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Abstract—An important phase of sensor networks operation is deployment of sensors in the field of interest. Critical goals during

sensor networks deployment include coverage, connectivity, load balancing, etc. A class of work has recently appeared, where mobility

in sensors is leveraged to meet deployment objectives. In this paper, we study deployment of sensor networks using mobile sensors.

The distinguishing feature of our work is that the sensors in our model have limited mobilities. More specifically, the mobility in the

sensors we consider is restricted to a flip, where the distance of the flip is bounded. We call such sensors as flip-based sensors. Given

an initial deployment of flip-based sensors in a field, our problem is to determine a movement plan for the sensors in order to maximize

the sensor network coverage and minimize the number of flips. We propose a minimum-cost maximum-flow-based solution to this

problem. We prove that our solution optimizes both the coverage and the number of flips. We also study the sensitivity of coverage and

the number of flips to flip distance under different initial deployment distributions of sensors. We observe that increased flip distance

achieves better coverage and reduces the number of flips required per unit increase in coverage. However, such improvements are

constrained by initial deployment distributions of sensors due to the limitations on sensor mobility.

Index Terms—Sensor networks deployment, limited mobility, flip-based sensors.

Ç

1 INTRODUCTION

SENSOR networks deployment in an important phase of
sensor networks operation. A host of works has

appeared in this realm in the recent past [1], [2], [3], [4],
[5], [6], [7], [8], [9]. One of the important goals of sensor
networks deployment is to ensure that the sensors meet
critical network objectives that may include coverage,
connectivity, load balancing, etc. When a number of sensors
are to be deployed, it is not practical to manually position
sensors in desired locations. In many situations, the sensors
are deployed from a remote site (like from an airplane) that
makes it very hard to control deployment.

To address this issue, a class of work has recently
appeared where mobility of sensors is taken advantage of to
achieve desired deployment [1], [2], [4], [7]. Typically, in
such works, the sensors detect lack of desired deployment
objectives. The sensors then estimate new locations and
move to the resulting locations. While the above works are
quite novel in their approaches, the mobility of the sensors
in their models is unlimited. Specifically, if a sensor chooses
to move to a desired location, it can do so without any
limitation in the movement distance.

In practice, however, it is quite likely that the mobility of
sensors is limited. Toward this extent, a class of Intelligent

Mobile Land Mine Units (IMLM) [10] to be deployed across
battlefields have been developed by DARPA. The IMLM
units are expected to detect breaches and move to repair
them. The mobility of the IMLM units is limited. Briefly, the
mobility system in [10] is based on a hopping mechanism
that is actuated by a single-cylinder combustion process.
Each IMLM unit in the field carries onboard fuel tanks and
a spark initiation/propeller system. For each hop, the fuel is
metered into the combustion chamber and ignited to propel
the IMLM unit into the air. The hop distance is limited
depending on the amount of fuel and the propeller
dynamics. The units include a righting and steering system
for orientation during hops. Other technologies can also
assist in such mobilities, like sensors enabled with spring
actuation, external agents launching sensors after being
deployed in the field, etc. Such a model typically trades off
mobility for energy consumption and cost. In many
applications, the latter goals outweigh the necessity for
advanced mobilities, making such mobility models quite
practical in the future.

In this paper, we study sensor networks deployment
using sensors with limited mobilities. In our model, sensors
can flip (or hop) only once to a new location and the flip
distance is bounded. We call such sensors flip-based sensors.
A certain number of flip-based sensors are initially
deployed in the sensor network that is clustered into
multiple regions. The initial deployment may not cover all
regions in the network. Regions that do have any sensor in
them are holes. In this framework, our problem is to
determine an optimal movement (or flip) plan for the
sensors in order to maximize the number of regions that is
covered by at least one sensor (or minimize the number of
holes) and simultaneously minimize the total number of
sensor movements (or flips).

We propose a minimum-cost maximum-flow-based
solution to our deployment problem. Our approach is to
translate the sensor network at initial deployment and
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sensor mobility model into a graph (called virtual graph).
Regions in the sensor network are modeled as vertices and
possible sensor movement paths between regions are
modeled as edges between corresponding vertices in the
virtual graph. Capacities for the edges model the number of
sensors that can flip between regions. A cost value is also
assigned to the edges to capture the number of flips
between regions. Since the virtual graph models the sensor
network, our problem of optimally moving sensors to holes
can be translated as one where we want to optimally
determine flows to hole vertices in the virtual graph. The
first objective of our problem, namely, determining a
movement plan to maximize coverage, can be translated
as determining the flow plan (a set of flows in the virtual
graph) that corresponds to the maximum flow to hole
vertices in the virtual graph without violating edge
capacities. Note that there can be more than one flow plan
that can maximize the flow in the virtual graph. Out of such
flow plans, our second objective is to determine the plan
that minimizes the overall cost, which corresponds to the
minimizing the number of sensor flips. Intuitively, each
flow in the flow plan (in the virtual graph) denotes a path
for a sensor movement to a hole in the sensor network. As
we discuss later, the maximum flow value in the virtual
graph denotes the maximum number of holes into which a
sensor can move without violating the mobility constraints,
while the minimum cost denotes the corresponding mini-
mum number of sensor movements (or flips).1

In our solution, we translate the flow plan corresponding
to the minimum cost maximum flow in the virtual graph
into a movement plan for the sensors in the region. We
subsequently prove the optimality of this movement plan.
We also propose multiple approaches that sensors can
adopt to execute our solution in practice. We then perform
simulations to study the sensitivity of coverage and the
number of flips to flip distance under different initial
deployment distributions of sensors. We observe that
increased flip distance achieves better coverage and reduces
the number of flips required per unit increase in coverage.
However, such improvements are constrained by initial
deployment distributions of sensors due to the limitations
on sensor mobility.

The rest of our work is organized as follows: We present
important related work in Section 2. In Section 3, we
formally define our flip-based mobility model and our
deployment problem. We then present our solution, its
properties, and alternate approaches to execute our solution
in Section 4. In Section 5, we present results of our
performance evaluations. We present some discussions in
Section 6 and conclude our paper with some final remarks
in Section 7.

2 RELATED WORK

Sensor network deployment is a topic that has received
significant attention in the recent past [1], [2], [3], [4], [5], [6],
[7], [8], [11], [12], [9] [13]. In this section, we focus on works
related to mobility assisted sensor networks deployment
[1], [2], [4], [7]. The key objective in [1], [4], [7] is to detect

holes in the network and cover them with at least one
sensor. In the approach proposed by Wang et al. in [4] the
detection of holes is based on constructing Voronoi
diagrams. Each sensor constructs its own Voronoi polygon,
which enables sensors to detect holes. The authors then
propose three algorithms, namely, Vector-based algorithm,
Voronoi-based algorithm, and Minimax algorithm to max-
imize coverage. In their algorithms, sensors move over a
series of iterations to balance virtual forces between
themselves. They stop moving when global force balance
is achieved, which corresponds to attainment of desired
deployment. In [1], Howard et al. propose the idea of
constructing potential fields to maximize coverage. The
fields are constructed such that each node is repelled by
both obstacles and by other nodes, thereby forcing the
sensors to spread throughout the environment. In Zou and
Chakrabarty’s work in [7], all sensors in the network
forward their location to a centralized node. The centralized
node determines the final positions of sensors as those
positions that balance the virtual forces in the network.

