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Mobility Enhanced Smart Antenna Adaptive
Sectoring for Uplink Capacity Maximization in

CDMA Cellular Network
Alex Wang and Vikram Krishnamurthy

Abstract—In this paper, adaptive sectoring of a CDMA cellular
network is investigated, and the aim is to maximize the uplink
capacity by utilizing mobiles’ spatial information. One important
feature of the algorithm developed is that it does not depend on
tracking individual mobile, but rather on the statistics of mobiles.
The distribution of mobiles is modeled as a spatial Poisson
process, whose rate function quantizes mobile concentration and
is inferred with a Bayesian estimator based on the statistics
of network traffic. In addition, the time dynamics of the rate
function is assumed to evolve according to mobiles’ mobility
pattern and it is formulated using the Influence model. With the
knowledge of mobiles’ spatial distribution, the interference and
thus the outage probability of different sector partitions of a cell
can be computed. The adaptive sectoring problem is formulated
as a shortest path problem, where each path corresponds to a
particular sector partition, and the partition is weighted by its
outage probability. In simulation examples, a hot spot scenario
is simulated with the adaptive sectoring mechanism, and it is
observed that load balancing between sectors is achieved and
which greatly reduces the effect of hot spot.

Index Terms—Mobility estimation, adaptive sectoring, smart
antenna, and CDMA uplink capacity.

I. INTRODUCTION

IN wireless cellular networks, CDMA is a promising tech-
nology to offer high quality and robust voice/data services.

Its RAKE receiver design and soft handoff greatly increase
the robustness against multipath and fast fading environment.
However, the ever increasing demand for the wireless services
is continuously challenging the capacity limit of CDMA net-
works. In this paper, the application of adaptive sectorization
to increase the network capacity is studied.

It is well known that CDMA systems are interference
limited, and sectoring has been an effective mean of increasing
the network capacity by introducing spatial domain orthogo-
nalization to the system. The conventional method applied in,
for example, GSM and IS-95 employs 120◦ or 60◦ sectoring
to achieve better reuse of network resources. However, one
major drawback of this scheme is its inflexibility in dealing
with non-stationary and non-uniform mobile distribution. For
example, hot spots can cause outage in a sector while other
sectors have light traffic.
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In this paper, we extend the conventional sectorization by
allowing base stations to observe network traffic and adap-
tively sectorize cells accordingly. The dynamic sectorization
is achieved by deploying smart antenna systems at base
stations. While smart antenna is often associated with adaptive
beam forming, our approach is fundamentally different. Even
though both approaches utilize the spatial domain, while beam
forming directs dedicated beam to each mobile, sectorization
spans cells with few main beams with each beam corresponds
to a sector. Smart antenna system is supported in many
wireless standards; [1] describes auxiliary pilot support with
switched beam in CDMA2000, [2] details the application of
smart antenna in IS-95 and [3] describes how dedicated pilot
symbols in WCDMA systems can render future deployment
of smart antenna easier.

Many researchers, [4]–[6], have investigated the adaptive
sectoring problem. [4] considers the case with fixed and known
mobile locations, as in the wireless local loop, and formulates
the adaptive sectoring as a shortest path problem. The problem
is solved for two cases: minimizing the mobiles’ total transmit
power and minimizing the base station’s total received power.
Our approach follows the modeling technique used in [4] and
extends it to take mobile movement into account. [6] assumes
a spatial Poisson process with known intensity function λ, and
the probability of having k mobiles in an area A is given by
the Poisson distribution P (k, A) = (λA)k

k! e−λA. By fixing k

and P =
∑∞

j=k P (j, A), and replace A by r2θ
2 where r is cell

radius and θ is a sector’s angle span, P is the probability of
having more than k users in θ. Adaptive sectoring is computed
by an iterative method which reduces θ when k is above a
certain threshold. [5] continuously monitors SINR (signal to
interference and noise ratio) of all the users, and sectorize
cells to equalize SINR in all sectors. However, in each of the
above solutions, there are certain limitations. While the work
in [4] is designed for wireless local loop, it does not work
with constantly moving mobiles. In [6], the success of the
algorithm depends on the knowledge of mobile concentration.
Moreover, the SINR-based sectoring in [5] may be unstable
because of the shadowing and fast fading in the measurement
of SINR [7].

The major difference between adaptive and conventional
sectoring is the system’s responsiveness to changes in mo-
bile distribution. Movement of people is observed to follow
certain patterns [8], and in this paper, a mobility-enhanced
traffic model is developed to capture the dynamic of mobile
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concentration over period of a day from the network traffic
observed. Based on the estimated mobile distribution, the
sectoring problem is solved to maximize the uplink capacity.

The main contributions of the paper:

1) A mobility-enhanced traffic model is developed. Mobile
distribution is modeled as a spatial Poisson process
with time-varying rate function. The rate functions of
different locations are assumed to evolve according to
the mobiles’ aggregate mobility pattern and which is
formulated with the Influence model [9]. If the dynamics
is formulated in ordinary Markov chain, the curse of
dimensionality greatly limits the applicability of the
model.

2) Recursive MAP estimator of the spatial Poisson’s rate
function given the network traffic. It provides real time
tracking of mobile distribution over the network. Re-
mark: Global MAP estimator which tracks the joint
a posteriori distribution of the entire network’s rate
functions is too computationally intensive for real time
applications. The MAP estimator developed tracks the
marginal a posteriori distribution of each individual
location’s rate function.

3) Formulation of the adaptive sectoring problem as a
shortest path problem for changing mobile distribution.
The modeling technique was first applied in [4] to
sectorize cells in wireless local loop based on individual
mobiles, and it is extended to work with the aggregate
mobility pattern in this paper.

