Due to

|Bf | ≤ |U c
f | ≤ K ,the complexity can be further expressed

as O(K 2F).

C. RESOURCE OPTIMIZATION ALGORITHM

BASED ON GENETIC ALGORITHM

Once the offloading decision and FCN selection are decided.

A resource optimization algorithm based on genetic algo-

rithm (ROAGA) is applied to allocate the computation

resource to the offloaded tasks because of its better global

search property.

Since the FCNs are independent with each other, the

resource allocation in each FCN can be performed inde-

pendently. Specially, the revenue is regarded as the fitness

function to evaluate the goodness of the individuals. The

constraints of the problem will be ensured within the initial-

ization and selection. Since the optimization problem requires

high precision, the real coded strings are chosen as the chro-

mosomes. Each one of the chromosome is a solution of

problem (23), which is represented by

J
f
i = [J1, . . . Ju . . . , J|Uf |], f ∈ NF (30)

where Ji = CF
uf is the set of the variables of UE u.

Algorithm 2 shows the detailed process.

V. SIMULATION

In this section, the revenue performance of different algo-

rithms with different parameters are numerically showed in

simulations. The simulation parameter settings are listed in

TABLE 2 [14], [38]. The coverage radius of the whole fog

computing networks is 500m and the coverage of each FCN

is 100m. FCNs and UEs are randomly distributed. As for

mobility of UEs, the distribution of average sojourn time

of UEs follows the Gaussian distribution CN (µt , σ
2
t ), where

µt = 30 seconds and σt = 10. The parameters of GA are set
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Algorithm 2 The Resource Optimization Algorithm Based

on Genetic Algorithm

Input: |Uf |, K , Pc, Pm, T .

Output: J
f
best , Qbest .

1: Initialize: Set K individuals for the population in a ran-

dom way under the constraints of (14). Calculate the

fitness value of each individual and sort out the biggest

one as Qbest . Set the best individual as J
f
best .

2: for t = 1 to T do

3: Randomly choose two individuals and do the crossover

operation with the probability Pc. The crossover opera-

tion applies the recombination method for the set Cf ;

4: Select the individuals from the parents and offsprings for

mutation operation with the probability Pm;

5: Calculate the fitness value of each new individual and

divide them into the feasible ones and infeasible ones;

6: Do the random tournament selection operation and make

sure the best individual is sorted out. Compare the best

individual of iteration t , denoted by J
f ,t
best , with the histor-

ical best individual J
f
best . If J

f ,t
best is better than J

f
best , then

let J
f
best = J

f ,t
best and renew Qbest ;

7: end for

TABLE 2. Simulation parameters.

as follows, K = 32, Pc = 0.6 and Pm = 0.1. The

performance of the proposed Algorithm (PA) is compared

with the other four algorithms. The first one is the near-

optimal resource allocationmechanism (NORAM) from [14].

The computation resource are distributed uniformly and

the mechanism didn’t consider the mobility. Allocation

algorithm regardless of the mobility (AARM) is similar

with GAAA, except that it doesn’t consider the mobility.

Randomly offloading algorithm (ROA) and all offloading

algorithm (AOA) both uniformly allocate the computation

resource to UEs. But ROA randomly offloads the tasks with

the probability 0.5 and AOA offloads all the tasks.

The revenue of UEs in different algorithms varying with

the number of FCNs is shown in Fig. 2. TheUEs are randomly

distributed around the FCNs. FCNs selectively offload the

tasks of appropriate UEs to maximum their total revenue.

Due to the limited computation resource in each FCN, only a

limited number of UEs can be served. So with more FCNs

being deployed around the UEs, more UEs can be served

and more tasks can be offloaded to improve the revenue of

UEs. Considering the mobility can help the FCNs choose the

appropriate UEs to offload by taking the channel condition,

required computation resource and the average sojourn time

FIGURE 2. The impact of the number of FCNs F from 5 to 40, where
N = 70, δ = 0.05 and cF

= 4 GHz .

into account. Since the sojourn time follows the exponential

distribution, knowing the average sojourn time of each UE

helps FCNs to calculate the probability of migration if a cer-

tain number of computation resource is allocated. Therefore,

by optimizing the offloading and resource allocation strate-

gies, the probability of migration can be reduced as much

as possible, which eventually improves the revenue of UEs.

It can be observed that the performances in algorithms are

essentially unchanged when the number of FCNs becomes

larger. Because the number of served UEs is fixed. When

the number of FCNs is large enough to serve the total UEs,

the increasing number of FCNs won’t make much difference

any longer. Note that some UEs cannot be offloaded even

when the number of FCNs becomes much large because of

their worse channel condition and shorter sojourn time. That

is the reason why AOA performs worst and PA performs the

best. Besides, due to the uniform distribution of the compu-

tation resource, the revenue in NORAM is a little bit lower

than AARM.

