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Abstract—In this paper we investigate the connectivity for
large-scale clustered wireless sensor and ad hoc networks. We
study the effect of mobility on the critical transmission range
for asymptotic connectivity in k-hop clustered networks, and
compare to existing results on non-clustered stationary networks.
By introducing k-hop clustering, any packet from a cluster
member can reach a cluster head within k hops, and thus the
transmission delay is bounded as Θ(1) for any finite k. We first
characterize the critical transmission range for connectivity in
mobile k-hop clustered networks where all nodes move under
either the random walk mobility model with non-trivial velocity
or the i.i.d. mobility model. By the term non-trivial velocity, we
mean that the velocity of a node v is ω

(

r(n)
)

, where r(n) is the
transmission range of the node. We then compare with the critical
transmission range for stationary k-hop clustered networks. In
addition, the critical number of neighbors is studied in a parallel
manner for both stationary and mobile networks. We also study
the transmission power versus delay trade-off and the average
energy consumption per flow among different types of networks.
We show that random walk mobility with non-trivial velocities
increases connectivity in k-hop clustered networks, and thus
significantly decreases the energy consumption and improves the
power-delay trade-off. The decrease of energy consumption per
flow is shown to be Θ

(

logn

nd

)

in clustered networks. These results
provide insights on network design and fundamental guidelines
on building a large-scale wireless network.

I. INTRODUCTION

C
ONNECTIVITY is a basic concern in designing and

implementing wireless networks, and hence is also of

paramount significance. Nodes in the networks need to connect

to others by adjusting their transmission power and thus

carry out the network’s functionalities. Therefore, three main

schemes of connecting strategies are proposed in literature.

The first type of connecting strategies is distance-based.

That is, for a graph (network) G(V,E) and any two nodes

i, j ∈ V , eij ∈ E if and only if the Euclidean distance

between i and j is at most r. The critical value of r for

connectivity when the number of nodes grows to infinity has

been studied. In [1], Gupta and Kumar proved that with range

r(n) =
√

logn+c(n)
πn , overall connectivity can be established

with probability one as n → ∞ if and only if c(n) → ∞.

And this result was independently determined by Penrose [2]

as well. In [3], Wan and Yi determined the precise critical

transmission range for k-connectivity.

Of equal importance, the second type of connecting strate-

gies is the number-of-neighbor-based strategy, which means

that for G(V,E) and any two nodes i, j ∈ V , eij ∈ E if

and only if j is among i’s ϕ nearest neighbors. Note that

this strategy does not ensure that the degree of each node is

strictly equal to ϕ. Actually, we have the degree of each node

Di ≥ ϕ, since the ϕ-nearest-neighbor relation is asymmetric.

In [4], Xue and Kumar proved that for a network with n nodes

to be asymptotically connected, Θ
(

log n
)

1 neighbors are

necessary and sufficient. Wan and Yi [3] obtained an improved

asymptotic upper bound on the critical neighbor number for

k-connectivity.

Another strategy is the sector-based strategy that was pro-

posed as a topology control algorithm by Wattenhofer et al.

[5] and was further discussed by Li et al. in [6]. This strategy

is based on the neighbor connection as described above and

further concerns with the θ-coverage problem. Given that a

node connects bidirectionally to its ϕn nearest neighbors in

the network, where ϕn is a deterministic function of n to be

specified, for an angle θ ∈ (0, 2π), the node is called to be

θ-covered by its ϕn nearest neighbors if among them, it can

find a node in every sector of angle θ. If every node in the

graph satisfies this property, the graph is called θ-covered. One

then wants to find the relation between θ-coverage and overall

connectivity of the network, and to determine the critical value

of ϕθ which is a deterministic function of θ. In [7], Xue and

Kumar determined that the exact threshold function for θ-

coverage, including even the pre-constant, is log 2π
2π−θ

n, for

any θ ∈ (0, 2π), and π-coverage with high probability implies

overall connectivity with high probability.

The network models studied in these prior works are non-

clustered (or flat) and stationary networks. Flat networks are

found to have poor scalability [8] [9] and energy ineffi-

ciency [10] [11]. Clustering and mobility have been found

to improve various aspects of network performance. First,

clustered networks and clustering algorithms are studied by

many researchers [12] [13] [14] [15] and have applications in

both sensor networks [10] [16] and ad hoc networks [17] [18].

With random infrastructure support, the throughput capacity

1The following asymptotic notations are used throughout this paper. Given
non-negative functions f(n) and g(n):

1) f(n) = Θ
(

g(n)
)

means for two constants 0 < c1 < c2, c1g(n) ≤
f(n) ≤ c2g(n) for sufficiently large n.

2) f(n) = O
(

g(n)
)

means for a constant c > 0, f(n) ≤ cg(n) for
sufficiently large n.

3) f(n) = Ω
(

g(n)
)

means for a constant c > 0, f(n) ≥ cg(n) for
sufficiently large n.

4) f(n) ∼ g(n) means limn→∞

f(n)
g(n)

= 1.

5) f(n) = o
(

g(n)
)

means limn→∞

f(n)
g(n)

= 0.

6) f(n) = ω
(

g(n)
)

means g(n) = o
(

f(n)
)
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of random ad hoc networks can be greatly improved, and

the capacity gain is found as Θ
(
√

n
logn

)

when the number

of ad hoc nodes per access point is bounded as Θ(1) [19].

In [10], Heinzelman et al. presented that in sensor networks

where nodes have sinks or base stations to gather their data,

organizing nodes into clusters and using cluster head electing

and rotating can be more energy-efficient than non-clustered

multi-hop transmission to base stations which is normally

adopted in ad hoc networks. In a separate direction, mobility

has been found to increase the capacity [20] and help security

[21] in ad hoc networks.

However, compared to the relatively mature study on the

connectivity of flat and stationary networks, studies on the con-

nectivity of mobile and clustered networks are quite limited. (

Most previous work on cluster or infrastructure-based mobile

network focus on capacity [33] [34]) In a clustered network,

a packet only needs to reach one of the cluster heads. We

are interested in two cases in this paper. In a stationary k-hop

clustered network, a packet must reach a cluster head within k
hops. In a mobile k-hop clustered network, a packet must reach

a cluster head directly in k time-slots. Clearly, clustering has

an inherent advantage compared to flat networks, and it can

alter the energy efficiency and delay of the system. First, it can

require a different critical transmission range for connectivity,

which may depend on the number of cluster heads and whether

the network is stationary or mobile. Second, it can lead to

different delay. For example, with k-hop clustering, the delay

is bounded by k (i.e., Θ(1)). In contrast, in a flat network

with the minimum transmission range, the number of hops

will increase as Θ
(
√

n
logn

)

, and so does the delay. Finally,

both the transmission range and the number of hops can affect

the energy consumption of the network. We can then ask the

following open question in this paper:

• What is the impact of mobility on connectivity of clus-

tered networks subject to delay constraints?

In this paper, we concentrate on one of the above con-

necting strategies, namely, the distance-based strategy, and

the number-of-neighbor-based strategy is briefly studied in a

parallel manner afterwards. We study the critical transmission

range for connectivity in mobile k-hop clustered networks

where all nodes move under either the random walk mobility

model with non-trivial velocity or the i.i.d. mobility model.

By the term non-trivial velocity, we mean that the velocity

of nodes v = ω
(

r(n)
)

. Note that both i.i.d and random

walk model can be viewed as the extreme cases of more

general classes of mobility models [36], [37]. For example,

the i.i.d model may provide useful insights when mobile

nodes stay around an area for an extended period of time

and then move quickly to another area. Hence, studies under

these two models may provide important insights for the

performance and inherent tradeoffs in more general system.

We then compare with the critical transmission range for

connectivity in stationary k-hop clustered networks. We also

use these results to study the power-delay trade-off and the

energy efficiency of different types of networks, including

flat networks. Our results show that random walk mobility

with non-trivial velocity does improve connectivity in k-hop

clustered networks, and it also significantly decreases the

energy consumption and the power-delay trade-off. Hence,

these results provide fundamental insights on the design of

large-scale wireless networks.