The paper is organized as follows. Sec. II defines the
adaptive sectoring problem and formulates the related models.
Sec. III develops the algorithms for solving the adaptive
sectoring problem. Sec. IV presents the simulation results and
Sec. V concludes the paper.

II. MODEL DEFINITIONS AND FORMULATION OF

ADAPTIVE SECTORING PROBLEM

In this section, adaptive sectoring of CDMA networks is
formulated as a sequence of uplink capacity maximization
problems, and the adaptive capability deals particularly with
the mobility pattern of mobile users. Uplink capacity is chosen
as the cost function because it is the limiting factor [10], [11],
and it is measured by the probability of interference at a base
station exceeding a certain threshold value [10], [12], i.e.,
the outage probability. In summary, the aim is to formulate a
outage probability minimization problem for CDMA uplinks
with adaptive sectorization.

In order to compute outage probability at each base sta-
tion, knowledge of mobiles’ whereabouts is necessary. Yet,
as the number of mobiles increases, tracking individuals
is computationally intensive, and it may lead to frequent
sectoring because of their various movement patterns. The
approach taken considers mobiles’ aggregate movement, and
it is implemented by dividing the network into areal units
and tracking the time evolution of mobile concentration at
each unit. The tracked mobile concentration in turn enables
the computation of outage probability. The adaptive sectoring
problem consists of three components: the formulation of the
sectoring problem as an optimization problem, the mobility

model for the mobile users, and the numerical computation
of outage probability. The components are established in this
section.

A. Formulation of Adaptive Sectoring Problem

The network model consists of hexagonal cellular networks
and, as illustrated in Fig. 1, each cell is divided into six equally
spaced areal units called subareas. As will be described in
further detail in the next two subsections, mobility of the
mobiles is modeled as a graph, where each node represents
the mobile concentration in each subarea and the nodes are
connected by edges indicating the prior assumption of the
movement patterns of the mobiles.

In this subsection, given the mobile concentration, discrete
sectoring is considered and formulated as an optimization
problem. Sectors at each base station are defined by the
antenna’s sector-beams, whose beamwidth is multiples of
a subarea’s angular span. Perfect beam pattern (no overlap
between beams) is assumed, and thus mutual interference is
ignored. Note the dimension of subareas defines the granular-
ity of the model, i.e., finer tracking of mobile distribution is
enabled by smaller subareas, but with higher computational
load on the system.

A natural mathematical representation of the adaptive sec-
toring problem is with graph partitioning. The key advantage
is that, under certain conditions, the partitioning problem has
a one-to-one correspondence to a shortest path problem, and
which is readily solvable. The modeling technique described
was first applied in [4] to sectorize wireless local loops with
stationary mobiles, and it is extended in this paper to deal
with aggregate statistics of mobile movement. Because the
rest of the paper builds on top of the model in [4], it is briefly
summarized in this subsection.

Fig. 1 illustrates the graph theoretical representation of the
cellular network. A cell is modeled as a ring of nodes where
each node represents a subarea, and the sectoring problem is
equivalent to the partitioning of nodes (subareas) into subsets
(sectors). Denote A = {a1, a2, . . . , aM} as the nodes of
the ring, and π = {S1, . . . , SN} the partition of A into N
subsets, the partitioning is considered optimal if it minimizes
the cost function C(π), where C(π) is the outage probability
experienced in all sectors π. Denote the outage probability in
each sector Si as W (Si), the adaptive sectoring problem is
reduced to a graph partitioning problem with the following
cost function:

C(π) =
N∑

i=1

W (Si) (1)

In general, the problem of optimally partitioning an arbitrary
graph with an arbitrary cost function is a NP-hard optimization
problem. However, it has been shown that the partitioning
problem can be solved in polynomial time if the graph is a
string and the cost function is separable.

Definition A function of M variables, f(x1, x2, . . . , xM ), is
separable if it can be expressed as a sum of M functions of
a single variable; i.e., f(x1, x2, . . . , xM ) =

∑M
i=1 fi(xi).

Theorem 1 If the cost function is separable, the problem of
optimally partitioning a string can be reduced to a shortest
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Fig. 1. The network is modeled as a hexagonal cellular network, and each cell is divided into six equally spaced areas called subarea. The Graph-theoretic
representation of a cell is illustrated. The graph on the left is the ring representation of a cell, where each node is a subarea. (Sectors are disjoint subsets of
nodes.) The graph on the right is one of six reduced string representations, where the edge e6 is arbitrarily chosen and removed.

path problem. ( [4] applied this result to sectorize wireless
local loop.)
Proof The proof can be found in [13].

The important observation of a ring is that it can be broken
into a string if an edge is removed. In addition, with perfect
sector-beam assumption, the computation of a sector’s outage
probability is independent of other sectors. In other words, the
hypothesis of the above theorem holds. Fig. 1 illustrates the
string representation where the edge e6 is arbitrarily chosen
and removed. It should be noted that the removal of an edge
traded problem complexity with computational complexity
since six strings are generated from one ring.

The mapping of the graph partitioning problem to a shortest
path problem is illustrated by the construction of an acyclic
network. However, the detail is omitted and it can be found in
[4], [13]. The important point to note is that once the acyclic
network is constructed, the weight at each edge corresponds
to the outage probability in each sector, and it is changing
in time. According to the above formulation, the adaptive
sectoring problem can be viewed as a shortest path problem
with a changing weight matrix, where the weight depends on
the evolving statistics of mobile distribution. In Sec. II-B, a
model is developed to track the statistics in each subarea, and
Sec. III-C computes the outage probability.

