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Abstract: The fully accomplished standardization of the new mobile generation has led to the
deployment of fifth-generation (5G) wireless networks to gratify enormous traffic volume for Internet
services. The current centralized mobility system could not be sufficient to manage an explosive
increase in data volume and is considered a steadily rising issue in modern wireless communication. A
new technique that can affluently handle traffic problems and completely avoid network breakdown
chances is indispensable. Recently, distributed mobility management (DMM) was introduced to
overcome the inevitable obstacles that destructively impact the existing networks. Specifically, a
novel design based on the deployment of distributed mobility anchors, closer to the terminal points,
was introduced. Several works have been proposed to build DMM solutions with different focuses
for 5G-and-beyond networks (B5G), which are also referred to as sixth-generation solutions (6G).
In this paper, we present the potential and benefits of flat network design for efficient and fast
routing of traffic and furnish the effectiveness of the scheme toward mobility management in B5G by
delineating recent research works. We also present the current limitations, challenges, and future
research directions for seamless mobility to achieve the desired objectives in the current 5G and
upcoming 6G cellular communications.

Keywords: mobility management; network flattening; distributed mobility management (DMM); 5G
and beyond (B5G); 6G

1. Introduction

With the globalization of mobile services, the current fifth-generation (5G)-and-beyond
mobile networks are predicted to exploit radio resources via several access technologies
for diversified services [1]. In parallel, mobile users and intelligent machines accessing
data services are increasing in leaps and bounds. The types of applications and services
accessed by devices are included but not limited to heavy-bandwidth multimedia sources,
immersive media—such as augmented reality (AR) [2,3] and virtual reality (VR) [4]—and
traffic handling from a large cluster of sensors, i.e., Internet of Things (IoT) [5,6], interfer-
ence management [7,8], routing [9], and so on. The 5G-and-beyond (B5G) network and the
upcoming 6G network is thus considered to be an extremely heterogeneous ecosystem of
various technologies, including the following: ultra-dense networks (UDN) [10], device-
to-device (D2D) communication [11,12], mmWave approach [13,14], low-power nodes
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(LPNs) [15], IoT-based smart cities [16], multitier network architecture [17,18], vehicular
networks [19], ad hoc network [20], Internet of Everything (IoE) [21], network routing [22],
network slicing [23], multiple-input and multiple-output (MIMO) platforms [24], and aerial
platforms [25]. The wide variety of many use cases in the 5G heterogeneous network
(HetNet) greatly increases the load on mobility management functions as compared with
third-generation (3G) and fourth-generation (4G) long-term evolution (LTE) [26]. Princi-
pally, mobility management is the procedure that maintains data information at the location
of smart devices and controls their link connections when commuting between coverage
areas [27]. The mobility protocols ensure the delivery of useful data and control signals
via a radio interface link to the desired user [28]. However, to provide seamless mobility
in a multitier HetNet system for all radio-connected smart devices, a uniform network
deployment is impractical [29]. Hence, the 5G and forthcoming cellular networks require
flexibility in network topology, ultra-reliability in handover mechanism, and modification
in management protocols, to guarantee efficient provisioning of anticipated services [30,31].

Under worldwide Internet connectivity requests from the users and their convergence
with cellular carriers, cellular access networks have been experiencing abundant new chal-
lenges and demanding various extensions in mobility protocols [20]. Thus, the modification
of current networks for better handover performance, overhead cost, routing process, and
other mobility-related processes is mandatory to meet the requirements of IoT-based smart
wireless devices [32]. In mobile Internet, the mounting concern is the deployment of mo-
bility support in the content delivery network (CDN) environment [33]. In the CDN, the
content servers are placed closer to the access network to provide a suboptimal path to
the mobile nodes (MNs) in close range. The CDN needs an efficient framework for robust
mobility management protocols [34].

Witnessing the explosive growth in mobile Internet traffic in NR 5G and mobility
support limitations, the current centralized network design raises a major challenge in
handover management and performance enhancement [35]. Particularly, mobility manage-
ment for end-users with frequent roaming and location changes, applications necessities,
and preferences are crucial [36]. The centralized architecture is deficient in transparent
data path management to the Internet protocol (IP) stack of the MN [37]. In this central-
ized architecture, all the IP traffic flows of the MN must pass through the same mobility
process irrespective of importance. In Figure 1, the end-to-end data path between the
communication peers (i.e., Mobile-1 and Mobile-2), is compelled to traverse the packet
data network gateway (PGW) of the MNs core network instead of taking the most optimal
path provided by local IP routing or direct link. Consequently, it threatens single points
of failure, suboptimal routing, unnecessary access to mobility resources, and scalability
problems. This design favors simplicity but increases the performance cost and overall
latency, completely undesirable for 5G and beyond radio access carriers.

Therefore, it is fundamental to contemplate the momentous technological advance-
ment and accessing products, novel mission-critical cases, and predecessor’s limitations [38].
The future 5G networks demand a new and stringent mobility management mechanism [39].
The rising trend for the mobility process in cellular architecture is to become flattered and
include minimum hierarchy levels [40]. The unconventional changes to current mobility
protocols ensure reliability, low latency, and ease in network operability [41]. The new
distributed mobility management (DMM) technique is essential, and can affluently handle
traffic problems, avoid network breakdown chances, and overcome the inevitable obstacles
that destructively impact the existing networks [42]. It may integrate the needed exten-
sion with local content servers and the flat network architecture to simplify deployment
decisions and enhance the overall performance [43].
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Most of the currently developed IP mobility solutions are derived from the mobile
Internet protocol (MIP) principles. In MIP, a mobility anchor, i.e., a home agent (HA),
maintains the MNs’ bindings, and data traffic is then encapsulated between an MN or its
respective access point (AP) [44,45]. The MIP-based solutions have been implemented in
a centralized design and supported the mobility contexts as well as traffic encapsulation.
Such centralized deployment of mobility management gives an opportunity to optimally
route data packets to an MN without the consideration of the MN’s location. Additionally, it
maintains credible IP session connectivity during the handovers mechanism, i.e., when the
MN changes its point of attachment. However, in comparison with the DMM mechanisms,
the existing centralized approach possesses several challenges, especially in scalability, cost,
and transmission delay [46].