In all the above works [1], [4], [7], sensors move
depending on virtual forces exerted by them. In the
principle of virtual forces, sensors attract each other if they
are far apart and repel each other if they are too close. In
this approach, sensors keep moving over several iterations.
In each iteration, a degree of force balance is achieved by
the sensors. After many such iterations, sensors achieve
global force balance among themselves, which in turn
corresponds to attainment of desired deployment objec-
tives. The virtual force approach cannot work for our
problem for two reasons. Sensors in our model are capable
of only a flip. The lack of continuous motion implies that,
even between two sensors, force balance may not be
achieved if they flip toward or apart from each other.
Second, the virtual force approach requires a series of
iterations (a series of sensor movements) to achieve global
force balance in the network. When constrained by
mobility, the virtual force approach has limited application.

Another relatedwork isWu and Yang’s work in [2]. In [2],
the sensor network is divided into clusters. The objective is to
ensure that the number of sensors per cluster is uniform. The
algorithmsdesigned efficiently scan the clusters in two stages
(row-wise and column-wise) sequentially and determine
new sensor locations (or clusters) in each stage. Sensorsmove
in each stage to new clusters to achieve uniform deployment.
Intuitively, this approach has some applicability to our
problem. Sensors can exchange information row-wise (along
all rows) and then flip between regions in their row first. A
column-wise information exchange and flip can follow next.
Clearly, coverage is improved here compared to initial
deployment.However, the final deployment in the two-stage
approach will be far from optimal in terms of both coverage
and sensor flips. Optimizing coverage sequentially in row-
wise and column-wise directions results in nonoptimal flips
that will compromise optimality of final coverage. Due to the
two-stage flip sequence for sensors (row-wise and column-
wise), more than necessary flips can be introduced.

To summarize here, our objectives in this paper (max-
imizing coverage andminimizing sensormovements) shares
similarities with the above works [1], [2], [4], [7]. The major
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1. The translation will become clearer once we discuss exactly how
capacities and costs are assigned in the virtual graph in Section 4.2.



reasonwhy theaboveapproachesdonotwork inourproblem
is due to limitations on sensor mobility. In the above works,
sensorsmove based on localmeasurements and communica-
tions. Erroneous movements made by the sensors are
eventually corrected over time since the sensor movement
distance is unlimited. In our problem, sensor movement
distance itself is a hard constraint. This means that we are
fundamentally constrained by the movement choices avail-
able to us (compared to unlimited mobility) during deploy-
ment. The consequence is the increased importance that each
sensor flip needs to be accorded. Sensors therefore cannot just
make local decisions and flip. We need to determine a
movement plan for the sensors prior to their flip, which is the
output of our solution in this paper.

3 MOBILITY MODEL AND PROBLEM DEFINITION

3.1 The Flip-Based Sensor Mobility Model

In this paper, we model sensor mobilities as a flip. That is,
the motion of the sensor is in the form of a flip (or hop) from
its current location to a new one when triggered by an
appropriate signal. Such a movement can be realized in
practice by propellers powered by fuels [10], coiled springs
unwinding during flips, external agents launching sensors
after being deployed in the field, etc. In our model, sensors
can flip only once to a new location. This could be due to
propeller dynamics or the spring being unable to recoil after
a flip or the external agent launching the sensor. The
distance to which a sensor can flip is limited. The sensor can
flip in a desired angle. Mechanisms in [10] can be used for
orientation during flips. The limitation in sensor mobility
comes from the bound on the maximum distance they can
move, which again depends on available fuel quantity,
degree of spring coil, etc. We study two models of flip-
based mobility. The first is a fixed distance mobility model,
while the second is a variable distance mobility model.

We denote the maximum distance a sensor can flip to as
F . In the first model, the distance to which a sensor can flip
is fixed and is equal to F . We extend the above model
further. Although the number of flips is still one, in many
cases, depending on the triggering signals, fuel can be
metered variably or the spring can unwind only partially or
the external agent can variably adjust the flip distance
during launching. In the second model, sensors can flip to
distances between 0 and F . We denote d as the basic unit of
distance flipped. We assume that F is an integral multiple
of the basic unit d. Thus, in the second model, sensors can
flip once to distances d, 2d, 3d, . . .nd from its current
location, where nd ¼ F . To differentiate the above two
models, we introduce the notation C to denote choice for flip
distance. C ¼ 1 denotes the first model, where the sensor
has only one fixed choice for flip distance (the maximum
distance F ). C ¼ n denotes the second model, where the
sensor has n choices for the flip distance (between d and
maximum distance F ). For the rest of the paper, unless
otherwise clearly specified, the term flip distance denotes
the maximum flip distance F .

3.2 Problem Definition

The sensor network we study is a square field. It is divided
into two-dimensional regions, where each region is a square

of size R. A certain number of flip-based sensors are
deployed initially in the network. The initial deployment
may have holes that are not covered by any sensor. In this
context, our problem statement is: Given a sensor network
of size D, a desired region size R, an initial deployment of
N flip-based sensors that can flip once to a maximum
distance F , our goal is to determine an optimal movement
plan for the sensors in order to maximize the number of
regions that is covered by at least one sensor, while
simultaneously minimizing the total number of flips
required. The input to our problem is the initial deployment
(number of sensors per region) in the sensor network and
the mobility model of sensors. The output is the detailed
movement plan of the sensors across the regions (which
sensors should move and where) that can achieve our
desired objectives.

The region sizeR is contingenton theapplication, basedon

the sensing/transmission ranges of sensors and application

demands. We assume thatminfSsen
ffiffi

2
p ; Str

ffiffi

5
p g � R, where Ssen and

Str are sensing and transmission ranges of the sensors,

respectively. This guarantees that if a sensor is present in a

region, every point in the region is covered by the sensor and

the sensor can communicate with sensors in each of its four

adjacent regions. In this paper, we first assume that the

desired region sizeR is an integralmultiple of thebasicunit of

flip distance, i.e.,R ¼ m � d, wherem is an integer (� 1). We

discuss the general case of R subsequently in Section 6. We

assume that each sensor knows its position. To do so, sensors

can be provisioned with GPS devices, or approaches in [14]

can be applied, where sensors are localized using sensors

themselves as landmarks. In our model, the regions to which

a sensor can flip are those in its left, right, top, and bottom

directions. However, those regions need not be just the

adjacent neighbors. They depend on the flip distanceF . After

discussing the above case, the general case, where a sensor

can flip to regions in any arbitrary direction is discussed

subsequently in Section 6. The base-station can reside

anywhere as long as it is able to communicate with the

sensors.

3.3 An Example

We illustrate our problem further with an example. Fig. 1a
shows an instance of initial deployment in the sensor
network. The shaded circles denote sensors and the
numbers denote the id of the corresponding region in the
network. The neighbors of any region are its immediate left,
right, top, and bottom regions. For instance, in Fig. 1, the
neighbors of region 6 are regions 2, 5, 7, and 10. In Fig. 1a,
after the initial deployment, regions 1, 6, 11, 12, and 16 are
not covered by any sensor and are thus holes. Optimally
covering such holes is the problem we address in this paper.

