
Mobility Management Algorithms and Applications for Mobile
Sensor Networks

You-Chiun Wang, Fang-Jing Wu, and Yu-Chee Tseng

Department of Computer Science, National Chiao-Tung University, Hsin-Chu, 30010, Taiwan

Email: {wangyc, fangjing, yctseng}@cs.nctu.edu.tw

Abstract

Wireless sensor networks (WSNs) offer a convenient way to monitor physical environments. In the past, WSNs are

all considered static to continuously collect information from the environment. Today, by introducing intentional

mobility to WSNs, we can further improve the network capability on many aspects, such as automatic node

deployment, flexible topology adjustment, and rapid event reaction. In this article, we survey recent progress in

mobile WSNs and compare works in this field in terms of their models and mobility management methodologies.

The discussion includes three aspects. Firstly, we discuss mobility management of mobile sensors for the purposes

of forming a better WSN, enhancing network coverage and connectivity, and relocating some sensors. Secondly,

we introduce path-planning methods for data ferries to relay data between isolated sensors and to extend a WSN’s

lifetime. Finally, we review some existing platforms and discuss several interesting applications of mobile WSNs.

KEY WORDS: mobility management, path planning, sensor applications, topology adjustment, wireless sensor

networks.

1. Introduction

The development of wireless technologies and micro-

sensing MEMS has triggered the success of wireless

sensor networks (WSNs). A WSN is composed of

one or multiple remote sinks and many tiny, low-

power sensors, each equipped with actuators, sensing

devices, and wireless transceivers [1]. These sensors

are massively deployed in a region of interest (ROI)

to continuously collect and report surrounding data.

WSNs offer a convenient way to monitor physical

environments. Many applications such as object

tracking, health monitoring, security surveillance,

and intelligent transportation [2, 3, 4, 5] have been

proposed.

A WSN is usually deployed with static sensors

to perform monitoring missions. However, due to

the dynamics of events or environments, a purely

static WSN could face these challenges: (1) Sensors

are often scattered in a ROI by aircrafts or robots

[6]. These randomly scattered sensors could not

guarantee complete coverage of the ROI and may

be partitioned into disconnected subnetworks. The

existence of obstacles could even worsen the problem.

(2) Sensors are usually powered by batteries. As

some sensors exhaust their energy, holes could appear

and the network could be broken. However, in many

scenarios, it is quite difficult to recharge sensors or

redeploy nodes. (3) A WSN may need to support

multiple missions or have multiple types of sensors

[7]. Sometimes, we may need to send a certain type

of sensors to particular locations to support particular

needs. Without mobility, this is difficult to achieve.

(4) While most efforts assume that sensors are cheap,

some types of sensors may be expensive. Dispatching

of those expensive ones from locations to locations

may be necessary.

1

By introducing mobility to a WSN, we can

enhance its capability to handle the above problems.

Nevertheless, mobile WSN and mobile ad hoc network

(MANET) are essentially different. Mobility in a

MANET is often arbitrary, whereas mobility in a

mobile WSN should be ‘intentional’, in the sense

that we can control their movement to achieve our

missions. In this article, we give a comprehensive

survey of recent progress in mobile WSNs. Our

discussion focus on two types of nodes: mobile

sensors and data ferries. With the former, one may

change the network topology by moving these mobile

sensors. With the latter, one may maneuver these data

ferries to collect or relay sensing data. We will cover

three topics:

• Mobility management of mobile sensors: First,

we introduce deployment methods to organize

a WSN. Second, we present relocation methods

to improve the coverage and connectivity of a

WSN. Third, we discuss how to assign mobile

sensors to desired locations.

• Path planning of data ferries: We first introduce

path-planning methods to maneuver data ferries

in a sparse WSN, and then discuss how to use

data ferries to extend a WSN’s lifetime.

• Platforms and Applications of mobile WSNs:

Some mobile platforms and applications will be

introduced.

2. Mobility Management of Mobile Sensors

2.1. Solutions to Deploying Mobile Sensors

Sensor deployment is a basic issue since it decides

a WSN’s detection ability. A good deployment

should satisfy both coverage and connectivity [8, 9].

Coverage requires that each location in the ROI

be monitored by sensors, and connectivity requires

that the network remain not partitioned. With mobile

sensors, the deployment job becomes ‘automatic’.

We introduce three deployment methods: The force-

based deployment images that virtual forces will

drive sensors to move. The graph-based deployment

identifies uncovered holes and moves sensors to cover

them. The assignment-based deployment computes

the locations to be placed with sensors and then

dispatches them in an energy-efficient way.

2.1.1. Force-Based Deployment

The work [10] considers moving sensors by virtual

forces. Each sensor si is exerted by a compound

F13

(a) hybrid forces (b) repulsive forces

s1

s2

s3

s4s4

F12 repulsive

force

attractive

force

compound

force

s1

s2

s3

F1

compound

force F1
F14

F12

F13

Fig. 1. Examples of force-based deployment.

force
−→
Fi =

−−→
FiA +

−−→
FiR +

∑n
j=1,j 6=i

−→
Fij , where

−−→
FiA is

an attractive force by the ROI,
−−→
FiR is the overall

repulsive force by obstacles,
−→
Fij is the force produced

by sensor sj , and n is the total number of sensors. Each

force
−→
Fij is denoted by (rij , θij) in a polar coordinate,

where rij is the magnitude and θij is the orientation.−→
Fij is expressed as

−→
Fij =

(wA · (dij − dth), θij) if dij > dth

(wR · 1
dij

, π + θij) if dij < dth

0 otherwise,

where wA/wR is the measure of an attractive/repulsive

force, dij is the distance between si and sj , and dth is

a threshold distance to decide the force type. Fig. 1(a)

gives an example, where dth = d14. We see that s2

exerts an attractive force
−→
F12, s3 exerts a repulsive

force
−→
F13, and s4 exerts no force on s1 because d12 >

dth, d13 < dth, and d14 = dth, respectively. Sensor s1

is thus moved by the compound force
−→
F1.

In [11], each sensor is viewed as an electron and

is repulsed by other sensors. The force from a higher

sensor density area is greater than that from a lower

density area, and the force from a nearer sensor is

greater than that from a farther sensor. Specifically,

the force function F (·) should satisfy three rules:

(1) F (dij) ≥ F (dik) if dij ≤ dik. (2) F (0+) = Fmax.

This gives an upper bound on forces. (3) F (dij) = 0
if dij > rc (communication distance). This means that

only neighboring sensors will generate forces.

Sensors are moved step by step. In each step, the

repulsive force on sensor si exerted by a neighboring

sensor sj is
−→
Fij = Di

µ2 (rc|pi − pj |) pj−pi

|pj−pi| , where Di

is the local sensor density seen by si, µ is the expected

sensor density after the final deployment, and pi/pj is

the position of si/sj . The expected sensor density is

computed by µ =
n·πr2

c

|A| , where |A| is the ROI’s area.

2

Fig. 1(b) shows an example, where s2, s3, and s4 all

exert repulsive forces on s1.

In the above two methods, oscillation check and

stability check are performed to examine whether a

sensor has reached its final destination. When a sensor

si moves back and forth inside a small region many

times, it has entered the oscillation state. On the other

hand, when si moves less than a threshold distance in

a fixed duration, it has entered the stable state. In both

cases, si will stop moving.

Reference [12] considers that sensors work under

a probability sensing model. The goal is to deploy a

minimum number of sensors such that the detection

probability of the ROI is above a predefined threshold.

To achieve this, we can first deploy sufficient sensors

to satisfy the detection probability. Then, sensors can

exert repulsive forces on each other. In this way, the

number of sensors may be reduced since some sensors

may be pushed outside the ROI.

2.1.2. Graph-Based Deployment

The work [13] adopts a Voronoi diagram to search

uncovered holes and moves sensors to cover these

holes. Given a set of sensors on a 2D plane, the

Voronoi diagram [14] consists of a number of Voronoi

polygons such that each polygon contains one sensor

and the points in the polygon are closer to the interior

sensor than to other exterior sensors. When the sensing

range of a sensor cannot completely cover its Voronoi

polygon, there could be an uncovered hole in that

polygon. In [13], it proposes the following methods

to cover this hole:

Voronoi-based (VOR) method: A sensor should

move toward the farthest vertex of its current polygon.

