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Mobility network models of COVID-19 
explain inequities and inform reopening

Serina Chang1,9, Emma Pierson1,2,9, Pang Wei Koh1,9, Jaline Gerardin3, Beth Redbird4,5,  

David Grusky6,7 & Jure Leskovec1,8 ✉

The coronavirus disease 2019 (COVID-19) pandemic markedly changed human 

mobility patterns, necessitating epidemiological models that can capture the e�ects 

of these changes in mobility on the spread of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2)1. Here we introduce a metapopulation susceptible–

exposed–infectious–removed (SEIR) model that integrates �ne-grained, dynamic 

mobility networks to simulate the spread of SARS-CoV-2 in ten of the largest US 

metropolitan areas. Our mobility networks are derived from mobile phone data and 

map the hourly movements of 98 million people from neighbourhoods (or census 

block groups) to points of interest such as restaurants and religious establishments, 

connecting 56,945 census block groups to 552,758 points of interest with 5.4 billion 

hourly edges. We show that by integrating these networks, a relatively simple SEIR 

model can accurately �t the real case trajectory, despite substantial changes in the 

behaviour of the population over time. Our model predicts that a small minority of 

‘superspreader’ points of interest account for a large majority of the infections, and 

that restricting the maximum occupancy at each point of interest is more e�ective 

than uniformly reducing mobility. Our model also correctly predicts higher infection 

rates among disadvantaged racial and socioeconomic groups2–8 solely as the result of 

di�erences in mobility: we �nd that disadvantaged groups have not been able to 

reduce their mobility as sharply, and that the points of interest that they visit are more 

crowded and are therefore associated with higher risk. By capturing who is infected at 

which locations, our model supports detailed analyses that can inform more-e�ective 

and equitable policy responses to COVID-19.

In response to the COVID-19 crisis, stay-at-home orders were enacted 

in many countries to reduce contact between individuals and slow the 

spread of the SARS-CoV-29. Since then, public officials have continued 

to deliberate over when to reopen, which places are safe to return to 

and how much activity to allow10. Answering these questions requires 

epidemiological models that can capture the effects of changes in 

mobility on virus spread. In particular, findings of COVID-19 super-

spreader events11–14 motivate models that can reflect the heterogeneous 

risks of visiting different locations, whereas well-reported disparities 

in infection rates among different racial and socioeconomic groups2–8 

require models that can explain the disproportionate effect of the virus 

on disadvantaged groups.

To address these needs, we construct fine-grained dynamic mobility 

networks from mobile-phone geolocation data, and use these networks 

to model the spread of SARS-CoV-2 within 10 of the largest metropoli-

tan statistical areas (hereafter referred to as metro areas) in the USA. 

These networks map the hourly movements of 98 million people from 

census block groups (CBGs), which are geographical units that typi-

cally contain 600–3,000 people, to specific points of interest (POIs). 

As shown in Supplementary Table 1, POIs are non-residential locations 

that people visit such as restaurants, grocery stores and religious estab-

lishments. On top of each network, we overlay a metapopulation SEIR 

model that tracks the infection trajectories of each CBG as well as the 

POIs at which these infections are likely to have occurred. This builds 

on prior research that models disease spread using aggregate15–19,  

historical20–22 or synthetic mobility data23–25; separately, other studies 

have analysed mobility data in the context of COVID-19, but without 

an underlying model of disease spread26–30.

Combining our epidemiological model with these mobility networks 

allows us to not only accurately fit observed case counts, but also to 

conduct detailed analyses that can inform more-effective and equi-

table policy responses to COVID-19. By capturing information about 

individual POIs (for example, the hourly number of visitors and median 

visit duration), our model can estimate the effects of specific reopening 

strategies, such as only reopening certain POI categories or restrict-

ing the maximum occupancy at each POI. By modelling movement 

from CBGs, our model can identify at-risk populations and correctly 

predict, solely from mobility patterns, that disadvantaged racial and 
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socioeconomic groups face higher rates of infection. Our model thus 

enables the analysis of urgent health disparities; we use it to highlight 

two mobility-related mechanisms that drive these disparities and to 

evaluate the disparate effect of reopening on disadvantaged groups.