The above problem is not easy to solve. For instance,
consider Fig. 1a. For ease of elucidation, let the desired region
sizeR ¼ d. Let the flipdistanceF ¼ d. One intuitive approach
toward maximizing coverage is to let sensors from source
regions (more than one sensor) to flip to hole regions (no
sensors) in their neighborhood, using local information
around them. In Fig. 1a, region 7 has three sensors in it, while
region 11, a neighbor of 7, is empty. Similarly, region 8 has a
sensor, while its neighbor, region 12, is empty. If we allow
neighbors to obtain local neighbor information, then, intui-
tively, a sensor from region 7 will attempt to cover regions 11
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and 16. This intuition is because region 7 (with extra sensors)
is nearest to holes 11 and 16. Similarly, region 4 will try to
cover region 12. The resulting sequence of flips and the
corresponding deployment are shown in Figs. 1a and 1b,
respectively.

With this movement plan, region 16 is still uncovered, as
shown in Fig. 1b. This is because, while region 7 has extra
sensors, there are nomobile sensors in regions 11 and 12 (that
can flip further). Also, region 15 cannot provide a sensor
without making itself (or some other region) a hole. This
means that all paths to region 16 are blocked in this movement
plan, preventing region 16 from being covered. However,
there exists an optimal plan that can cover all regions in this
case, as shown in Fig. 2. For optimal deployment, the path of
movements to cover region 16 incurs a chain of flips starting
from region 5 toward region 16. In fact, for optimal coverage,
this plan also requires theminimumnumber of flips (10 flips).
Thekey challengeswehave to overcome to solve ourproblem
are 1) the trade-offs in simultaneously attempting to optimize
both coverage and number of flips and 2) the constraints
arising from limitedmobility, due towhicha sensor froma far
away region may need to flip toward a far away hole and a
chain of flips may need to progressively occur toward the
particular hole for covering it. Determining such amovement
plan for optimizing both coverage and number of flips is not
trivial.

4 OUR SOLUTION

4.1 Design Rationale

In this paper, we propose a solution where information on
the number of sensors per region for all regions is collected
by the base-station and an optimal movement plan for the
sensors is determined and forwarded to the sensors. We
propose a minimum-cost maximum-flow-based solution
that is executed by the base-station using the region
information to determine the movement plan. The base-
station will then forward the movement plan (which
sensors should move and where) to corresponding sensors
in the network.

Each sensor in the network will first determine its
position and the region it resides in. Sensors then forward
their location information to the base-station.2 The packets
are forwarded toward the base-station through other

neighboring regions closer to the base-station. To do so,
protocols like [15], [16], [17] can be used, where the
protocols route packets toward sinks in the network (the
base-station in our case) using shortest paths. Another
solution that does not require a centralized node is to let
individual sensors collect region information and execute
our solution independently to determine the movement
plan. We discuss the latter solution in Section 4.5.

We now discuss how to translate our problem into a
minimum-cost maximum-flow problem. Let us denote
regions with at least two sensors as sources. Source Regions
canprovide sensors (like region5 inFig. 1a) or they canbeona
pathbetweenanother sourceandahole.Letusdenote regions
with only one sensor as forwarders. Forwarder regions cannot
provide sensors (otherwise, they become holes themselves),
but they can be on a path between a source and a hole (like
regions 9, 13, 14, and 15 in Fig. 1a). Let us denote regions
without any sensor as holes. Obviously, holes can only accept
sensors (regions 1, 6, 11, 12, and 16). The first objective of our
problem is to maximize the number of holes that eventually
have a sensor in them. Since there canbemultiple sources and
multiple forwarders, in the event of maximizing the number
of holes that eventually contain a sensor, there can be many
possible sequences of sensor movements. Out of such
possible sequences, our second objective is to find the
sequence that minimizes the number of sensor movements.

If we identify regions (sources, forwarders, and holes)
using vertices and incorporate path relationships in the
sensor network as edges (with appropriate constrained
capacities) between the vertices, then, from a graph-
theoretic perspective, our problem is a version of the
multicommodity maximum flow problem, where the
problem is to maximize flows from multiple sources to
multiple sinks in a graph, while ensuring that the capacity
constraints on the edges in the graph are not violated. While
obtaining the optimal plan to maximize coverage, we also
want to minimize the number of flips. That is, if we
associate a cost with each flip, we wish to minimize the
overall cost of flips while still maximizing coverage. This
problem is then a version of the minimum-cost multi-
commodity maximum-flow problem, where the objective is
to find paths that minimize the overall cost while still
maximizing the flow. Our solution is to model the sensor
network as an appropriate graph structure (called virtual
graph) following the objectives discussed above, determine
the minimum cost maximum flow plan in the virtual graph.

202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

Fig. 1. (a) A snapshot of the sensor network and a movement plan to

maximize coverage and (b) the resulting deployment.

Fig. 2. (a) A snapshot of the sensor network and the optimal movement

plan and (b) the resulting deployment.

2. Alternatively, a region-head can be elected in each region to collect
and forward information on the number of sensors in their region.



Each flow in the flow plan (in the virtual graph) denotes a
path for a sensor movement from a source to a hole in the
sensor network. As we discuss later, the maximum flow
value in the virtual graph denotes the maximum number of
holes into which a sensor can move without violating the
mobility constraints, while the minimum cost denotes the
corresponding minimum number of sensor movements (or
flips). We then translate the flow plan as flip sequences in
the sensor network. For the rest of the paper, if the context
is clear, we will call our solution as minimum-cost
maximum-flow solution.

4.2 Constructing the Virtual Graph from the Initial
Deployment

We now discuss the construction of the virtual graph in
detail. The inputs are the initial deployment (with
N sensors), the granularity of desired coverage (region
size R), flip distance ðF Þ, and the number of sensors per
region i ðniÞ. We denote the number of regions in the
network as Q. Let GSðVS; ESÞ be an undirected graph
representing the sensor network. Each vertex 2 VS

represents one region in the sensor network and each
edge 2 ES represents the path relationship between
regions. GS purely represents the initial network structure
(and does not reflect whether regions are sources,
forwarders, or holes) and as such is undirected. The
virtual graph (denoted by GV ðVV ; EV Þ) is constructed
from GS .

The key task in constructing the virtual graph ðGV Þ is to
first determine its vertices (the set VV ) commensurate with
the status of each region as a source, forwarder, or hole.
Then, we have to establish the edges (the set EV ), directions,
capacities, and costs in GV between the vertices. For any
region i in the sensor network, we denote its reachable
regions as those to which a sensor from region i can flip to.
Obviously, the reachable regions depend on the flip
distance F . In GV , edges are added between such reachable
regions. The directions of edges between vertices are based
on whether the corresponding regions are sources, for-
warders, or holes in the sensor network. The capacities of
the edges depend on the number of sensors in the regions,
while the cost is used to quantify the number of sensor flips
between regions in the sensor network. We denote Cðp; qÞ as
the capacity and Costðp; qÞ as the cost of the edge between
vertices p and q in GV , respectively. The final objective is to
ensure that the minimum-cost maximum-flow plan in GV

can be translated into an optimal movement (flip) plan for
sensors in the network. In the following, we first discuss
how to construct the virtual graph for a simple, yet
representative basic case. We then discuss how to construct
the virtual graph for general case.