The summary of paper structure and organization is depicted in Figure 2.
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2. Motivation and Contribution

In recent years, DMM has emerged as a potential mechanism to minimize the everlast-
ing centralized issues prosperously. It was first presented by the Internet Engineering Task
Force (IETF) as a new concept of a flatter system [47]. The DMM-based approaches preserve
the current IPv6 mobility management protocols along with control-plane/data-plane split
to meet the 5G requirements [48]. For example, mobility management functions and roles
can be distributed in the data plane, while the control plane could be either distributed or
centralized [49]. It is considered the best alternative to centralized mobility management
(CMM) by enabling the anchoring of data traffic closer to the MNs’ point of attachment,
conducing flattening mobile network design. The unique DMM approach allows the MN
to perform multi-connectivity with distributed mobility anchors, optimizing data packet
routing as the MN moves and changes its connected base point [50]. Lately, there are many
studies have been performed to realize various aspects of the flat IP architectural concept.
For instance, some authors have presented a DMM solution for efficient handling of mobile
video traffic [51,52] and other researchers have provided an overview of standards and
proceeding on DMM [53–55]. Similarly, researchers in [56] extensively discussed the DMM
designs, user impacts, and network performance. However, no one from the researcher
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community has critically presented the flatter network concept from the perspective of
DMM consciences and issues for transparent data routing.

Given that mobility management is a challenging task in the multi-scenario radio
environment, this paper demonstrates the mobility management issues by considering flat
network architecture with DMM arrangements, operations, and recent literature works,
as shown in Figure 3. This article presents mobility management problems and proposes
optimum solutions from network flattening and the DMM framework.
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The details of all the acronyms and their meanings have been explained in Abbreviations.

3. Network Flattening

Network flattening designs enable direct IP connectivity for the users from the closest
gateway to co-located base stations (BSs) [57]. In practice, a classic example of such a
flat architecture is the wireless fidelity (Wi-Fi) APs with its co-located access gateway, i.e.,
directly connected to the Internet (without tunneling to the core network) [58]. One of
the critical enhancement cases in NR 5G and the forthcoming 6G network remains largely
on deploying a complete, flat, IP-based system. In a flatter access design, thousands of
multiple, high-definition (HD) application data traffic can be easily offloaded within the
local AP area [59]. The new design would be helpful in the massive reduction in signaling
cost, data routing end-to-end latencies, operational complexities, and localization [60].
Among all other advantages, the most impactful is effectiveness in mobility and active
routing of 1000-fold rise data traffic management [61]. Simultaneously, it helps minimize the
probability of packet data loss and traffic congestion at the core network besides enhancing
the quality of experience (QoE).

3.1. Background

Mobile operators have been searching for smart and efficient ways to reduce revenue
costs and extend their network capacities with data offloading techniques in flatter de-
sign [62]. Several engineering firms, Internet service providers, standardization authorities,
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and research pundits presented many ideas focusing on different aspects of mobility sup-
port. In this context, the Third-Generation Partnership Project (3GPP) has also presented
two IP schemes, i.e., local IP access (LIPA) and selected IP traffic offload (SIPTO) [63]. The
basic idea is to enable users to access data from locally accessible peering locations via
LPNs, thus freeing up cellular system capacity [64]. The 3GPP suggested solutions are
productive to alleviate heavy data volume pressure and simplify mobility management
over the conventional mobile architecture. It is mainly because, in the 3GPP 3G/4G hi-
erarchically centralized design, total data traffic volume is routed via a centrally placed
mobility anchor, i.e., an IP mobility anchor in an IP-based system [65]. Then, the packet
data network gateway (PGW) in a 3GPP evolved packet core (EPC) aggregates traffic from
several edge nodes and acts as a link between the operators and external IP networks.
Principally, PGW is responsible for assigning IP addresses and trailing the movements of
MNs within the IP topology. It also ensures that MNs must always be reachable at their
current point of attachment (PoA) by using traffic tunneling.

3.1.1. GPP LTE LIPA/SIPTO Mechanism

The 3GPP-proposed LIPA and SIPTO approaches were introduced in 4G to alleviate the
traffic load of the cellular core network [66]. Both mechanisms are briefly discussed below.

(a) SIPTO: The SIPTO technique enables an operator to offload certain types of data
traffic at a network node that is optimally closer to the MN point of connection. The
operation is conducted by selecting the reliable serving gateway (S-GW) and PGW
that are also geographically near the MN’s access point, as shown in Figure 4a [67].

(b) LIPA: The LIPA technique enables an MN connected to the LPN to connect to other
local IP networks in proximity avoiding the operator’s core network being crossed by
the user plane system, as shown in Figure 4b. In this method, a local gateway (L-GW)
is included, directly connected with the femtocell that acts as a PGW (LTE). When the
LIPA default bearer (LTE) is configured, the MN data traffic flows are directly rerouted
to the L-GW and then move into the local network without channeling through the
wireless access or core network. Thereby, the LIPA approach is compatible with any
smart device without executing modifications in software design [68].

In the 3GPP standardization Release-10, both LIPA and SIPTO have been implemented,
but are provided with minimal support in mobility and offloading issues [69]. The reason
for the persistence of the issues is largely due to the bearer’s disappearance whenever the
mobile disconnects from the femtocell. In the subsequent Release-11, a working theme
on LIPA mobility and SIPTO at the local network (LIMONET) was presented to assist
partial mobility support to the proposed approaches. Here, SIPTO mobility has remained
unproductive in the case where S-GW and PGW are in the radio access network (RAN) site;
additionally, it was not taken into the account within the local network level. Nonetheless,
the LIPA mobility technique is applied for handovers between LPN femtocells by using the
same L-GW [70].