Mobility network model

We use data from SafeGraph, a company that aggregates anonymized 

location data from mobile applications, to study mobility patterns 

from 1 March to 2 May 2020. For each metro area, we represent the 

movement of individuals between CBGs and POIs as a bipartite network 

with time-varying edges, in which the weight of an edge between a CBG 

and POI represents the number of visitors from that CBG to that POI 

during a given hour (Fig. 1a). SafeGraph also provides the area in square 

feet of each POI, as well as its category in the North American indus-

try classification system (for example, fitness centre or full-service 

restaurant) and median visit duration in minutes. We validated the 

SafeGraph mobility data by comparing the dataset to Google mobility 

data (Supplementary Fig. 1 and Supplementary Tables 2, 3) and used 

iterative proportional fitting31 to derive POI–CBG networks from the 

raw SafeGraph data. Overall, these networks comprise 5.4 billion hourly 

edges between 56,945 CBGs and 552,758 POIs (Extended Data Table 1).

We overlay a SEIR model on each mobility network15,20, in which each 

CBG maintains its own susceptible (S), exposed (E), infectious (I) and 

removed (R) states (Fig. 1b). New infections occur at both POIs and 

CBGs, with the mobility network governing how subpopulations from 

different CBGs interact as they visit POIs. We use the area, median visit 

duration and time-varying density of infectious individuals for each 

POI to determine the hourly infection rate of that POI. The model has 

only three free parameters that scale: (1) transmission rates at POIs, (2) 

transmission rates at CBGs and (3) the initial proportion of exposed 

individuals (Extended Data Table 2); all three parameters remain con-

stant over time. We calibrate a separate model for each metro area using 

the confirmed case counts from The New York Times by minimizing the 

root mean square error (r.m.s.e.) to daily incident cases32. Our model 

accurately fits observed daily case counts in all 10 metro areas from 

8 March to 9 May 2020 (Fig. 1c, d). In addition, when calibrated on only 

the case counts up to 14 April, the model predicts case counts reason-

ably well on the held-out time period of 15 April–9 May 2020 (Fig. 1c and 

Extended Data Fig. 1a). Our key technical finding is that the dynamic 

mobility network allows even our relatively simple SEIR model with 

just three static parameters to accurately fit observed cases, despite 

changing policies and behaviours during that period.

Mobility reduction and reopening plans

We can estimate the impact of mobility-related policies by constructing 

a hypothetical mobility network that reflects the expected effects of 
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Fig. 1 | Model description and fit. a, The mobility network captures hourly 

visits from each CBG to each POI. The vertical lines indicate that most visits are 

between nearby POIs and CBGs. Visits dropped markedly from March to April, 

as indicated by the lower density of grey lines. Mobility networks in the Chicago 

metro area are shown for 13:00 on two Mondays, 2 March 2020 (top) and 6 April 

2020 (bottom). b, We overlaid a disease-spread model on the mobility network, 

with each CBG having its own set of SEIR compartments. New infections occur 

at both POIs and CBGs, with the mobility network governing how 

subpopulations from different CBGs interact as they visit POIs. c, Left, to test 

the out-of-sample prediction, we calibrated the model on data before 15 April 

2020 (vertical black line). Even though its parameters remain fixed over time, 

the model accurately predicts the case trajectory in the Chicago metro area 

after 15 April using the mobility data (r.m.s.e. on daily cases = 406 for dates 

ranging from 15 April to 9 May). Right, model fit was further improved when we 

calibrated the model on the full range of data (r.m.s.e. on daily cases = 387 for 

the dates ranging from 15 April to 9 May). d, We fitted separate models to 10 of 

the largest US metro areas, modelling a total population of 98 million people; 

here, we show full model fits, as in c (right). In c and d, the blue line represents 

the model predictions and the grey crosses represent the number of daily 

reported cases; as the numbers of reported cases tend to have great variability, 

we also show the smoothed weekly average (orange line). Shaded regions 

denote the 2.5th and 97.5th percentiles across parameter sets and stochastic 

realizations. Across metro areas, we sample 97 parameter sets, with 30 

stochastic realizations each (n = 2,910); see Supplementary Table 6 for the 

number of sets per metro area.
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each policy, and running our SEIR model forward with this hypotheti-

cal network. Using this approach, we assess a wide range of mobility 

reduction and reopening strategies.