B. Mobility-Enhanced Traffic Model

In this subsection, the aim is to develop a mobility model for
mobile users that enables the tracking of mobile distribution
by collecting its statistics. The first major problem that has
to be addressed is the observability of mobility. In general,
mobility is not observable, and it can only be indirectly
observed through the network traffic processed at the base
station. It is realized that if mobile users place calls according
to a Poisson process, something could be said regarding
the mobiles’ spatial distribution according to the following
theorem.
Theorem 2 Let Π be a Poisson process of arriving calls at a
base station with constant rate, X , from mobiles in an arbitrary
subarea. Once the mobiles placed the call, they move at
random around the subarea with independent trajectories. Let
E be a spatial subset of the subarea such that the probability
of the mobile who called at time s being in E at a subsequent
time t is p(s, t). Then the number of mobiles in E at time t

has a Poisson distribution with mean

u(t) =
∫ t

0

X p(s, t)ds.

Assuming uniform distribution for p(s, t) over the subarea, the
distribution of the mobiles in the subarea is a spatial Poisson
process with rate equals to that of the arriving calls.

Proof The proof can be found in [14], (pg 49 Bartlett’s
Theorem).

In Theorem 2, a number of assumptions are made, and it is
worthwhile going into the details.
Assumption 1 The arrival process at the base station is a
Poisson process with constant rate.
The arrival process referred to in the Theorem is the connec-
tion requests made by mobiles in the subarea. For example,
the number of times Access Channel is requested in IS-
95 or CDMA2000. From the study of broadband network
traffic [15], the connection request is generally modeled as an
inhomogeneous Poisson process. The additional assumption is
that the rate function, X , in a subarea is a jump process with
finite states, and jumps occur on a hourly basis.
Assumption 2 Mobiles are distributed uniformly over the
subarea.
The assumption is made to simplify the discussion, and it
seems reasonable if the subarea is small enough such that
highly attractive locations such as shopping malls do not
appear as a clustered point in the subarea. However, other
distributions may be applied but they are not studied here.

Given the relation of the network traffic and the spatial
Poisson process, we can express mobile concentration in an
subarea as a spatial Poisson process and estimate, in real time,
its rate function based on the statistics of connection requests.
In addition, the time dynamics of the rate function in each
subarea can be expressed as a function of mobiles’ mobility
pattern, and which will be given in more detail in the next
subsection. The network model based on the spatial Poisson
process is formulated and given below.
Model Definition Let i = 1, 2, . . . , M indexes subareas,
where M is the number of subareas in the network, and
k = 0, 1, . . . , 23 denotes hours of a day, Πi

k is a spatial Poisson
process with a constant rate X i

k in the subarea i during the
time interval [k, k+1). Xk = [X1

k , X2
k , . . . , XM

k ] is a discrete
time discrete state stochastic process, and, with Theorem 2,
its state controls the rate of connection arrivals observed in
each subarea. If there is only one subarea, X1

k is a hidden
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Markov chain observed through a Poisson process. For M
subareas, the state of X i

k for all subarea i is modeled with
the Influence model [9]. Suppose the subarea of interest is i,
let D(i) denotes the dependency of i, which is i itself and its
adjacent subareas, the transition probability for X i

k is

P (X i
k+1|X1

k , . . . , XM
k ) =

∑
j∈D(i)

dijP (X i
k+1|X

j
k), (2)

where dij (
∑

j dij = 1 and dij > 0) and P (X i
k+1|X

j
k) are

model parameters that are assumed known. (Some parameter
estimation techniques can be found in [16].) Furthermore,
the initial probability distribution P (X i

k=0) is also assumed
known for all i.

C. Justification of Influence Model and Model Reduction with
Geographical Interpretation

The premise of the mobility model are the mapping of
the aggregate inter-subarea mobile movement to the network-
traffic pattern, and the use of Markovian framework to model
the aggregate movement. The implicit model assumptions
made in (2) are the division of network into subareas, and
the pattern of spatial interaction embedded in the parameters
dij and P (X i

k+1|X
j
k). In this subsection, we will provide justi-

fication of the assumptions that is in line with the Markovian
framework applied in the geographical analysis such as the
study of migration processes and commuting patterns, and
discuss how model parameters could be reduced based on their
geographical interpretation.

The use of Markovian nodal structure in geographical
analysis is common and some examples can be found in [17],
[18]. The most straightforward approach to characterize the
network’s nodal structure is via the use of transition matrix,
i.e., P (X1

k+1, . . . , X
M
k+1|X1

k , . . . , XM
k ), which contains the

joint state dynamics of the network. However, such complete
specification is not desirable because not only does the model
dimension grow exponentially as the number of subareas, the
interpretation of the model parameters is difficult. In Asavathi-
ratham and et al [9], the Influence Model is introduced to de-
scribe interactions between many Markov chains. The model
simplifies P (X1

k+1, . . . , X
M
k+1|X1

k , . . . , XM
k ) to M P (X i

k+1|
X1

k , . . . , XM
k ), and for each i, P (X i

k+1|X1
k , . . . , XM

k ) is a
convex combinations of P (X i

k+1|X
j
k) as shown in Eq. (2).

Note that Eq. (2) degenerates to a standard Markov chain if
dij = 1 for i = j, and 0 otherwise.

In order to explain the spatial interaction among differ-
ent subareas, we concern with attributal and associational
properties of nodes [19]. Attributal properties refer to nodal
characteristics due to the nodes itself (e.g. population), and
associational properties refer to nodal characteristics due to
the relationship between the nodes (e.g. distance). The asso-
ciational properties is captured by the model parameter dij

and the attributal properties by the conditional probability
P (X i

k+1|X
j
k).

The spatial interaction interpretation of the parameters is
established by some geographical indices. In terms of mobility,
for example, attributes such as residential or business district
may be assigned to each node, and indices such as the number
of bus routes may be assigned to each edge. Other choices such

as the number of office buildings, residences, or the number
of registered companies may also be used. According to their
geographical interpretation, the model parameters can either
be empirically estimated based on some geographical indices
or be aggregated according to their attributes to reduce the
model complexity.