In view of the proliferation of smart, intelligent equipment, many APs in close range
create a dense network environment. It is forecasted that hundreds of different sizes of
APs would be in the range of 1 km2 terrestrial area in the next few years and coined
the term UDN [71]. The current 5G cellular services sharply respond to the ongoing
useful data demand with higher throughput and low latency. Yet, in the near future,
especially for 6G cellular systems where every intelligent device or machine will be in
contact with each other—such as D2D, aerial platforms, MNs, and vehicle-to-vehicle
(V2V) communication [72,73], etc.—trouble will occur in data traffic management. The
extreme densification of various smart peripherals in a multitier HetNet design and massive
data load could have been the reason for complete chaos in the core network and heavy
intrusions [74]. In consideration of traditional CMM design in the HetNet scenario, the
probabilities of frequent data corruption, network breakdown, latency, and congestion
are extremely high and devastative. For the management of data resources for various
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applications and new wireless services, plus to avoid the various core network hurdles, a
flat architectural system is of the utmost importance.
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3.1.2. PMIPv6 Mobility in the 3GPP EPC Design

Proxy Mobile Internet Protocol version 6 (PMIPv6) was deemed by 3GPP to utilize
in LTE system architecture to support IP mobility management [75]. In this work, S-GW
is used as the mobile access gateway (MAG) and PGW is complemented as the local
mobility anchor (LMA) of PMIPv6, whereas the backhaul interfaces S1 and X2 handovers
perform the same as the conventional LTE [76]. Another important aspect of PMIPv6 in
LTE architecture is that it uses generic routing encapsulation (GRE) tunneling instead of
general packet radio service (GPRS) tunneling between S-GW and PGW. It also exchanged
proxy-binding update (PBU) and proxy-binding acknowledgment (PBA) messages between
S-GW and PGW rather than “modify bearer request” and response messages. The format
of PMIPv6 in the 3GPP EPC model is shown in Figure 5.
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3.1.3. Advantages of PMIPv6 over MIPv6

The mobility MIPv6 protocols have been implemented in a centralization-based mo-
bility mechanism in mobile access networks. It showed the plausibility of maintaining MN
applications and displayed sufficient support for moving terminals. However, with the
dramatic changes in traffic dynamics of wireless communication, the abilities of MIPv6
are considered unreliable and PMIPv6 was introduced to overcome the shortcomings of
the existing mobility design [77,78]. PMIPv6 exhibited three major advantages over the
conventional mechanism that are discussed below.

1. It significantly minimized HO-related signaling overheads by evading tunneling
overheads over the air along with remote binding updates either to the correspondent
node (CN) or HA.

2. By keeping the MN’s home address unchanged, it reduced the possibility of malicious
attacks that could expose the precise position of the MN.
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3. Latency in IP HOs limits the performance by keeping the mobility management
functions within the PMIPv6 domain. It largely avoided remote service, which is
critical in initiating long services.

Table 1 depicts the baseline comparison between two IPv6 schemes, i.e., MIPv6 and
PMIPv6, based on numerous protocol criteria.

Table 1. Differences between MIPv6 and PMIPv6.

Protocol Criteria MIPv6 PMIPv6

Latency during HO Not Good Good
MN enhancement Possible Not Possible

Mobility scope Universal Local
Location management Possible Possible

Mobility anchor HA LMA
Signaling agent FA MAG

3.2. Literature Related to Mobility Management in Network Flattering

The recent research work on mobility management in flatter access networks with
different categorizations is summarized below.

3.2.1. SDN-Based Mobility Management

Software-defined network (SDN)-based approaches are designed for flexible and
dynamic controlling and monitoring of network assignments via software. In cellular net-
works, an SDN is responsible for maximizing the general routing protocols in networking,
helping to update the hardware components used for observation and generating critical
analysis reports for managing all networking components. We have discussed some of the
SDN-based mobility management methods from the recent literature focused on managing
and controlling the networking components.

For example, the authors in [79] focused on handling heavy data traffic in SDN-EPC
cellular systems by using cloud computing and functions virtualization approaches. The
results achieved reliable routing with low handover (HO) latency, but the technique could
be tested for a higher density of the users, whereas a call control flow for the HO case in the
current mobile architecture was evaluated [80]. The proposed SDN plus mobile network
(S+ MN) solution has managed to significantly reduce signaling and delay problems to
the tunnel and routing-based IP mobility management approaches. The authors in [81]
have implemented a network based partially on the DMM-SDN solution, considering
the growth in maintaining session continuity, performance, and scalability. The results
confirmed that the suggested scheme provides fundamental advantages in the HetNet
access network. Similarly, a new protocol type, on-demand mobility, was used, focusing on
HO and signaling cost issues in [82]. The analytical results validated the sharp reduction in
HO latency and up to 50% signaling cost, whereas in [83] an SDN-based fast HO optimum
routing in DMM (SDN-FHOR-DMM) scheme was proposed for vehicle communication. It
improved current SDN-based mobility management protocols in terms of signaling cost,
HO delay, and loss of packets.

3.2.2. Performance in Dense Network

To increase the network reliability and maintain the latency requirement in an ultra-
dense user environment in wireless networks, the flat IP design showed high expectations
of efficiently managing the available resources, mobility scenarios, and network quality.
Because of the need in the current densely deployed radio communication setting to manage
arbitrary heavy data applications, the authors in [84] introduced a distributed dynamic
mobility management framework for the flat IP system. The outcome of the analysis
proved that the proposed solution is effective for flat architectures and significantly avoids
specific mobility functions in access gateway or core network nodes. Similarly, imitation
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issues due to the high density of users and traffic demand in the MIPv6 protocol have been
discussed in [85]. Flat access and mobility architecture (FAMA) was presented under the
MIPv6 protocol and accomplished better network performance because of the short HO
duration and mobility patterns for MNs. Likewise, researchers in [86] presented IP mobility
performance issues in a centralized network. It proposed a terminal-centric distribution
and orchestration approach by placing the smart intelligence on the MN and achieving
higher 5G networks efficiency. Few authors decided to increase mobility suppleness and
performance by using a distributed dynamic MIPv6 (DDM) framework [87]. The empirical
studies showed that the proposed DDM outperforms MIPv6 in terms of network resources.

3.2.3. Security in Packet Transmission

Security is an essential element in any data transmission network to avoid malicious
attacks, loss of confidentiality and privacy, and other harmful attacks. It is a serious
concern in wireless access networks, especially when sensor nodes are deployed in the
hostile surrounding area. A study was conducted by the researchers in [88] on the false
data injection in the flat wireless sensor network (WSN) [89]. An integrated routing and
authentication protocol was attempted to achieve multiple goals. The designed technique
enabled better routing guidance, the discovery of shared keys between two nodes, and
routing paths plus key graphs, updated in an integrated step. A DMM-based, HO-secure
and efficient protocol (DMM-SEP) was used, and it commendably minimized the privacy
issues and defended against redirection attacks [90].

