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ABSTRACT
This paper provides mobility estimation and prediction for
a variant of GSM network which resembles an adhoc wire-
less mobile network where base stations and users are both
mobile. We propose using Robust Extended Kalman Filter
(REKF) as a location heading altitude estimator of mobile
user for next node (mobile-base station) in order to improve
the connection reliability and bandwidth efficiency of the
underlying system. Through analysis we demonstrate that
our algorithm can successfully track the mobile users with
less system complexity as it requires either one or two closest
mobile-basestation measurements. Further, the technique is
robust against system uncertainties due to inherent deter-
ministic nature in the mobility model. Through simulation,
we show the accuracy and simplicity in implementation of
our prediction algorithm.

Categories and Subject Descriptors
C.2 [Computer-Communication networks]: Network
Architecture and Design —Wireless communication

General Terms
Algorithms, Measurement, Performance, Theory

1. INTRODUCTION
A Mobile Ad Hoc Network (MANET) is a wireless net-

work consisting of mobile nodes capable of communicating
with each other without the help of any fixed infrastructure.
Mobile Ad Hoc networks date back to the 1970s when they
were known as DARPA packet radio networks. Recently
there have been renewed interest in such networks due to
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the availability of smaller, smarter, and cheaper portable
computers, inexpensive wireless technology, small wireless
sensors, and mobile users’ demand for information ”any
where any time”. The IETF has established a special work-
ing group for developing standard protocols for such net-
works [1]. MANETs are self-organizing networks built dy-
namically in the presence of nodes equipped with radio inter-
face devices. The nodes are capable of movement in an arbi-
trary fashion. All the functionality of routing and switching
are carried out by the nodes themselves. When two nodes
are within the communicating range of each other, they can
exchange information directly. However, when two nodes
are not within each other’s communicating range, they can
still communicate with each other provided there are nodes
in between who can pass the data packets for the communi-
cating nodes. Communication, in this later case, occurs in a
multi-hop fashion [2]. These networks are designed for tem-
porary and special use, such as, at battlefield or emergency
rescue operation where there may not be any established
infrastructure for networking.
Research in MANET has given rise to many new network

architectures. The Multihop cellular Architecture [3] pro-
vides localized Ad-hoc networking within a cell, where mo-
bile hosts within the cell help each other to forward packets
to the base station. By using multihopping, the cellular ar-
chitecture can expand the cell coverage while maintaining
the transmission range of the base station. As a result re-
duced numbers of base stations are possible. Lin et al [3]
used WLAN (802.11) for their experimentation and have
shown that the resulting throughput can be higher than for
single-hop based networks.
The Terminode project [4] looks at developing a wide-

area, autonomous, self-organized, wireless multimedia net-
work that is totally independent of any fixed infrastructure.
The Grid project at the MIT Laboratory for Computer Sci-
ence deployed a test bed network composed of cars - CarNet
[5]. The CarNet project attempts to equip all test bed cars
with an IEEE 802.11 radio, Linux box and a GPS receiver in
order to demonstrate their Grid architecture. The sample
services for CarNet might include traffic congestion moni-
toring, fleet tracking, and highway chat (similar to CB).
High Altitude Aeronautical Platform (HAAP) [6] uses

undedicated aircrafts to support mobile coverage. The air-
crafts (e.g., Commercial planes) act as satellites to provide
city-wide coverage while they are appropriately positioned
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(location and altitude). The HAAP architecture uses redun-
dancies to provide continuous coverage while planes enter or
leave the city, or prepare for landing.
Location tracking (also known as mobility tracking or mo-

bility management) is the set of mechanisms by which loca-
tion information is updated in response to mobility of a com-
munication endpoint [7]. Many approaches such as Mobile
IP try to hide the fact of changing access point by redirect-
ing packets but maintaining the same IP address. There
are several situations where knowledge of location could be
beneficial for certain applications. Development of location
aware services is a very active area of research in both cel-
lular wireless and adhoc/sensor network communities.
It is therefore, necessary to manage the mobility of ter-

minals in a cellular network for smooth operation of the
real-time applications. Mobility tracking based on signal
strength measurements is solved by treating it as on-line
estimation in a nonlinear dynamic system. For example,
Extended Kalman filter has been used to solve this problem
in [8, 9].
Traditionally, in GSM type of network, the base-stations