The rest of the paper is organized as follows. In section II,

we describe the k-hop clustered network models. We provide

the main results and some intuition behind these results in

section III. In section IV, V and VI, we give the proofs

of the critical transmission range in mobile k-hop clustered

networks under the random walk mobility model with non-

trivial velocities and the i.i.d. mobility model, and in sta-

tionary k-hop clustered networks, respectively. As a parallel

discussion, we consider the critical number of neighbors for

connectivity in both stationary and mobile clustered network

in section VII. We then have a discussion on the impact of

mobility on connectivity and network performance in k-hop

clustered networks in section VIII. We conclude in section IX.

II. K-HOP CLUSTERED NETWORK MODELS

In this section, we first provide an overview of flat networks

and then introduce models of clustered networks. A classifi-

cation of k-hop clustered networks is given and related issues

such as the transmission scheme and the routing strategy are

presented, respectively.

A. An overview of flat networks

Before studying clustered networks, we now give an

overview of the so-called flat networks as depicted in Figure 1.

A flat network can be defined as a network in which all nodes

have homogeneous roles and functionalities (while they may

have different hardware capabilities), and they can reach each

other without going through any intermediary service points

such as base stations or sinks. In one word, flat networks are

self-organized and infrastructure-free, like ad hoc networks in

common context.

Fig. 1. Flat networks under the distance-based connecting strategies

There are several concepts related to flat networks whose

counterparts in clustered networks will be studied in the rest of

this paper. The most concerned in this paper is connectivity.

Before defining connectivity of flat networks, we formulate

flat networks as follows. Let A denote a unit area in R
2, and

G(n) be the graph (network) formed when n nodes are placed

uniformly and independently in A. An edge eij exists between

two nodes i and j, if the distance between them is less than

r(n) under the distance-based strategy. Then, graph G(n) is

connected if and only if there is a path between any pair of

nodes in G(n).
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B. Classification of k-hop clustered networks

In contrast to flat networks, in clustered networks nodes are

organized into clusters. A cluster head is selected within each

cluster to serve the other cluster-member nodes (i.e., clients).

We assume that a clustered network consists of n cluster-

member nodes and nd cluster-head nodes, where d is called the

cluster head exponent and 0 < d ≤ 1. For ease of presentation,

we treat nd as an integer in this paper, and all nodes are

placed uniformly and independently in a unit square S in R
2.

Moreover, the unit square is assumed to be a torus.

1) Mobile k-hop clustered networks:

a. Mobility pattern

In a mobile k-hop clustered network, we assume that

all cluster members move according to a certain mobility

pattern while the clustered heads are fixed with the uniform

distribution.

• Random Walk Mobility Model with Non-Trivial Ve-

locities 2 [22] [23]: Define a discrete random variable V
the speed of a node with the probability mass function

P
(

V = v(m)
)

= pm for all m ∈ M, where the

index set M is finite and invariant of n. We assume that

v(m) = ω
(
√

logn

nd′

)

(d′ < d
2 ) and v(m) = O(1), for all

m ∈ M. This assumption, combined with the k-time-slots

deadline that we will introduce next, implies that we are

interested in the case when the speed is fast enough so

that nodes can move multiple transmission ranges before

the deadline (please refer to Remark 4.1), for which we

expect the scaling laws to differ substantially with that

in stationary networks. In addition, we assume that pm
for all m ∈ M does not change with n, and pm > 0 for

all m. Further, we assume that there exists an index m⋆

such that for all sufficiently large n, v(m)

log
n
npm

≥ v(m⋆)

log
n
npm⋆

for all m. Let vmin represent the minimum value of V ,

and we assume that vmin ≤ 1
k . In other words, not all

nodes can traverse a side of the torus in k slots. Note

that we do allow v(m) to scale with n. We will see

later that the probability of full connectivity will depend

heavily on the dynamics of the nodes belonging to class

m⋆. We then partition the data transmission process into

time-slots with unit length. At the beginning of each

period (i.e., every k slots; see Transmission scheme for

the definition of a period) each member node randomly

and independently select a speed V = v according to

the distribution of V , and uniformly and independently

choose a random direction θ ∈ [0, 2π). The node then

moves along this direction θ with the constant speed v
for the entire period. Note that the mobility pattern of

nodes in our model is slightly different from that defined

in [22] and they do not bounce off the border since we

have assumed the unit square to be a torus.

• I.I.D. Mobility Model: The transmission process is also

divided into slots as we did above and at the beginning

of each time-slot each member node will randomly and

uniformly choose a position within the unit torus and

2In the random walk mobility model defined in [22], each movement either
corresponds to a constant time interval t, or corresponds to a constant distance
traveled. The model we use conforms with the former case.

remain static during the rest of the time-slot. In addition,

we assume that d > 1
k . (Please refer to the proof of

Proposition 5.1 where we need the condition that d > 1
k .)

b. Transmission scheme

We divide the channel into W (W ≥ 2) sub-channels, and

thus the network can accommodate at least W flows initiated

in a certain time-slot. Moreover, we assume that for each

flow, the packet is forwarded for one hop in each time-slot.

Therefore, the maximum delay for the transmission of a packet

in our network model is k time-slots, or the delay constraint

is D = k. In section VIII, we will mainly use the notation D
as the delay constraint in our discussion on the power-delay

trade-off in k-hop clustered networks.

Fig. 2. Transmission scheme in mobile k-hop clustered networks.

We use the term session to refer to the process that a packet

is forwarded from its source cluster member to a cluster head.

In every packet, we assume that there is a TTL (time to live)

field to record the number of hops that the packet has been

forwarded. The initial value of TTL is set to 1 and each relay

increases the counter by one when it receives the packet. When

the hop counter is greater than k, the packet is discarded and

we say that the session is failed. Every k time-slots constitute

a period. We assume that there is a SYN (synchronize) field

for all nodes to be synchronized and data-flows are initiated

only at the beginning of each period. This assumption accords

with the design of some novel energy-efficient duty-circle

MAC protocols (RMAC [24], DW-MAC [25]). Our proposed

transmission scheme is illustrated in Figure 2.

c. Routing strategy

As to the routing strategy, we simply assume that a cluster

member holds the packet (acting as the relay of itself), if it

does not have a cluster head in its transmission range during

its course of movement, or sends the packet to the cluster head

once they meet.

Note that this assumption requires that a cluster member can

know the existence of a cluster head within the transmission

range. Such an assumption would be valid when (1) the cluster

heads are static and the cluster member has knowledge of

its own position and the positions of cluster heads; or (2)

the cluster heads broadcast a pilot signal that covers nearby

cluster members. Our routing strategy under the random walk

mobility assumption is illustrated in Figure 3.

Note that in the above model we choose not to use multi-hop

transmissions in mobile k-hop clustered networks. Although
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Fig. 3. Routing strategy in mobile k-hop clustered networks, random walk
mobility.

multi-hop transmissions may further improve system perfor-

mance, establishing multi-hop paths to cluster-heads would

have required the mobile nodes to dynamically discover the

cluster-heads that are k times its transmission range away.This

would require either a significantly larger pilot signal trans-

mitted by the cluster-heads, or location information of both

the mobile and the cluster-heads. In contrast, our study in

this paper does not requite these mechanisms. Further, as we

can see, even without multi-hop transmissions, the analysis

is already quite complicated due to various difficulties in the

proofs. Hence, we decided to leave multihop transmissions to

the cluster head as future work.

d. Memoryless assumption

For both mobility models, we further make the following

memoryless assumption. That is, all cluster-member nodes

are memoryless about their past experience of the success or

failure of sessions. Furthermore, all cluster-member nodes do

not record the positions of any cluster-head nodes with which

they may have communicated. Thus, under this memoryless

assumption, in each period, the distribution of head nodes is

still uniform in the area of network, as seen by the member

nodes.

2) Stationary k-hop clustered networks: In a stationary k-

hop clustered network, all nodes remain static after uniformly

distributed in the unit area. As in its mobile counterpart, we

also assume that the packet is forwarded for one hop in each

time-slot.

3) Redefining connectivity in clustered networks: Due to

clustering and mobility, the definition of connectivity in clus-

tered networks is different from that in flat networks. For

stationary k-hop clustered networks, we say that a cluster

member is connected if it can reach a cluster head within

k hops. For mobile clustered networks, a cluster member is

connected if it can reach a cluster head within k slots. If all

the cluster members in a network are connected, we define

that the network has full connectivity.