The parameter dij is constant factor indicating how often
subarea i is influenced by subarea j, and it can be interpreted
as the probability of mobiles commuting from j to i as a
function of routes connecting them. The parameter could be
empirically estimated, for example, by counting the outgoing
bus routes from one subarea to another. Consider a Home-
Work mobility pattern seen in many mobility papers [20], [21]
and a simple network consists of only three fully connected
subareas, A, B, and C. Let mA, mB and mC be the proportion
of working people in A, B and C respectively, and let bij be
the number of bus routes running from j to i. The influence
matrix can be constructed as⎛

⎜⎝
1 − mA mA( bBA

bBA+bCA
) mA( bCA

bBA+bCA
)

mB( bAB

bAB+bCB
) 1 − mB mB( bCB

bAB+bCB
)

mC( bAC

bAC+bBC
) mC( bBC

bAC+bBC
) 1 − mC

⎞
⎟⎠ .

On the other hand, the conditional probability P (X i
k+1|X

j
k)

specifies the effects of the subarea i on j, and it could be
interpreted as the probability of mobiles switching between
active and non-active talking states given that they’re, for
example, commuting from a business district to a residential
area. In the same Home-Work setting, the complexity of
the parameters can be reduced by assigning residential or
business attribute to each subarea. The attribute is useful
because, combining with the state of the subarea (mobile
concentration), the time of the day could be inferred and
thus the time variance in the parameter removed. Intuitively,
residential area has high traffic, for example, in the morning
and the evening when people are not working. Moreover, the
attributes allow the application of the previous technique to
empirically estimate the parameters.

In addition to the geographical interpretation that the In-
fluence model posses and some ways to estimate and reduce
the model parameters, the model complexity of the Influence
model is another advantage in justifying its use. Suppose there
are M subareas and each subarea has P states, the total
number of model parameters are MP 2+M2, which is greatly
reduced from P 2M as in the case of complete specification.

D. CDMA Network Assumptions and Outage Probability Cal-
culation

In this subsection, the models used for the CDMA network
and the propagation are introduced, and the outage probability
expression is derived. For adaptive sectoring, because the
performance analysis concerns time scale in hours, many
important CDMA physical layer effects, such as the signature
sequence structure and the fast fading losses, are not included.
The performance of the adaptive sectoring is studied with
perfect power control, soft handoff and log-normal shadowing.

Propagation Model and Interference Calculation The prop-
agation loss in general is modeled as the product of γth power
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of distance and a log-normal shadowing component [10]. Let
Bn denotes the location of base station n and suppose an
arbitrary mobile at location z, the following propagation loss
model is assumed:

Γz[Bn] ≡ d[z, Bn]γ10ξ/10 = d[z, Bn]γ10a(ξz/10)10b(ξz,Bn/10),
(3)

where d[z, Bn] is the distance between z and Bn, and γ is the
path loss exponent. The shadowing ξ = aξz + bξz,Bn is the
superposition of two components: ξz is the shadowing in the
near field of the mobile at point z, and ξz,Bn is the shadowing
in the wireless link between the mobile at z and the base
station Bn. ξz and ξz,Bn are independent Gaussian random
variables with the following properties: E(ξz) = E(ξz,Bn) =
0, Var(ξz) = Var(ξz,Bn) = σ2 and E(ξzξz,Bn) = 0 for all n,
and E(ξz,Bnξz,Bm) = 0 for all n �= m. In addition, ξz and
ξz,Bn are assumed to have equal standard deviation, and thus
a2 = b2 = 1/2 is assumed.

With the propagation model in place, the base station
that does the power control and the set of base stations
that participate in soft handoff can be defined. Let B =
[B1 B2 . . . BN ] denotes the N base stations in the network,
the path loss of a mobile at location z to each of the base
station is then Γz [B] = [Γz [B1] Γz[B2] . . . Γz[BN ]]. The
base station that power controls the mobile at z is defined as
Cz = argmini Γz[Bi]. As regard to soft handoff, assume Ns

base stations are involved, the soft handoff set, ζz , is defined
with respect to location z as the set of Ns base stations with
the least path loss values in Γz[B]. Ns is taken to be 2 in the
rest of the paper.

Furthermore, the received power from the mobile at z is
power controlled to have magnitude of 1 at the base station
Cz . As a result, a mobile at z and power controlled by Cz has
to transmit with power Γz[Cz ], and the interference it induces
on base station Bn is equal to

I =
{

Γz[Cz ]/Γz[Bn], if Bn �= Cz

1, if Bn = Cz
(4)

Interference Calculation Revisited with Spatial Poisson In
Sec. II-B, Theorem 2 establishes that the mobile distribution in
the network is spatial Poisson. The problem to be addressed is
to revisit the interference calculation and take spatial Poisson
into account. Fig. 2 shows the network model conceptually.
Each point z ∈ �2 is assigned a soft handoff set ζz , which is
represented as a diamond-shaped area; for any mobile within
the diamond, the mobile is in soft handoff with the two base
stations at the vertices, and power controlled by the one with
smaller pathloss.