are fixed at a particular location. In this paper, we relax
this assumption by assuming that the base-stations are free
to move randomly and organize themselves arbitrarily; thus,
the network’s wireless topology may change rapidly and un-
predictably.
This paper presents a use of robust extended Kalman fil-

ter (REKF) in the prediction of a mobile users arrival in
the next cell, based on new theoretical results presented in
[10, 11]. Our implementation with a single mobile-base sta-
tion uses only the measurement from the closest neighbor-
ing station and hence improves the computational efficiency.
Our second proposal further improves the prediction perfor-
mance by using measurements from only two base stations
which are fixed relative to the current cell. This eliminates
the need to sample with six GSM base stations as demon-
strated in [8] and hence considerably reduces the network
traffic while improving the computational efficiency in using
this algorithm. Further, in this paper we propose a much
more realistic model in which vehicle acceleration may be
any bounded function of time as opposed to the stochastic
model given in [8] which is not realistic in practice as accel-
eration of a real vehicle cannot be represented by a Gaus-
sian stochastic process. Moreover, our model incorporates
significant uncertainty and measurement errors. Simulation
results are provided to demonstrate the superiority of the
proposed algorithm. Our work assumes availability of on-
board GPS and acceleration of the wireless-basestaitons but
not of the mobile terminals.
Besides the example scenarios given above, our work can

be useful in tactical environments for accurate prediction of
location of various objects and targets. Sensor networks can
benefit from this work where a few powerful robot-based sen-
sors (acting as base-stations) can roam around and collect
data from small static (or mobile) sensor devices scattered
in the environment.
The paper is organized as follows. Section 2 presents the

related work with section 3 emphasizing the system dynamic
model with the nonlinear measurement model. Section 4
states the theoretical background for the Robust Extended
Kalman filter as a state estimator with reference to set val-
ued state estimation ideas. Simulation details and results
are given in section 3 with the conclusion in section 6.

2. RELATED WORK
Most of the recent work on location management in Ad-

hoc network has been in sensor network area where the term
used is localization (determining position of a sensor device
in some co-ordinate system). Example of indoor localization
are the Cricket project at MIT [12, 13], and work by Sav-
vides et al. [14]. Bulusu et al. [15] provide a good overview
of such work and their own scheme for outdoor localization
for very small devices. However, requirements for localiza-
tion for these small devices are different from the application
scenarios that we have discussed. Work close to ours in the
networking community have been mostly in the area of wire-
less cellular network (Robotics and military application may
have some work using these techniques). We provide a brief
overview of a few sample work.
The location management approach is two folds: Loca-

tion update and location prediction. As a passive strategy,
in location update, the system periodically records the cur-
rent location of the mobile terminal in some database that it
maintains. Location update algorithms can either be static
or dynamic depending on whether the location updating is
triggered based on network topology or users’ call and mo-
bility patterns. The location prediction is a dynamic strat-
egy in which the system proactively estimates the mobile’s
location based on a user movement model.
Most of the recent studies have mainly focused on the

update method [16, 17, 18], less attention has been given
to the prediction side. Accurate prediction of a mobile ter-
minal based on its previous location will improve the effi-
ciency of location management task even from the update
and systems perspective. The task of location management
and resource reservation will become easy if user’s move-
ment pattern is known in advance. Even if the destination
and possible trajectory may be known, a user may choose
a different route while driving to same destination based on
traffic congestion.
Tabbane [19] proposes that a mobile terminal’s location

can be derived from its quasi-deterministic mobility behav-
ior and can be represented as a set of movements in a user
profile. A pattern matching/recognition - based Mobile Mo-
tion Prediction (MMP) has been proposed as an enhance-
ment on Tabbane’s method [20]. Bhattacharya et al. [21] use
information-theoretic approach to characterize the complex-
ity of the mobility tracking problem in a cellular network.
Shannon’s entropy measure is identified as a basis for com-
paring user mobility models. By building and maintaining
a dictionary of individual user’s path updates, the proposed
adaptive on-line algorithm can learn subscribers’ profiles.
These and several other similar schemes don’t perform well
when random factor is reintroduced or assumptions regard-
ing rectilinear movement pattern etc., are removed.
Extended Kalman filter technique has been applied in [8,