III. MAIN RESULTS AND INTUITIONS

A. Defintions

Before we state our main results, we first formally define the

critical transmission range and the critical number of neighbors

in both mobile and stationary k-hop clustered networks.

Recall that for mobile networks, in every period of k time-

slots, each node may attempt to connect to the cluster head.

For mobile k-hop clustered networks, let E denote the event

that all cluster members are connected in a given period Λ, and

let PΛ(E) denote the the corresponding probability. We then

are ready to define the critical transmission range for clustered

networks.

Definition 3.1: For mobile k-hop clustered networks, r(n)
is the critical transmission range if

lim
n→∞

PΛ(E) = 1, if r ≥ cr(n) for any c > 1;

lim
n→∞

PΛ(E) < 1, if r ≤ c′r(n) for some c′ < 1,

For stationary networks, we define E to be the event that

all cluster members are connected to a cluster head in k hops.

Definition 3.2: For stationary k-hop clustered networks,

r(n) is the critical transmission range if

lim
n→∞

P (E) = 1, if r ≥ cr(n) and c > 1;

lim
n→∞

P (E) < 1, if r ≤ c′r(n) and c′ < 1.

In parallel, we have the following definition for the critical

number of neighbors. Note that critical number of neighbors

(CNoN) in cluster and mobile networks is different from that

in flat and stationary network. Due to mobility, the CNoN is

the number of neighbors a node needs to maintain contact

within a time period. And due to clustering, each cluster

member only needs to maintain contact with the cluster heads.

Hence, the CNoN is the number of neighbors a cluster member

needs to check to see whether there is a cluster head.

Definition 3.3: For mobile k-hop clustered networks, given

that the state of network is observed in the period Λ, ϕ(n) is

the critical number of neighbors if

lim
n→∞

PΛ(E) = 1, if ϕ ≥ cϕ(n) and c > 1;

lim
n→∞

PΛ(E) < 1, if ϕ ≤ c′ϕ(n) and c′ < 1.

Definition 3.4: For stationary k-hop clustered networks,

ϕ(n) is the critical number of neighbors if

lim
n→∞

P (E) = 1, if ϕ ≥ cϕ(n) and c > 1;

lim
n→∞

P (E) < 1, if ϕ ≤ c′ϕ(n) and c′ < 1.

B. Main results and intuitions

We summarize our main results in this paper as follows:

• Under the random walk mobility assumption, the critical

transmission range is r(n) = logn
2kv⋆nd , where d is the clus-

ter head exponent, 0 < d ≤ 1, v⋆ = min{ v(m)

log
n
npm

, ∀m ∈
M}.Note that v⋆ is a function of n. (See Section II.B)
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• Under the i.i.d. mobility assumption, the critical trans-

mission range is

√

logn
kπnd , where 1

k < d ≤ 1.

• For stationary k-hop clustered networks, the critical trans-

mission range is r(n) = 1
k

√

d logn
πnd , where 0 < d < 1.

• For both mobile and stationary k-hop clustered networks,

Θ(n1−d log n) neighbors are necessary and sufficient.

Before we prove these results rigorously, we now give an

intuitive approach to estimate the order of critical transmission

range in each scenario here:

Suppose there are n cluster members and nd cluster heads

uniformly distributed in a unit square. Thus, roughly speaking,

there is one cluster head within an area of 1
nd .

• Under the random walk mobility assumption, the area

covered by movement during k time-slots constitutes the

dominating part of a cluster member’s coverage area.

Assume that the velocities of nodes are uniformly a

constant v. Thus, in order to reach a cluster head, on

average we need

2kvr(n) =
1

nd
, or r(n) =

1

2kvnd
;

With certain transmission range, consider the number of

other nodes within the coverage of an arbitrary cluster

member during its movement in one period, we have

ϕ(n) = (n+ nd) · 2kvr(n) = n1−d + 1.

• Under the i.i.d. mobility assumption, considering that

cluster members actually remain static during any time-

slot, the coverage consists of the overall area of k disks.

Thus, on average we need

kπr2(n) =
1

nd
, or r(n) =

√

1

kπnd
;

Similarly, we have

ϕ(n) = (n+ nd) · kπr2(n) = n1−d + 1.

• In the stationary networks, a reachable cluster head is

roughly within a disk with a radius kr(n) of the cluster

member, and thus we need

π
(

kr(n)
)2

=
1

nd
, or r(n) =

1

k

√

1

πnd
;

Similarly, we obtain

ϕ(n) = (n+ nd) · π
(

kr(n)
)2

= n1−d + 1.

In the following, we will prove the necessary and sufficient

conditions for the critical transmission range r(n) under

random walk, i.i.d. and stationary k-hop models. The main

idea for the proofs of necessary condition is to show that the

probability of disconnection would be lower bounded from

zero if the critical transmission range is no greater than r(n).
Similarly, for proofs of sufficient conditions, we will prove that

the probability of session failure (i.e. network disconnected)

would approach 0 asymptotically.

IV. THE CRITICAL TRANSMISSION RANGE FOR MOBILE

K-HOP CLUSTERED NETWORKS, RANDOM WALK

MOBILITY

We first define several key notations that will be

used throughout this section. Let v⋆ = v(m⋆)

log
n
npm⋆

=

min{ v(m)

log
n
npm

, ∀m ∈ M}, m⋆ = argmin{ v(m)

log
n
npm

, ∀m ∈ M}
and pm⋆

= p⋆, where v(m) is the value of the discrete random

variable V — the speed of cluster member. Recall that by our

assumption, m⋆ is independent of n when n is large while v⋆
is a function of n for all n. (See Section II.B) Also v⋆ is not

equal to v(m⋆), which can be easily seen from the definition

of v⋆.

In this section, we have the following main result.

Theorem 4.1: Under the random walk mobility assumption,

the critical transmission range is r(n) = logn
2kv⋆nd , where 0 <

d ≤ 1.

Remark 4.1: Recall the assumption that v(m) = ω(
√

logn

nd′
)

with d′ < d
2 . Combined with r(n) = logn

2kv⋆nd , it implies that
r(n)
kv⋆

= o(nd′−d). In other words, the speed is fast enough so

that nodes can move multiple transmission ranges before the

deadline. Further, it is easy to verify that r(n) = o

(√
logn

nd−
d′

2

)

.

A. Necessary condition on r(n) of Theorem 4.1

We start with the following lemma.

Lemma 4.1: If r(n) =
d0
2 logn+κ

2kv⋆nd , where d′ < d0 < d, then

for any fixed θ < 1 and ϵ(n) = 1
logn , there exists N0 such

that for all n ≥ N0, the following holds

n
do

2

(

1−
(

1 + ϵ(n)
)

2kv(m⋆)r(n)
)nd

≥ θe−κ− d0
2 log p⋆− d0

2 ,

(1)

where 0 < d ≤ 1.

Proof: Taking the logarithm of the left hand side of (1),

we get

log
(

L.H.S. of (1)
)

=
d0
2

log n+

nd log
(

1−
(

1 + ϵ(n)
)

2kv(m⋆)r(n)
)

.

(2)

Using the power series expansion for log (1− x),

log (L.H.S. of (1))

=
d0
2

log n− nd
∞
∑

i=1

(

(

1 + ϵ(n)
)

2kv(m⋆)r(n)
)i

i

=
d0
2

log n− nd

( 2
∑

i=1

1

i

(

G
(

n, κ, ϵ(n)
)

)i

+ δ(n)

)

(3)

where

G
(

n, κ, ϵ(n)
)

=
(

1 + ϵ(n)
)

2kv(m⋆)r(n)
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and

δ(n) =
∞
∑

i=3

1

i

(

G
(

n, κ, ϵ(n)
)

)i

≤
∞
∑

i=3

1

3

(

G
(

n, κ, ϵ(n)
)

)i

=
1

3

(

G
(

n, κ, ϵ(n)
)

)3

1−G
(

n, κ, ϵ(n)
)

≤ 1

3

(

G
(

n, κ, ϵ(n)
)

)3

G
(

n, κ, ϵ(n)
)

=
1

3

(

G
(

n, κ, ϵ(n)
)

)2

, (4)

for all large n. Substituting (4) in (3), we get

log
(

L.H.S. of (1)
)

≥ d0
2

log n− nd

(

G
(

n, κ, ϵ(n)
)

+
5

6

(

G
(

n, κ, ϵ(n)
)

)2
)

=
d0
2

log n− nd

(

(

1 + ϵ(n)
)

d0

2 log n+ κ

nd
logn (np⋆) +

5

6

(

(

1 + ϵ(n)
)

d0

2 log n+ κ

nd
logn (np⋆)

)2
)

= −κ− d0
2

log p⋆ − ϵ(n)(
d0
2

logn+
d0
2

log p⋆ + κ)

−
(

1 + ϵ(n)
)

κ logn p⋆

−5

6

(

(

1 + ϵ(n)
)

(d0

2 log n+ κ) logn (np⋆)
)2

nd
.