Suppose the interference at B1 is of interest, which is the
central base station in Fig. 2. Let S be the set of all subareas
in the shaded area A, and Πi

k the subarea i’s spatial Poisson
process with rate X i

k, the entire set of mobiles that is loading
the sector is denoted as Πk =

⋃
i∈S Πi

k. With (4), the total
interference at the sector of B1 is

I[B1] =
∑

z∈Πk

Γz [Cz]/Γz[B1]. (5)

According to [22], (5) can be classified into two components
by identifying the two point patterns in Πk; any point in Πk

1
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1012

13

14

15

16

17

18

19

8

9

A

Fig. 2. Computation of the outage probability at the central base station 1 for
a particular sector configuration covering the network area A. The diamonds
shown in the figure represent the soft handoff set (Soft handoff is assumed to
involve only two base stations in this paper), that is, for each mobile located
in a diamond, the mobile is in soft handoff with the two base stations at the
diamond’s vertices, and power controlled by the one with smaller pathloss.

can either belong to a point pattern corresponding to Cz = B1

(Πk[B1]) or the one corresponding to Cz �= B1 (Πk[B̄1]).
The classification is achieved by the Poisson Marking theo-
rem. According to the network definitions given above, the
probability that a mobile at z is power controlled by B1 is
P (Cz = B1) = P (Γz[B1] < Γz[Bn]) and the probability of
not power controlled by B1 is P (Cz �= B1) = P (Γz[B1] >
Γz[Bn]) for all n ∈ ζz and n �= 1. Furthermore, let z ∈ �2

and define the mean measure of Πk as shown in (6), the two
points patterns of mobiles in Πk are then classified as:
In-cell mobile is the point pattern Πk[B1] with mean measure
m[B1](dz) defined by
d(m[B1])(z) = P (Cz = B1)dm(z).
Other-cell mobile is the point pattern Πk[B̄1] ≡ Πk−Πk[B1]
with mean measure m[B̄1](dz) defined by d(m[B̄1])(z) =
P (Cz �= B1)dm(z) = (1 − P (Cz = B1))dm(z).

As a result, let Ii[B1] and Io[B1] denote the in-cell and
other-cell interference at B1 respectively. The total interfer-
ence at B1 expressed in (5) is the summation of Ii[B1] and
Io[B1]:

I[B1] = Ii[B1]+Io[B1] =
∑

z∈Πk[B1]

1+
∑

z∈Πk[B̄1]

Γz[Cz ]/Γz[B1].

(7)
The outage probability of the sector is then

P

⎛
⎝ ∑

z∈Πk[B1]

1 +
∑

z∈Πk[B̄1]

Γz[Cz ]/Γz[B1] > α

⎞
⎠ , (8)

where α is the threshold value for the total interference. The



748 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 5, MAY 2008

m(dz) =
∑
i∈S

X i
k δ(i, dz), where δ(i, dz) =

{
1, if dz is in subarea i
0, otherwise.

(6)

evaluation of (8) is presented in Sec. III-C. Note that the
outage probability expression derived in this subsection is for
a particular sector partition, however, it should be clear that
the expression is identical for different partitions except the
spatial Poisson process Πk.

III. ADAPTIVE SECTORING ALGORITHM

In the previous section, the adaptive sectoring problem is
mapped to a shortest path problem of an acyclic network with
changing weight matrix. In this section, the algorithms that
work behind each model component is described. Sec. III-A
provides an overview, Sec. III-B describes the MAP estimator
of the spatial Poisson’s rate function, Sec. III-C computes the
outage probability and Sec. III-D discusses a possible antenna
architecture for deploying the system discussed.

A. Overview of the Adaptive Sectoring Algorithm in Pseu-
docode

Recall in Sec. II-B, the time t of a day is divided into hourly
intervals k = {0, 1, . . . , 23}. Let M be the number of subareas
and N the number of sectors in a cell, the pseudocode of the
adaptive sectoring algorithm is provided in Algorithm 1.

Algorithm 1 Adaptive Sectoring Algorithm

1: Initialize P (X i
k=0) for all subarea i and the Influence

model parameters {See Sec. II-B.}
2: for (k = 0; k ≤ 23; k + +) do
3: t ← k
4: repeat
5: t = t + �T
6: MAP estimation of each subarea’s rate function.

Complexity O(M). {See Sec. III-B}
7: until (MAP estimator stabilizes)
8: Construct the shortest path’s weight matrix. Complexity

O(M). {See Sec. II-A for the shortest path formulation
and Sec. III-C for the outage probability computation}

9: Dijstra’s Algorithm to find the shortest path. Complex-
ity O(M2N).

10: Cell sectorization. {See Sec. III-D}
11: Update the rate function estimator for k +1. {See Sec.

III-B}
12: end for

B. MAP Estimator of Spatial Poisson’s Rate Function

In this subsection, a MAP estimator of X i
k given the

traffic statistics is introduced. It should be noted that due
to computation complexity, the joint a posteriori distribution
of Xk is not tracked, but only the a posteriori of X i

k (See
Appendix A for details). Since the estimators for all subareas
are equivalent, and for notational convenience, the subarea to
be estimated is labeled as X1

k , and the neighbors of X1
k are

labeled as X2
k , X3

k and X4
k . The setup is illustrated in Fig. 7.

MAP Estimator Algorithm Let Πi
k be a spatial Poisson pro-

cess with rate X i
k at the subarea i, and let {N i

k(σ); k ≤ σ < t}
denotes the observed path of Πi

k in the time interval [k, t),
i.e., the connection requests processed at the base station. The
approximated a posteriori probability mass function of X1

k is
iteratively calculated by the following algorithm.

For t ∈ [k, k+1), define �N i
t = N i

k(t+�t)−N i
k(t), where

�t is an arbitrary time interval, the a posteriori probability
mass function P (X i

k|N i
k(σ); k ≤ σ < t), for i = 1, 2, 3, 4

is shown in (9), where X̄ i
k = E{X i

k|N i
k(σ); k ≤ σ < t},

and for �t small enough, �N i
t is either 0 or 1 depending

on occurrence or nonoccurrence of events. At the end of the
time interval [k, k + 1), label n1 = {N1

k (σ); k ≤ σ < k + 1},
. . . , and n4 = {N4

k (σ); k ≤ σ < k + 1}, the probability mass
function of the subarea 1 at the beginning of the next time
interval [k + 1, k + 2) is

P (X1
k+1 = x|n1, n2, n3, n4)

=
4∑

j=1

d1j

∑
Xj

k

P (X1
k+1 = x|Xj

k)P (Xj
k|nj), (10)

where d1j and P (X1
k+1|X

j
k) are Influence model parameters.