22]. Yang et al. [23] have proposed application of sequential
Monte Carlo (SMC) methodology to the problem of joint
on-line mobility tracking and hard handoff detection. This
uses computationally expensive Monte Carlo simulations to
estimate the posterior distribution of the unknown states
of the dynamic system while it is based on Markovian as-
sumptions of mobile user dynamics with Gaussian sensory
noise.
As it has been realized that further improvements can be

achieved via efficient prediction, in this paper we propose
using a Robust Extended Kalman Filter(REKF) as a state
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estimator in predicting mobile user’s expected trajectory for
efficient allocation of resources. These robust state estima-
tion ideas emerged from the work of Savkin and Petersen
[10]. It not only provides satisfactory results [24], but also
eliminates the requirement of the knowledge or modelling
of the user mobility pattern and measurement noise in com-
parison to standard Kalman filter implementation presented
in [8]. In addition, our implementation only requires a sin-
gle base station measurement/sampling (another base sta-
tion for further improvements) although existing techniques
need the network measurement with a minimum of three
base stations [23, 19] while sampling with many more may
be needed in obtaining the closest three.

3. MOBILE-BASESTATION AND MOBILE-
USER DYNAMIC MODEL

The user mobility models found in literature vary from
straight line motion assumption ([25, 26]) to acceleration
modelled as Markov process with finite number of states
([8, 23]) with a time correlated random acceleration (semi-
Markov). Our algorithm does not assume any such models
for the mobile user and essentially considers as bounded yet
unknown ”noise” as well as the senor measurement noise
of the base station. This ensures the robustness of the
algorithm for a network which is inherently subjected to
unknown and different forms of user mobility patterns and
noise.
We use the terminology Car for a mobile-basestation in

this paper ( other mobile vehicles/robots fitted with a base-
station would fit into the same category). Using basic kine-
matics, the dynamic model for the ith car : Cari and the
mobile user to be used in this approach can be given in the
two dimensional Cartesian coordinates as [27] :

ẋi(t) = Axi(t) +B1ui(t) +B2w(t) (1)

where

A =

[
Θ 0
0 Θ

]
, B1 = −B2 =

[
Φ 0
0 Φ

]

with

Θ =

[
0 1
0 0

]
, Φ =

[
0
−1

]
. (2)

xi(t) =
[

xi(t) ẋi(t) yi(t) ẏi(t)
]′
is the dynamic state

vector with xi(t) and yi(t) representing the position of the
user with respect to the base station(ith car) at time t,
and their first order derivatives ẋ(t) and ẏ(t) represent-
ing the relative speed along the X and Y directions. In
other words, if xM (t) = [xM (t) ẋM (t) yM (t) ẏM (t)]′ rep-
resent the absolute state (position and velocity in order
in the X and Y direction respectively) of the mobile user

and xi
C(t) =

[
xi

C(t) ẋ
i
C(t) y

i
C(t) ẏ

i
C(t)

]′
denote the abso-

lute state of the ith car in the same order, then xi(t) �
xM (t) − xi

C(t). Furthermore, let ui(t) denote the two di-
mensional driving or acceleration command of the car from
the respective accelerometer readings and w(t) denote the
unknown two-dimensional driving/acceleration command of
the mobile user.

3.1 Measurement model
In cellular systems, the distance between the mobile and

a known base station is practically observable. Such infor-
mation is inherent in the forward link RSSI (received signal
strength indication) of a reachable base station. Measured
in decibels at the mobile station, RSSI can be modelled as a
two fold effect : due to path loss and due to shadow fading
[8]. Fast fading is neglected assuming that a low-pass filter
is used to attenuate Rayleigh or Rician fade. Denoting the
ith car as Cari(figure 1), the RSSI from the Cari, pi(t) can
be formulated as [28]

pi(t) = poi − 10ε log di(t) + vi(t), (3)

where poi is a constant determined by transmitted power,
wavelength, and antenna gain of Cari. ε is a slope in-
dex(typically 2 for highways and 4 for microcells in the
city), and vi(t) is the logarithm of the shadowing compo-
nent, which is considered as an uncertainty in the measure-
ment. di(t) represents the distance between the mobile and
base station of Cari, which can be further expressed in terms
of the mobile’s position with respect to the location of the
ith car i.e (xi(t),yi(t))

di(t) =
(
xi(t)

2 + yi(t)
2)1/2

(4)

( x ,y    )j
C C

j

( x ,y    )i
C C

i

( x ,y    )k
C C

k

di

dj

(x M M,y   )