4.2.1 Constructing the Virtual Graph for the Case R ¼ d

In this case, the region size R is equal to the basic unit of flip
distance d. To explain the virtual graph construction
process clearly, we first describe it for the case where the
flip distance F ¼ d, and C ¼ 1. That is, the flip distance is
the basic unit d and the sensor has only one choice for flip
distance. We discuss the case where F > d and C ¼ 1, and
F > d and C ¼ n (multiple choices) subsequently. The case
where R > d is discussed in Section 4.2.2.

Construction when F ¼ d and C ¼ 1. In the virtual

graph, each region (of size R) is represented by three
vertices. For each region i, we create a vertex for it in GV

called base vertex, denoted as vbi . The base vertex vbi of
region i keeps track of the number of sensors that are in

region i. For each region, we need to keep track of the
number of sensors from other regions that have flipped to it

and the number of sensors that have flipped from this
region to other regions. The former task is accomplished by

creating an in vertex and the latter is accomplished by
creating an out vertex for each region. For each vertex i, its

in vertex in the virtual graph is denoted as vini and its out
vertex is denoted as vouti .

Having established the vertices, we now discuss how
edges (and their capacities) are addedbetweenvertices inGV .

Recall that each region that has � 2 sensors is considered a
source and each region that has � 1 sensor is considered a

forwarder.Weare interested inhowtooptimallypush sensors
from such regions. For such regions, an edge is added from

the corresponding vbi to vini with capacity ni � 1. The
interpretation of this is that, when attempting to determine

the flow from the base vertex ðvbiÞ, at least one sensor will
remain in the corresponding region i. Then, an edge with

capacityni is added fromthe same vini tovouti . This ensures that
it is possible for up to ni sensors in this region to flip from it.

Recall the example in Fig. 1a. Region 2 is a source. The GV

construction corresponding to this region is shown in Fig. 3,

where there is an edgewith capacityn2 � 1 ¼ 1 fromvertex vb
2

to vin
2

and an edge of capacity ni ¼ 2 from vin
2

to vout
2

. Other

source and forwarder regions are treated similarly in GV .
Each region that has zero sensors is considered a hole.

We are interested in how to optimally absorb sensors in such

regions. For holes, an edge is added from the corresponding
vini to base vertex vbi with edge capacity equal to 1. This is to

allow a maximum of one sensor into the base vertex vbi of
hole region i. If a sensor flips to this hole, the hole is then

covered and no other sensor needs to flip to this region.
Then, an edge with capacity 0 is added from the same vini to

vouti . This is because a sensor that moves into a hole will be
not able to flip further.3 Recall again, from the example in

Fig. 1a, that region 1 is a hole. In Fig. 3, there is an edge with
capacity 1 from vertex vin

1
vertex to vb

1
and an edge of

capacity 0 from vini to the vout
1

. Other holes are treated
similarly in GV . We now have
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Fig. 3. The virtual graph with only regions 1 and 2 in it.

3. In practice, an edge with capacity 0 need not be specifically added. We
do so to retain the symmetricity in the virtual graph construction.



8vini and vouti 2 VV ; Cðvini ; vouti Þ ¼ ni; ð1Þ
8vbi and vini 2 VV jni > 0; Cðvbi ; vini Þ ¼ ni � 1; ð2Þ
8vini and vbi 2 VV jni ¼ 0; Cðvini ; vbiÞ ¼ 1: ð3Þ

The final step is to incorporate the reachable relationship
that holds in the original deployment field into the virtual
graph. Recall that, for any region i in the sensor network, its
reachable regions are those regions to which a sensor from
region i can flip to, which is determined by the flip distance
ðF Þ. We have to incorporate this in the virtual graph. To do
so, an edge of infinite capacity (denoted by inf) is added
from vouti to vinj and another edge of infinite capacity is
added from voutj to vini if regions i and j are reachable from
each other. This is to allow any number of flips between
reachable regions if there are sensors in them. In Fig. 3,
regions 1 and 2 are reachable from each other since R ¼ d

and F ¼ d. Thus, edges with infinite capacity are added
from the vout

1
to vin

2
and from vout

2
to vin

1
. Formally, for all

regions i and j that are reachable from each other in the
sensor network, we have

Cðvouti ; vinj Þ ¼ Cðvoutj ; vini Þ ¼ inf: ð4Þ

Having discussed the capacity among edges, we now
incorporate costs for each flow in GV . If a flip occurs from
some region i to some region j in the sensor network, we
consider that a cost of one has incurred. From (4), we can
see that the flips between reachable regions (say i and j) in
the sensor network is translated in GV by an edge from vouti

to vinj and from voutj to vini . In order to capture the number of
flips between these regions, we add a cost value to these
corresponding edges in GV with cost value equal to 1. Let us
denote Costði; jÞ as the cost for a flip between vertices i and
j. Formally, for all regions i and j that are reachable from
each other in the sensor network, we thus have

Costðvouti ; vinj Þ ¼ Costðvoutj ; vini Þ ¼ 1: ð5Þ

The Cost for other edges in GV is 0. This is because, from
the view of the sensor network, the edges, apart from those
between out and in vertices across regions, are internal to a
region. They cannot be counted toward sensor flips (which
only occurs across regions). Instances of such edges are
those from vin

1
to vb

1
, from vin

1
to vout

1
in Fig. 3. An instance of

original deployment and the corresponding virtual graph at
the start are shown in Figs. 4a and 4b, respectively. In
Fig. 4a, the numbers denote the id of the corresponding
region. We do not show the Cost values in the virtual graph
in Fig. 4b.

Construction when F > d and C ¼ 1. In the above, we
discussed GV construction for the case where R ¼ d, F ¼ d,
and C ¼ 1. When F > d and C ¼ 1, only the reachability
relationship changes. Specifically, immediate neighboring
regions are not reachable anymore from each other like in
the case where F ¼ d. When F > d, regions beyond
immediate neighboring regions become reachable (depend-
ing on F ). In GV , edges of infinite capacity are added from
vouti to vinj and from voutj to vini if regions i and j are reachable
from each other. For example, if F ¼ 2d and C ¼ 1 in Fig. 4,
the reachable regions for region 1 are regions 3 and 9 only.
Thus, edges are created from vout

1
to vin

3
and vin

9
and from vout

3

and vout
9

to vin
1
. Other edges in GV are modified similarly.

The edge capacities ðCði; jÞÞ and costs ðCostði; jÞÞ can be
obtained following from discussions in Section 4.2.1.

Construction when F > d and C ¼ n. In this case again,
only the reachability relationship changes. Recall that if F >

d and C ¼ n, the distance of flip can be d, 2d, 3d, . . .nd,
where F ¼ nd. For example, if F ¼ 2d and C ¼ 2 in Fig. 4,
then the reachable regions of region 1 are regions 2, 3, 5, and
9. Thus, apart from existing edges, edges are also added
from vout

1
to vin

3
and vin

9
and from vout

3
and vout

9
to vin

1
. Other

edges, capacities, and costs are modified similarly.