Fig. 3(a) shows the radio of not migrated tasks, which

is the number of not migrated tasks to the number of total

offloaded tasks, with different algorithms versus the number

of UEs. Fig. 3(b) illustrates the total revenue of UEs with

different number of UEs. When number of UEs is small,

the proposed algorithm can guarantee that around 94% of

offloaded tasks can be finished before UEs leaving the cov-

erage of FCNs. And with the increasing of UEs, the radio of

not migrated tasks in AOA, AARM and NORAM fall faster

than PA and ROA. Because AARM and NORAM don’t con-

sider the mobility of UEs, which could cause the migration.

Tomaximum the revenue of UEs, so many tasks are offloaded

in AARM and NORAM that about half of them cannot be

finished before leaving. Besides, the inappropriate selection

of FCNs could also lower the radio of not migrated tasks.

Note that the performance in NORAM is worse than AARM,

that is because NORAM distributes the resource uniformly

to the UEs. The reason of AOA is similar with AARM.

But since it offloads all the tasks, the radio is smaller than
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FIGURE 3. The impact of number of UEs, where total computing capacity of each FCN cF
= 4 GHz , migration cost δ = 0.05 and

number of FCNs F = 20. (a) The impact to the radio of not migrated tasks. (b) The impact to the total revenue of UEs.

the radio of AARM and NORAM. The radio in PA also

decreases but at a low speed. Because the priority target of PA

is to maximum the total revenue of UEs. Although offload-

ing more tasks would cause more tasks migrated, the total

revenue can be improved, as illustrated in Fig. 3(b). It is

believed that if the cost of migration is much high, the less

tasks would be offloaded in PA. Note that the radio in ROA

decreasing slowest. Because random offloading tasks makes

the number of offloaded tasks increasing slowest. Therefore,

although the radio of not migrated tasks is high, even higher

than PA, the revenue in ROA is much small, which is shown

in Fig. 3(b).

In Fig. 3(b), note that with the increment of the number

of UEs, the performances of AOA, AARM and NORAM are

different from PA and ROA. The revenue of all the algo-

rithms increase with the number of UEs at first. However,

the increasing speeds of AOA, AARM and NORAM are

getting slow, and when the number comes to 60, the revenue

begins to decrease. Because the finite number of FCNs and

their limited computing capacity can only serve a limited

number of UEs. At first, the number of UEs hasn’t reached

the upper limit, so the total revenue still increase but the

speed is getting slower. Later, together with the number of

offloaded tasks increasing, the migrated tasks also increase.

The increment of migration cost will be bigger than the

increment of gains from offloading. Then the total revenue

begin to fall. But since AOA offloads all the tasks, its revenue

is worse than AARM. In addition, the revenue in NORAM is

getting worse with the number of UEs increasing, because

the uniform distribution would let more tasks be migrated.

PA considers the mobility and the probability of migration,

so when the number of UEs comes to the bottleneck of FCNs,

the number of offloaded tasks stops increasing and the rev-

enue begins to keep stable. The reason of ROA is similar

with AOA, but due to the less number of offloaded tasks,

it hasn’t reached the upper limit yet.

FIGURE 4. The impact of the number of UEs and different weights
λT

u = 0.1, 0.5, 0.9, δ = 0.05, F = 20, cF
= 4 GHz .

Fig. 4 compares the different weight coefficients of time

delay λTu = 0.1, 0.5, 0.9 with the number of UEs increasing

from 20 to 80, where λTu = 0.1 represents the case of low

battery power in UEs and λTu = 0.9 represents the delay

sensitive applications. All of them increase with the growth of

number of UEs. But the values of revenue are quite different.

Therefore, to make the different simulation results among

the algorithms more apparent, λTu = 0.5 and λEu = 0.5 are

chose as simulation parameters to balance the cost of energy

consumption and time delay.

The total revenue of UEs with different FCN computing

capacity is simulated in Fig. 5. It can be seen that the revenue

of all the algorithms get higher as the computing capacity

increasing in each FCN. When the computing capacity is

small at the beginning, the value of revenue in PA is still

better than the others, which illustrates that the proposed algo-

rithm can make good use of computation resource of FCNs.

However, with the increasing of computing capacity,
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FIGURE 5. The impact of the computing capacity of each FCN cF from
8 GHz to 16 GHz , where N = 70, F = 20, and δ = 0.05.