For t ∈ [k + 1, k + 2), (9) again continuously update the a
posteriori probability upon receiving connection requests. As
a result, assuming the initial probability P (X i

k=0) is known
for all i, the a posteriori probability of X i

k can be tracked for
any time t, and thus the MAP estimator at time t is

argmax
x

P (X1
k = x|N1

k (σ), . . . , N4
k (σ); k ≤ σ < t) (11)

C. Outage Probability Evaluation for Adaptive Sectoring

In this subsection, the aim is to evaluate the outage probabil-
ity (8) of an arbitrary sector configuration. The spatial Poisson
distribution is assumed known, and its resulting outage prob-
ability is computed. Let Πk be the union of spatial Poisson
processes loading a sector, the total interference received at
the sector of base station B1 is computed with (7) and the
outage probability is

P (Ii[B1] + Io[B1] > α)

= P

⎛
⎝ ∑

z∈Πk[B1]

1 +
∑

z∈Πk[B̄1]

Γz[Cz]/Γz[B1] > α

⎞
⎠ .

Recall Πk[B1] is the mobile point pattern power controlled
by B1 and Πk[B̄1] is the point pattern not power controlled
by B1. It is obvious that the first term, Ii[B1], is a Poisson
random variable. In addition, in order for the base station
B1 to be well defined, a condition that Ii[B1] > 0 should
be imposed. Combining the two observations, the outage
probability becomes

P (Ii[B1] + Io[B1] > α|Ii[B1] > 0)

=
e−u

1 − e−u

∞∑
j=1

(u)j

j!
P (Io[B1] > α − (j − 1))



WANG and KRISHNAMURTHY: MOBILITY ENHANCED SMART ANTENNA ADAPTIVE SECTORING FOR UPLINK CAPACITY MAXIMIZATION 749

P (X i
k|N i

k(σ); k ≤ σ < t + �t)
= P (X i

k|N i
k(σ); k ≤ σ < t)

{
1 + (X i

k − X̄ i
k)X̄ i

k

−1
(�N i

t − X̄ i
k�t)

}
+ o(�t), (9)

where u ≡ E(Ii[B1]). The exact expression for P (Io[B1]) is
difficult, however, from [12], [22], it is shown that Gaussian
approximation can be applied; the approximation is motivated
by the central limit theorem and it is treated rigorously in [12].
The mean and variance of the Gaussian approximation are the
first and second cumulants of Io[B1] respectively, and whose
computation is shown in Theorem 3 and 4.
Theorem 3 Let Πk[B̄1] be a Poisson point pattern
on the network area A with mean measure m[B̄1]
and let Io[B1] =

∑
z∈Πk[B̄1] Γz[Cz]/Γz[B1]. If∫

A min(|Γz [Cz ]/Γz[B1]|, 1)m[B̄1](dz) < ∞ holds, then
for any complex number s,

E(exp(sIo[B1]))

= exp

(∫
A

[exp(sΓz[Cz ]/Γz[B1]) − 1]m[B̄1](dz)
)

.

Proof The proof can be found in [22].
The hypothesis holds since the area A is finite (only the first
layer of interference is considered in this paper), and the mean
measure of the spatial Poisson process has finite states.
Theorem 4 Divide the network area A into Ain−cell and
Aother−cell, where in-cell (other-cell) is defined by the in-
clusion (exclusion) of B1 in the soft handoff set ζz at the
location z. Label the soft handoff base stations in Ain−cell as
Cz and B1, and the base stations in Aother−cell as Bm and
Bn (Assume soft handoff of 2 base stations), let κc denotes
the cth cumulant of Io[B1], and φz [B1] = Γz[Cz]

Γz[B1]
if Cz �=

B1 and 0 otherwise, yielding (12), where m(dz) is defined in
(6), β ≡ ln10/10 and MBl

≡ 10γlog10d[z, Bl].
Proof The proof can be found in [22].

With (12), Io[B1]’s mean and variance, κ1 and κ2 respec-
tively, are calculated, and the outage probability becomes:

P (Ii[B1]+Io[B1] > α|Ii[B1] > 0) =
e−m

1 − e−m

∞∑
j=1

mj

j!
Q(ỹj)

(13)
where ỹj ≡ (α− j + 1− κ1)/

√
κ2, m is the mean of Πk[B1]

and Q is the Q-function for the standard normal distribution.
From the above equations, it can be seen that if the rate

function of the spatial Poisson process is known, the cost
function for each sectoring configuration can be computed.
However, the computation requires two numerical integration:
one for the in-cell mobiles and the other for the other-cell
mobiles. The numerical integration process is computationally
intensive and time consuming. Fortunately, because the rate
function of the spatial Poisson process is assumed to be con-
stant over each subarea, the integration can be precomputed,
and real time operation has computational complexity linear
to the number of subareas in Πk.

D. Antenna Architecture

The antenna architecture that support the adaptive sectoring
algorithm can be considered as a migration from a fixed

3-sector CDMA system to a switched-beam smart antenna
system. A switched-beam system has a set of predefined
antenna patterns, and it serves each mobile with the dy-
namically chosen antenna pattern of best signal. However, in
many cases, such individual-based adaptation is not necessary.
Therefore, as an intermediate stage between the fixed sectoring
and the switched beam antenna system, adaptive sectoring
forms sectors by combining subset of the switch-beams. The
implementation can be build on top of existing fixed sectoring
system by deploying circular antenna array and a beam
forming network per sector [23]. Each sector is identified by
its pilot signal and softer handoff is used when mobiles travel
between sectors. In addition, since the location of mobiles can
be identified by the beam with the strongest signal strength, the
statistics of each subarea’s network traffic (Recall Sec. III-B)
can be collected by summing up the connection requests in
the beams making up the subarea.