The magnitude of mobility reduction is at least as important as 

its timing

Mobility in the USA dropped sharply in March 2020: for example, overall 

POI visits in the Chicago metro area fell by 54.7% between the first week 

of March and the first week of April 2020. We constructed counterfac-

tual mobility networks by scaling the magnitude of mobility reduction 

down and by shifting the timeline earlier and later, and applied our 

model to the counterfactual networks to simulate the resulting infec-

tion trajectories. Across metro areas, we found that the magnitude of 

mobility reduction was at least as important as its timing (Fig. 2a and 

Supplementary Tables 4, 5): for example, if the mobility reduction in the 

Chicago metro area had been only a quarter of the size, the predicted 

number of infections would have increased by 3.3× (95% confidence 

interval, 2.8–3.8×), compared with a 1.5× (95% confidence interval, 

1.4–1.6×) increase had people begun reducing their mobility one full 

week later. Furthermore, if no mobility reduction had occurred at all, 

the predicted number of infections in the Chicago metro area would 

have increased by 6.2× (95% confidence interval, 5.2–7.1×). Our results 

are in accordance with previous findings that mobility reductions can 

markedly reduce infections18,19,33,34.

 

A minority of POIs account for the majority of the predicted 

infections

We next investigated whether it matters how we reduce mobility—that 

is, to which POIs. We computed the number of infections that occurred 

at each POI in our simulations from 1 March to 2 May 2020, and found 

that the majority of the predicted infections occurred at a small fraction 

of superspreader POIs; for example, in the Chicago metro area, 10% 

of POIs accounted for 85% (95% confidence interval, 83–87%) of the 

predicted infections at the POIs (Fig. 2b and Supplementary Fig. 10). 

Certain categories of POIs also contributed far more to infections (for 

example, full-service restaurants and hotels), although our model 

predicted time-dependent variation in how much each category con-

tributed (Extended Data Fig. 2). For example, restaurants and fitness 

centres contributed less to the predicted number of infections over 

time, probably because of lockdown orders to close these POIs, whereas 

grocery stores remained steady or even grew in their contribution, 

which is in agreement with their status as essential businesses.

Reopening with a reduced maximum occupancy

If a minority of POIs produce the majority of infections, then reopening 

strategies that specifically target high-risk POIs should be especially 

effective. To test one such strategy, we simulated reopening on 1 May, 

and modelled the effects of reducing the maximum occupancy in which 
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Fig. 2 | Assessing mobility reduction and reopening. The Chicago metro area 

is used as an example; results for all metro areas are included in Extended Data 

Figs. 3, 4, Supplementary Figs. 10, 15–24 and Supplementary Tables 4, 5, as 

indicated. a, Counterfactual simulations (left) of past reductions in mobility 

illustrate that the magnitude of the reduction (middle) was at least as 

important as its timing (right) (Supplementary Tables 4, 5). b, The model 

predicts that most infections at POIs occur at a small fraction of superspreader 

POIs (Supplementary Fig. 10). c, Left, the cumulative number of predicted 

infections after one month of reopening is plotted against the fraction of visits 

lost by partial instead of full reopening (Extended Data Fig. 3); the annotations 

within the plot show the fraction of maximum occupancy that is used as the cap 

and the horizontal red line indicates the cumulative number of predicted 

infections at the point of reopening (on 1 May 2020). Compared to full 

reopening, capping at 20% of the maximum occupancy in Chicago reduces the 

number of new infections by more than 80%, while only losing 42% of overall 

visits. Right, compared to uniformly reducing visits, the reduced maximum 

occupancy strategy always results in a smaller predicted increase in infections 

for the same number of visits (Extended Data Fig. 4). The horizontal grey line at 