Fig. 2(b) gives an example, where the dotted polygon

is sensor si’s current polygon and u is the farthest

vertex. Sensor si will move along the direction −→siu and

stop at v1, where |uv1| = rs.

Minimax method: A sensor should move to the

minimax point of its current polygon, where the

minimax point of a polygon is the center of the circle

with the minimum radius that can cover the whole

polygon (refer to [13] for details about finding the

circle). Fig. 2(c) gives an example, where v2 is the

minimax point of si’s current polygon.

2.1.3. Assignment-Based Deployment

Reference [15] focuses on deployment in ROIs with

obstacles. It considers two related problems: sensor

placement and sensor dispatch. The former asks how

u

v1

rs

(b) VOR method

v2

(c) Minimax method

(a) a Voroni diagram

si si

Voronoi

polygon

sensor

Voronoi

polygon

farthest

vertex

minimax point

Fig. 2. The VOR and Minimax methods.

to use the minimum number of sensors in a ROI to

guarantee coverage and connectivity. The latter asks

how to dispatch mobile sensors to the designated

locations computed by the placement result such that

their moving energy is minimized.

To solve the placement problem, [15] partitions

a ROI A into single-row and multi-row regions. A

single-row region requires one row of sensors to

cover it, and a multi-row region requires multiple

rows of sensors to cover it. To partition A, we first

identify all single-row regions, which is achieved

by expanding A’s boundaries inward and obstacles’

perimeters outward by a distance of
√

3rmin, where

rmin = min{rc, rs}. When the expanded line cuts off

an obstacle with an area, we take a project from that

area to identify a single-row region. Fig. 3(a) gives an

example, where 5 single-row regions (with numbers)

are identified. Other regions will be multi-row ones.

Then, we place sensors in each region as follows:

Single-row region: We place a sequence of sensors

along the region’s bisector, each separated by a

distance of rmin. Fig. 3(b) gives an example.

Multi-row region: Two cases are considered, as

Fig. 3(c) shows. When rc ≥
√

3rs, adjacent sensors

are regularly separated by a distance of
√

3rs. When

rc <
√

3rs, sensors in each row are separated by a

distance of rc. Adjacent rows are separated by a

distance of rs +
√

r2
s − r2

c

4 and shifted by a distance

of rc

2 . To connect adjacent rows, we add a column of

sensors between them, each separated by a distance

not larger than rc.

3

obstacle

(a) partition a ROI

(b) place sensors in a single-row region

3
c s

r r<

(c) place sensors in a multi-row region

D

bisectormin
r

B

A

obstacle

cut-off

areas

expanded line

C

E

3 min
r

3 min
r

3 min
r

3 min
r

1

2 3

4

5

case

rc rs

rc

2
2

4
c

r

s s
r r+ -

3
c s

r r³ case

rs3

rc

rs

Fig. 3. The sensor placement solution proposed in [15].

Given a set of mobile sensors S and a set of

locations L computed by the placement result, [15]

considers dispatching S to L such that the energy

consumption of sensors is minimized. Assuming

|S| ≥ |L|, we construct a weighted complete bipartite

graph G = (S ∪ L,S × L), where the weight of each

edge (si, lj), si ∈ S , lj ∈ L, is calculated by −(em ×
d(si, lj)), where em is the energy cost to move a

sensor in one step and d(si, lj) is the shortest distance

between si and lj . Then, we find a matching M in

G with the maximum edge weights, which can be

solved by the Hungarian method [16]. For each edge

(si, lj) ∈ M, we move sensor si to location lj through

the shortest path (refer to [15] for details about finding

the shortest path).

Reference [17] focuses on deployment with

multilevel coverage. It considers two related problems:

k-coverage sensor placement and sensor dispatch.

The former asks how to use the minimum number

of sensors in a ROI to guarantee k-level coverage.

The latter asks how to dispatch mobile sensors to the

designated locations computed by the placement result

such that their moving energy is minimized.

rs

O1

O2

O3

rs

rc

2rc

N3

N2

N1

N3

N2

N1

O1

O2

O3

,

N3

,

N2

,

N1

3

2
(a) case

c s
r r£

3 2 3

2 3
(b) case

s c s
r r r

+
< £

Fig. 4. The interpolating placement method.

To solve the k-coverage placement problem, [17]

proposes an interpolating placement method based

on the placement in Fig. 3(c) (rc <
√

3rs case).

Specifically, we see that a large amount of regions in

each row are more than 1-covered. So, we can reuse

these regions and place the least number of sensors to

cover those insufficiently covered regions. Three cases

are considered:

Case of rc ≤
√

3
2 rs: In Fig. 3(c), we see that the

insufficiently covered regions (marked by gray) are

located between adjacent rows. If we place a new Ni

row above each original Oi row by a distance of rs,

as Fig. 4(a) shows, the ROI becomes 3-covered. Here,

sensors in each Ni row are separated by a distance

of rc. For k > 3, we can apply
⌊

k
3

⌋

times of this 3-

coverage placement and apply (k mod 3) times of the

1-coverage placement.

Case of
√

3
2 rs < rc ≤ 2+

√
3

3 rs: We can add one

extra N ′
i row between each Ni and Oi rows to

construct a 3-coverage placement, as Fig. 4(b) shows.

These N ′
i rows are shifted by a distance of rc

2
and sensors are separated by a distance of 2rc. For

k > 3, we can apply
⌊

k
3

⌋

times of this 3-coverage

placement and apply (k mod 3) times of the 1-

coverage placement.

Case of rc > 2+
√

3
3 rs: We can duplicate k sensors

on each location in Fig. 3(c).

Given a set of mobile sensors S and a set

of locations L = {(l1, n1), (l2, n2), · · · , (lm, nm)}
computed by the placement result, where each location

lj will be placed with nj sensors, [17] proposes a

distributed method to dispatch S to L as follows:

1. Each sensor si maintains a OCCi[1..m] table,

where each OCCi[j] = { (sj1 , dj1), (sj2 , dj2), . . . ,

(sjα
, djα

)}, α ≤ nj , contains the set of sensors sjβ

4

that select lj as their destinations and their distances

djβ
to lj . Initially, OCCi[j] = ∅,∀j. Then, si selects

the nearest location lj such that |OCCi[j]| < nj as

its destination, adds (si, d(si, lj)) in OCCi[j], and

moves to lj .

2. Sensor si periodically updates and exchanges

its table with one-hop neighbors. When si hears the

OCCk table from a neighbor sk, si combines OCCi

with OCCk as follows: For each j, we calculate a

union Uj = OCCi[j] ∪ OCCk[j]. If |Uj | > nj , we

remove the records in Uj that have longer moving

distances, until |Uj | = nj . Then, we replace OCCi[j]
by Uj . If si was in the original OCCi[j] entry, but

is not in the new OCCi[j] entry, it means that si is

replaced by other sensors with a shorter distance to lj .

Thus, si should reselect another destination.

3. After si reaches lj , it still exchanges its table with

neighbors. Since the sink will eventually observe that

all locations are covered, it can notify all sensors to

exit from the dispatch method.

2.2. Solutions to Enhancing Coverage and
Connectivity of a WSN

After deploying a WSN, some sensors may be broken

or may exhaust their energy. These failed sensors

may disconnect the network or cause uncovered

holes. One can move some mobile sensors to relieve

this problem. We introduce two such solutions for

enhancing connectivity and coverage of a WSN.

2.2.1. Connectivity Enhancement

Reference [18] considers a static WSN with several

isolated groups, called islands. To help these islands

communicate with each other, we can add some

mobile sensors between them. For two islands IG and

IH , the minimum number of mobile sensors required

to connect them is MG,H =
⌈

dG,H

rc
− 1

⌉

, where

dG,H = min
si∈IG,sj∈IH

{di,j} is the shortest distance

between IG and IH . Let N(IG) be the number

of sensors in island IG and W (IG,m) be the

optimal set of islands that can be connected by

m mobile sensors starting from island IG. It can

be derived that W (IG,m) = max{W (IG ∪ IH ,m −
MG,H) + N(IG ∪ IH)}, where IH is an island to

be directly connected by IG and N(IG ∪ IH) =
N(IG) + N(IH) + MG,H . However, for an island IG,

if the remaining m mobile sensors cannot connect

to any other island, we set W (IG,m) = 0. Using

dynamic programming, the minimum m to connect all

islands can be found.