Figure 1: Network Geometry

In [8] three independent distance measurements are used
to locate a moving user in two dimensional domain as GSM
systems sample the forward link signal levels of six neigh-
boring cells. Here, we propose a two fold implementation
scheme. Our first implementation algorithm uses a single
base station measurement that is closest to the user (i.e.,
highest value of the sampled six neighboring stations) as
opposed to three. In our second implementation, further
improvements can be made by using progressive measure-
ment from two base stations. In this case we use the two
closest cars. For the first implementation, the measurement
equation is

y(t) = min
i∈{1..K}

pi (5)
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with K denoting the number of cars in the network and for
the second implementation, two measurements to form the
observation vector

y(t) =

[
p1o(t)
p2o(t)

]
, with

p1o = min
i∈{1..K}

pi and p2o = min
j∈{1..K\i}

pj ,

are chosen progressively as the user moves in the coverage
area. We use measurements from the two closest base sta-
tions and therefore the measurement equation (from equa-
tion 3) is in the form of

y(t) = C(x(t)) + v(t) (6)

where v(t) = [vi(t) vj(t)]
′ with

C(xi(t)) =



poi − 10εlog

(
xi(t)

2 + yi(t)
2
)

poi − 10εlog
(
xi(t) + x

i
C(t)− xj

C(t)
)2

+
(
yi(t) + y

i
C(t)− yj

C(t)
)2


 (7)

corresponding the noise free portion of the RSSI (equation
3) for two vehicles with i corresponds to the nearest car to
the mobile user and j corresponds to the car 2nd nearest to
the mobile user.

4. SET-VALUE STATE ESTIMATION WITH
A NON-LINEAR SIGNAL MODEL

The measurement equation emerging from equation 3 is
nonlinear and therefore, we consider a nonlinear uncertain
system of the form

ẋ = A(x, u) +B2w

z = K(x, u) (8)

y = C(x) +v,

as a general form of the system given by equation 1 with
measurement equation in the form of equation 6, and defined
on the finite time interval [0, s] . Here, x(t) ∈ R

n denotes the
state of the system, y(t) ∈ R

l is the measured output and
z(t) ∈ R

q is the uncertainty output. The uncertainty inputs
are w(t) ∈ R

p and v(t) ∈ R
l. Also, u(t) ∈ R

m is the known
control input. We assume that all of the functions appearing
in (8) are with continuous and bounded partial derivatives.
Additionally, we assume that K(x, u) is bounded. This was
assumed to simplify the mathematical derivations and can
be removed in practice [11, 29]. The matrix B2 is assumed
to be independent of x, and is of full rank.
The uncertainty in the system is defined by the following

nonlinear integral constraint [10, 11, 30, 31, 32] :

Φ (x(0)) +

∫ s

0

L1 (w(t), v(t)) dt ≤ d+
∫ s

0

L2 (z(t)) dt, (9)

where d ≥ 0 is a positive real number. Here, Φ, L1 and L2

are bounded non-negative functions with continuous partial
derivatives satisfying growth conditions of the type

‖φ(x)− φ(x′
)‖ ≤ β

(
1 + ‖x‖+ ‖x′‖

)
‖x− x′‖ (10)

where ‖ · ‖ is the euclidian norm with β > 0, and φ =
Φ, L1, L2. Uncertainty inputs w(· ), v(· ) satisfying this con-
dition are called admissible uncertainties. We consider the
problem of characterizing the set of all possible states Xs of
the system (8) at time s ≥ 0 which are consistent with a

given control input u0(· ) and a given output path y0(· ) ;
i.e., x ∈ Xs if and only if there exists admissible uncertain-
ties such that if u0(t) is the control input and x(· ) and y(· )
are resulting trajectories, then x(s) = x and y(t) = y0(t),
for all 0 ≤ t ≤ s.
4.1 The State Estimator
The state estimation set Xs, which is a solution to the

system 1 with the uncertainty bound given by equation 9 is
characterized in terms of level sets of the solution V (x, s) of
the Partial Differential Equation (PDE)

∂

∂t
V+ maxw∈Rm {∇xV.

(
A(x, u0) +B2w

)
−L1

(
w, y0 − C(x)) + L2

(
K(x, u0)

) } = 0

V (· , 0) = Φ. (11)

The PDE (11) can be viewed as a filter, taking observa-
tions u0(t), y0(t), 0 ≤ t ≤ s and producing the set Xs as a
output. The state of this filter is the function V (· , s) ; thus
V is an information state for the state estimation problem.