0% indicates when the two strategies result in an equal number of infections, 

and we observe that the curve falls well below this baseline. The y axis plots the 

relative difference between the predicted number of new infections under the 

reduced occupancy strategy compared to a uniform reduction. d, Reopening 

full-service restaurants has the largest predicted impact on infections, due to 

the large number of restaurants as well as their high visit densities and long 

dwell times (Supplementary Figs. 15–24). Colours are used to distinguish the 

different POI categories, but do not have any additional meaning. All results in 

this figure are aggregated across 4 parameter sets and 30 stochastic 

realizations (n = 120). Shaded regions in a–c denote the 2.5th to 97.5th 

percentiles; boxes in d denote the interquartile range and data points outside 

this range are shown as individual dots.
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the numbers of hourly visits to each POI returned to their ‘normal’ 

levels from the first week of March but were capped if they exceeded 

a fraction of the maximum occupancy of that POI35. Full reopening 

without reducing the maximum occupancy produced a spike in the 

predicted number of infections: in the Chicago metro area, our models 

projected that an additional 32% (95% confidence interval, 25–35%) of 

the population would be infected by the end of May (Fig. 2c). However, 

reducing the maximum occupancy substantially reduced the risk with-

out sharply reducing overall mobility: capping at 20% of the maximum 

occupancy in the Chicago metro area reduced the predicted number 

of new infections by more than 80% but only lost 42% of overall visits, 

and we observed similar trends across other metro areas (Extended 

Data Fig. 3). This result highlights the nonlinearity of the predicted 

number of infections as a function of the number of visits: one can 

achieve a disproportionately large reduction in infections with a small 

reduction in visits. Furthermore, in comparison to a different reopen-

ing strategy, in which the number of visits to each POI was uniformly 

reduced from their levels in early March, reducing the maximum 

occupancy always resulted in fewer predicted infections for the same 

number of total visits (Fig. 2c and Extended Data Fig. 4). This is because  

reducing the maximum occupancies takes advantage of the 

time-varying visit density within each POI, disproportionately reduc-

ing visits to the POI during the high-density periods with the highest 

risk, but leaving visit counts unchanged during periods with lower risks. 

These results support previous findings that precise interventions, 

such as reducing the maximum occupancy, may be more effective than 

less targeted measures, while incurring substantially lower economic 

costs36.

Relative risk of reopening different categories of POIs

Because we found that certain POI categories contributed far more to 

predicted infections in March (Extended Data Fig. 2), we also expected 

that reopening some POI categories would be riskier than reopening 

others. To assess this, we simulated reopening each category in turn 

on 1 May 2020 (by returning its mobility patterns to early March levels, 

as above), while keeping all other POIs at their reduced mobility levels 

from the end of April. We found large variation in predicted reopening 

risks: on average across metro areas, full-service restaurants, gyms, 

hotels, cafes, religious organizations and limited-service restaurants 

produced the largest predicted increases in infections when reopened 

(Extended Data Fig. 5d). Reopening full-service restaurants was asso-

ciated with a particularly high risk: in the Chicago metro area, we pre-

dicted an additional 595,805 (95% confidence interval, 433,735–685,959) 

infections by the end of May, more than triple that of the POI category 

with the next highest risk (Fig. 2d). These risks are summed over all POIs 

in the category, but the relative risks after normalizing by the number 

of POIs were broadly similar (Extended Data Fig. 5c). These categories 

were predicted to be have a higher risk because, in the mobility data, 

their POIs tended to have higher visit densities and/or visitors stayed 

there longer (Supplementary Figs. 15–24).
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Fig. 3 | Mobility patterns give rise to infection disparities. a, In every metro 

area, our model predicts that people in lower-income CBGs are likelier to be 

infected. b, People in non-white CBGs area are also likelier to be infected, 

although results are more variable across metro areas. For c–f, the Chicago 

metro area is used as an example, but references to results for all metro areas 

are provided for each panel. c, The overall predicted disparity is driven by a few 