Since centralized mobility support is undesirable for data contents in 5G-and-beyond
cellular wireless systems, it is essential to handle the locations of MNs in a distributed way,
but in a highly secure and fault-tolerant environment. An analytical model applying secure
and fault-tolerant distributed location management was presented [91]. The evaluated
results of the proposed security scheme analyzed the authentication latency time and the
number of authentication messages needed for a secure HO. Consequently, the simulation
values were excellent and outperformed the popular conventional authentication schemes
in a DMM environment. In contrast, the researchers in [92] utilized a blockchain-based
DMM approach and tried to remove hierarchical security issues without changing the
mobile wireless layout. The contemplated approach created a shield against different sorts
of malicious attacks and supported deregistration policies. Moreover, the authors in [93]
contributed to secure transmission in fronthaul/backhaul (Xhaul) communication in case
of the fast movement of an object. A novel key exchange and authentication protocol was
presented, and the achieved results showed prominence over the other subsisting solutions.

3.2.4. PMIPv6 Testbed and Routing Optimization

Initially, MIPv6 was introduced by IETF to handle the IPv6 mobility of wireless data
packets in a centralized architecture. This MIPv6 effectively provided multimedia and
augmented services for MNs to continue Internet activities without any disturbance. It also
allows MN to move and change the attachment point without changing the address, but
MIPv6’s abilities have not sufficiently answered the true mobility effects and the triggered
HO issues. In response, IETF presented PMIPv6 to balance the shortcomings of the MIPv6
protocol and enhance flexibility in routing traffic in a network. The major difference
between the MIPv6 and PMIPv6 is that the latter is a ‘network-based’ approach, while
MIPv6 is a ‘host-based’ scheme.

Therefore, the authors of [94] developed a PMIPv6 testbed for real-scenario analysis
and used the Kernel version. The Kernel setup enables several features to support the
PMIPv6 environment, and the testbed based on PMIPv6 performed successfully without
errors. Similarly, another bench test was performed [95] by presenting a flow-based and
operator-centric mobility management framework in the EPC architecture. The proposed
framework was evaluated in a virtual testbed scenario and the results displayed improved
functional flexibility for operators, enhanced user experience, and promptly decreased
signaling overheads. In the ongoing 5G-and-beyond wireless system, the multimedia
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and augmented realities are the main reason for cellular data traffic load. In this context,
IP multicast plays a vital role in the delivery of robust multimedia content, yet very
limited work on multicast mobility protocols in a DMM situation was established. In [96],
the authors have tried to tackle multicast-listener-related issues by presenting different
techniques based on the system dynamics in a DMM environment. A partially and fully
distributed DMM scheme to deal with the multicast problems was evaluated and the
outcome showed the superiority of the method over other available frameworks. Moreover,
a flat routing process routes data packets according to a globally unique flat identity,
and in [97], a scalable, centralized flat routing technique based on the open-flow network
paradigm called centralized flat routing (CFR) was presented. Preliminary prototype results
on a small scale proved the feasibility of CFR in the real environment.

Table 2 summarizes all the above-discussed related literature for network flatting.

Table 2. Summary of related work for network flatting.

Issues Methodologies Advantages Limitations/Future Work Refs.

SDN-based Mobility Management

Handling large data traffic
management of mobile

users in software-defined
networks (SDNs)

Evolved packet core
(EPC)-based SDN network

functions virtualization
and

cloud-computing-based
network

Better routing optimization
with lower handover

latency

Requires higher user mobility
factors [79]

Call control flow for
handover scenario in an

SDN network

Efficient mobility
management that isolates

the chains of IP
preservation and the data

path

Improves the chains of IP
preservation without

breaking and
reestablishing the

connection

Architecture validation is
required for multipath

transmission control protocol
(MPTCP)

[80]

Distributed mode of
mobility management in

an ultra-dense
heterogeneous network

SDN-DMM-based
technique to handle the

distributed functionalities
of mobility management

Reduce handoff latency
and signaling cost, while
improving scalability and

QoS

A hybrid model with SDN
extension is needed for
autonomous systems

[81]

Frequent handover failure
and signaling cost

On-demand mobility for
registration and handover

process

Minimize delay and
signaling cost by up to 50%

Required session connectivity;
limited by delay intolerance [82]

High signaling cost,
handover delay, and packet
loss during data offloading

in an SDN-based system

Enhanced handover
control for DMM and

optimum routing scheme

1. It connects to the new
MAAR before the
MN disconnects

2. Resolves the triangle
routing issue in
DMM with low
packet loss

The proposed technique can be
fostered in vehicular

communication
[83]

Performance in High User Density

A new mobility
management scheme is
designed to reduce the

traffic encapsulation

The control functions are
deployed at the edge of the
network utilizing the flat

architecture

Lower handover delays
with better QoS

performance

Multi-attachments and
multi-interface terminals cause

a delay
[84]

Limitation occurs due to
the higher number of users
and traffic demand for the

mobile IPv6 protocol

A new DMM solution is
proposed, which is based

on cryptographically
generated addresses

Better performance in
terms of handover delay

Experimental comparison can
be carried out of mobile IPv6

with the FAMA
[85]

IP mobility management
efficiency issues occur in a

centralized approach

Proposed a distributed
approach that provides

optimal mobile data path
and distribution

Achieve scalability and
higher efficiency

Optimum channel state
information needed with no

delay
[86]
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Table 2. Cont.

Issues Methodologies Advantages Limitations/Future Work Refs.

Performance in High User Density

Investigate local and global
mobility support in a
distributed manner

Proposed a DDM scheme
for network resource

DMM outperformed
MIPv6 significantly

DDM scheme for various
critical cases [87]

Security in Packet Transmission

Prevent the false data
injection in the flat wireless

sensor network (WSN)

A reauthentication routing
protocol is proposed,
which eliminates the

unnecessary node from the
pool

Update the latest routing
path and key graph with

the node’s mobility

Uses TinyOS operating system
software to implement routing

protocols

[88,
89]

Malicious and harmful
attacks besides the secrecy

Secure and efficient
protocol based on DMM

design

Defense against
multidirectional attacks Limited to SA 5G networks [90]

Distributed location
management and secure

authentication mechanism
for MNs

Unique fault-tolerant
scheme based on a

distributed hash table of
access nodes and

ticket-reuse approach for
secure and robust

authentication of the MNs

1. Avoids traffic
congestion, single
point of failure issues

2. Reduce malicious
attacks

3. Less delay in location
queries

Traffic congestion increase
with higher mobility [91]

Hierarchical security issues Distributed block-chain
strategy based on DMM

Counterfeit distributed
DoS, impersonation,

session hijacking, and
backward broadcasting

The proposed technique can be
applied to different types of

broadcasting mechanism
[92]