Theorem 1. Assume the uncertain system (8), (9) sat-
isfies the assumptions given above. Then the corresponding
set of possible states is given by

Xs = {x ∈ R
n : V (x, s) ≤ d} , (12)

where V (x, t) is the unique viscosity solution of equation
(11) in C (Rn × [0, s]) .

Proof. see [11].

4.2 A Robust Extended Kalman Filter
As the complete solution to the PDE (11) is hard to derive,

we use an approximation which leads to a Kalman filter like
characterization of the set Xs. Petersen and Savkin in [11]
presented this as a Extended Kalman filter version of the
solution to the Set Value State Estimation problem for a
linear plant with the uncertainty described by an Integral
Quadratic Constraint (IQC). This IQC is also presented as
a special case of equation 9. We consider uncertain system
described by (8) and an integral quadratic constraint of the
form

(x(0)− x0)
′
X0 (x(0)− x0)

+
1

2

∫ s

0

(
w(t)

′
Q(t)w(t)

)
+ v(t)

′
R(t)v(t)dt

≤ d+ 1

2

∫ s

0

z(t)
′
z(t)dt, (13)

where N > 0, Q > 0 and R > 0. For the system (8), (13),
the PDE (11) can be written as

∂
∂t
V +∇xV.A(x, u

0) + 1
2
∇xV B2Q

−1B
′
2∇xV

′

− 1
2

(
y0 − C(x))′

R
(
y0 − C(x))

+ 1
2
K(x, u0)

′
K(x, u0) = 0,

V (x, 0) = (x− x0)
′
N (x− x0) . (14)

Considering a function x̂(t) defined as

x̂(t) � argmin
x
V (x, t),

and the following equations (15),(16) and (17), define our
approximate solution to the PDE (14) :
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˙̃x(t) = A
(
x̃(t), u0

)
+X−1[∇xC (x̃(t))

′
R

(
y0 − C (x̃(t))

)
+∇xK

(
x̃(t), u0

)′
K

(
x̃(t), u0

)
],

x̃(t) = x0. (15)

X(t) is defined as the solution to the Riccati Differential
Equation (RDE)

Ẋ +∇xA
(
x̃, u0)′

X +X∇xA
(
x̃, u0)

+XB2Q
−1B

′
2X −∇xC(x̃)

′
R∇xC(x̃)

+∇xK
(
x̃, u0)′

∇xK
(
x̃, u0) = 0,

X(0) = N. (16)

and

φ(t) � 1
2

∫ t

0
[
(
y0 − C(x̃))′

R
(
y0 − C(x̃))

−K (
x̃, u0

)′
K

(
x̃, u0

)
]dτ. (17)

The function V (x, t) was approximated by a function of
the form

Ṽ (x, t) =
1

2
(x− x̃(t))′ X(t) (x− x̃(t)) + φ(t).

Hence, it follows from Theorem 1 that an approximate
formula for the set Xs is given by

X̃s =

{
x ∈ R

n :
1

2
(x− x̃(s))′ X(s) (x− x̃(s)) ≤ d− φ(s)

}

This amounts to the so called Robust Extended Kalman
Filter generalization presented in [11].
In the application of REKF in the Adhoc network, the ith

system (vehicle - Cari and the mobile user) tracking the mo-
bile user during a corresponding time interval is represented
by the nonlinear uncertain system in (8) together with the
following Integral Quadratic Constraint (IQC)(from equa-
tion 13) :

(x(0)− x0)
′
Ni (x(0)− x0)

+
1

2

∫ s

0

(
w(t)

′
Qi(t)w(t)

)
+ v(t)

′
Ri(t)v(t)dt

≤ d+ 1

2

∫ s

0

z(t)
′
z(t)dt. (18)

Here Qi > 0, Ri > 0 and Ni > 0 with i ∈ {1, 2, 3} are
the weighting matrices for each system i, while the initial
state (x0), is the estimated state of respective systems in
the acquiring handover time. This initial state is essentially
derived from the terminal state of the previous system to-
gether with other data available in the network(i.e., vehicle
position available from GPS and speed) to be used as the
initial state for the next system taking over the tracking.
With an uncertainty relationship of the form of (18), the in-
herent measurement noise(see equation 6), unknown mobile
user acceleration/driving command and the uncertainty in
the initial condition are considered as bounded deterministic
uncertain inputs. In particular, the measurement equation
with the standard norm bounded uncertainty can be written
as (equation 6)

y = C(x) + δC(x) + v0

where |δ| ≤ ξ with ξ, a constant indicating the upper
bound of the norm bounded portion of the noise. By choos-
ing z = ξC(x) and ν = δC(x),

∫ T

0

|ν|dt ≤
∫ T

0

z′zdt.