FIGURE 6. The revenue with different mean value of the distribution of
UEs’ average sojourn time µt from 20s to 80s, where N = 60, F = 20,
δ = 0.08, and cF

= 4 GHz .

the difference among PA and the other algorithms are getting

smaller. Because PA offloads the tasks selectively in order

to reduce the probability of migration. With the growth of

computing capacity, the offloaded tasks will be guaranteed

to be finished before UEs leaving the coverage of current

FCN with high probability first. So the number of offloaded

tasks won’t change quickly, and the total revenue grow

slowly. However, in AARM and NORAM, larger comput-

ing capacity let less tasks be migrated. Since the number

of offloaded tasks and migrated tasks are large, the rev-

enue increase faster than PA. Besides, since NORAM uni-

formly distributes the resource, when the computing capacity

become larger, the difference between AARM and NORAM

gets smaller. The number of offloaded tasks and migrated

tasks are also larger in AOA, but due to the strategy of all

tasks being offloaded, some UEs in worse conditions are

also offloaded, which affects the total revenue. Furthermore,

uniformly allocating the resource won’t efficiently leverage

the computing capacity. The number of offloaded tasks in

ROA is small and essentially unchanged. Next, the average

sojourn time of UEs are studied in Fig. 6, which indirectly

demonstrates that the algorithms ignoring the mobility would

make too many tasks offloaded and increase the number of

migrated tasks.

In the settings, the distribution of average sojourn time

of UEs follows the Gaussian distribution CN (µt , σ
2
t ), where

µt = 30 seconds and σt = 10. In Fig. 6, we investigate the

variation of revenue with differentµt which characterizes the

average sojourn time of all the UEs in this area. It can be

observed from the figure that the revenue in PA increases

faster than the other four algorithms. Because as the µt
increasing, the number of UEs which have long simulated

average sojourn time is larger than before. So considering

the sojourn time of each UE can help the FCNs select more

UEs which stay in the coverage for a long time. Besides,

there is no need to allocate too much computation resource

to reduce the probability of migration, so the resource are

saved to serve more UEs. Note that when the mean value µt
becomes much larger, the revenue of each algorithm stop to

increase. Because the sojourn time is long enough and almost

all the offloaded tasks can be finished and transmitted back

to UEs without migration. As for the difference between the

algorithms, although the µt is large, the simulated average

sojourn time of each UE can still be small, and ignoring the

mobility would result in selecting the UEs with short average

sojourn time. Therefore, the increasing of the average sojourn

time of all the UEs µt has small impact on narrowing the gap

among PA and other algorithms.

FIGURE 7. The revenue of time and energy with the increasement of UEs,
where δ = 0.05, F = 20, and cF

= 4 GHz .

In Fig. 7, both the revenue of time and energy increase

with the increasement of UEs. It can be noted that the

revenue of energy is smaller than the time revenue and

the increasing speed of energy revenue is slower than the

time revenue. Because reducing the probability of migra-

tion can effectively lower the time of completion mean-

while. However, the energy saving won’t change too much

because it’s only related to the local energy consumption and
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FIGURE 8. The impact of the migration cost δ from 0.01 to 0.09, where
N = 40, F = 10, and cF

= 4 GHz .

transmission power. Besides, in order to reduce the proba-

bility of migration, less tasks will be offloaded and the local

energy consumption can’t be saved.

In Fig. 8, the total revenue of all the algorithms decrease

with the growth of migration cost. The revenue in PA

declines slowly, which proves that the proposed scheme in

this work can efficiently lower the probability of migra-

tion. The number of migrated tasks becomes so small that

the growth of migration cost has little effect on revenue.

In AARM,NORAM and AOA, omitting the mobility of UEs

would have more tasks offloaded. Since the computation

resource is limited, the probability of migration becomes

high. Therefore, the total revenue of UEs could be influenced

by the increasing of migration cost strongly. Specially, it can

be observed that the revenue of AOA decreases slower than

AARM and NORAM. Because AOA offloads all the tasks,

although it is not a good strategy, it can balance effect of the

UEs with short sojourn time and long sojourn time. So the

influence of different migration cost has less impact on AOA

than AARM and NORAM. Furthermore, because of the ran-

dom offloading in ROA, much less tasks are offloaded. So the

computation resource is relatively enough and the probability

of migration is small. The changing of migration cost has less

influence on ROA and the curve is smooth.

VI. CONCLUSION

In this paper, themobility of UEs is represented by the sojourn

time, which follows the exponential distribution. To reduce

the probability of migration so as to maximize the total rev-

enue of UEs, a mobility aware offloading and computation

allocation scheme is proposed in fog computing networks.

The proposed algorithms consideringmobility can effectively

deal with the scenario of UEs’ mobility in fog computing

networks to maximum the total revenue of UEs. Simulations

demonstrate that the proposed algorithms can achieve quasi-

optimal revenue performance compared with other baseline

algorithms, in which our proposed scheme can significantly

reduce the migration times and improve the revenue of UEs.

How to reduce the cost of migration for the migrated tasks

will be considered in the future work.
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