Integration of fronthaul
and backhaul networks for

smooth operation

New key exchange and
authentication protocol for

moving objects

Efficiently manage security
parameters along with

privacy during handover

A line-of-sight link is required
for smart handover [93]

PMIPv6 Testbed and Routing Optimization

Develop a PMIPv6 testbed
for experimental use

A proxy mobile IPv6
protocol using a flat

domain model testbed

PMIPv6 testbed was
successfully run without

error

Can compare with the other
testbed and simulation on NS3 [94]

Architectural limitations of
EPC for effective and

strong offloading

Flow-based and
operator-centric dynamic

mobility management with
proxy mobile IPv6

(PMIPv6)

Enhancing operation’s
flexibility and flow-level

functioning; with low
overhead signaling

It requires a strong offloading
algorithm [95]

The multicast listener
related issues for the DMM

environment

A DMM scheme based on
flat IP architecture can help

to tackle
multicast-listener-related

issues

Resolve the tunnel
convergence problem

Experimental testing can be
carried out on the existing

PMIPv6 testbed
[96]

The scalable centralized
flat routing architecture

The CFR routing scheme is
based on the open-flow

network to improve
network scalability

CFR works efficiently in a
realistic environment

More advanced schemes are
needed for optical

communication
[97]

4. Distributed Mobility Management

The new DMM approaches enable an absolute flat network structure for easy access
to IP services and densely fast mobility scenarios. It offers inbuilt support for mobility in
multitier HetNet design wireless networks. The DMM paradigm is the prime example of
the aforementioned concepts and cases concerning network flattening [98]. In the DMM
framework, all IP-based user data packets are transported through the suboptimal paths,
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taking advantage of multiple anchor points and IP services in the local network closer to
the users [99]. Figure 6 portrays the core idea of DMM in multitier HetNet and promises
great mobility support across different use cases.
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4.1. Background

A smart allocation of IP addresses based on the service demand of MNs gives an edge
to the mobile network operators (MNO) in flexibly managing users’ content traffic with
additional protocols [100]. For instance, IP traffic flow must be anchored to a centralized
node for long sessions and locally for short sessions data exchange. Herein, DMM uses
prefix tagging where certain types of prefixes are assigned to the selected services of the
users. The users belonging to the particular network group are allowed to access the
meta-data related to the assigned prefixes based on the operator’s policy [101]. Thus,
researchers corroborated that the DMM framework is an absolute solution for mobility
and related management services for gigabytes of data traffic in current 5G and hyper
UDN 6G cellular carriers. Assuming several PHY and MAC layer advantages, the most
beneficial impact on the distribution of network functionalities could be received by MNOs
and service providers. The framework significantly increases the simplicity of controlling
and assessing many assorted technologies in a system. Additionally, it can efficiently
transfer valuable resources to the wireless backhaul network and increase the performance
of network backhaul communication [102].

Classifying various positive aspects of the DMM, the essential characteristics of DMM
frameworks are agility in handover management and guidance in optimum data delivery
route by avoiding unnecessary routing loops [103]. Subsequently, among many other
new technologies, in-band D2D communication is receiving attention in the industry for
mobility support and is considered a first choice for the operators. The new addition
to the wireless system, i.e., D2D communication, is beneficial for seamless ping–pong
handover between large-scale smart devices and cooperative interference management in
mobile networks [104]. It enhances spectral efficiency, transmission reliability, and network
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capacity, yet security remains a threatening issue. Several DMM-activated solutions have
been developed under 3GPP and IETF authorities [105,106]. The performed empirical
and simulation analysis validated the massive advantages over the conventional mobility
support entities. However, the proposed DMM methods that can be applicable and effective
in a real environment for static and moving platforms still need more research exploration.
Nonetheless, reducing handover losses, signaling cost, and round-trip delay, besides ultra-
reliability, is highly desirable in future wireless communication [107].

DMM frameworks are used to develop a flat mobility architecture by accommodating
several anchors closer to the MNs. The main families of DMM-based solutions belong to
network-based mobility protocols and are described below.

4.1.1. Routing-Based DMM

In a routing-based DMM solution, the border gateway protocol (BGP) is used to
conduct mobility functions and transfer data packets to and from mobile devices. All the
BGP routers are involved with the DMM gateways in the network domain, eliminating
any anchors, and reestablishing the path for the routing mechanism. In the context of the
initial attachment, the gateway uses the dynamic host configuration protocol (DHCP). It
allocates the IP address while the MN updates its domain name system (DNS) by using
the IP address (e.g., prefix 1). The DMM gateway transmits a DNS request to attain the
IP address that the MN must acquire [108]. Then, it broadcasts to all the routers in the
network that a specific address is reachable through the corresponding DMM gateway.
Additionally, when a handover occurs, the new DMM gateway validates that the MN has
already been allotted an IP address. Subsequently, by using the BGP protocol, the prefix
1 is advertised in the routing network (BGP routing update), and the IP address remains
unchanged during the handover process. Thus, the routing-based DMM extensively relies
on BGP updates to announce the new route in a network. Later, the DMM gateway will
update the routers in the network so the traffic will be able to reach the new position of the
MN [109].

4.1.2. PMIPv6-Based DMM

The concept behind the PMIPv6 solution is to utilize one of the elements in the network
as a proxy for the MN and the care-of-address (CoA) option would not be allocated to the
MN, instead of being assigned with the proxy of the MN [110]. The proxy protocol design
showed the existence of new entities compared with the conventional MIPv6. Indeed, the
correspondence node (CN) is responsible for transmitting the data to the MN which is
connected to the access router point. The LMA is similar in function to the HA in MIPv6
and the MAG keeps track of the MN. In a network, the domain where PMIPv6 is applied is
termed as PMIP domain or localized mobility domain (LMD) [111]. The positive aspect
of the PMIPv6 mobility solution is that the MN can change the access router without
requesting a new IP address. Additionally, the MN can attach to the new access router
without changing the standard protocol stack (i.e., any modification in software/hardware).
Meanwhile, the MN is on the common network that is capable of accommodating various
wireless access technologies, such as LTE [112], wireless local area network (WLAN) [113],
and worldwide interoperability for microwave access (WiMAX), etc.) [114].