Considering v0 and the corresponding uncertainty in w as
w0 satisfying the bound in the form of

Φ (x(0)) +

∫ T

0

[
w0(t)

′Qw0(t) + v0(t)
′Rv0(t)

]
dt ≤ d,

it is clear that this uncertain system leads to the satisfac-
tion of condition in inequality 9 and hence 13 (see [11]).
This more realistic approach removes any noise model as-
sumptions in our algorithm development and guarantees the
robustness.

5. SIMULATION
To examine the application and performance of the Ro-

bust Extended Kalman Filter in an Adhoc type network,
simple simulations are carried out for a mobile-user in a
three car coverage area. The network is assumed to have
location and acceleration information of the mobile base
stations via GPS and accelerometer reading while no such
information is available with respect to the mobile user of
an arbitrary kind. We simulated the two fold scenarios we
introduced earlier.

1. Measurement from the closest base station i.e., the
largest measurement from the three neighboring base
stations. The tracking is performed by the closest car.

2. Two base stations which are closest to the mobile ter-
minal are used for measurement. The tracking is per-
formed by the closest car however the second closest
car is also performing measurements.

The simulated service area contains three cars for illustrative
purposes and can obviously be scaled for as many mobile-
basetstations and users as required. Identical parameters
(table 1) were used for our simulations in each case for com-
parison purposes. The simulation parameters commonly
known as tuning parameters (Ni, Qi and Ri) are relative
weights associated with initial conditions, unknown maneu-
ver of the mobile user and the sensor noise respectively
for each systems of Cari and the mobile user(see equa-
tion 18). Therefore by changing these parameters, we in-
crease/decrease the relative tolerance of the systems i for
the respective characteristic.
In the simulation of the dynamical system, we choose the

functions given in table 2 for arbitrary car accelerations(ui’s)
and unknown mobile user acceleration(w). The arbitrary
user mobility pattern where φ1, and φ2 being uniform ran-
dom distributions in the interval [0 0.2Amax]. We use a
uniform random distribution in the interval [0 0.05Amax]
for the measurement noise with ξ = 0.05. The equation
for the state estimation and the corresponding Riccati Dif-
ferential equation obtained from equation 15 and 16 are as
follows:
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Parameter Value Comments

poi 20w Base station

transmission power

{N1, N2, N3} {0.1, 0.1, 0.0.095} × I4 Weighting on

the initial

viscosity solution

{Q1, Q2, Q3} {5, 5, 1} × 10−3I2 Weighting on

the uncertainty

in the user

driving command

{R1, R2, R3} {6, 7, 5} × 103 Weighting

I1 for scenario 1 on the

and I2 for scenario 2 measurement noise

T 70mins Simulation time

Amax 3.3m/s2 Amplitude of

the user

driving command

Ts 0.6s Sampling interval

x1(0) [0 0 cos(10) sin(10)]′ Initial state

×500-30km/hr speed wrt. the 1st car

at 10o to the X axis

x2(0) [150000833.33 cos(140) Initial state

833.33 sin(140)]’-50km/hr wrt. the 2st car

at 140o to the X axis

x3(0) [8000 20000 166.7 cos(240) Initial state

166.7 sin(240)]’-10km/hr wrt. the 3rd car

at 240o to the X axis

Table 1: Simulation parameters.

Vehicle Car Acceleration

1 Amax[−3 sin(0.2t) + 0.2φ1

0.9 cos(0.05 ∗ t) + 0.2φ2]
′

2 1.6Amax[3 sin(0.2t) + 0.2φ1

−2.0 cos(0.09t) + 0.2φ1]
′

3 Amax[4 sin(0.3t) + 0.2φ1

−3 cos(0.1 ∗ t) + 0.2φ2]
′

Mobile user Amax[− cos(0.1t) + 0.2φ1

1 sin(0.1t) + 0.2φ2]
′

Table 2: Acceleration of dynamical entities

˙̃x(t) = Ax̃(t) +B1ui(t)

+X−1(t)[β1x̃(t)′Ri (y(t)− β (x̃(t))) + ξ2β1x̃(t)′β1x̃(t)],

x̃(t) = x0.