Since ϵ(n) = 1
logn , the right hand side converges to −κ −

d0

2 log p⋆ − d0

2 as n → ∞. Hence, for any ϵ̃ > 0 we can

choose Nϵ̃ such that

log
(

L.H.S. of (1)
)

≥ −κ− d0
2

log p⋆ −
d0
2

− ϵ̃,

for all n > Nϵ̃. Taking the exponent of both sides and using

θ = e−ϵ̃, the result follows.

Let Grw(n, r(n)) denote the network where two nodes can

communicate if their Euclidean distance is at most r(n) and

PΛ
f rw(n, r(n)) be the probability that Grw(n, r(n)) has some

node that is not connected in the period Λ. Then we have the

following proposition.

Proposition 4.1: If r(n) =
d0
2 logn+κ(n)

2kv⋆nd , then

lim inf
n→∞

PΛ
f rw(n, r(n))

≥ e−(κ+
d0
2 log p⋆)

(

e−
d0
2 − e−(κ+

d0
2 log p⋆)

)

where κ = limn→∞ κ(n), κ > d0

2 − d0

2 log p⋆.

Proof: Let u(n) = O
(
√

logn
n

)

. Then we divide the unit

square into 1
u(n) × 1

u(n) cells and each cell is of size u2(n).

Now, among these cells, pick n
d0
2 of them such that each

of them is at least

√

1
nd0

away from others. For example, we

can choose a subset of the highlighted cells in Figure 4.

Fig. 4. Cell Selection

Note that, by appropriately choosing u(n) (e.g. choosing

u(n) =
√

C logn
n , where the factor C can be set according

to the value of d0 and pm⋆
. For a rigorous proof, see [35,

lemma 11] ), with high probability, there are at least one cluster

member in each of these selected cells taking the speed v(m⋆).

Pick such a cluster member node from each of these selected

cells. There are a total of n
d0
2 of these nodes. Let Y denote

the set of such cluster member nodes. Note that any two nodes

in Y are at a distance of at least

√

1
nd0

away. Let si be the

session initiated by node i and we say that session si fails

if i is not connected (i.e., it cannot reach a cluster head in k
time-slots). Then, consider an arbitrary period Λ, we have3

PΛ
f rw(n, r(n))

≥ PΛ({some session si fails in Grw(n, r(n))})
≥
∑

i∈Y

PΛ({si is the only failed session in Grw(n, r(n))})

≥
∑

i∈Y

PΛ({si is a failed session in Grw(n, r(n))})

−
∑

i∈Y

∑

j ̸=i

PΛ({si and sj are failed sessions

in Grw(n, r(n))}). (5)

Next, we will evaluate the two terms on the right hand side of

(5), respectively. We will find a lower bound for the first term

and an upper bound for the second term. Then, PΛ
f rw(n, r(n))

will be proved to be bounded away from zero. Proposition 4.1

will then follows.

3Equation (2) is similar to the corresponding equation in the proof of
Theorem 2.1 in [1]. However, the summation in [1] is over all nodes, while
here the summation is only over nodes i and j in the set Y. The reason
that we have to consider a smaller set Y is because otherwise the second
summation may diverge. In [1], in order to ensure the convergence of the
corresponding second summation, it is essential that, when nodes i and j
are both disconnected, they must be at least some distance apart. In our
case, the corresponding property would require that, if si and sj are both
failed sessions, nodes i and j must be some distance apart. Unfortunately,
this property does not hold for all nodes. On the other hand, the restriction
to the set Y helps to enforce this property.
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Specifically, for the first term, using Lemma 4.1 with ϵ(n) =
1

logn , we know that it is bounded by

n
d0
2

(

1−
(

πr2(n) + 2kv(m⋆)r(n)
)

)nd

= n
d0
2

(

1−
(

1 + ϵ1(n)
)

2kv(m⋆)r(n)
)nd

> n
d0
2

(

1−
(

1 + ϵ(n)
)

2kv(m⋆)r(n)
)nd

≥ θe−κ− d0
2 log p⋆− d0

2 , (6)

where ϵ1(n) =
πr(n)

2kv(m⋆) < ϵ(n) according to the Remark 4.1

and 0 < θ < 1.

To bound the second term, note that the main difficulty here

is that the trajectories of si and sj may overlap. Let ϕ(0 ≤ ϕ <
π) be the angle of intersection. Then the overlapping area can

be as large as 4r2(n)/ sinϕ. In comparison, the trajectories

of si and sj cover an area of 2r(n)kv(m⋆) each. Hence, in

order to show that the overlapping area does not significantly

affected the probability of connectivity, the key is to show that

with high probability the angel ϕ cannot be too close to either

0 or π.

i

j

ᵠ

Fig. 5. Overlapped Area–1

There are two cases. First, if ϕ < π/2, then as illustrated

in Figure 5, the angle of intersection must be of order

Θ

(

√

1/nd0

kv(m⋆)

)

= o

(
√

1

nd0−d′ log n

)

= Ω

(

√

1

nd0

)

. (7)

Hence, in this case, the intersection of the trajectories of i and

j, with probability one, is of area

(2r(n))
2 1

sin

√
1/nd0

kv(m⋆)

∼ 4r(n)kv(m⋆) · r(n)n
d0
2

= o

(

4r(n)kv(m⋆)

log2 n

)

, (8)

where we have used Remark 4.1.

i j

ᵠ

Fig. 6. Overlapped Area–2

Next, consider the case when ϕ > π/2 as shown in Figure 6.

The angle of intersection can be close to π if the two tracks are

along a straight line. But we can show that this event happens

with very low probability. Let ϕ be the angle of intersection

and ε = ε(n) = log2 n

nd−d′
, where d′ < d

2 and d′ < d0 < d. Note

that for the angle ϕ to be greater than π − ε, the trajectories

from both i and j must be no more than an angle ε
2 away

from the line connecting i and j. Then we have

P (ϕ > π − ε) <
( ε

2π

)2

=
log4 n

4π2n2(d−d′)
=

log4 n

4π2nd⋆

, (9)

where d⋆ = 2(d − d′) > d > d0. Then, for such π/2 ≤ ϕ ≤
π − ε, the intersection is of area

2r(n)

sinϕ
· 2r(n) ≤ 4r(n)kv(m⋆) · r(n)

kv(m⋆)
· 1

ε(n)

= o

(

4r(n)kv(m⋆)

log2 n

)

, (10)

where we have used Remark 4.1.

Let SΛ
i+j denote the total area covered by i and j during

the period Λ. Then for some ϵ′ = o
(

1
log2 n

)

we can obtain

that, whenever ϕ ≤ π − ε the following holds.

SΛ
i+j ≥ 4r(n)kv(m⋆) − o

(

4r(n)kv(m⋆)

log2 n

)

= (1− ϵ′)4r(n)kv(m⋆), (11)

for all n > Nϵ′ . Let Tij be the event that SΛ
i+j ≥ (1 −

ϵ′)4r(n)kv(m⋆), taking into account both cases we have

P (Tij) > 1− log4 n

4π2nd⋆

.