IV. SIMULATION RESULTS

In this section, the focus is on the numerical studies of
the adaptive sectoring algorithm. The analysis consists of
two parts: Sec. IV-A simulates the traffic tracking with the
mobility-enhanced traffic model as described in Sec. III-B, and
Sec. IV-B simulates a hot-spot scenario where a comparison
in performance of adaptive and fixed sectoring is made.

A. Simulation of Spatial Poisson Estimation

As described in Sec. II-B, the network traffic is a spatial
Poisson process with rate function modeled according to the
Influence Model. Ideally, the parameters of the Influence
model can be learned from the actual traffic statistics using
particle filtering or EM algorithm [16]. However, in this paper,
the model parameters are assumed known from empirical data,
and a hypothetical network is used to simulate the network
traffic.

The hypothetical network consists of 10 adjacent subareas,
and the Influence model parameters are arbitrarily chosen. The
rate function X i

k in each subarea is assumed to have three
states {High, Medium, Low}. Fig. 3 illustrates the tracking of
two subareas for four time slices. The blue line is the true state,
and the green dotted line is the MAP estimator. It can be seen
that the estimator follows the true state nicely except the first
few minutes after each time the rate function changes value
(on a hourly basis). The reason is that the estimation equation
is formulated in a finite difference form, and update is done
only upon new arrival of connection requests. As a result, a
certain convergence time is needed for the MAP estimator to
reach the true value.

Fig. 4 illustrates the real time tracking with the finite
difference equation (9) of the two subareas during the first
time interval. The top (bottom) plot shows the convergence of
the probability mass function to the state High (Low) as con-
nection requests are accumulated. It can be observed that the
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κc =
dc

dsc

(
lnE(exp(sIo[B1])

)∣∣∣
s=0

=
∫

A

E(φz [B1])cm(dz) =
∫

A

E
((

Γz[Cz ]
Γz[B1]

)c

; Γz[Cz ] < Γz[B1]
)

m(dz)

=
∫

Ain−cell

E
((

Γz[Cz]
Γz[B1]

)c

; Γz [Cz] < Γz[B1]
)

m(dz)

+
∫

Aother−cell

E
((

Γz[Bm]
Γz[B1]

)c

; Γz[Bm] < Γz[Bn]
)

m(dz)

+
∫

Aother−cell

E
((

Γz[Bn]
Γz[B1]

)c

; Γz[Bn] < Γz[Bm]
)

m(dz)

= exp((cβbσ)2)
∫

Ain−cell

(
d[z, Cz]
d[z, B1]

)cγ

Q

(√
2cβbσ +

MCz − MB1√
2σb

)
m(dz)

+ 2 exp((cβbσ)2)
∫

Aother−cell

(
d[z, Bm]
d[z, B1]

)cγ

Q

(
cβbσ√

2
+

MBm − MBn√
2bσ

)
m(dz), (12)
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Fig. 3. The real time MAP estimations of the traffic in 2 subareas are
plotted for four 60-minute periods. The realizations of the intensity functions
in subareas are generated using the Influence model, and (11) is applied to
follow. The solid line is the simulated realization, and the dotted line is the
MAP estimator value.

convergence time is inversely proportional to the magnitude
of the rate function. The tracking converges within 4 minutes
when the subarea is in state High, while the tracking of the
state Low takes approximately 40 minutes. However, since
the MAP estimator depends only on the absolute difference
between the state probabilities, the estimation yields accurate
result as long as the true state has the highest probability.

B. Simulation of Adaptive Sectorization

The typical problem of nonuniform traffic is manifested in
the generation of hot spots. In this subsection, the response
of the adaptive sectoring algorithm is studied against a hot
spot scenario, where a comparison in network capacity of the
adaptive and the fixed sectoring is made. Fig. 2 illustrates
the network model. The network consists of 19 cells and
each cell has radius of one. The value of the path-loss
exponent, γ, is assumed to be 4, and the required SIR is set
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Fig. 4. The two plots illustrates the real time tracking of the a posteriori
probability of the two subareas in Fig. 3 for the first 60-minute period. (9)
is applied to update the a posteriori probability mass function as traffic data
is accumulated. It is evident from the figure that the convergence time in
tracking is inversely proportional to the rate function.

to 7 dB/128, which corresponds to a despread SIR of 7 dB
when the spreading factor is 128. Furthermore, the shadowing
component in the propagation uncertainty is taken to have
standard deviation of 8 dB. Under the network assumptions
made, the outage probability of different sector configurations
under uniform traffic is illustrated in Fig. 5. It is obvious that
the sector with angular span of 4 subareas has the steepest
slope, and the sector with one subarea is the smoothest.

Suppose the cell of interest is the central cell, the hot spot
scenario considered is to increase the rate function of its two
neighboring cells, and determine how adaptive sectoring can
mitigate the effect. Fig. 6 illustrates the difference in outage
probabilities between the fixed and the adaptive sectoring. In
the fixed sectoring case, when the rate function is gradually
increased, the sector closest to the hot spot experiences high
outage probability while the other two sectors have all the
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Fig. 5. Outage probability of sector configuration consisting of 1 to 4
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Fig. 6. Comparison of system performance with fixed and dynamic sectoring
under hot spot condition. It can be observed that dynamic sectoring balances
the traffic and keep the outage probabilities of the three sectors under 1%,
where the loaded sector in fixed sectoring has approximately 9% outage
probability.

unutilized resources. On the other hand, the adaptive sec-
toring algorithm narrows the loaded sector when its outage
probability starts to rise, and share the load among the three
sectors. It is observed that even though the outage probabilities
have risen in the other two sectors, they are well below 1%;
the outage probability in the fixed sectoring case has risen to
approximately 9%.