The work [19] considers strengthening the topology

of a WSN to be biconnected. First, each cut-vertex

is identified. For example, in Fig. 5(a), c1 and c2 are

cut-vertices. By removing cut-vertices, the network is

divided into several biconnected components (called

blocks). Actually, we can ‘pull’ two neighboring

blocks together to eliminate the cut-vertex between

them. With this observation, a block movement method

is proposed as follows: Given a network topology, we

first identify all blocks along with their cut-vertices. A

block can have zero, one, or multiple sensors. If two

cut-vertices are directly connected, an empty block is

established. Then, we can translate the network into

a block tree, whose nodes contain blocks and cut-

vertices. The block with the maximum number of

sensors is the root. In Fig. 5(a), there are 5 blocks

(including the empty block B4) and 2 cut-vertices c1

and c2. Block B1 is the root and blocks B2, B3, and

B5 are leaves. The method executes in two iterations

until the network becomes biconnected: (1) Move each

leaf block toward the nearest sensor of its parent block,

until a new edge appears. (2) If its parent block is

empty, we further move it to the upstream cut-vertex of

its parent block. Fig. 5(a) gives an example, where B5

moves toward v of its parent block B1, and B2 and B3

move toward the cut-vertex c1 since their parent block

B4 is empty. The final topology is shown in Fig. 5(b).

v

(a) initial network topology (b) final network topology

B1

B5

B3

B2

B4

c1 c2

root

Fig. 5. An example of the block movement method.

2.2.2. Coverage Enhancement

The work [20] proposes a bidding protocol to enhance

the coverage of a hybrid WSN composed of static and

mobile sensors. Static sensors detect uncovered holes

locally and bid for mobile sensors by the sizes of holes.

It involves the following steps:

1. Each mobile sensor is assigned with a base price,

which is an estimation of the hole size when it leaves

its current position. Initially, the base price is zero

for all mobile sensors. Then, mobile sensors broadcast

their positions and base prices in their local areas.

5

2. Static sensors exchange their positions with their

neighbors in two hops to construct a Voronoi diagram.

If a static sensor si detects an uncovered hole in its

Voronoi polygon, it calculates a bid as π × (d − rs)
2,

where d is the distance between si and its farthest

polygon vertex and rs is the sensing distance. Here,

the bid is an estimation of the uncovered hole size.

Then, si sends its bid to the nearest mobile sensor

whose base price is lower than the bid.

3. On receiving bids, a mobile sensor selects the

highest bid and moves to cover that hole. Then, it

replaces its base price by the selected bid.

The bidding protocol repeats the above steps until

no static sensor can give a bid higher than the base

price of any mobile sensor.

Reference [21] considers moving sensors close

to locations where events could appear. Given a

set of event locations, sensors are moved such that

their positions can eventually approximate the event

distribution. Two moving methods are proposed. In

the history-free method, each sensor si at position

pk−1
i reacts to the appearance of an event at location

lk by moving to a new position pk
i = pk−1

i +
fm(d(pk−1

i , lk)), where function fm(·) prohibits a

sensor from passing another along the same vector

in response to the same event. The history-based

method requires sensors to maintain event history

to approximate the event distribution. To maintain

maximal coverage of the ROI, a sensor is not allowed

to move if its movement will leave an uncovered hole.

2.3. Solutions to Assigning Mobile Sensors to

Desired Locations

This may involves several issues: sensor relocation,

sensor navigation, and sensor dispatch.

2.3.1. Sensor Relocation

Reference [22] divides a ROI into grids and moves

sensors from high-density grids to low-density grids.

It proposes grid-quorum to move sensors such that

the number of exchanged messages are reduced.

Specifically, a grid head is selected in each grid to

maintain its information. A grid Gi with more sensors

sends an advertisement (ADV) to its row to announce

that it has extra sensors. On the other hand, a grid Gj

with fewer sensors sends a request (REQ) message to

its column to ask for extra sensors. These ADV and

REQ will meet at a common grid. Fig. 6(a) shows an

example, where grid (1, 3) sends ADV to its row and

grid (3, 1) sends REQ to its column. They will meet

(a) grid-quorum

(b) direct movement

(c) cascade movement

(0,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(2,3)

(3,3)

grid head sensor

(2,1)

R
E

Q(3,1)

(0,3)

(3)

Sj

Sk

Si

target

(2)

(1)

target

Sj

Sk

Si

ADV

(1,3)

Fig. 6. The grid-quorum and cascade movement methods.

at grid (1, 1). This can reduce the message overhead

significantly.

After identifying the targets, sensors are moved by

cascaded movement rather than direct movement to

prevent a single sensor from consuming too much

energy. Fig. 6(b) is a direct movement, where sj

needs to travel a long distance. Fig. 6(c) is a cascaded

movement, where sk first moves to the target, then si

moves to sk’s original position, and then sj moves to

si’s original position.

2.3.2. Sensor Navigation

The work [23] considers navigating mobile sensors in

a hybrid WSN. It assumes that all sensors do not know

their own locations in the ROI. When a static sensor

si detects an event, it will broadcast a weight request

(WREQ) packet to search mobile sensors. On receiving

WREQ, a mobile sensor mj will bid for the event by

replying its weight wj =
Aj×h(si,mj)

ej
, where Aj is the

area of Voronoi polygon of mj , h(si,mj) is the hop

count between si and mj , and ej is the energy of mj .

A mobile sensor with a smaller weight will win the

bidding.

Static sensors will then guide mj to si’s location.

An ADV packet is sent along the path from si to

mj to build up a navigation field, as Fig. 7 shows.

In particular, si sets the highest credit C1 for itself.

For each rebroadcast of ADV, a lower credit value will

be set. Then, mj will try to move to si by repeatedly

searching higher credit values.

2.3.3. Sensor Dispatch

Given a set of mobile sensors S and a set of event

locations L, the work [24] considers dispatching S to

L with a concept of load balance. Assuming |S| ≥ |L|,
6

C1

ADV

navigation field

si

mjADV
ADV

C2

C2

C2

C3

C3

C3

C4

Fig. 7. Navigate a mobile sensor by credits, where C1 >

C2 > C3 > C4.

we first calculate the energy cost w(si, lj) = em ×
d(si, lj) for each sensor si ∈ S to reach each location

lj ∈ L, where em is the energy cost to move a sensor

in one step. The scheme tries to find a matching M
between sensors and locations by allowing a bound Bj

for each lj ∈ L as follows:

1. For each lj ∈ L, we use a bound Bj to limit the

candidate sensors that lj can match with. A sensor

si is said as lj’s candidate if w(si, lj) ≤ Bj . Since

a larger bound may lead a sensor to select a farther

location, Bj will be increased gradually. Initially, each

Bj = 1
|L|

∑|L|
j=1 min

∀i,(si,lj)∈S×L
{w(si, lj)}.

2. For each unmatched lj ∈ L, we find a candidate

sensor si with the minimum w(si, lj) to match with.

If si is still unmatched, we add the pair (si, lj) in

M. Otherwise, si must be matched with another

location lo. In this case, lj will compete with lo
for si by three rules: (1) If Bj > Bo, we match si

with lj to avoid expanding Bj . (2) If Bj = Bo and

w(si, lj) < w(si, lo), we match si with lj to reduce

its energy consumption. (3) If Bj = Bo and si is the

only candidate of lj but is not that of lo, we match

si with lj . When lj wins the competition, the pair

(si, lo) is replaced by the new pair (si, lj) in M, and

lo becomes unmatched. Otherwise, lj checks other

candidate sensors, until there is no candidate.

3. If lj cannot find any match, we increase Bj by

∆B and go to step 2, until a match is found.

4. We repeat steps 2 and 3, until each lj ∈ L can

find a sensor to match with.

Fig. 8 gives an example, where ∆B = 70. The

initial bound is 79+97+94
3 = 90. In Fig. 8(b), l1

matches with s2 with bound B1 = 90 and l2 matches

with s4 with bound B2 = 90 + 70 = 160. Then, after

expanding B3, l3 finds that its candidate s4 has been

matched with l2, so it competes with l2 for s4.