Combined with the DMM, the centralized entity is detached and resides in the access
node. So, the IP sessions have the gateway in the access network and provide ease in
data packets transmission by avoiding the packet core network [115]. In this regard, the
architecture showcases the mobility access router DMM gateway, the same as the MAG,
which is used to forward the user useful data back and forth to the Internet. It also supports
managing MN seamless mobility while hopping from one MAG to another. Additionally,
in traffic redirection coordination, a node referred to as the control mobility database (CMD)
is used, which stores users’ mobility sessions. This CMD node is never crossed by the user
data traffic link, as shown in Figure 7. The traffic follows the channel through the DMM
gateway and the CMD node does not participate [116].
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The DMM gateway transmits signaling messages, proxy binding acknowledge (PBA)
messages, to the control and process unit, and it returns the information with IP metrics in
proxy binding updates (PBUs) that must be forwarded to the MN to connect to the network.
At this stage, the MN could communicate with any other node in the network, and data
packets move through the gateway, and then from the gateway to the Internet.

4.2. Literature-Related Mobility Management in DMM Networks
4.2.1. Stabilizing Latency and Signaling Cost

All IP-based mobility support and IP-based networks are the de facto solutions for
the growing population of mobile Internet users since it offers seamless mobility and
high reliability to the users between the HetNet access paradigms without interrupting
the service. Various mobility management solutions based on DMM schemes have been
proposed so far. The authors in [117] have implemented a hybrid DMM (HDMM) method,
where the mobility operation is also distributed at the access routers (ARs), except in the
areas of high latency and routing costs. Simulation results confirmed the worthiness of
time-sensitive, over-the-top services. In article [118], the authors initiated PMIPv6 and
the IEEE 802.21-media-independent HO (MIH) protocols to preserve seamless HO in the
HetNet environment. The proposed solution helped stabilize signaling costs and packet
loss frequency during the transmission; however, more advanced algorithms are needed
for real-time mobile user communication.

Network mobility (NEMO) is a technology deployed in public transportation and
personal network to enable Internet services. Different NEMO-based DMM schemes have
been presented [119,120] to mitigate issues such as central core entity, HO latency, signaling
operation, and decreased packet delivery cost. Likewise, the authors in [121] designed
a preemptive HO scheme (PHS) to remove the signal point failure and traffic bottleneck
issues, and the simulation test outperformed the rest of the methods. In [122], a hybrid
centralized–DMM in the NEMO context (called H-NEMO) provided better performance,
based on packet delivery cost, HO latency (and disruption time), signaling cost, and
end-to-end delay.
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4.2.2. Deployment of MIPv6/PMIPv6 Protocols

In future cellular Internet, MIP/PMIP will be the elementary mobility management
protocol that can support multimedia and other services. To effectively address the scalabil-
ity hurdles caused by the escalating number of MNs and traffic volume generated would be
critical to endorse IP-based mobile Internet. For the DMM extension, three basic categories
have been created to address some of the drawbacks and shortcomings of MIPv6 and
PMIPv6: (1) client-based, (2) routing-based, and (3) network-based techniques. Although
the solutions based on the classification of DMM extension are still being standardized,
there is a mounting interest to address some issues for the new services (e.g., distribution
caching for multimedia content).

In order to address some problems of the existing Internet, caused by the underlying
location-based communication design, and make it stringent for future applications, a new
theme, named data networking (NDN), has emerged as one of the most robust techniques
among various information-centric networking (ICN) proposals. A novel all-IP-based
DMM, designed by leveraging an NDN overlay, was discussed in [123]. The unique method
enables the DMM requirements to distribute the anchor point and efficiently guide the
best packet transmission route in the mobile computing structure. Likewise, a tunnel-free
DMM support protocol framework was analyzed and the performance in terms of packet
loss, latency in HO, and HO blocking probability by IPv6 protocols was compared [124].
The derived framework successfully reduced HO latency by about 12%, HO blocking
probability by 71%, and data packet loss by 82%. Correspondingly, the authors proposed
an analytical expression evaluating the HO process of different centralized and distributed
protocols [125]. It is used to compare PMIPv6, PFMIPv6, and DMM performances in terms
of HO latency, session recovery delay, packet and signaling cost, and HO failure. The results
showed that PFMIPv6 is the most well-suited protocol for low–high mobility scenarios.

Moreover, an analytical evaluation of a network-based IP DMM solution in terms
of signaling cost, HO timelapse, and signaling cost was performed [126]. The authors
concluded that the future network architecture would exhibit hybrid centralized–DMM
behavior. In this regard, the mobility management of certain traffic will be kept centralized,
while other traffic will be distributed.

4.2.3. MN Mobility across Different IP Addresses and Technologies

The thirst for Internet services and applications continues to escalate, and many
wireless standardization authorities envisaged that this trend would gain more momentum
in the future. As the desire for MNs connectivity via the Internet expands, it has given
birth to more diverse smart wireless nodes and cases to become part of the network.
Service disruption for roaming MNs across different IP addresses, domain networks, or
technologies in multicell architectures is a huge challenge. Lately, for the seamless mobility
of MNs, such as virtual machines or containers, multicell architectures were dispensed, but
they cannot guarantee reliable service for objects in motion.

The authors in [127] introduced a live migration (LM) method for uninterrupted mo-
bility support for mobile terminals. The experimental characteristics of LM demonstrated
the great potential to provide a reliable connection for MNs hopping across different IP
addresses’ domain networks. Identically, a distributed, IP-based mobility management
protocol (DIMMP) was evaluated for the free movement of MNs across wireless mesh
networks (WMNs) [128]. It contributed by removing the limiting aspects of single-hop and
centralized network architectures, as well as improving the HO procedure. Additionally, a
fast HO for network-based DMM (FDMM) for PMIPv6 was evaluated to reduce HO latency
and data packets corruption during the mobility of MNs [129]. The analytical experiments
showed that FDMM comprehensively outclassed DMM, whereas an enhanced fast HO
PMIPv6 (ePFMIPv6) was presented to support rapid IP HO in vehicular networks [130].
The simulation test confirmed the excellent performance of the proposed ePFMIPv6 in
comparison with PFMIPv6 protocols.
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4.2.4. Gap Analysis and DMM Module Assessments

Engineers, researchers, and radio regulatory authorities have been developing NSs
of IP mobility management protocols since the advent of the first and most commonly
deployed IP protocol, MIPv6. For example, the MobiWAN NS-2 extension was designed for
NS-21 to simulate MIPv6, owing to the inherited limitation of NS-2 that supports only IPv4.
Therefore, in [131], engineers have developed the DMM module in Network Simulator-2
(NS-2) to implement the DMM protocols’ functionalities, entities, and operations. An
analytical study was conducted to ensure the accuracy of the module compared with
the theoretical values. Consequently, the obtained values from the simulation showed a
high coherence with the assessed theoretical data. In parallel, a network-based full-DMM
approach was developed to eliminate any dedicated centralized mobility anchor from
the system architecture [132]. The simulation results of the proposed full-DMM approach
showed the significance of the traditional CMM model.