V. CONCLUSION

In this paper, the adaptive sectoring problem is formulated
as a shortest path problem. The weight matrix of the acyclic
network constructed depends on mobiles’ spatial distribution,
and which is estimated by a MAP estimator as a function of the
network traffic. The real time tracking of the network traffic
enables the system to minimize the outage probability at a
base station by responding to non-stationary and non-uniform
mobile distribution with adaptive sectoring.
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N3
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N4
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X4
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X4
k

Fig. 7. Label the subarea of interest as X1
k , the network on the left illustrates

the dependency structure of X1
k on its neighbors. Only 4 subareas are shown

because it is assumed that only adjacent subareas have influence on the
dynamics of X1

k (Recall Sec. II-B). The dynamic Bayesian network on the
right models the evolution of X1

k . The solid lines indicate the dependency
structure of X1

k on itself and its neighbors’ previous states. The dotted lines
indicate the dependency structure of other subareas.

The simulation on the tracking of the spatial Poisson
process’ rate functions has shown rapid convergence when
the rate function is high. However, convergence is slow when
the rate is low. Fortunately, slow convergence does not mean
bad performance. Accurate estimation is made as long as
the true state has the highest probability. Furthermore, the
simulation of hot spot scenario has demonstrated the ability
of the adaptive sectoring to cope with nonuniform traffic
distribution. The adaptive sectoring balances the load between
sectors such that no sector has outage probability exceeding
1%, while the fixed sectoring scheme experiences outage of
approximately 9%.

Future work with the model developed is parameter estima-
tion with real traffic data. Currently, the model parameters are
assumed known, and each subarea is assumed to have the same
state space. However, the Influence Model is very flexible. It
is possible to have different state space for different subareas,
and have the model parameters estimated based on real time
traffic data.

APPENDIX

A. Derivation of MAP Estimator

In this Appendix, the MAP estimator introduced in Sec.
III-B is derived. The estimator developed is similar to other
HMM-type estimators except 1) The a posteriori probability is
updated continuously in discrete steps during the time interval
[k, k + 1) instead of once every k, and 2) The a posteriori
probability of each individual subarea is tracked instead of the
joint a posteriori probability of all the subareas. Tracking joint
a posteriori probability distribution is too computationally
intensive for real time applications.

For notational convenience, the state of the subarea of inter-
est is labelled as X1

k and its neighbors as X2
k , X3

k and X4
k . The

time evolution of X1
k and its dependency are illustrated in Fig.

7, where the solid lines show the dependency of X1
k at k + 1

on itself and its neighbors’ previous state. (The dotted lines
refer to other subareas’ dependency, and they are irrelevant in
estimating X1

k .) For each subarea i, X i
k is hidden, and only the
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Fig. 8. Factor graph representation of the Bayesian network in Fig. 7. The
X1

k is isolated and the conditional probabilities relevant to the estimation of
X1

k are explicitly illustrated.

connection request, N i
k, is observed. Denote the a posteriori

probability distribution of X1
k given all the network traffic

up to time k as P 1
k|k = P (X1

k |N1
0:k, N2

0:k, N3
0:k, N4

0:k), and
the prediction as Pk+1|k = P (X1

k+1|N1
0:k, N2

0:k, N3
0:k, N4

0:k),
where N i

0:k = (N i
0 N i

1 . . . N i
k). The recursive computation of

P 1
k|k and P 1

k+1|k tracks the a posteriori probability for subarea
1. Fig. 8 illustrates the dynamics as a factor graph with the a
posteriori distribution explicitly stated.

The prediction step can be computed easily given P i
k|k for

i = 1, 2, 3, 4. Denote
∑

Xk
≡

∑
X1

k

∑
X2

k
· · ·

∑
X4

k
, P 1

k+1|k
can be written as

P 1
k+1|k =

∑
Xk

P (X1
k+1|X1

k , X2
k , X3

k , X4
k)P 1

k|kP 2
k|kP 3

k|kP 4
k|k

=
∑
Xk

(
∑

j

d1jP (X1
k+1|X

j
k))P 1

k|kP 2
k|kP 3

k|kP 4
k|k

=
∑

j

d1j(
∑
Xj

k

P (X1
k+1|X

j
k)P j

k|k)

where the second step uses the Influence model representation,
and both d1j and P (X1

k+1|X
j
k) are defined model parameters.

The updating step, the computation of P i
k|k from the previous

prediction P i
k|k−1, is illustrated in the following Theorem.

Theorem Suppose N i
k(t) is doubly stochastic Poisson

with rate X i
k, and X i

k is a random variable. If we let
Pt(X i

k|N i
k(σ); k ≤ σ < t) denote the conditional prob-

ability density function for X i
k given the connection re-

quest statistics {N i
k(σ); k ≤ σ < t}, then we obtain

(14), with P (X i
k|N i

k(σ); σ = k) = P i
k|k−1, and X̄ i

k =
E{X i

k|N i
k(σ); k ≤ σ < t}.

Proof The proof can be found in [24].

Eq. (14) can also be viewed as defining an updating
algorithm according to which the prior density P i

k|k−1 is

propagated forward in time to form the a posterior density P i
k|k

as data are accumulated. For this interpretation, it is convenient
to rewrite (14) in the finite difference form shown in (15).
For �t sufficiently small, the term o(�t) can be disregarded
and �N i

t = N i
k(t + �t) − N i

k(t) will be either zero or one
according to the nonoccurrence or occurrence of a point in
[t, t + �t). As σ reaches time k + 1, P (X i

k|N i
k(σ)) = P i

k|k,
which completes the cycle.
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