Since B3 = B2 and w(s4, l3) < w(s4, l2), (s4, l2) is

replaced by (s4, l3) in Fig. 8(c). Similarly, l2 obtains

s2 from l1 in Fig. 8(d) and thus l1 selects an unmatched

sensor s1. Fig. 8(e) shows the final result.

(a) energy costs of mobile sensors

(b) M = {(s2, l1), (s4, l2)} (c) M = {(s2, l1), (s4, l3)}

(d) M = {(s2, l2), (s4, l3)} (e) M = {(s1, l1), (s2, l2), (s4, l3)}

cost

l2

l1

l3

s4

97

147

94

s3

153

238

177

s2

133

79

233

s1

219

105

181

l2
s3

s1

l3

s2

s4l1

B3(160)

l2
s3

s1

l1

l3

s2

s4

B2 (160)
l2

s3

s1

l1

l3

s2

s4

B1(160)

(90)

l2
s3

s1

l1

l3

s2

s4

B1

B2(160)

Fig. 8. An example of finding the matchingM.

When |S| < |L|, a clustering approach is proposed

and then the similar matching steps are executed (we

omit the details).

Reference [25] considers a mobile WSN as a multi-

robot system and addresses the cooperation among

robots. Each robot is regarded as a resource and

may be required by multiple concurrent missions.

It points out that deadlock may happen when some

missions never finish executing and resources are tied

up, preventing other missions from starting. Then, a

deadlock avoidance policy based on the Petri nets is

proposed.

2.4. Summary of Mobility Management

Table I summarizes the mobility management methods

for mobile sensors. While most methods consider a

purely mobile WSN, [18, 20, 23, 24, 25] consider

a hybrid WSN. References [18, 20] use mobile

sensors to improve the topology of a static WSN,

and [23, 24] use static sensors to detect events and

send mobile sensors to event locations. For sensors’

detection, [10, 12, 15, 17] consider the probabilistic

sensing model. For coverage and connectivity, most

deployment methods [10, 11, 13, 15, 17] address both

issues, but the work [12] addresses only the coverage

issue. References [20, 21, 22] move sensors to improve

a WSN’s coverage, while references [18, 19] move

sensors to improve the network connectivity. For

7

references category hybrid probabilistic coverage connectivity energy

WSN sensing issue issue issue

virtual force [10] deployment
√ √ √

repulsive force [11] deployment
√ √

gradient [12] deployment
√ √

Voronoi [13] deployment
√ √

1-coverage [15] deployment
√ √ √ √

k-coverage [17] deployment
√ √ √ √

island [18] enhancement
√ √

block tree [19] enhancement
√

bidding [20] enhancement
√ √

event motion [21] enhancement
√

relocation [22] dispatch
√ √

navigation [23] dispatch
√ √

load balance [24] dispatch
√ √

deadlock [25] dispatch
√

Table I. Comparison of mobility management methods for mobile sensors.

energy concern, the dispatch solutions in [15, 17, 23]

try to minimize the energy consumption of mobile

sensors. Balance of energy consumption is addressed

in [22, 24].

3. Path Planning of Data Ferries

3.1. Solutions to Relaying Messages by Data

Ferries

Data ferries are a type of mobile sensors that are

mainly designed for carrying data. For example,

they can travel between isolated sensors to relay

information. So, path planning is a critical issue for

data ferries to minimize message delay and meet

bandwidth requirements. We will discuss two types of

path planning: The adaptive planning considers that

all sensors are isolated and the final path is adjusted

from the initial TSP solution. The probabilistic

planning considers that sensors may arbitrarily roam

around a ROI and ferries may meet them by a

probability model.

3.1.1. Adaptive Planning

Given a data ferry F and a set of isolated sensors

S = {s1, s2, . . . , sn}, the work [26] considers how

to schedule a path for F to visit S. The goal is to

exchange data between sensors such that the average

message delay is minimized and the bandwidth

requirement of each sensor is satisfied. To solve this

problem, a 4-step algorithm is proposed:

1. We first calculate an initial path p by any TSP

solution. The message delay between two sensors si

and sj on p is defined by T
p
ij = |p|

2v
+

d
p
ij

v
, where |p|

is p’s total length, v is F’s speed, and d
p
ij is the

distance between si and sj on p. It is assumed that F
will repeatedly travel along p. Here,

|p|
2v

is the average

waiting time for si be visited by F , and
d

p
ij

v
is the time

for F to deliver si’s data to sj . So, the average delay

incurred by p is T p =
∑

1≤i,j≤n bijT
p
ij∑

1≤i,j≤n bij
, where bij is the

average amount of data to be sent from si to sj .

2. Next, we try to improve p by two operations:

• Edge Replacement: Let sisj and slsm be two

edges in p. Let p′ be the path modified from p

by replacing sisj and slsm with sisl and sjsm.

If T p′

< T p, then we replace p by p′.
• Sequence Reordering: We construct a new path

p′ by moving any si in p from its original

position to another position. If T p′

< T p, then

we replace p by p′.

The above operations are repeated until no better path

can be found.

3. Since the communication ranges of sensors may

overlap, a time allocation policy Φp is needed to assign

F’s communication time with sensors. Specifically,

we cut p into m segments {ξ1, ξ2, · · · , ξm} as F enters

or leaves a sensor’s communication range, and define

Φp(si, ξj) as the portion of F’s communication time

with si when F moves along segment ξj . Fig. 9(a)

gives an example, where the subpath from u to v is cut

8

into 4 segments ξ1, ξ2, ξ3, and ξ4. Φp(·, ξ1) = 0 since

F cannot communicate with any sensor. Φp(s2, ξ2) =
Φp(s1, ξ4) = 1 since F can only communicate with

one sensor. Φp(s2, ξ3) = Φp(s1, ξ3) = 1
2 since F

should share its time to s1 and s2.

4. To meet the bandwidth requirement of each si,

F should spend sufficient time to communicate with

si. If there is no sufficient time, the segments for si

should be extended properly. For example, in Fig. 9(a),

segment ξ2 may be extended to the dotted curve to

increase the communication time with s2. Let xj be

the extra communication time of F to extend ξj and

ti be the original communication time of F for si.

A linear programming is formulated to minimize the

total extra communication time of F :

min

m
∑

j=1

xj ,

subject to
(ti +

∑m
j=1 Φp(si, ξj)xj) · R
|p|
v

+
∑m

j=1 xj

≥ bi, (1)

where R is F’s data rate and bi is the bandwidth

requirement of si. Here, the numerator and denomi-

nator are the expected amount of data that can be sent

and received by si and the total moving time of F after

extension, respectively. The path p after extension is

F’s traveling path.

The work [27] further considers multiple data

ferries. Given n sensors and m data ferries, the goal is

to find a set of paths for data ferries to visit all sensors

such that the average message delay is minimized and

the bandwidth requirement of each sensor is met. Four

types of solutions are proposed.

Single-route algorithm (SIRA): All data ferries

will move along the same path and there is no

communication between them. Fig. 9(a) gives an

example with two ferries. This algorithm directly

extends that of [26]. For any path p, the delay to deliver

data from si to sj on p is T
p
ij = |p|

2mv
+

d
p
ij

v
. So, the

average delay of p is T p =
∑

1≤i,j≤n wijT
p
ij∑

1≤i,j≤n wij
, where

wij is the weight assigned to each T
p
ij . Still, edge

replacement and sequence reordering are applied to

improve p. Finally, the linear programming in Eq. (1)

can be rewritten as:

min

n
∑

i=1

yi,

subject to R · (2rc + yi)

|p| + ∑n
j=1 yj

≥ bi

m
, (2)

F data ferry sensorpath of a data ferry

F

F

contact point

G4

F F

F

F

cr F

F

1s

2s1 2

3

4

v

u

relaying

sensor

G3

G1 G2

F

F

extending

path

Fig. 9. Path-planning examples for data ferries.

where yi is the extra moving length of data ferries

in the communication range of si. In Eq. (2), the

left-hand term is the product of data ferries’ data

rate and the ratio of data ferries’ communication time

allocated to si, and the right-hand term means that si’s

bandwidth requirement bi is shared by m data ferries.