Therefore, each term in the second summation is bounded

by

PΛ({si and sj are failed sessions in Grw})
= PΛ({si and sj are failed sessions in Grw} | Tij)P (Tij)

+PΛ({si and sj are failed sessions in Grw} | Tij)P (Tij)

≤ PΛ({si and sj are failed sessions in Grw} | Tij)

+ P (Tij)

≤
(

1−
(

1− ϵ′
)

4r(n)kv(m⋆)
)nd

+
log4 n

4π2nd⋆

≤ e−4nd(1−ϵ′)r(n)kv(m⋆)

+
log4 n

4π2nd⋆

≤ e−2(1−ϵ′) log
n
(np⋆)(

d0
2 logn+κ) +

log4 n

nd⋆

(12)

where the forth step is due to the well-known bound

1− x ≤ e−x for x ∈ [0, 1]. (13)

Therefore, combined with (6) and (12) in (5), we obtain

PΛ
f rw(n, r(n))

≥ θe−κ− d0
2 log p⋆− d0

2

−nd0

(

e−2(1−ϵ′) log
n
(np⋆)(

d0
2 logn+κ) +

log4 n

nd⋆

)

,

for all n > Nθ,ϵ′ = max{Nθ, Nϵ′}.
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Recall that limn→∞ κ(n) = κ. Then for any ϵ̂ > 0, there

exists Nϵ̂ such that for all n ≥ Nϵ̂, κ(n) ≤ κ + ϵ̂. Consider-

ing that the probability of disconnectedness is monotonously

decreasing in κ, we obtain,

Pf rw(n, r(n))

≥ θe−(κ+
d0
2 log p⋆+

d0
2 +ϵ̂)

−nd0

(

e−2(1−ϵ′) log
n
(np⋆)(

d0
2 logn+κ+ϵ̂) +

log4 n

nd⋆

)

,

for all n > max{Nθ,ϵ′ , Nϵ̂}. Note that ϵ′ = o
(

1
log2 n

)

, then

nd0e−2(1−ϵ′) log
n
(np⋆)(

d0
2 logn)

=
nd0

nd0(1−ϵ′)
e−(1−ϵ′)d0 log p⋆

= e−d0 log p⋆ , as n → ∞.

Taking limits, we then have

lim inf
n→∞

Pf rw(n, r(n))

≥ θe−(κ+
d0
2 log p⋆+

d0
2 +ϵ̂) − e−2(κ+

d0
2 log p⋆+ϵ̂).

Since this holds for all ϵ̂ > 0 and any fixed θ < 1, Proposition

4.1 gets proved. Note that κ has a lower bound d0

2 − d0

2 log p⋆,

thus the right hand side of Proposition 4.1 will be above zero.

Remark 4.2: Proposition 4.1 provides the necessary condi-

tion on r(n) in terms of both κ(n) and d0, i.e., in addition

to the requirement for κ(n) to approach infinity and a lower

bound for κ, this condition also says that any d0 < d
2 will

result in a positive probability of disconnection. To explain

this implication, suppose two range r0(n) and r1(n), such

that πr20(n) =
d0
2 logn+κ(n)

2kv⋆nd with κ(n) = o(log n), and

πr21(n) =
d1
2 logn+κ

2kv⋆nd , where d0 < d1 < d
2 , κ(n) → ∞ and κ is

a constant. By Proposition 4.1, we know that r1(n) will result

in a disconnected network. Meanwhile, since κ(n) = o(log n)
we have r0(n) < r1(n) for all sufficiently large n and the

probability of disconnection is monotonously decreasing in r.

Therefore, r0(n) will also result in a disconnected network.

As an consequence of the Proposition 4.1 and Remark 4.2,

we have

Corollary 4.1: Under the random walk mobility assump-

tion, r(n) ≥
d

2 logn

2kv⋆nd is necessary for the connectivity of the

mobile k–hop clustered networks with random walk mobility

model.

Hence we have proved the necessity part of Theorem 4.1.

B. Sufficient condition on r(n) of Theorem 4.1

Suppose there are at most n sessions in a period Λ, and

let Ei denote the event that si is a failed session, where i =
1, 2, . . . , n. Let the transmission range of each node be r =
cr(n), where c > 1. Then, it suffices to show that

lim
n→∞

PΛ

( n
∪

i=1

Ei

)

= 0.

Using the union bound we have

PΛ

( n
∪

i=1

Ei

)

≤
n
∑

i=1

PΛ(Ei). (14)

Next we divide the mobile nodes into two sets. The first set

A contains nodes satisfying vi ≤ 1
k , while the second set B

contains nodes with vi >
1
k . For each node in A, because we

assume that the space is a torus, no path of trajectory overlaps.

In contrast, for each in B, if it moves at a small angle along

one of the four sides, paths of trajectory may overlap and loop

around the torus. Hence, these two sets need to be treated

differently. Specifically

For node in A, since every node’s speed satisfies vi ≥ vmin,

PΛ(Ei) ≤
(

1−
(

πr2+2kvmincr(n)
)

)nd

<
(

1−2kvmincr(n)
)nd

.

For node in B, because vi is larger than 1
k , the minimum area

swept by the trajectory is 2cr(n). This circumstance occurs,

e.g. when the node moves parallel to one of the four sides of

the space and loops around the torus. Hence, for node in B,

PΛ(Ei) ≤
(

1− 2cr(n)
)nd

≤
(

1− 2kvmincr(n)
)nd

,

where the second inequality holds on because we have as-

sumed that vmin ≤ 1
k in the definition of the random walk

model in Section II. Then, we have

n
∑

i=1

PΛ(Ei) =
∑

i∈A

PΛ(Ei) +
∑

i∈B

PΛ(Ei)

≤
∑

i∈A

(

1− 2kvmincr(n)
)nd

+

∑

i∈B

(

1− 2kvmincr(n)
)nd

= n
(

1− 2kvmincr(n)
)nd

≤ ne−2kvmincr(n)n
d

(by (13))

= n−cvmin/v⋆+1

≤ n−c log
n
(npmin)+1

=
n

(

npmin

)c

Consequently, for any c > 1, we have

n
∑

i=1

PΛ(Ei) ≤
n

(

npmin

)c → 0, as n → ∞. (15)

Thus, using (15) in (14), we have

lim
n→∞

PΛ

( n
∪

i=1

Ei

)

= 0,

and the result follows.

Remark 4.3: Note that there is a small gap between the

necessary and sufficient conditions. The necessary condition

roughly requires r(n) =
d

2 logn

2kv⋆nd , while the sufficient condition
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roughly requires r(n) = logn
2kv⋆nd . Nonetheless, the order in

terms of n is the same.

Also note that by assuming the network area is a torus,

we have eliminated the possibility that nodes get reflected

at the boundary. If reflection is allowed, it will lead to

minimal change to our conclusions. Specifically, the critical

transmission range under this case is r(n) = logn
kv⋆nd , where

0 < d ≤ 1. Note that it is two times larger than the critical

transmission range in a torus. An intuitive explanation for this

result is that, if nodes get reflected and follow their impinging

path, the sweep area might be kv(m)r(n) under the worst

situation, m ∈ M. Thereby r(n) should be two times larger

than that in a torus. We omit the proof due to space constraints

since it is very similar to the earlier proofs in this section.

V. THE CRITICAL TRANSMISSION RANGE FOR MOBILE

K-HOP CLUSTERED NETWORKS, I.I.D. MOBILITY

The main result of this section is as follows.

Theorem 5.1: Under the i.i.d. mobility assumption, the crit-

ical transmission range is r(n) =
√

logn
kπnd , where 1

k < d ≤ 1.

A. Necessary condition on r(n) of Theorem 5.1

We start with the following technical lemma.

Lemma 5.1: If πr2(n) = logn+κ
knd , for any fixed θ < 1 and

µ ≤ 1, and for all sufficiently large n

n
(

1− µπr2(n)
)knd

≥ θe−κ, (16)

where 0 < d ≤ 1.

Proof: The proof of this lemma follows the same argu-

ment as that of Lemma 4.1, and we thus omit this proof.

Let Giid(n, r(n)) denote the network where two nodes can

communicate if their Euclidean distance is at most r(n) and

Pf iid(n, r(n)) be the probability that Giid(n, r(n)) has failed

sessions (i.e., it has a node that is not connected). Then we

have the following proposition.

Proposition 5.1: If πr2(n) = logn+κ(n)
knd , where 1

k < d ≤ 1,

then

lim inf
n→∞

Pf iid(n, r(n)) ≥ e−κ(1− e−κ),

where κ = limn→∞ κ(n), κ > 0.

Proof: Unlike the techniques employed in the proof of

Proposition 4.1, we will consider all pairs of node i and j that

are disconnected cluster members.