POI categories such as full-service restaurants (Supplementary Fig. 2). d, One 

reason for the predicted disparities is that higher-income CBGs were able to 

reduce their mobility levels below those of lower-income CBGs (Extended Data 

Fig. 6). e, Within each POI category, people from lower-income CBGs tend to 

visit POIs that have higher predicted transmission rates (Extended Data 

Table 3). The size of each dot represents the average number of visits per capita 

made to the category. The top 10 out of 20 categories with the most visits are 

labelled, covering 0.48–2.88 visits per capita (hardware stores–full-service 

restaurants). f, Reopening (at different levels of reduced maximum occupancy) 

leads to more predicted infections in lower-income CBGs than in the overall 

population (Extended Data Fig. 3). In c–f, purple denotes lower-income CBGs, 

yellow denotes higher-income CBGs and blue represents the overall 

population. Aside from d and e, which were directly extracted from mobility 

data, all results in this figure represent predictions aggregated over model 

realizations. Across metro areas, we sample 97 parameter sets, with 30 

stochastic realizations each (n = 2,910); see Supplementary Table 6 for the 

number of sets per metro area. Shaded regions in c and f denote the 2.5th–

97.5th percentiles; boxes in (a, b) denote the interquartile range; data points 

outside the range are shown as individual dots.
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Demographic disparities in infections

We characterize the differential spread of SARS-CoV-2 along demo-

graphic lines by using US census data to annotate each CBG with its 

racial composition and median income, then tracking predicted 

infection rates in CBGs with different demographic compositions: 

for example, within each metro area, comparing CBGs in the top and 

bottom deciles for income. We use this approach to study the mobility 

mechanisms behind disparities and to quantify how different reopen-

ing strategies affect disadvantaged groups.

Predicting disparities from mobility data

Despite having access to only mobility data and no demographic 

information, our models correctly predicted higher risks of infection 

among disadvantaged racial and socioeconomic groups2–8. Across all 

metro areas, individuals from CBGs in the bottom decile for income 

had a substantially higher likelihood of being infected by the end of the 

simulation, even though all individuals began with equal likelihoods of 

infection (Fig. 3a). This predicted disparity was driven primarily by a few 

POI categories (for example, full-service restaurants); far greater pro-

portions of individuals from lower-income CBGs than higher-income 

CBGs became infected in these POIs (Fig. 3c and Supplementary Fig. 2). 

We similarly found that CBGs with fewer white residents had higher 

predicted risks of infection, although results were more variable across 

metro areas (Fig. 3b). In the Supplementary Discussion, we confirm that 

the magnitude of the disparities that our model predicts is generally 

consistent with real-world disparities and further explore the large 

predicted disparities in Philadelphia, that stem from substantial differ-

ences in the POIs that are frequented by higher- versus lower-income 

CBGs. In the analysis below, we discuss two mechanisms that lead higher 

predicted infection rates among lower-income CBGs, and we show in 

Extended Data Fig. 6 and Extended Data Table 4 that similar results 

hold for racial disparities as well.

Lower-income CBGs saw smaller reductions in mobility

A first mechanism producing disparities was that, across all metro areas, 

lower-income CBGs did not reduce their mobility as sharply in the first 

few weeks of March 2020, and these groups showed higher mobility 

than higher-income CBGs for most of March–May (Fig. 3d and Extended 

Data Fig. 6). For example, in April, individuals from lower-income CBGs 

in the Chicago metro area had 27% more POI visits per capita than those 

from higher-income CBGs. Category-level differences in visit patterns 

partially explained the infection disparities within each category: for 

example, individuals from lower-income CBGs made substantially more 

visits per capita to grocery stores than did those from higher-income 

CBGs (Supplementary Fig. 3) and consequently experienced more 

predicted infections for that category (Supplementary Fig. 2).

POIs visited by lower-income CBGs have higher transmission 

rates

Differences in visits per capita do not fully explain the infection dispari-

ties: for example, cafes and snack bars were visited more frequently 

by higher-income CBGs in every metro area (Supplementary Fig. 3), 

but our model predicted that a larger proportion of individuals from 

lower-income CBGs were infected at cafes and snack bars in the major-

ity of metro areas (Supplementary Fig. 2). We found that even within 

a POI category, the predicted transmission rates at POIs frequented 

by individuals fom lower-income CBGs tended to be higher than the 

corresponding rates for those from higher-income CBGs (Fig. 3e and 

Extended Data Table 3), because POIs frequented by individuals from 

lower-income CBGs tended to be smaller and more crowded in the 

mobility data. As a case study, we examined grocery stores in further 

detail. In eight of the ten metro areas, visitors from lower-income CBGs 

encountered higher predicted transmission rates at grocery stores 

than visitors from higher-income CBGs (median transmission rate ratio 

of 2.19) (Extended Data Table 3). We investigated why one visit to the 

grocery store was predicted to be twice as dangerous for an individual 

from a lower-income CBG: the mobility data showed that the average 

grocery store visited by individuals from lower-income CBGs had 59% 

more hourly visitors per square foot, and their visitors stayed 17% longer 

on average (medians across metro areas). These findings highlight how 

fine-grained differences in mobility patterns—how often people go out 

and which POIs that they go to—can ultimately contribute to marked 

disparities in predicted infection outcomes.