Multi-route algorithm (MURA): Each data ferry

will move along a different path and there is no

communication between them. Fig. 9(b) gives an

example. In this algorithm, given a set of paths P ,

we use a 2-tuple (E1(P), E2(P)) as the cost function

to evaluate the quality of P , where E1(P) is the

estimated total overload of data ferries in P and

E2(P) is the estimated total message delay incurred

by P (refer to [27] for details). Intuitively, overload

is the amount of data that newly appear and cannot be

delivered over a time interval. Initially, we assume that

each sensor has a ferry. Let P be the current path set

and ni be number of ferries in pi ∈ P . We adopt four

operations to reduce the number of ferries and to refine

the path set P: (1) overlap(pi, pj): We extend path

pj ∈ P by including one sensor in path pi ∈ P , pi 6=
pj such that the cost is minimized. (2) merge(pi, pj):
We combine pi and pj into one new path, and put all

ni + nj ferries on the new path. (3) merge−(pi, pj):
This is the same as merge(pi, pj), except that we

decrease the number of ferries by one. (4) reduce(pi):
We decrease ni by one for pi if ni > 1. We iteratively

select one operation in a greedy manner to minimize

the cost, until there are only m paths. After obtaining

m paths, we can apply SIRA to optimize each path.

9

Node replying algorithm (NRA): In this scheme,

each data ferry will move along a different path and

static sensors will serve as relay nodes to propagate

data from paths to paths. First, the ROI is divided into

c1 × c2 grids, where c1c2 ≤ m, and each grid will be

served by a ferry that travels on a path constructed by

SIRA. Among all possible combinations of c1 and c2,

we select the one with the minimum cost (as defined

in MURA). Suppose that grids Gs and Gd want to

exchange data. To relay data between them, we will try

to connect Gs and Gd directly or indirectly. Two grids

can be connected using the overlap(pi, pj) operation

in MURA to find a relaying node. Fig. 9(c) gives an

example, where there are 4 grids and 4 paths. Then,

these paths will be connected by extending one to

another.

Ferry relaying algorithm (FRA): Like NRA, the

ROI is divided into grids, each to be served by one data

ferry. Data ferries may exchange their data when they

meet with each other. Contact points are designated

along grid boundaries for this purpose, as shown in

Fig. 9(d). These contact points are separated by a

distance of one half of the grid boundary, so each

ferry have up to eight contact points to communicate

with other ferries. Data ferries of any two adjacent

grids will move in reverse directions of each other.

To guarantee that data ferries can meet at contact

points, [27] suggests extending the path in each grid

by connecting to the contact points and also extending

paths such that they have the same lengths.

The work [28] considers that sensors may have

different communication ranges. A data ferry only

needs to touch any point within the communication

range of each sensor to collect its data. Thus, the

moving path of the ferry can be further reduced.

Fig. 10 shows an example, where the ferry is initially

placed at l0. We can observe that the path l0 → l1 →
l2 → l0 is shorter than the path l0 → s1 → s2 → l0.

Here, l1 and l2 are called touching points of sensors

s1 and s2, respectively. Based on this observation,

[28] adopts evolutionary algorithms to calculate the

touching points of sensors.

3.1.2. Probabilistic Planning

Given a set of mobile sensors and a data ferry F ,

[29] considers planning F’s path such that the overall

probability that F can meet each mobile sensor is

larger than a predefined threshold τ and the path length

is minimized. It is assumed that these mobile sensors

may move following a predefined mobility model. It is

also assumed that F will stop at a few points for some

s1's communication

range

starting point

s2
s1

l1 l2

l0

s2's communication

range

Fig. 10. An example of touching points of sensors.

periods of time when moving along the path. A 3-step

solution is proposed:

F data ferry

mobile sensor

path of a

data ferry

way-point

not in L

way-point

in L

rc

li

ci

F

o

,

,

Fig. 11. An example of the probabilistic planning method.

1. We divide a ROI into grids. Let L be the set

of the central point of each grid, called way-point,

as shown in Fig. 11. For each li ∈ L, let ci be the

circle centered at li and with a radius rc. We define

g(ci, sj) as the instantaneous contact probability that

F can meet sensor sj inside ci at a time instance, and

h(ci, ti, sj) as the time-cumulative contact probability

that F can meet sensor sj inside ci when F stays at

li for a time period ti. These probabilities depend on

the mobility model of mobile sensors. In [29], these

probability are developed for both a periodic mobility

model and a random way-point mobility model.

2. We then select a subset L′ ⊆ L and determine the

time ti for F to stay in each way-point li ∈ L′ with the

following objective:

min{
∑

li∈L′

ti + βd(li, O)}, (3)

10

subject to

∀sj ,
∑

li∈L′

h(ci, ti, sj) + max
li∈L′

{g(ci, sj)} ≥ τ, (4)

In Eq. (3), O is the ROI’s center, d(li, O) is the

distance between li and O, and β is a constant to

measure the quality of the path yet to be constructed

for F . In Eq. (4), maxli∈L′{g(ci, sj)} is an estimation

of the meeting probability between F and sj .

3. After calculating L′ and the staying time ti
for each li ∈ L′, we then adopt any TSP solution to

construct a path to visit all way-points in L′.

3.2. Solutions to Prolonging a WSN’s Lifetime
by Data Ferries

The previous section mainly focuses on using

data ferries to relay data between isolated sensors.

Nevertheless, with richer energy, data ferries can also

help prolong the lifetime of a connected WSN. It

is widely known that sensors nearby the sink could

exhaust their energy faster. By scheduling data ferries

to collect data from sensors, the energy consumption

of sensors can be balanced and thus the network

lifetime can be prolonged. We will introduce four

path-planning solutions for data ferries in a connected

WSN: The recursive planning uses a divide-and-

conquer scheme to plan a ferry’s path. The tree-

based planning uses a tree structure to plan ferries’

paths. The single-hop collection allows a ferry to

directly contact each sensor. While the above solutions

are centralized, the distributed navigation considers

guiding data ferries by sensors in a distributed manner.

3.2.1. Recursive Planning

Given a set of sensors S and a data ferry F , [30]

considers planning F’s path to visit some sensors

in S such that the F’s moving distance (or time)

can be bounded by a pre-defined threshold, and the

network lifetime is maximized. Suppose that F will

move from a location la = (xa, ya) to another location

lb = (xb, yb). The idea is to recursively pick a turning

point between la and lb, until we can find a path

la → l1 → · · · → lm → lb such that the distance (or

time) bounded can be meet, and the network lifetime

is maximized when F moves along the path, where

l1, l2, · · · , lm are the turning points. A divide-and-

conquer scheme is proposed as follows:

1. Given two locations la and lb, we select a set of

possible turning points such that each point locates

at (xa+xb

2 , k∆y), where k is an integer and ∆y is a

constant such that every turning point will be inside

the ROI. Among these turning points, we select the

point lv and construct a path la → lv → lb such that

the network lifetime can be maximized when F moves

along that path (refer to [30] for the details about

calculating the network lifetime). Fig. 12(a) gives an

example, where there are 4 turning point and a path

la → lv2
→ lb is constructed.

2. We divide sensors into two groups according

to their distances to the line segments la → lv and

lv → lb (a sensor will favor the closer line segment).

For example, in Fig. 12(b), sensors s1, s2, and s3 are

in one group, while s4 and s5 are in another group.

3. For each cluster of sensors, we recursively

execute the above two steps, until the distance (or

time) bounded is reached. Fig. 12(c) shows the final

result, where there are two iterations.

(a) iteration 1: select one turning point

y

1
v

l

y

y

2
v

l

3v
l

4
v

l

(c) result of iteration 2

(b) iteration 1: clustering

turning point

sensor

a
l

b
l

y

y

y

2
v

l
sensor

a
l

b
l

1s
2s

3s

4s 5s

y

y

y a
l

b
l

F

cluster1 cluster2 cluster3 cluster4

y),
2

xx
(ba

y)-,
2

xx
(ba

Fig. 12. An example of the recursive planning method for a
data ferry.