To evaluate Pf iid(n, r(n), we have

Pf iid(n, r(n))

≥
n
∑

i=1

P ({si is a failed session in Giid(n, r(n))})

−
n
∑

i=1

∑

j ̸=i

P ({si and sj are failed sessions

in Giid(n, r(n))}). (17)

Then we evaluate the two terms on the right hand side of (17),

respectively, and we have

P ({si is a failed session}) ≥
(

(

1− πr2(n)
)nd
)k

(18)

and

P ({si and sj are failed sessions})

≤
(

4πr2(n)
(

1− πr2(n)
)nd

+
(

1− 4πr2(n)
)

(

1− 2πr2(n)
)nd
)k

.

(19)

The two terms in the parenthesis on the right hand side of (19)

take into account the cases where the two nodes carrying the

packet of si and sj are at a distance less than 2r(n) and greater

than 2r(n) when initially distributed, respectively. Using (18)

and (19) in (17), we obtain

Pf iid(n, r(n))

≥ n
(

1− πr2(n)
)knd

− n2

(

4πr2(n)
(

1− πr2(n)
)nd

+
(

1 − 2πr2(n)
)nd
)k

.

(20)

Using Lemma 5.1 and (13), for any fixed θ < 1, we have

Pf iid(n, r(n))

≥ θe−κ −
(

n
2
k

(

4πr2(n)e−ndπr2(n) + e−2ndπr2(n)
)

)k

= θe−κ −
(

4(log n+ κ)

knd− 1
k

e−
1
k
κ + e−

2
k
κ

)k

≥ θe−κ − (1+ ϵ)e−2κ,

for any ϵ > 0 and for all n > Nϵ,θ,κ. Note that we need d > 1
k

in the last step.

Since limn→∞ κ(n) = κ, for any ϵ there exits N ′(ϵ) such

that for all n ≥ N ′(ϵ), κ(n) ≤ κ + ϵ. Considering that the

probability of disconnectedness is monotonously decreasing in

κ, then we have

Pf iid(n, r(n)) ≥ θe−(κ+ϵ) − (1 + ϵ)e−2(κ+ϵ),

for n ≥ max{Nϵ,θ,κ+ϵ, N
′
ϵ}. Taking limits

lim inf
n→∞

Pf iid(n, r(n)) ≥ θe−(κ+ϵ) − (1 + ϵ)e−2(κ+ϵ).

Since this holds for all ϵ > 0 and θ < 1, the result follows.

Then we have the following corollary to prove the necessity

part of Theorem 5.1.

Corollary 5.1: Under the i.i.d. mobility assumption, the

mobile k-hop clustered network is to have failed sessions with

positive probability bounded away from zero if πr2(n) =
logn+κ(n)

knd and limn→∞ κ(n) < +∞, which means πr2(n) ≥
logn
knd is necessary for the connectivity of mobile k–hop clus-

tered networks with i.i.d. mobility model.
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B. Sufficient condition on r(n) of Theorem 5.1

Suppose there are at most n sessions in a period λb, and

let Ei denote the event that si is a failed session, where

i = 1, 2, . . . , n. Let each node have the transmission range

r = cr(n), where c > 1. Using the existing approach in

Section IV-B, we have

P

( n
∪

i=1

Ei

)

≤
n
∑

i=1

P (Ei)

≤ n
(

(

1− πr2
)nd
)k

≤ ne−kndπr2

=
1

4nc2−1
.

For any c > 1, the result follows.

VI. THE CRITICAL TRANSMISSION RANGE FOR

CONNECTIVITY OF STATIONARY K-HOP CLUSTERED

NETWORKS

In this section, our main result is the following theorem.

Theorem 6.1: For the stationary k-hop clustered networks,

the critical transmission range is r(n) = 1
k

√

d logn
πnd , where

0 < d < 1.

A. Necessary condition on r(n) of Theorem 6.1

Let Gstat(n, r(n)) denote the network where two nodes are

connected if their Euclidean distance is at most r(n) and we

use the term disconnected to describe a cluster member whose

packets cannot reach a cluster head within k hops. Then, if

there is at least one disconnected member node in the network,

we define that Gstat is disconnected. Let Pd stat(n, r(n)) be

the probability that Gstat is disconnected and we have the

following proposition.

Proposition 6.1: If πr2(n) = d0 logn+κ
k2nd , where d0 < d,

then

lim inf
n→∞

Pd stat(n, r(n)) ≥ e−κ(1− e−κ),

where κ = limn→∞ κ(n), κ > 0.

Proof: The proof applies similar techniques as that of

Proposition 4.1, we will not considered all pairs of nodes i
and j that are disconnected cluster members. The problem for

this is that there are too many of these pairs. The intuitive

explanation is depicted in the following figure.

Fig. 7. An intuitive explanation of the problem in the above approach

Further, such i and j may be very close to each other, making

it difficult to bound the probability.

The specific set of is and js are selected as follow. Let

u(n) = O
(
√

logn
n

)

. Then we divide the unit square into
1

u(n) × 1
u(n) cells such that each cell is of size u2(n).

Now, among these cells, pick nd0 of them such that each of

them is at least

√

1
nd0

away from others, as shown in Figure 8.

Fig. 8. Cell selection

Pick one cluster member node from each of these selected

cells to form a set consisted of nd0 nodes. Let Y denote the

set of such cluster member nodes. Note that any two nodes

in Y are at a distance of at least

√

1
nd0

away. Further, this

distance is larger than kr(n) when n is sufficiently large.

Then, using the existing approach of computing the proba-

bility that the network is disconnected, we have

Pd stat(n, r(n))

≥
∑

i∈Y

P ({i is an disconnected cluster member

in Gstat(n, r(n))})
−
∑

i,j∈Y,
j ̸=i

P ({i and j are disconnected cluster

members in Gstat(n, r(n))}). (21)

As to the first term in the right hand side of (21), it is

bounded by

nd0

(

1− π
(

kr(n)
)2
)nd

≥ nd0 · θ · 1

nd0
e−κ = θe−κ,

where 0 < θ < 1. To bound the second term, note that i, j ∈ Y

are at least

√

1
nd0

away, which will be larger than 2kr(n)

when n is sufficiently large. Thus, each term in the second

summation is bounded by

P ({i and j are disconnected}) ≤
(

1− 2π
(

kr(n)
)2
)nd

.

Therefore,

Pd stat(n, r(n)) ≥ θe−κ − n2d0e−2ndπ(kr(n))2

≥ θe−κ − e−2κ,

for all n > Nθ,κ.

The rest of steps are omitted and follows these in the earlier

proofs.
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Like Proposition 4.1, Proposition 6.1 provides the necessary

condition on r(n) in terms of both κ(n) and d0. The implica-

tion behind this is the same as explained in Remark 4.2. We

can have the following corollary.

Corollary 6.1: r(n) ≥ 1
k

√

d logn
πnd is necessary for the

connectivity of stationary k-hop clustered networks.

B. Sufficient condition on r(n) of Theorem 6.1

Heuristically, we can use the tessellation-based approach to

prove the sufficiency part of Theorem 6.1. However, it can also

be shown that we cannot develop a sufficient condition on r(n)
by directly applying the similar technique as in the previous

proofs. The problem is that when 1
k < d ≤ 1, we cannot bound

the probability that at least one cell has no cluster heads to

asymptotically approach zero, if the size of cell is roughly

smaller than π
(

kr(n)
)2

. On the other side, when the unit

square is tessellated such that the size of cell is roughly equal

to π
(

kr(n)
)2

, we are also unable to show that any clustered

head within the distance of kr(n) is reachable for a cluster

member. However, we can overcome this technical problem

by the trick of considering a distance that is reachable for a

cluster member and approaches kr(n) as well.

First, we divide the unit square into cells with side length√
2
2

r(n)
logn . Thus, there are log n cells along the transmission

range r(n). This tessellation is shown in Figure 9.

...

...

..
....

Fig. 9. There are logn cells along the transmission range r(n).

Then we evaluate the probability that at least one cell is

empty, and we have

P ({at least one cell is empty})

≤ 2

d
πk2nd logn

(

1− d

2 log nπk2nd

)n

≤ 2

d
πk2 log n

/

n
d

2πk2
n
1−d

log2 n
−d

→ 0, as n → ∞.

Consequently, we know that with high probability there is

at least one node in each cell. Then, with the transmission

range r(n), each hop can jump over at least (log n− 1) cells.