4.2.2 Constructing the Virtual Graph for the Case R > d

In this case, the region size R > d. We first describe the
virtual graph construction for when the R is an integral
multiple of d, i.e., R ¼ x� d, where x is an integer (� 1),4

F ¼ d, and C ¼ 1. For instance, if x ¼ 2, then the
requirement is to maximize number of regions (of
size 2d) with at least one sensor. Note that if R ¼ x� d,
then there are x2 subregions in each region. This is shown
in Fig. 5a, where the region ðR ¼ 2dÞ is the area contained
within dark borders. We denote each area within the
shaded lines as subregions. Each subregion has a size d.
The id of the regions is the number in bold at the center
of the region. For ease of understanding, we keep the id
of the subregions in Fig. 5. To explain construction
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Fig. 4. (a) The initial sensor network deployment and (b) the

corresponding virtual graph at the start in Case R ¼ d.

4. We discuss the general case of R in Section 6.



process better, we say that a region i represents its
subregions. In Fig. 5, region 1 is a representative of
subregions 1, 2, 5, and 6.

In the virtual graph, each region (of size R), whose id is i,
has a vertex vbi . For each region, we are interested in how
many sensors from other subregions have flipped to it.
Despite covering multiple subregions, we are interested in
coverage of the region in itself (and not the subregions).
Thus, we still need only one in vertex (vini ) for each region.
However, each region has multiple subregions and sensors
in them can be pushed out. Thus, the number of out vertices
per region is equal to the number of subregions as shown in
Fig. 5b. Note that sensors do not need to make internal flips
to other subregions within a region as there is no
improvement in region coverage. Hence, there are no edges
created for internal flips within a region.

We now discuss how edges are added between vertices in

GV . Each region i that has � 1 (or ¼ 1) sensors is a source

region (or a forwarder region) andan edge is added from vbi to

vini with edge capacity equal
Px2

j¼1
nj � 1 in the virtual graph,

where x2 is the number of subregions in each region and nj is

the number of sensors in subregion j. For example, in Fig. 5,

region 1 is a source and there is an edge with capacity
P

4

j¼1
nj � 1 ¼ 3 from vertex vb

1
to vin

1
. This ensures that, when

determining the flow from this region, at least one sensor

remains. Then, edgeswith capacity nk are added from this vini
to each voutki , as shown in Fig. 5, where voutki is the out vertex

corresponding to subregion k in region i. For each hole j, we

add an edge with capacity 1 from the vinj vertex to vbj, an edge

of 0 capacity from vinj to each voutkj in the virtual graph. Finally,

to incorporate the reachability relationship between regions,

an edge of infinite capacity is added from voutmi to vinj and an

edge of infinite capacity is added from v
outp
j to vini if regions i

and j are reachable from each other and subregion m is

reachable from region j and subregion p is reachable from

region i as shown in Fig. 5. The cost that captures number of

flips between regions is 1 between the corresponding edges

above. Other edges that are between regions also have cost

value 1. For each region i, the edges from vbi to v
in
i and from vini

to voutki (for all k) do not count toward sensor flips and have

0 cost (similar to thepreceding case).We canobtain equations

for capacities and costs following from discussions in

Section 4.2.1 in the preceding case. An instance of original

deployment and the corresponding virtual graph at the start

are shown inFigs. 5a and5b, respectively.Wedonot showthe

cost values in the virtual graph in Fig. 5b.
The extensions to construct GV when F > d and C ¼ 1

and when F > d and C ¼ n for the case where R > d are
similar to those proposed for F > d and C ¼ n, and F > d

and C ¼ 1, respectively, for the case where R ¼ d. Due to
space limitations, we do not describe the construction for
these cases.

4.3 Determining the Optimal Movement Plan from
the Virtual Graph

Recall that the base vertex ðvbiÞ keeps track of the number of
sensors in region i in GV . Also, the edges going into the
base vertices of holes have capacity one to allow a
maximum of one sensor into the holes. Consequently, our
problem can be translated as determining flows from the
base vertices of source regions to as many base vertices of
holes as possible in GV , with minimum overall cost. Let us
now discuss why this is true. From the construction rules of
GV , we can see that, for each feasible sensor movement
sequence in the sensor network between a source region
and a hole, there is a feasible path for a flow in GV between
base vertices of the corresponding regions and vice versa.
For example, consider a feasible sensor movement sequence
from a source region (say i) to a hole (say j) through
forwarder regions k; l; . . . ;m and n. We denote the path as a
tuple of the form < i; k; l; . . . ;m; n; j > . The feasibility of
this path means that each of regions i; k; l; . . . ;m; n have at
least one sensor in them and region i has at least two
sensors. From the construction of GV , the capacities
Cðvbi ; vini Þ; Cðvini ; vouti Þ; Cðvouti ; vink Þ; Cðvink ; voutk Þ; Cðvoutk ; vinl Þ;
. . . ; Cðvoutm ; vinn Þ; Cðvinn ; voutn Þ; Cðvoutn ; vinj Þ, and Cðvinj ; vbjÞ are all
� 1 (where Cði; jÞ was defined in Section 4.2.1). Thus, a
flow from vbi to vbj is feasible in GV .

5 The cost of this flow is
the summation of the cost of all edges in the path. Recall
that the cost of edges from out to in of reachable regions is
one and all other edges costs are zero. Consequently, the
cost of the above flow in GV is the number of times a flow
occurs between out and in vertices of successive reachable
regions in the path. Clearly, this is the number of regions
traversed in the sensor network (i.e., the number of flips).
At this point, it is clear that if we can determine a flow plan
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Fig. 5. (a) The initial sensor network deployment and (b) the

corresponding virtual graph at the start in Case R > d.

5. A similar argument can show that, for every feasible flow in GV , a
corresponding sensor movement sequence is feasible in the sensor network.



(the actual flow among the edges) in GV that can maximize
the flow from the base vertices of source regions to as many
base vertices of holes with minimum overall cost, we can
translate the flow plan as a movement plan for sensors
(across the regions) in the sensor network that maximizes
coverage and minimizes the number of sensor flips.

Determining the minimum cost maximum flow plan in a
graph is a two step process. First, the maximum flow value
from sources to sinks in the graph is determined (for which
there are many existing algorithms). Second, the minimum
cost flow plan (for this maximum flow) in the graph is
determined (for which there are also many existing
algorithms). In our implementations, we first determine
the maximum flow value in GV from all base vertices of
source regions to base vertices of hole regions using the
Edmonds-Karp algorithm [18]. We then determine the
minimum cost flow plan (for the above maximum flow)
in GV using the method in [19], which is an implementation
of the algorithm in [20]. For more details on the algorithms,
readers can refer to [18], [19], and [20]. The corresponding
flow plan is a set of flows in all edges in GV corresponding
to the minimum cost maximum flow in GV .