Another analytical experiment was performed on the implementation gaps of the
DMM models in 3GPP 4G/5G cellular networks [133]. The researchers audibly advised
that all DMM designs could be deployed in a 4G EPC, and partial implementation would be
possible in NR 5G due to unspecified entities in the core architecture. In [134], the authors
characterized recent research works based on the DMM mechanism in D2D communica-
tions. After a vigilant thought process, they then identified the most impactful approaches
that could be highly suitable for D2D mobility management in current NR 5G-and-beyond
mobile networks.

Table 3 summarizes all the above-discussed related literature for DMM.

Table 3. Summary of the literature in distributed mobility management.

Issues Methodologies Advantages Limitations/Future Work Refs.

Stabilizing Latency and Signaling Cost

An optimization problem
for provisioning efficient

centralized MA
deployment

An HDMM scheme that
jointly characterized both

centralized and distributed
mobility management

Better results in terms of
handover support with

no-delay QoS

The threshold needs to be set
for switching between DMM

and centralized mobility
management

[117]

Network-based DMM
scheme between the mobile

node and the access
networks

Modification of PMIPv6
and the IEEE 802.21 media
MIH protocols to supply

seamless handover

Substantial aid for
signaling cost, handover

latency, and packet loss in
heterogeneous networks

A more advanced algorithm is
needed for real-time mobile

users
[118]

A DMM protocol based on
NEMO that mitigates long

interval

DMM is based on the PHS
method to reduce

scalability issues in
network mobility

Decrease long intervals
with low latency in
network mobility

It can be extended to more
detailed parameters for

method validation
[121]

Network mobility
architecture management

Hybrid centralized–DMM
architecture based on the

NEMO

Better results for packet
delivery cost, handover
latency, and end-to-end

delay

Lack of performance metrics in
terms of number of nodes and

flows
[122]

Deployment of MIPv6/PMIPv6 Protocols

DMM named data
networking overlay IP

NDN approach of
all-IP-based mobility

management architecture
where multiple anchor
points are placed at the

edge of the network

Subjugate centralized IP
limitations and enhance

mobile traffic
transmissions path

Induce signaling costs due to
state synchronization of

location management
[123]

Addressing and tunneling
management for current

DMM based mobility
protocols

Tunnel-free DMM support
protocol

Minimize handover latency
by about 12%, handover
blocking probability by

71%, and packet data loss
by up to 82%

DMM handover hurdles when
multiple MNs perform

handover simultaneously
[124]
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Table 3. Cont.

Issues Methodologies Advantages Limitations/Future Work Refs.

Deployment of MIPv6/PMIPv6 Protocols

Analyzing the performance
of distributed and

centralized mobility
protocols based on traffic

characteristics in the
vehicular system

Implement an analytical
model for CMM protocols

and DMM protocols to
analyze handover

performance competency

PFMIPv6 provides quality
results in low to high

mobility environments

DMM is limited to
low–medium mobility cases

only to curtail the loss of
packets

[125]

Analytical and
experimental assessment of

a network-based DMM

Develop an analytical
model

Allows resources to be
saved in some situations by
reducing packet delivery

cost

The complexity of the model
has increased with higher

mobility
[126]

Mobility of MNs across Different IP Addresses and Technologies

Seamless mobility of MOs,
such as virtual machines or

containers

LM system and protocol to
support mobility of MOs
connected via the Internet

Seamless mobility of MOs
hopping around the

different network

Expand the LM testbed on LM
of MOs in a large-scale

scenario
[127]

During mobility of MNs
connection failure issues in

WMNs

Distributed IP-based
mobility management

protocol to manage intra-
and inter- WMNs

Support seamless
connectivity and
multi-hopping

transmission scenarios

Limited to one aspect of DMM
functionality to MBGs, MARs,

and end nodes
[128]

Changes in IP addresses of
MNs in intelligent

transportation systems

Fast HO for network-based
DMM (FDMM) based on
the fast HO for PMIPv6

(PFMIPv6) protocol

HO latency, session
recovery, and packet loss
FDMM performed better
than IETF network-based

DMM

Extra signaling cost [129]

MNs mobility in vehicular
networks under

geographic restrictions

Enhanced PFMIPv6
h (ePFMIPv6) for fast HO

and modified signaling
process by accommodating

NML

ePFMIPv6 performs better
HO latency, packet loss,
and signaling cost than

PFMIPv6

Limited to a small
geographical area [130]

GAP Analysis and DMM Module Assessment

Conduct simulation test to
verify DMM operational

and functional
characteristics

Design of network
simulator module for

DMM protocol

The DMM module shows
high reliability and

theoretical results are
almost similar

Higher mobility causes
degradation in the network

output
[125]

A comprehensive
performance evaluation of
DMM and CMM models

Implement a
network-based full-DMM

process on the NS-2
simulator

Full-DMM approach
supports lower end-to-end

latency than CMM

Increase HO latency and
packet loss at MN speed [132]

Gap analysis to
demonstrate technology

that needs standard-based
applicability and extension

for interoperability

An IP-based DMM model
is obtained from five

models specified by IETF
DMM WG, and the 3GPP

All DMM models and
technologies are applicable,

defined in the
standardization documents

in 4G EPC

Effective mobility distribution
model in different scenarios [133]

Survey on handover
performance in

DMM-based D2D mobility
in 5G networks

PMIPv6-, LIPA-, SIPTO-,
SDN-, and routing-based

approaches performed

SDN-based DMM
technique is a promising

candidate to manage D2D
mobility

Required sophisticated SDN
architecture to manage and

increase the operational
abilities

[134]

5. Current Limitations and Future Challenges

Extensive studies have been performed to tackle the mobility issues and operational
challenges for current 5G and future wireless networks. Many proposed research method-
ologies on efficient mobility management assist in simplifying the packet transmission
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process and increasing system reliability. Hence, a variety of the discussed frameworks
largely manage to minimize the signaling costs, packet losses, ping–pong handovers, op-
erational functionalities of the core network, round-trip latency, and the load balancing
of the access network, etc. However, the challenges involved are due to the proposed
mechanism’s continuous network development and limitations. Apart from the discussed
studies, several other works can be combined and explored with the mobility issues that
can enhance the performance of the 5G-and-beyond network, for example, energy manage-
ment [135], interference mitigation [136], machine learning protocols [137], and antenna
designing [138]. The following sections will discuss the domains and crucial aspects that
need immediate attention, and robust solutions in the effective management of mobility
protocols that have been discussed before.