3.2.2. Tree-Based Planning

Given a data ferry F and a routing tree T = (V, E)
rooted a sink, where V contains all sensors S and the

sink B, and E contains all tree edges, [31] considers

11

scheduling a cyclic path for F to visit a subset of nodes

V ′ ⊆ V , such that B ∈ V ′, the path length is not longer

than Lmax, and the overall hop count along T from

each sensor to a node in V ′ is minimized. We denote

by δTSP (V ′) the length of a path calculated by any

TSP solution to traverse all nodes in V ′. This algorithm

involves five following steps:

1. Initially, V ′ = {B}.

2. Then, we construct a candidate set W as follows:

For each v ∈ V − V ′, we add v to W if δTSP (V ′ ∪
{v}) ≤ Lmax. If W = ∅, the algorithm is terminated.

3. For each v ∈ W , we calculate its utility by

U(v) =

∑

si∈S dT (si,V ′) − ∑

si∈S dT (si,V ′ ∪ {v})
δTSP (V ′ ∪ {v}) − δTSP (V ′)

,

where dT (si,V ′) is the hop count along T from si to

a node in V ′. Here, the utility of v is the ratio of the

reduction of total hop count that data has to be relayed

along T to the increase of F’s length after adding v.

We then add the node with the maximum utility to V ′.
4. After adding a new node, we recalculate the

utility of each si ∈ V ′. If any si ∈ V ′ has U(si) = 0,

we remove it from V ′.
5. If all sensors are included in V ′, the algorithm is

terminated. Otherwise, we go to step 2.

Fig. 13 gives an example. We will include s1 and s2

into V ′ in the first two iterations. In the third iteration,

s3 is added. Since U(s1) becomes zero, we remove s1

from V ′. The final path is B → s2 → s3 → B.

iteration 1: iteration 2: iteration 3:

S1

S2 S3

S4

S5

S6 S7

}{s{B}V'

}s,s,{sW

1

321

}{s}s{B,V'

}s,{sW

21

32

}{s}s,s{B,V'

}{sW

321

3

S1

S2 S3

S4

S5
S6 S7

S1

S2 S3

S4

S5

S6 S7

Fig. 13. An example of the tree-based planning method for
a data ferry.

Reference [32] considers that sensors may aggre-

gate their data before sending to a data ferry. It

discusses how to schedule a ferry’s path such that

the path length is not longer than Lmax and the total

amount of data sent to the ferry can be minimized. The

work suggests planning a ferry’s path by adopting a

steiner tree [33] to aggregate sensing data.

3.2.3. Single-Hop Collection

The work [34] considers planning a ferry’s path to

travel in a WSN such that each sensor can directly

communicate with the ferry. Let L = {l1, l2, . . . , lk}
be a set of candidate polling points which contains

all sensor locations and some predefined locations. Let

N (li) be the set of sensors that the ferry can directly

communicate with when it arrives at point li ∈ L. The

goal is to find a subset of polling points L′ ⊆ L such

that each sensor belongs to at least one N (li), li ∈ L′,
and the total length is minimized. Initially, we set

L′ = {B}, where B is the base station. Then, a greedy

solution is proposed to iteratively add a polling point

li in L with the minimum covering cost τ(i), until all

sensors belongs to at least one N (li), li ∈ L′. Here,

we define τ(i) =
min{d(li,lj)|lj∈L′}

|N (li)∩U| , where U is the

set of sensors that are not in any N (li), li ∈ L′ and

d(li, lj) is the distance between two polling points li
and lj . Then, a TSP scheme can be applied for the data

ferry to visit all points in L′.
Reference [35] extends the above work by assuming

that each sensor is equipped with one antenna and the

data ferry is equipped with two antennas such that

the dada ferry may communicate with two sensors

simultaneously by a space division multiple access

(SDMA) technology. It redefines the service coverage

when the ferry stays at a location and then a similar

path planning scheme in [34] is adopted.

3.2.4. Distributed Navigation

Unlike the previous centralized approaches, some

efforts focus on designing a fully distributed protocol

to navigate a data ferry for data collection. Given

a set of sensors without location information and

a data ferry with an antenna system which can

accurately compute the direction of arrival (DOA) for

received signals, reference [36] proposes a distributed

navigation protocol to visit some representative

sensors. These representative sensors are called

navigation agents (NAs). Then, the data ferry is

navigated by the intermediate sensors between these

NAs, called intermediate navigators (INs). Fig. 14

shows an example. A 3-phase protocol is proposed:

1. Identification of NAs and INs: The set of NAs

should be a dominating set of this network. The

heuristic in [37] is adopted. First, a spanning tree

rooted at any sensor is formed. Second, nodes mark

themselves as NAs as follows:

• The root declares itself as a NA by broadcasting

a Declare-NA message.

12

intermediate navigator

navigation agent communication link

moving path

F

N

E

Y

MX

Z

L

C

G

W

H

B

A

I

Fig. 14. An example of distributed navigation by sensors.

• When a sensor receives a Declare-NA, it will

give up becoming a NA by broadcasting an

Accept-NA message.

• When a sensor receives Accept-NA from all

lower-depth neighbors, it will declare itself as

a NA by broadcasting a Declare-NA message.

This process is repeated until each sensor is either a

NA or a one-hop neighbor of a NA. Then, for each pair

of NAs, the nodes passed by the shortest path (in terms

of hop count) between these two NAs are marked as

INs.

2. Path computation: A path P is formed to visit

each NA. The work proposes adopting the ant colony

optimization-TSP solution [38].

3. Navigation: Finally, the data ferry travels along

P with the assistance of INs based on a DOA model.

When visiting a NA, both NA and those sensors

dominated by NA will send their data to the ferry.

Reference [39] extends the above protocol to the

k-hop data collection scheme where sensors that are

within k hops from a NA can send their data to the NA

(and thus the ferry). To reduce the latency to deliver

data to a NA, a sensor can pre-transmit its data to a

sensor that is 1-hop away from a NA.

3.3. Summary of Path Planning

Table II summarizes the path-planning methods for

data ferries. While most methods consider centralized

approaches, [36, 39] uses sensors to navigate a data

ferry in a distributed manner. References [30, 31,

32, 39] consider that data sent from sensors to a

data ferry can be multi-hop transmission; other work

[26, 27, 28, 29, 34, 35, 36] consider that ferries

should directly communicate with each sensor. For

the issue of communication time, [26, 27] extend

the communication time of sensors to meet their

bandwidth requirements, [29] minimizes the total

waiting time of a ferry at each point along the path,

and [35] adopts an physical layer technology to help

a ferry quickly collect data from sensors. For energy

concern, [30] balances the traffic loads among sensors,

while [31, 32, 34, 35, 36, 39] reduce the total energy

consumption of sensors. For the length concern, [30,

31, 32] give constraints on path lengths, while [26, 27,

28, 29, 34, 35, 36, 39] try to minimize path lengths.

4. Platforms and Applications of Mobile

WSNs

Below, we review some interesting platforms and

applications. Mobile Emulab [40] is a robotic testbed

developed for mobile WSNs. Mobile sensors are

robots that carry single-board computers and sensing

devices. Remote users can control these mobile

sensors in a real-time and interactive way, or through

a script. Fig. 15 shows its system architecture. The

video cameras will overlook the ROI and track

mobile sensors. Snapshots are periodically reported

to the vision system. Through image processing, the

positions of mobile sensors are determined. The robot

system can send motion commands to mobile sensors,

which can report their sensing data to the robot

system. On the other hand, the robot system can

query the current positions of mobile sensors via the

robot-backend system. Remote users can send motion

requests to control mobile sensors, or send event

requests to obtain the ROI’s status.

Emulab interface

motion requests

 event requests

position data

event reports

position data

vision system

user

video cameras

 motion requests

position data position queries

event reports

mobile sensors

robot-backend system

snapshots

robot system

motion commands sensing data

Fig. 15. The system architecture of Mobile Emulab.

13

references category distributed multi-hop communication energy path

scheme collection time issue constraint

single ferry [26] data relaying
√

multiple ferries [27] data relaying
√

touching points [28] data relaying

probability [29] data relaying
√

recursive [30] network longevity
√ √ √

routing tree [31] network longevity
√ √ √

aggregation [32] network longevity
√ √ √

1-hop collection [34] network longevity
√

SDMA [35] network longevity
√ √

1-hop navigation [36] network longevity
√ √

k-hop navigation [39] network longevity
√ √ √

Table II. Comparison of path-planning methods for data ferries.