Let WV denote the flow plan (a set of flows) correspond-
ing to the minimum cost maximum flow in GV , where the
amount of each flow is one. Each flow in WV is actually a
path from the base vertex of a source to the base vertex of a
hole. The flow value is one for each flow since only one
sensor eventually moves to a hole (from our problem
definition). Consequently, the value of the maximum flow
is the number of such flows (with flow value one), which in
turn is the maximum number of holes that can be covered
eventually with one sensor. Each flow wV

i;j 2 WV is a flow
from the base vertex of a source vbi to the base vertex of a
hole vbj in GV and is of the form

hvbi ; vini ; vouti ; vink ; voutk ; vinl ; voutl ; . . . ; voutm ; vinn ; voutn ; vinj ; vbji;

which denotes that the path of the flow is from vbi to vini , from

vini to vouti . . . , from vinj to vbj. From the construction of GV , for

each such wV
i;j ð2 WV ), a corresponding movement sequence

in the sensornetworkwS
i;j canbedeterminedand isof the form

hri; rk; rl . . . rm; rn; rji, where ri; rk; rl . . . rm; rn; rj correspond

to regions i; k; l; . . . ;mn; j in the sensor network, respectively.

Physically, this means that one sensor should flip from

regions i to k, k to l; . . .m to n and n to j. The sensor flip (or

movement) plan WS (set of all wS
i;j) is the output of our

solution.
Once the base-station determines the flip plan, it will

forward instructions to the sensors (that need to flip). For
each sensor, the base-station can forward instructions on
the reverse direction of the original path of communication
between the sensor and the base-station. The forwarded
packet contains the destination of the sensor and the
intended region the sensor needs to flip to. Since sensors
know the regions they reside in, they can determine the
direction of the intended region (i.e., left, right, top, or
bottom region). We assume that sensors are equipped with
steering mechanisms (similar to the one in [10]) that allow
sensors to orient themselves in an appropriate direction

prior to their flip. Theorem 1 shows that the flip plan
obtained by our solution optimizes both coverage and the
number of flips.

Theorem 1. Let WV
opt be the minimum-cost maximum-flow plan

in GV . Its corresponding flip plan WS
opt will maximize

coverage and minimize the number of flips (refer to the

Appendix for the proof).

We now discuss the time complexity of our solution.

There are three phases in our solution while determining

the optimal movement plan. The first is the virtual graph

construction, the second is determining the maximum flow,

and the third is the execution of the minimum-cost flow

algorithm. Denoting jV j and jEj as the number of vertices

and edges in the virtual graph, respectively, we have jV j ¼
OððdD

R
e2ÞðdR

d
eÞ2Þ and jEj ¼ OððdF

d
eÞðdR

d
eÞðdD

R
e2ÞÞ, where dD

R
e2

denotes the number of regions, dR
d
e2 denotes the number of

subregions, and dF
d
e denotes the number of reachable

regions for each region. The time complexity of the virtual

graph construction is OðjV j þ jEjÞ. The time complexity for

determining the maximum flow using the implementation

in [18] is OðjV jjEj2Þ and the time complexity for determin-

ing the minimum cost flow using the implementation in [20]

is OðjV j2jEjlogjV jÞ. As such, the resulting time complexity

of our solution is OðmaxðjV jjEj2; jV j2jEjlogjV jÞÞ. We wish to

emphasize here that the above implementations are not

necessarily the fastest. For a detailed survey of other works

on the maximum flow and minimum cost problems, please

refer to [21] and [22].

4.4 Extending Our Solution for Multiple Flips

Our solution presented above considered sensors that can
flip only once. We now discuss how to extend the above
solution when a sensor can flip more than once. In this case,
we only have to modify GV to incorporate more reachable
regions due to multiple flips. Let us consider the example in
Fig. 4a. Let F ¼ d and let us assume that a sensor can flip to
a distance d twice. For region 1 in Fig. 4a, its reachable
regions now are regions 2, 3, 5, 6, and 9. Thus, edges are
added from vout

1
to vin

2
, vin

3
, vin

5
, vin

6
, and vin

9
. The edge capacity

is still infinity for all the edges. The cost of the edge from
vout
1

to vin
2

and vin
5

is still one. However, since a sensor in
region 1 needs two flips to move to regions 3, 6, and 9, the
cost of the edges from vout

1
to vin

3
, vin

6
, and vin

9
is two.

Correspondingly, edges are also added from vout
2

, vout
3

, vout
5

,
vout
6

, and vout
9

to vin
1
, with infinite edge capacity and

appropriate edge costs. All other regions are treated
similarly in GV . The rest of the solution remains the same.
It can be shown that the resulting movement plan is optimal
(the proof is straightforward from Theorem 1).

4.5 Alternate Approaches to Execute our Solution

Our solution requires information on the number of sensors
in each region in the network. In the above, we proposed
letting a centralized base-station to collect this information
and execute our solution. We now discuss distributed
approaches to execute our solution. In the first approach,
sensors in the network once again share information about
the number of sensors in their regions. In the extreme case,
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a sensor in each region can execute our solution indepen-
dently with this information. An alternate distributed
approach is to divide the network into multiple areas. In
this approach, we let each area obtain region information
only in their area and not exchange it with other areas. A
special sensor in each area can then execute our solution
independently only with this information (without global
synchronization with other areas) and determine a move-
ment plan for sensors in its area. We call this the area-based
approach. However, this approach can only achieve local
optima in each area and cannot guarantee global optima in
the sensor network. We will study the performance of this
approach further using simulations in Section 5.

5 PERFORMANCE ANALYSIS

In the above, we proved the optimality of our solution in
terms of coverage and number of flips. We now study the
sensitivity of coverage and the number of flips to flip
distance under different choices (for flip distance), initial
deployment scenarios, and coverage requirements. We also
study performance and overhead when our solution is
executed using the area-based approach discussed in
Section 4.5.

5.1 Performance Metrics and Evaluation
Environment

Let the total number of regions in the network be Q. We
denote Qi as the number of regions with at least one sensor
at initial deployment and denote Qo as the number of
regions with at least one sensor after the movement plan
determined by our solution is executed. Our first metric is
the Coverage Improvement, CI. Since, we already proved
the optimality of final deployment, we want to study here
the improvements in coverage as a result of executing our
solution compared to initial deployment. Formally,
CI ¼ Qo �Qi. We define the Flip Demand as the number
of flips required per region increase in coverage. The Flip
Demand quantifies the efficiency of flips in improving
coverage. Denoting J as the optimal number of flips as
determined by our solution, we have FD ¼ J

Qo�Qi
. In order

to compare the overhead of our optimal and area-based
solution, we define the metric packet number PN incurred
by the solutions. This metric is defined in Section 5.2.3 when
we actually compare the two solutions.

We conduct the following simulations on two network

sizes, 300� 300 units and 150� 150units. The region sizes are

R ¼ 10 andR ¼ 20units. Thebasic unit of flip distance d ¼ 10

units.Wevary the flipdistanceF from10units to40units.The

choices are C ¼ 1 and C ¼ n. Recall that if F is, say, 40 and

C ¼ 1, the flip distance for the sensors is fixed as 40 units.