Ẋ +A′X +XA+XB2Q
−1
i B′

2X −
β1x̃(t)′Riβ

1x̃(t) + ξ2β1x̃(t)′β1x̃(t) = 0, X(0) = Ni.

where for the case of single base station measurement

β(xi) = pi

with i corresponding to the closest base station, and for the
case of two base station measurement

β(x) = C(x)

as shown in equation 7. Also here

β1(x) = ∇xβ(x), (19)

x0 is the last state before the handover.
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Figure 2: Trajectories of the cars and the mobile
user for the case of single base station measuring

Time Period Closest Car

[0 18]min Car2
[18 31.2]min Car3
[31.2 67.9]min Car1
[67.9 70]min Car2

Table 3: Cars tracking the mobile user during the
time period (single base station measuring)

5.1 Discussion of results
The simulation of mobility modelling and trajectory track-

ing of a mobile user purely with signal strength measure-
ments by three cars and a arbitrary mobile user in a 15 ×
40km sub-urban area, were performed successfully in a two
fold scenario. We have restricted the number of base sta-
tions to a minimum to ensure the clarity and simplicity in
demonstration and can obviously be scaled to as many base
stations as required. In the first scenario, a single car (the
closest car) is measuring the forward link signal in the GSM
system and tracks the mobile user’s location and predicts
the velocity as shown in figure 2 and 3. The respective han-
dover time and corresponding vehicles are given in table 3.
The second implementation we propose ensures further im-
provements by involving the additional second closest car

Time Period Closest Car 2nd Closest Car

[0 18]min Car2 Car1
[18 31.1]min Car3 Car2
[31.1 61.3]min Car1 Car3
[61.3 70]min Car2 Car1

Table 4: Cars tracking the mobile user during the
time period (dual base station measuring)
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Figure 3: Actual and Estimated velocities of the mo-
bile user for the case of single base station measuring

for measuring the forward link signal. Using identical pa-
rameters as for the case of single base station measuring, our
second scenario produced improved tacking of position and
velocity of the mobile user. The significant improvement in
location estimation is shown in figure 4 and the performance
comparison/improvement in location estimation of the two
scenarios is shown in figure 6. Compared to the estimated
velocity in the first case (figure 3), figure 5 shows the im-
provement in velocity estimation. The tracking performed
by the closest car and the forward link measuring by the
two closest cars are shown in table 4 with the corresponding
tracking/measuring and handover times.

6. CONCLUSION
We have provided a scheme for mobility estimation and

prediction for an adhoc network consisting of mobile bases-
tations and mobile-users. To best of our knowledge no other
study has been done for such a network. The desire was
to develop an effective, robust and easily implementable
algorithm with less burden on the system resources while
effectively using the readily available mobile base stations
(such as cars fitted with base stations). We proposed use
of a Robust Extended Kalman Filter based state estimation
algorithm. It is evident from our research, a single mo-
bile base station can successfully be used for tracking the
mobile user in the wireless network (existing schemes need
RSSI measurements from at least three base stations). Fur-
ther improvements for the overall system performance can
be achieved by our second proposed technique by using the
next closest car for measurement purposes. Emerging from
a recent theoretical development, REKF can successfully be
used in the prediction of a mobile user’s location in a wireless
ad hoc network with tracker and measurers switching appro-
priately. As our implementation with a single base station
uses only the measurement from the closest neighboring sta-
tion, the computational efficiency of the overall network is
significantly improved. Also our second proposal further im-
proves the system performance by using measurements from
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Figure 4: Trajectories of the cars and the mobile
user for the case of dual base station measuring

only two base stations which are closest to the mobile user
eliminating the need to sample with more (six) base stations
as in PCS networks. This considerably reduces the network
traffic while improving the computational efficiency. Our
algorithm is clearly computationally efficient in comparison
to extended Kalman filter implementation provided in many
PCS networks and it can be implemented within the mobile
user rather than in the basestation in order to reduce the sig-
nalling traffic. Most existing techniques use algorithm based
on Gaussian noise models, semi-Markov models or extremely
computationally expensive Monte Carlo trail and are there-
fore dependant on particular noise model, hence not optimal
or robust for different noise models. In this work, as no as-
sumptions were made on the measurement noise and uncer-
tain user acceleration component. This ensures robustness
of this algorithm is ensured. Our future work will consider
extending this work to outdoor localization of small sensor
devices.
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