Visual surveillance systems typically collect a large

amount of images from video cameras, which require

a huge computation cost to analyze. Introducing the

intelligence of mobile WSNs can help reduce such

overheads while supporting more advanced, context-

rich services. The iMouse system [41] is proposed

to integrate static sensors and mobile sensors, as

Fig. 16(a) shows. Static sensors continuously monitor

the ROI and notify the server when detecting

abnormal events. Once receiving such notifications,

the server will dispatch mobile sensors to take

snapshots at event locations. Thus, iMouse can avoid

recording unnecessary images when nothing happens.

Fig. 16(b) shows the components of a mobile sensor,

which consists of a LEGO car carrying a MICAz

mote, a webcam, an 802.11 WLAN card, and a

Stargate. Fig. 16(c) shows an experimental grid-link

deployment.

Robomote [42] is a mobile platform with MICA2

motes and some infrared sensors to detect obstacles.

Two case studies have been tested on this platform.

Based on the sensor-based path-planning scheme [43],

it uses one Robomote to move along a desired contour

constructed by querying neighboring sensor readings.

The second case is to implement a tracking algorithm

proposed in [44] to locate the light source by a

Robomote.

The work in [45] uses a WSN to implement the

pursuer-evader game. There is a moving object (called

evader) and a data ferry (called pursuer). The evader

roams around arbitrarily and the pursuer tries to

intercept the evader based on the data reported by

static sensors. One challenge for static sensors is how

to quickly tell the pursuer where the evader is. To

address this issue, static sensors detecting the evader

�����������	
���	��

�	���������	

�����

�������
�
�	��

���
����

������������	
 ���	���

������

����
�����	�

	��

����	������������

��	
�������������������

����	����	��������	����	����

�	������������������� ���

�!��	������"�����

��	
���������������

�	���������	
�
�������	����	�

���
�����
��

�����������	

Fig. 16. The iMouse system.

will elect a leader to report to the pursuer. Such reports

are sent to the moving pursuer through a landmark

routing [46], which operates over a tree-building

mechanism. Finally, the pursuer will determine the

interception path to chase the evader. The platform is

developed based on MICA2 motes, an 802.11 WLAN

card, and high-precision differential GPS devices.

The work in [47] proposes an implementation of

data ferries. Two critical issues are addressed: (1) how

to reduce the speed of a data ferry when its MAC

layer encounters interference and collision, and (2)

how to construct the relaying path from each sensor to

a data ferry’s moving path. To address the first issue,

14

this work designs an adaptive speed control algorithm

to determine whether a data ferry should slow down

depending on its current data deliver rate. Specifically,

a data ferry has three speeds: SLOW, STOP, and FAST.

A sensor can indicate how much data that it wishes

to transfer in a packet header. Then, the data ferry

can select a speed accordingly. To address the second

issue, a data ferry can broadcast an interest message

to help sensors learn their distances to the data ferry’s

moving path.

5. Conclusions

Static WSNs have limitations on supporting multiple

missions and handling different situations when

network conditions change. Introducing mobility to

WSNs can improve the network capability and thus

relieve the above limitations. This article provides a

comprehensive survey of current works on mobile

WSNs. Various mobility management and path-

planning schemes have been discussed. Also, several

mobile platforms and applications have introduced.

Acknowledgment

Y.-C. Tseng’s research is co-sponsored by MoE ATU

Plan, by NSC grants 96-2218-E-009-004, 97-3114-E-

009-001, 97-2221-E-009-142-MY3, and 98-2219-E-

009-005, by MOEA 98-EC-17-A-02-S2-0048 and 98-

EC-17-A-19-S2-0052, and by ITRI, Taiwan.

References

1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Comm. Magazine,
vol. 40, no. 8, pp. 102–114, 2002.

2. A. Rapaka and S. Madria, “Two energy efficient algorithms
for tracking objects in a sensor network,” Wireless Comm. and

Mobile Computing, vol. 7, no. 6, pp. 809–819, 2007.
3. F. Hu, Y. Xiao, and Q. Hao, “Congestion-aware, loss-

resilient bio-monitoring sensor networking for mobile health
applications,” IEEE J. Selected Areas in Comm., vol. 27, no. 4,
pp. 450 – 465, 2009.

4. H. Liu, P. Wan, and X. Jia, “Maximal lifetime scheduling for
sensor surveillance systems with k sensors to one target,” IEEE

Trans. Parallel and Distributed Systems, vol. 17, no. 12, pp.
1526–1536, 2006.

5. M. Tubaishat, P. Zhuang, Q. Qi, and Y. Shang, “Wireless
sensor networks in intelligent transportation systems,”
Wireless Comm. and Mobile Computing, vol. 9, no. 3, pp. 287–
302, 2009.

6. S.S. Dhillon and K. Chakrabarty, “Sensor placement for
effective coverage and surveillance in distributed sensor
networks,” Proc. IEEE Wireless Comm. and Networking Conf.,
pp. 1609–1614, 2003.

7. G. Cao, G. Kesidis, T.F.L. Porta, B. Yao, and S. Phoha,
“Purposeful mobility in tactical sensor networks,” Sensor

Network Operations, 2006.

8. D. Tian and N.D. Georganas, “A coverage-preserving node
scheduling scheme for large wireless sensor networks,”
Proc. ACM Int’l Workshop Wireless Sensor Networks and

Applications, pp. 32–41, 2002.
9. Y.C. Wang, C.C. Hu, and Y.C. Tseng, “Efficient deployment

algorithms for ensuring coverage and connectivity of wireless
sensor networks,” Proc. IEEE Int’l Conf. Wireless Internet, pp.
114–121, 2005.

10. Y. Zou and K. Chakrabarty, “Sensor deployment and target
localization in distributed sensor networks,” ACM Trans.

Embedded Computing Systems, vol. 3, no. 1, pp. 61–91, 2004.
11. N. Heo and P.K. Varshney, “Energy-efficient deployment of

intelligent mobile sensor networks,” IEEE Trans. Systems,

Man, and Cybernetics–Part A, vol. 35, no. 1, pp. 78–92, 2005.
12. N. Aitsaadi, N. Achir, K. Boussetta, and B. Gavish, “A

gradient approach for differentiated wireless sensor network
deployment,” Proc. IFIP Wireless Days Conf., 2008.

13. G. Wang, G. Cao, and T.F.L. Porta, “Movement-assisted
sensor deployment,” IEEE Trans. Mobile Computing, vol. 5,
no. 6, pp. 640–652, 2006.

14. F. Aurenhammer, “Voronoi diagrams–a survey of a funda-
mental geometric data structure,” ACM Computing Surveys,
vol. 23, no. 3, pp. 345–405, 1991.

15. Y.C. Wang, C.C. Hu, and Y.C. Tseng, “Efficient placement and
dispatch of sensors in a wireless sensor network,” IEEE Trans.

Mobile Computing, vol. 7, no. 2, pp. 262–274, 2008.
16. H.W. Kuhn, “The Hungarian method for the assignment

problem,” Naval Research Logistics Quarterly, vol. 2, pp. 83–
97, 1955.

17. Y.C. Wang and Y.C. Tseng, “Distributed deployment schemes
for mobile wireless sensor networks to ensure multilevel
coverage,” IEEE Trans. Parallel and Distributed Systems,
vol. 19, no. 9, pp. 1280–1294, 2008.

18. S. Zhou, M.Y. Wu, and W. Shu, “Finding optimal
placements for mobile sensors: wireless sensor network
topology adjustment,” Proc. IEEE Circuits and Systems Symp.

Emerging Technologies: Frontiers of Mobile and Wireless

Comm., pp. 529–532, 2004.
19. P. Basu and J. Redi, “Movement control algorithms for

realization of fault-tolerant ad hoc robot networks,” IEEE

Network, vol. 18, no. 4, pp. 36–44, 2004.
20. G. Wang, G. Cao, P. Berman, and T.F.L. Porta, “Bidding

protocols for deploying mobile sensors,” IEEE Trans. Mobile

Computing, vol. 6, no. 5, pp. 515–528, 2007.
21. Z. Butler and D. Rus, “Event-based motion control for mobile-

sensor networks,” IEEE Pervasive Computing, vol. 2, no. 4,
pp. 34–42, 2003.

22. G. Wang, G. Cao, T.F.L. Porta, and W. Zhang, “Sensor reloca-
tion in mobile sensor networks,” Proc. IEEE INFOCOM, pp.
2302–2312, 2005.