5.1. Network Flattening

The augmentation in the population of Internet-connected things and thousands of
wirelessly coupled devices raises critical questions about the current networking protocols.
The home-based Internet-connected networks, connected to wireless broadband communi-
cation, produce an excessive bulk of data and centralized data routing, and the acquisition
of the current system is not capable of combatting the hurdles. Therefore, in [139], the
authors presented a mobile matrix protocol that uses an IPv6 address for routing and
mobility management without changing the MN IP address. The proposed technique
would be helpful in the social and mobile IoT services in future wireless services. Nonethe-
less, mobile and social IoT communication are in the beginning stage, and a tremendous
amount of work is required on the impactful and robust mobility support for the newly
introduced services [140]. In [141], researchers presented a distributed core system design
for 5G and upcoming 6G networks. A distributed mapping mechanism was applied for
the management of fast mobile smart devices and IoT. It minimized the smaller user plane
path lengths and control overheads, yet the proposed frameworks could be used for delay
and mobility studies in the ORBIT radio testbed.

Contemplating the constructive enhancement in every radio communication domain,
standardization authorities, researchers, and various drive tester groups are working to
utilize thousands of low earth orbit (LEO) satellite networks. The multi-satellite model is
expected to increase the flexibility, consistency, and stringency of reliability, as well as ensure
minimum latency in cellular networks. After an in-depth analysis, the groups suggested
that it has great potential to answer the forthcoming needs in extremely critical, varied
scenarios happening anytime and anywhere. For example, in [142], the authors advised
that it is necessary to design a location management framework for several groups of
wireless, associated things with different orbital parameters. Those parameters depend on
variables such as handover frequency and duration, footprints, and the density of satellites.

5.2. Distributed Mobility Management

Vehicular communication is the most promising addition to 5G and 6G radio networks.
Owing to the limited resources of the spectrum, systematic and efficient use of frequency
bands is necessary. The current 5G-and-beyond networks are expected to exploit cellular
resources for vehicle communication, including aerial platforms. The sharing of resources
between cellular-connected and vehicular products could be a serious threat to network
disconnection, frequent interruption, interferences, and so on. The high chances of vul-
nerability would certainly be complex channel modeling for air-to-air and air-to-ground
transmission [143], whereas the researchers claimed that there has not been much interest
shown in the secure route characterization for DMM logic. Hence, a secure-route model
for DMM-based smart home networks is proposed in [144]. The authors suggested that
it is viable to extend the model for IoT, mobile IoT, and social IoT networks. After dis-
cussing the feasibility of the proposed model, the study further advised that this could
apply to standalone and non-standalone 5G architectures. In the future, vehicles with
every smart machine communication option can play a big part in taking the wireless
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digital communication system to the next level. In vehicle-to-everything (V2X) commu-
nication, sensor-based data updates would also be activated for various domains, such
as medical health monitoring, airports’ critical base communication, and data updates in
high-mobility scenarios. Consequently, a real-time, practically applicable, DMM-based
solution to maintain the system is crucial. Such a developed framework must be capable
of avoiding malicious threats, various interference issues, undesired handover problems,
and call drop count, while ensuring an increase in security level [145]. Likewise, users and
intelligent electronic devices can identify more than one air interface in their proximity,
mainly due to the concurrent wireless activities of different access technologies, such as
4G, ISM, WWAN, and WLAN. The appropriate switching and handover mechanism is
essential for the continuity of the user’s activities.

The agility of cloud-based computing services demonstrated its potential to answer
the ever-growing demand for wireless. It is estimated that development will try to connect
everything to the Internet in the next few years, with pedestrians, cars, flying machines,
smart appliances, and sensor networks, etc., all connected; the desire for Internet services
is increasing tremendously fast. This massive demand and the varying speeds of a large
variety of users and smart electronic devices would certainly create a fuss. The available
literature on cloud-based computing processes showed multiple issues and could not
be any more fruitful with the same functionalities. Some of the issues described in the
literature include the unbalanced coordination of small-cell APs, massive congestion, online
cancellation performance issues, and frequent packet loss, which reduce the quality and
defeat the purpose. However, edge and caching computing are also used to overcome
the limitations of the cloud computation process. However, these schemes are not fully
efficient and face difficulties in balancing computation resources [146].

6. Conclusions

Current 5G and future wireless networks are expected to simultaneously support
billions of smart devices while maintaining extreme reliability and QoS for each smart
product, especially those residing on cell edges or in motion. With the rapid increase in
intelligent peripheral gadgets and novel intelligent machines in the last few years, the
demand for data from smart devices is also rising exponentially and shaping serious
challenges for the mobility process, while escalating chaos in the core network. The sudden
increase in hefty data requirements is mainly due to the heavy BW applications and
immersive media components, in addition to time-sensitive cases. The unprecedented data
volume introduces different mobility management protocol complications and adversities
in centralized network architectures. A new paradigm of a flat network architecture based
on DMM design was conceptualized and considered as an evolutionary step towards
a complex and dynamic HetNet radio network. In this article, mobility management
techniques for future wireless networks are highlighted and discussed from the perspective
of network designs where traffic will be largely offloaded locally at the RAN level, instead
of routing all traffic through the core network. This study broadly discussed flat and DMM-
based IP mobility management architectures and their types. The review demonstrated
state-of-the-art research studies and the potential benefits of robust mobility support in
dynamic DMM 5G-and-beyond radio communication environments. Furthermore, this
review article comprehensively delineates numerous current and ongoing studies and
challenges, while detailing potential future research dimensions regarding flat DMM-based
5G and the upcoming 6G networks. It is believed that this article is a potential source for
designing 5G-and-beyond wireless networks.
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