Thus, any cluster head within the distance of logn−1
logn kr(n) is

reachable in k hops with high probability. Now we have a

proper cell size to construct the main tessellation.

Next, we introduce the disk tessellation (with a minor abuse

of the term tessellation) of the unit torus, as depicted in

Figure 10. Let the radius of each disk R(n) be such that

R(n) = logn−1
logn kr(n). Then we evaluate the probability that

at least one disk does not have cluster heads, and we have

Fig. 10. Disk tessellation of the unit torus

P ({at least one disk does not have cluster heads})

≤ 2

(

1

2
(

logn−1
logn kr(n)

)

)2(

1− π
( log n− 1

log n
kr(n)

)2
)nd

≤ πnd log n

2d(log n− 1)2
exp{−

( log n− 1

log n

)2

ndπ
(

kr(n)
)2}

≤ π log n

2d(log n− 1)2
nd−d

(

log n−1
log n

)2

→ 0, as n → ∞.

Therefore, r(n) = 1
k

√

d logn
πnd is sufficient to guarantee the

connectivity of network.

VII. THE CRITICAL NUMBER OF NEIGHBORS FOR

CONNECTIVITY OF K-HOP CLUSTERED NETWORKS

In this section, we briefly have a parallel discussion on

connectivity under the number-of-neighbor-based connecting

strategy. We show the critical number of neighbors (CNoN)

in k-hop clustered networks for both stationary and mobile

cases, respectively.

A. The CNoN in stationary k-hop clustered networks

As we assumed before, n cluster members and nd cluster

heads are uniformly and independently placed in the unit

square network. We denote by Gstat(n, ϕn) the network

formed when each node is connected to its ϕn nearest neigh-

bors and we have the following result.

Theorem 7.1: For Gstat(n, ϕn) to be asymptotically con-

nected, Θ
(

n1−d log n
)

neighbors are necessary and sufficient.

Proof:

1) the necessity part: We consider a disk Di which is

centered at a node ni with radius r = 1
k

√

d logn
πnd . Hence, the

probability of the event that any other node falls into Di is

p = πr2 =
d logn

k2nd
,

Note that r is the critical transmission range for overall

connectivity of a stationary k-hop clustered network, which is

argued in Theorem 6.1. We then want to determine the number
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of nodes within Di, denoted by Ni, which would help us to

derive the lower bound of the number of neighbors for con-

nectivity. To evaluate this, we make use of Chernoff’s bounds

[30]: Let X be a binomially distributed random variable, and

m and p are the number of Bernoulli experiments and the

probability of each Bernoulli experiments to be successful,

respectively. The expectation of X is mp. Then, for any

0 < δ ≤ 1,

P
(

X < (1− δ)mp
)

< e−mp δ
2

2 (22)

and for any δ > 0,

P
(

X > (1 + δ)mp
)

< e−mpf(δ), (23)

where f(δ) = (1 + δ) log (1 + δ)− δ.

Using (22) with δ = 1
2 and m = n+ nd − 1, we have

P
(

Ni <
d

2k2
(

1 + n1−d − 1

nd

)

log n
)

< e−
d

8k2 (1+n1−d− 1

nd
) logn

Using the union bound, we obtain

P

[

Ni ≥
d

2k2
(

1 + n1−d − 1

nd

)

log n, ∀i
]

= 1− P

[

Ni <
d

2k2
(

1 + n1−d − 1

nd

)

log n, ∃i
]

≥ 1−
n+nd

∑

i=1

P
(

Ni <
d

2k2
(

1 + n1−d − 1

nd

)

log n
)

≥ 1−
(

n+ nd
)

e−
d

8k2 (1+n1−d− 1

nd
) log n

→ 1, as n → ∞. (24)

Thus, each disk is to have more than d
2k2 (1+n1−d− 1

nd ) log n
nodes with high probability. We then know that if ϕn <
d

2k2n
1−d log n, the equivalent transmission range req for all

node is no greater than 1
k

√

d logn
πnd with high probability.

Therefore, referring to the proof of the necessity part of

Theorem 6.1, the overall network is disconnected then. Hence

we have proved the necessity part of Theorem 7.1.

2) the sufficiency part: We still consider a disk Di with

radius r = 1
k

√

d logn
πnd . Then applying (23) with δ = 1 and

m = n+ nd − 1, we have

P
(

Ni >
2d

k2
(

1 + n1−d − 1

nd

)

logn
)

< e−
d

k2 f(1)(1+n1−d− 1

nd
) log n, f(1) = 2 log 2− 1 > 0.

In a similar manner as (24), it can be shown that

P

[

Ni ≤
2d

k2
(

1 + n1−d − 1

nd

)

log n, ∀i
]

≥ 1−
(

n+ nd
)

e−
d

k2 f(1)(1+n1−d− 1

nd
) logn

→ 1, as n → ∞.

Thus, each disk is to have less than 2d
k2 (1 + n1−d − 1

nd ) log n
nodes almost surely. With this result, we then know that if

ϕn > 2d
k2 (1 + n1−d − 1

nd ) log n, the equivalent transmission

range r′eq for all node is greater than 1
k

√

d logn
πnd with high

probability. As a result of the sufficiency part of Theorem 6.1,

the overall network is connected then. The final result then

follows.

B. The CNoN in mobile k-hop clustered networks

Let Gm(n, ϕn) be the mobile clustered network formed

when each node is connected to its ϕn nearest neighbors.

Applying similar procedure of the proof in stationary clus-

tered networks, we have the following results under mobile

networks.

Theorem 7.2: In k-hop clustered networks with i.i.d. mobil-

ity or random walk mobility, for Gm(n, ϕn) to be asymptot-

ically connected, Θ
(

n1−d log n
)

neighbors are necessary and

sufficient.

Proof: Under i.i.d. mobility model, we consider a disk

D′
i which is centered at a node ni with radius r =

√

logn
kπnd .

Hence the probability of the event that any other node falls

into D′
i is

p′i = 1− (1− πr2)k.

Using the equation

1− xk = (1− x)(1 + x+ x2 + ...+ xk−1)

we can have

p′i = πr2
(

1 + (1− πr2) + (1− πr2)2 + ...+ (1− πr2)k−1
)

> πr2 =
logn

knd

Let N ′
i be he number of nodes within D′

i. Then using the

existing approach, we can show that

P
(

N ′
i <

1

2k

(

1 + n1−d − 1

nd

)

log n
)

< P
(

N ′
i <

1

k

(

n+ nd − 1
)

p′i

)

< e−
1
8 (n+nd−1)p′

i < e−
1
8k (1+n1−d− 1

nd
) log n.

and hence

P

[

N ′
i ≥

1

2k

(

1 + n1−d − 1

nd

)

logn, ∀i
]

= 1− P

[

Ni <
1

2k

(

1 + n1−d − 1

nd

)

log n, ∃i
]

≥ 1−
n+nd

∑

i=1

P
(

Ni <
1

2k

(

1 + n1−d − 1

nd

)

log n
)

≥ 1−
(

n+ nd
)

e−
1
8k (1+n1−d− 1

nd
) log n

→ 1, as n → ∞.

Similarly, we also have

P

[

N ′
i ≤

2d

k2
(

1 + n1−d − 1

nd

)

log n, ∀i
]

→ 1, as n → ∞.

With the existing argument, we can conclude that

Θ
(

n1−d log n
)

neighbors are necessary and sufficient.

Under random walk mobility model, we consider the cov-

erage area D′′
i by a disc centered at a node ni with radius

r = logn
2kvnd as node ni moves within a given period. Then due

to mobility, the probability of the event that any other node

falls into D′′
i is

p′′ = 2rkv =
log n

nd
.

Using the same technique, the result follows.
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Network Type
Transmission

Range
(

r(n)
)

Number of
Neighbors

Transmission Power
(

Pt
)

vs. Delay (D) Trade-off

Average

Hops
(

H̄
)

Average Energy

Cons. per Flow
(

Ē
)

Cluster Head
Exponent (d)

Flat Network

√

logn
πn

Θ(logn) Pt = Θ
(

logn
n

)

(non-trade-off, to denote Pt ’s order)

Θ
(

√

n
logn

)

Θ

(√
logn
n1/2

)

——–

Stationary
1
k

√

d logn
πnd Pt = Θ

(

d
D2

logn
nd

)

Θ

(

logn
nd

)

0 < d < 1

I.I.D.
Mobility

√

logn
kπnd Θ

(

n1−d logn
)

Pt = Θ

(

1
D

logn
nd

)

Θ(1) Θ

(

logn
nd

)

1
k
< d ≤ 1

C
lu

st
er

ed
N

et
w

o
rk

Mobile
R.W.