When C ¼ n, we can have flip distances between 0 and F in

discrete steps of the basic unit of flip distance d (¼ 10 units).

Thus, if F ¼ 40 ð4dÞ, we have C ¼ 4 and, in this case, sensors

can flip to distances 10, 20, 30, and 40 units. The number of

sensors deployed is equal to the number of regions. All data

reported here were collected across 10 iterations, and

averaged. Our implementations of the maximum flow

algorithm is theEdmonds-Karp algorithm [18] andminimum

cost flow algorithm is the one in [20]. We conduct our

simulations usingMATLAB.Weuse a topology generator for

2D-Normal distribution. The X and Y coordinates are

independent of each other (i.e., �x ¼ �y). We use � ¼ 1

�2x
to

denote the degree of concentration of deployment in the

center of the network field. Thus, larger values for � implies

more concentrated deployment in the center of the field.

When � ¼ 0, the deployment is uniform.

5.2 Our Performance Results

5.2.1 Sensitivity of CI and FD to F under Different C

Figs. 6a and 6b show the sensitivity of CI to flip distance F

under different choices C in two different network sizes (150
� 150 and 300 � 300), where R ¼ 10, � ¼ 1, and d ¼ 10. The
number of regions in the networks are 15� 15 ¼ 225 and
30� 30 ¼ 900, respectively. We observe that, in both figures,
for agivenvalueofF ,C ¼ nhas largerCI compared toC ¼ 1,
except for F ¼ d ¼ 10, when both C ¼ n and C ¼ 1 have the
same performance. This is because, when F ¼ 10, we have
n ¼ 1 and, so, C ¼ n is the same as C ¼ 1. However, when
F > 10, for a given F , there are more flip choices that our
solution can exploit when C ¼ n, hence increasing CI. The
second observation we make is that when C ¼ n, as F

increases, CI increases in both figures. This is also because,
when C ¼ n, an increase in F means more choices to exploit.
However, the trend is different when C ¼ 1. In general, a
large flip distance (evenwhenC ¼ 1) may appear to perform
better as more far away holes can be filled if F increases.
However, when C ¼ 1, such improvements depend on the
size of the network. Beyond a certain point (depending on the
network size), an increase in F becomes counter-productive.
This is due to two reasons. First, many sensors near the
borders of the sensor network have flips that cannot be
exploited when F is too large. Second, the chances of
sequential flips (i.e., sensor x flipping to sensor y’s region,
sensor y flipping to sensor z’s region, and so on) to cover holes
are reduced when F is too large. The value of F , where this
shift takes place in the 150� 150 network in Fig. 6a, isF ¼ 40,
whereCI decreases. Such a shift is not observed for the 300�
300 network in Fig. 6b as the network size is quite large.

Figs. 7a and 7b show the sensitivity of flip demand FD to
flip distance F under different choices C in two different
network sizes. We wish to emphasize here that the number
of flips does not linearly increase with coverage. Conse-
quently, to enable a fairer comparison, we compare FD

across different cases when the final coverage is the same.
For both network sizes, we set R ¼ 10 and � ¼ 0, where the
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final deployment covers all regions. Since the initial
distribution is the same, the coverage improvement is the
same. The comparison becomes more meaningful. From
Figs. 7a and 7b, we see that, for a given value of F , C ¼ n

has a lower FD than C ¼ 1, except for F ¼ d ¼ 10, when
both C ¼ n and C ¼ 1 have the same performance. This
observation is consistent with our earlier observations on
CI. The second observation we make is that, as F increases,
FD decreases, irrespective of C in both figures. When F is
small, in order to achieve optimality, there may be multiple
flips from sensors farther away from a hole (although the
number of flips is still optimum). As F increases, it is likely
that far away sensors can flip to such holes directly,
minimizing the number of flips. By comparing Figs. 7a and
7b, we observe that FD is more for the 300 � 300 network
compared to the 150 � 150 network. For a larger network
with more regions, more flips have to be made. Conse-
quently, FD is larger.

5.2.2 Sensitivity of CI to F under Different R and �

Fig. 8 shows how the flip distance F impacts coverage
improvement ðCIÞ under different region sizes ðRÞ. Here,
� ¼ 1 and C ¼ n. In order to study the sensitivity of CI to
region size fairly, the number of regions for different
regions sizes should be the same. In Fig. 8, for a 150 � 150
and 300 � 300 network, we set the region sizes as R ¼ 10

and R ¼ 20, respectively. The number of regions in both
cases is 15� 15 ¼ 225. We observe that, when flip distance
ðF Þ increases, CI is consistently better irrespective of R.
When F increases, our solution can exploit more choices
ðC ¼ nÞ and CI increases. The second observation is that, as
R increases, CI decreases. This is because, when R is small,
neighboring regions are closer to each other (in terms of
distance between the centers of the regions). For the same
F , our solution is more likely to find sensors from other
regions that can flip to fill holes. However, when R is large

for the same F , the sensors that can flip from one region to
another have to be relatively close to the borders of the
regions. Thus, the number of sensors that can be found to
flip is less. Naturally, CI (which captures improvement)
decreases when R is large. Thus, performance improvement
due to increases in flip distance is constrained by the
desired region size.

Fig. 9 shows how the flip distance F impacts CI under
different distributions in initial deployment. The network
size is 150 � 150, R ¼ 10, and C ¼ n. We vary � from 0
(uniform distribution) to 4 (highly concentrated at the
center of the field). The first observation we make here is
that increases in flip distance ðF Þ increases CI. However,
the degree of increase in CI is impacted by �. When � ¼ 0

(uniform), CI is almost the same for all values of F . This is
because, in our simulations, close to full coverage is
achieved when � ¼ 0. Since the initial deployment is the
same for all cases, the improvement is the same.

We now study the trade-off between increasing F and �

in terms of which parameter has a more dominating effect
on CI. In Fig. 9, when F ¼ 10, � dominates over F . We can
see that, as � increases (bias increases), CI deceases. The
increase in bias cannot be compensated for by using sensors
with flip distance of only 10 units. However, when F

increases, our solution can exploit more choices ðC ¼ nÞ.
Thus, F dominates when it increases. However, the degree
of domination still depends on �. When F ¼ 20, � ¼ 1

performs better that � ¼ 0. This is because the increase in
bias can be compensated for better when F ¼ 20 (than was
the case, when F ¼ 10). Thus, CI increases. However,
increasing � beyond this point makes the bias dominate
and, consequently, CI decreases. When F > 20, the increase
in F consistently dominates the increase in bias (although
the degree of domination is different), showing that
performance improvement due to increases in flip distance
is limited by initial deployment distribution.

5.2.3 Sensitivity of CI and PN to Area Size

Recall from Section 4.5 that an alternate approach to
executing our solution is to divide the entire network into
smaller areas and determine a movement plan in each area
independently. We study this approach under two network
sizes: 150 � 150 and 300 � 300. We set R ¼ 10, F ¼ 20,
C ¼ n, and � ¼ 1 for both cases. Thus, the number of
regions are 225 and 900, respectively. We divide the
networks into multiple areas. We denote the area size A

as the number of regions along one dimension in each area.6
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Fig. 7. Sensitivity of FD to F under different C in a 150 � 150 and 300 �
300 network.