23. A. Verma, H. Sawant, and J. Tan, “Selection and navigation of
mobile sensor nodes using a sensor network,” Pervasive and

Mobile Computing, vol. 2, no. 1, pp. 65–84, 2006.
24. Y.C. Wang, W.C. Peng, M.H. Chang, and Y.C. Tseng,

“Exploring load-balance to dispatch mobile sensors in wireless
sensor networks,” Proc. IEEE Int’l Conf. Computer Comm.

and Networks, pp. 669–674, 2007.
25. P. Ballal, A. Trivedi, and F. Lewis, “Deadlock avoidance policy

in mobile wireless sensor networks with free choice resource
routing,” International Journal of Advanced Robotic Systems,
vol. 5, no. 3, pp. 279–290, 2008.

26. W. Zhao and M.H. Ammar, “Message ferrying: proactive
routing in highly-partitioned wireless ad hoc networks,” Proc.

IEEE Workshop Future Trends of Distributed Computing

Systems, pp. 308–314, 2003.
27. W. Zhao, M. Ammar, and E. Zegura, “Controlling the mobility

of multiple data transport ferries in a delay-tolerant network,”
Proc. IEEE INFOCOM, pp. 1407–1418, 2005.

28. B. Yuan, M. Orlowska, and S. Sadiq, “On the optimal robot

15

routing problem in wireless sensor networks,” IEEE Trans.

Knowledge and Data Engineering, vol. 19, no. 9, pp. 1252–
1261, 2007.

29. M.M.B. Tariq, M. Ammar, and E. Zegura, “Message ferry
route design for sparse ad hoc networks with mobile nodes,”
Proc. ACM Int’l Symp. Mobile Ad Hoc Networking and

Computing, pp. 37–48, 2006.
30. M. Ma and Y. Yang, “SenCar: an energy-efficient data gath-

ering mechanism for large-scale multihop sensor networks,”
IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 10,
pp. 1476–1488, 2007.

31. G. Xing, T. Wang, Z. Xie, and W. Jia, “Rendezvous planning in
wireless sensor networks with mobile elements,” IEEE Trans.

Mobile Computing, vol. 7, no. 12, pp. 1430–1443, 2008.
32. G. Xing, T. Wang, W. Jia, and M. Li, “Rendezvous design

algorithms for wireless sensor networks with a mobile base
station,” Proc. ACM Int’l Symp. Mobile Ad Hoc Networking

and Computing, pp. 231–240, 2008.
33. V. Vazirani, Approximation Algorithms. Springer-Verlag,

2001.
34. M. Ma and Y. Yang, “Data gathering in wireless sensor

networks with mobile collectors,” Proc. IEEE Int’l Parallel

and Distributed Processing Symp., pp. 1–9, 2008.
35. M. Zhao, M. Ma, and Y. Yang, “Mobile data gathering with

space-division multiple access in wireless sensor networks,”
Proc. IEEE INFOCOM, pp. 1283–1291, 2008.

36. J. Rao, T. Wu, and S. Biswas, “Network-assisted sink
navigation protocols for data harvesting in sensor networks,”
Proc. IEEE Wireless Comm. and Networking Conf., pp. 2887–
2892, 2008.

37. B. Han, H. Fu, L. Lin, and W. Jia, “Efficient construction of
connected dominating set in wireless ad hoc networks,” Proc.

IEEE Int’l Conf. Mobile Ad Hoc and Sensor Systems, pp. 570–
572, 2004.

38. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm

Intelligence. Oxford university press, 1999.
39. J. Rao and S. Biswas, “Joint routing and navigation protocols

for data harvesting in sensor networks,” Proc. IEEE Int’l Conf.

Mobile Ad Hoc and Sensor Systems, pp. 143–152, 2008.
40. D. Johnson, T. Stack, R. Fish, D.M. Flickinger, L. Stoller,

R. Ricci, and J. Lepreau, “Mobile Emulab: a robotic wireless
and sensor network testbed,” Proc. IEEE INFOCOM, 2006.

41. Y.C. Tseng, Y.C. Wang, K.Y. Cheng, and Y.Y. Hsieh, “iMouse:
an integrated mobile surveillance and wireless sensor system,”
IEEE Computer, vol. 40, no. 6, pp. 60–66, 2007.

42. K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal,
and G. Sukhatme, “Robomote: enabling mobility in sensor
networks,” Proc. IEEE Int’l Symp. Information Processing in

Sensor Networks, pp. 404–409, 2005.
43. H. Choset, I. Konukseven, and A. Rizzi, “Sensor based

planning: a control law for generating the generalized Voronoi
graph,” Proc. IEEE Int’l Conf. Advanced Robotics, pp. 333–
338, 1997.

44. A. Dhariwal, G. Sukhatme, and A. Requicha, “Bacterium-
inspired robots for environmental monitoring,” Proc. IEEE

Int’l Conf. Robotics and Automation, pp. 1436–1443, 2004.
45. C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof,

S. Sastry, and D. Culler, “Design and implementation
of a sensor network system for vehicle tracking and
autonomous interception,” Proc. IEEE European Workshop

Sensor Networks, pp. 93–107, 2005.
46. P. Tsuchiya, “The landmark hierarchy: a new hierarchy for

routing in very large networks,” ACM SIGCOMM Computer

Communication Review, vol. 18, no. 4, pp. 35–42, 1988.
47. A. Somasundara, A. Kansal, D. Jea, D. Estrin, and

M. Srivastava, “Controllably mobile infrastructure for low
energy embedded networks,” IEEE Trans. Mobile Computing,
vol. 5, no. 8, pp. 958–973, 2006.

Authors’ Biographies

You-Chiun Wang received his BEng
and MEng degrees in Computer Science and Information
Engineering from the National Chung-Cheng University
and the National Chiao-Tung University, Taiwan, in
2001 and 2003, respectively. He obtained his Ph.D.
degree in Computer Science from the National Chiao-
Tung University, Taiwan, in October of 2006. Currently,
he is a postdoctoral research fellow at the Department
of Computer Science, National Chiao-Tung University,
Taiwan. His research interests include wireless network
and mobile computing, communication protocols, and
wireless sensor networks. Dr. Wang served as a Local
Arrangement Vice Chair in the IEEE VTS Asia Pacific
Wireless Communications Symposium (APWCS), 2007, as
a Guest Editor for The Computer Journal of the special
issue on ”Algorithms, Protocols, and Future Applications of
Wireless Sensor Networks”, 2009, as a Member in the Editor
Board of the IARAI International Journal on Advances in
Networks and Services, 2009-present, and as TPC members
of several international conferences. He is a member of the
IEEE and the IEEE Communication Society.

Fang-Jing Wu received the B.S.
degree in Mathematics form the Fu Jen Catholic University
and the M.S. degree in Computer Science and Information
Engineering from the National Chiao-Tung University,
Taiwan, in 2001 and 2004, respectively. She was a
research assistant in the Department of Communication
Engineering, National Chiao-Tung University, Taiwan, in
2004. She is currently pursuing Ph.D. in the Department
of Computer Science, National Chiao-Tung University,
Taiwan. Her current research interests are primarily in
pervasive computing and wireless sensor networks.

Yu-Chee Tseng obtained his Ph.D.
in Computer and Information Science from the Ohio State
University in January of 1994. He is Professor (2000-
present), Chairman (2005-present), and Associate Dean

16

(2007-present) at the Department of Computer Science,
National Chiao-Tung University, Taiwan. He is also Adjunct
Chair Professor at the Chung Yuan Christian University
(2006-present).

Dr. Tseng received Outstanding Research Award, by
National Science Council, ROC, twice in periods 2001-
2002 and 2003-2005, Best Paper Award (Int’l Conf. on
Parallel Processing, 2003), the Elite I. T. Award in 2004,
and the Distinguished Alumnus Award, by the Ohio
State University, in 2005. His research interests include
mobile computing, wireless communication, and parallel
and distributed computing.

Dr. Tseng serves on the editorial boards for Telecommu-
nication Systems (2005-present), IEEE Trans. on Vehicular
Technology (2005-2009), IEEE Trans. on Mobile Computing
(2006-present), and IEEE Trans. on Parallel and Distributed
Systems (2008-present).

17