Mobility
(Non-trivial)

logn
2kv⋆nd Pt = Θ

(

1
D2

(

logn
nd

)2
)

Θ

(

(

logn
nd

)2
)

0 < d ≤ 1

TABLE I
THE TRANSMISSION POWER VS. DELAY TRADE-OFF AND ENERGY CONSUMPTION IN k-HOP CLUSTERED NETWORKS

VIII. THE IMPACT OF MOBILITY ON CONNECTIVITY AND

NETWORK PERFORMANCE IN K-HOP CLUSTERED

NETWORKS

In this section, we use the results that we obtained from

the previous sections to study the impact of mobility on

connectivity and network performance. We first characterize

the power-delay trade-off and energy consumption per flow in

clustered networks, based on the critical transmission ranges

that we have obtained. We then summarize these results and

explore the insights and implications that they may provide

us.

We assume the free space propagation model4, and thus

Pr = PtGtGr

( λ

4πd

)2

,

where

Pt = transmission power of an isotropic source,

Gt = transmitting antenna gain,

Gr = receiving antenna gain,

d = propagation distance between antennas,

λ = carrier wavelength.

Let Gt, Gr and λ be constants. We then have

Pt =
1

GtGr

(4πd

λ

)2

Pr = cPrd
2, (25)

where c is a constant. To ensure sufficient signal strength for

receiving the packet, we require that Pr ≥ Pr th, where Pr th

is a threshold of the receiving power at the receiver. Replace

Pr with Pr th in (25) and replace the propagation distance d
by the transmission range r. We then have

Pt ∝ r2.

Consequently, let Ē denote the energy consumption per flow.

We have

Ē = H̄Pt ∝ H̄r2,

4Other propagation model (e.g., the two-ray model) can be studied in a
similar way.

where H̄ is the average number of hops per flow.

Pt and Ē are both of great engineering significance, while

they have different influence on a network. Pt is correlated

to the node-level operation and it has a dominating impact

on the total number of transmissions that a single node can

undertake in energy-constrained networks like wireless sensor

networks [27]. On the other hand, Ē is a flow-level description

of energy consumption and thus it provides a picture of the

life-time expectation both of each single node and of the entire

network.

Using the results in the critical transmission range r(n) from

the earlier sections, we can compute the order of Pt and Ē.

All the results for the case where v(m) = Θ(1) are reported

in Table I.

Before we discuss these results, we make a cautious note

regarding the energy consumption. Note that in these cal-

culations, we have ignored the energy consumption due to

mobility. Hence, these results should not be interpreted as a

reason to introduce mobility to an otherwise static network, but

rather represent an inherent advantage of having mobility in

the system. Similarly, the comparison with the flat network

is not entirely fair, since in a clustered network, a packet

only needs to reach a cluster head. Hence, our following

results should be viewed as an inherent advantage of clustered

network due to the availability of infrastructure support.

We now discuss the insights on the impact of mobility on

connectivity and network performance based on these results.

By the implication from [28], we know that when d < 1
2 ,

bottleneck of capacity may appear, and thus we assume d > 1
2

in our following discussion. Note that we do allow the speed

of nodes v(m) to scale with n and v(m) = ω
(
√

logn

nd′

)

(d′ <
d
2 ) = O(1). If 2d− d′ > 1, we can then demonstrate that the

speed v(m) is large enough to guarantee the improvement of

connectivity in mobile clustered networks. For simplicity, we

discuss the case where v(m) = Θ(1) which can bring the best

improvement of connectivity under our model.

• Pt{r.w.} = o(Pt{flat}) and Ē{r.w.} = o(Ē{flat}), which

means that random walk mobility with non-trivial veloc-

ity plus k-hop clustering can greatly decrease both the
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transmission power and the average energy consumption

per flow. Thus, random walk mobility with non-trivial

velocity plus k-hop clustering can increase the number

of transmission that a node can undertake and extend

the life-time both of each single node and of the entire

network.

• To identify the contribution of mobility and k-hop clus-

tering on the improvement of network performance, we

have

Ē{r.w.} =
log n

nd
Ē{stat};Pt{r.w.} =

log n

nd
Pt{stat},

and

Ē{stat} =

√
log n

nd−1/2
Ē{flat};Pt{stat} = n1−dPt{flat}.

Thus, combining the results of above equations and using

⇑ and ⇓ to denote the positive and negative impacts,

respectively, we provide the following formulations to

identify the effects of mobility and k-hop clustering on

network performance.

Ē{r.w.} =
log n

nd

⇑ due to
r.w. mobility
non-trivial

·
√
log n

nd−1/2

⇑ due to
k-hop

clustering

· Ē{flat};

Pt{r.w.} =
log n

nd

⇑ due to
r.w. mobility
non-trivial

· n1−d

⇓ due to
k-hop

clustering

· Pt{flat}.

• From the perspective of energy consumption per flow,

clustered networks have an inherent advantage in terms of

energy-efficiency due to the availability of infrastructure

support.

• Mobile k-hop clustered networks under the i.i.d mobil-

ity model and stationary clustered networks may have

comparable performance and this can be understood

intuitively since nodes under the i.i.d. mobility model

actually remain static during the time-slot.

In conclusion, random walk mobility with non-trivial

velocity increases connectivity in k-hop clustered networks,

and thus significantly improves the energy efficiency and

the power-delay trade-off of the network.

IX. CONCLUDING REMARKS

In this paper, we have studied the effects of mobility on

the critical transmission range for asymptotic connectivity

in k-hop clustered networks. Our results could be applied

to the large scale wireless sensor networks like [29],. Our

contributions are twofold. We have developed the critical trans-

mission range for the mobile k-hop clustered network under

the random walk mobility model with non-trivial velocities and

the i.i.d. mobility model, and for the stationary k-hop clustered

network, respectively. In addition, results of the critical number

of neighbors are consequently derived for both stationary and

mobile clustered networks. These formulations do not only

provide an asymptotic description of the critical power needed

to maintain the connectivity of the network, but also help to

identify the contribution of mobility in the improvement of

network performance. Thus, based on these results that we

have developed in this paper, our second contribution is to

present that random walk mobility with non-trivial velocity

increases connectivity in k-hop clustered networks, and thus

significantly improves the energy efficiency and the power-

delay trade-off of the network.

There are several interesting direction for future work.

First, we can improve our random walk mobility model to

make it more realistic and general. For example, in a “lazy”

random walk, cluster members might remain static with certain

probability. Note that this assumption is also reasonable since

in most circumstance, mobile terminals will not keep moving

all the time. Second, we plan to extend the results to account

for multi-hop transmissions. See the selected work in [31]

[32], which deal with both heterogeneous and homogeneous

settings. Third, the capacity of such network is also a non–

ignorable issue. Finally, in this paper we assume that the clus-

ter heads are stationary, even though the cluster members may

move. It would be interesting to study the case where cluster-

heads may move as well. Further, it is also interesting to study

k-hop connectivity in flat networks, where no difference exists

among all the nodes.
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Security Architecture for Ad Hoc Networks,” in Proc. IEEE INFOCOM
2004, vol. 4, pp. 2393-2403, Hong Kong, China, Mar 2004.

[18] M. Chatterjee, S.K. Das and D. Turgut, “WCA: A Weighted Clustering

Algorithm for Mobile Ad hoc networks,” Cluster Computing, vol. 5, no.
2, pp. 193-204, April 2002.

[19] U. Kozat and L. Tassiulas, “Throughput capacity of random ad hoc

networks with infrastructure support,” in Proc. ACM MobiCom 2003,
Annapolis, MD, USA, June 2003.

[20] M. Grossglauser and D. Tse, “Mobility Increases the Capacity of Ad

Hoc Wireless Networks,” IEEE/ACM Transactions on Networking, vol.
10, no. 4, pp. 477-486, August 2002.
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