Fig. 8. Sensitivity of CI to F under different R.

Fig. 9. Sensitivity of CI to F under different �.

6. In both network sizes, for optimal solutions, the area size should be 15
and 30, respectively.



We introduce a new metric here called packet number
per region, PN . Denoting P as the total number of packets
(or messages) sent and Q as the number of regions, we have
PN ¼ P

Q
. The packet number quantifies the overhead

incurred by the approaches. The packet number is
calculated based on a simple protocol. After initial deploy-
ment, an elected region-head in each region sends a packet
to the base-station (located in the center of the network)
with information on the number of sensors in its region. The
packets are forwarded along shortest paths through other
regions. After the base-station receives all packets and
determines a movement plan, it sends a packet to each
region in the reverse path, informing sensors of their
movement plan. A similar protocol is assumed for the area-
based approach, where the region-head in each area will
forward region information to a special sensor in the area,
which executes the algorithm and forwards a movement
plan to each region in the area. Note that there can be other
versions of the above protocols, like direct relaying of
messages, row-wise (or column-wise) message delivery, etc.

For the 150 � 150 network, we study CI and PN under
three area sizes, namely, 15, 5, and 3. For the 300 � 300
network, we study CI and PN under four area sizes,
namely, 30, 15, 10, and 5. From Figs. 10a and 10b, we can see
that CI decreases as A decreases. When individual areas
execute our solution independently, the areas can only
achieve locally optimum solutions. However, we observe
that, when the area size is half of the network size (i.e.,
A ¼ 15 in Fig. 10b), CI is close to the globally optimum case.
This is because of the exploitation of the bias in initial
deployment. Since sensors are initially deployed one time
targeted at the center of the network, the sensors are
uniformly balanced in all directions surrounding the center.
In this case, if we choose the area size as half the network
size (resulting in four areas), we are optimizing deployment
independently in the four directions from the center of the
network. Since the sensors are uniformly balanced in all the
four directions, the ensuing CI is not far from optimal
(when A ¼ 15 in Fig. 10b. Figs. 11a and 11b show the packet
numbers for the optimal algorithm and the area-based
approach. We can see that PN decreases as A decreases,
demonstrating the savings in overhead in the area-based
approach.

6 DISCUSSIONS

Extensions to construct the virtual graph for any Region sizeR. In
the above, we discussed the construction of the virtual graph

when R was an integral multiple of d. In the following, we
discuss the construction for any general value of R. Without
loss of generality, letR ¼ sdþ xd, where s is an integer (� 0)
and x is a real number ð1:0 � x � 0Þ. In the preceding cases, x
was either 1.0 ðR ¼ ðsþ 1ÞdÞ or 0 ðR ¼ sdÞ. Let us now
consider the case when ð1:0 > x > 0Þ. For two adjacent
regions (say regions i and j), we cannot determine whether
a sensor in region i can flip to region j in case 1:0 > x > 0. To
circumvent this problem, we leverage the concept of
subregions. For each region of size R, we add a certain
number of subregions of same size that meets the following
condition; the size of each subregion should be a factor of d
and a factor ofR. In this situation,we can correctly determine
if a sensor in a particular subregion can or cannot flip to
another region. This can be done by traversing an integral
number of subregions depending on d and the size of
subregions.Our above solution is optimal ifx is a terminating
decimal. If x is nonterminating (e.g., x ¼ 1

3
, 2

3
, etc.), we can

choose an approximate subregion size such that the number
of subregions is an integralmultiple ofR. The smaller the size
of the subregion, the smaller the error from optimality is in
this case.

Network partitions. In some situations, the network may
be partitioned and we may need to repair them. In the
approach proposed by Wu and Wang [2], empty holes are
filled by placing a seed from a nonempty region to a hole.
The algorithms to place seeds are tuned to meet load
balancing objectives. We can apply the algorithms in [2] to
repair partitions in our case. Once seeds are placed, our
proposed solution can be executed. The key issue is the
optimality of final coverage and the number of flips, given
the mobility limitations of sensors. Developing optimal
solutions for partition recovery problem using flip-based
sensors is a part of our ongoing work.

Arbitrary flip directions. Our solution can be extended to
handle situations where a sensor can flip to regions in
arbitrary directions apart from left, right, top, and bottom
directions. The reachability relationship between regions
changes under arbitrary flip directions. In GV , we have to
add edges from each region to all newly reachable regions
from it, corresponding to arbitrary directions of sensor flips.

Deployment under hostile zones/failures in Sensor Networks.
In some cases, there may be certain hostile zones in the
network (lakes, fires, etc.) that can destroy sensors. To avoid
sensor flips to such zones, we only have to modify the edges
and their capacities to such hostile zones in the virtual
graph. The resulting solution is optimal.
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Fig. 10. Sensitivity of CI to A in a 150 � 150 and 300 � 300 network. Fig. 11. Sensitivity of PN to A in a 150 � 150 and 300 � 300 network.



In some cases, there can be faults/failures in the sensors
and their communication. For example, if a sensor makes an
erroneous movement to a region other than the intended
region, there will be an extra hole in the network. Or, if a
packet from a region does not reach the base-station, the
region will be incorrectly treated as a hole, which may
result in extra sensors in that region. As such, our solution
can tolerate a degree of faults/failures in the network at a
cost of optimality. A rigorous study of deployment under
faults/failures will be part of future work.

7 FINAL REMARKS

In this paper, we studied sensor network deployment using
flip-based sensors. We proposed a minimum-cost max-
imum-flow-based solution to optimize coverage and the
number of flips. We also proposed multiple approaches to
execute our solution in practice. Our performance data
demonstrated that, while increased flip-distances achieves
better coverage improvement and reduces the number of
flips required per region increase in coverage, such
improvements are constrained by initial deployment
distributions of sensors, due to the limitations on sensor
mobility. In this paper, we considered sensors that can flip
to distances in increments of a basic unit ðdÞ. We are
currently working on continuous sensor mobility, although
the overall movement distance ðF Þ is still limited.

APPENDIX

PROOF OF THEOREM 1 IN SECTION 4.3

Proof. We first prove that our solution optimizes coverage.

We prove by contradiction. Consider a flip plan WS
opt in

the sensor network corresponding to a flow plan WV
opt in

GV obtained by our solution. Let WS
opt be nonoptimal in

terms of coverage. This means there is a better flip plan,

WS
x that can cover at least one extra region in the sensor

network. Clearly, a corresponding flow plan WV
x can be

found in GV . The amount of flow inWV
x is larger than the

maximum flow in WV
opt. This is a contradiction.

We now prove that our solution optimizes the

number of flips. We prove by contradiction. Consider a

flip plan WS
opt in the sensor network corresponding to a

flow plan WV
opt in GV obtained by our solution. Let WS

opt

be nonoptimal in terms of the number of flips. This

means there is a better plan, WS
x , that can reduce at least

one flip in the sensor network. Clearly, a corresponding

flow plan WV
x can be found in GV . The number of flips in

WV
x is less than that in WV

opt. This is a contradiction. tu
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