Reopening plans must account for disparate effects

Because disadvantaged groups suffer a larger burden of infection, it is 

critical to not only consider the overall impact of reopening plans but 

also their disparate effects on disadvantaged groups specifically. For 

example, our model predicted that full reopening in the Chicago metro 

area would result in an additional 39% (95% confidence interval, 31–42%) 

of the population of CBGs in the bottom income decile being infected 

within a month, compared to 32% (95% confidence interval, 25–35%) of 

the overall population (Fig. 3f; results for all metro areas are shown in 

Extended Data Fig. 3). Similarly, Supplementary Fig. 4 illustrates that 

reopening individual POI categories tends to have a larger predicted 

effect on lower-income CBGs. More stringent reopening plans produce 

smaller absolute disparities in predicted infections—for example, we 

predict that reopening at 20% of the maximum occupancy in Chicago 

would result in additional infections for 6% (95% confidence interval, 

4–8%) of the overall population and 10% (95% confidence interval, 

7–13%) of the population in CBGs in the bottom income decile (Fig. 3f)—

although the relative disparity remains.

Discussion

The mobility dataset that we use has limitations: it does not cover all 

populations, does not contain all POIs and cannot capture sub-CBG 

heterogeneity. Our model itself is also parsimonious, and does not 

include all real-world features that are relevant to disease transmis-

sion. We discuss these limitations in more detail in the Supplementary 

Discussion. However, the predictive accuracy of our model suggests 

that it broadly captures the relationship between mobility and trans-

mission, and we thus expect our broad conclusions—for example, 

that people from lower-income CBGs have higher infection rates in 

part because they tend to visit denser POIs and because they have not 

reduced mobility by as much (probably because they cannot work from 

home as easily4)—to hold robustly. Our fine-grained network modelling 

approach naturally extends to other mobility datasets and models that 

capture more aspects of real-world transmission, and these represent 

interesting directions for future work.

Our results can guide policy-makers that seek to assess competing 

approaches to reopening. Despite growing concern about racial and 

socioeconomic disparities in infections and deaths, it has been dif-

ficult for policy-makers to act on those concerns; they are currently 

operating without much evidence on the disparate effects of reopening 

policies, prompting calls for research that both identifies the causes 

of observed disparities and suggests policy approaches to mitigate 

them5,8,37,38. Our fine-grained mobility modelling addresses both these 

needs. Our results suggest that infection disparities are not the unavoid-

able consequence of factors that are difficult to address in the short 

term, such as differences in preexisting conditions; on the contrary, 

short-term policy decisions can substantially affect infection outcomes 

by altering the overall amount of mobility allowed and the types of 

POIs reopened. Considering the disparate effects of reopening plans 

may lead policy-makers to adopt policies that can drive down infec-

tion densities in disadvantaged neighbourhoods by supporting, for 

example, more stringent caps on POI occupancies, emergency food 

distribution centres to reduce densities in high-risk stores, free and 

widely available testing in neighbourhoods predicted to be high risk 



Nature | Vol 589 | 7 January 2021 | 87

(especially given known disparities in access to tests2), improved paid 

leave policy or income support that enables essential workers to curtail 

mobility when sick, and improved workplace infection prevention for 

essential workers, such as high-quality personal protective equipment, 

good ventilation and physical distancing when possible. As reopening 

policies continue to be debated, it is critical to build tools that can assess 

the effectiveness and equity of different approaches. We hope that our 

model, by capturing heterogeneity across POIs, demographic groups 

and cities, helps to address this need.
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Methods

The Methods is structured as follows. We describe the datasets that 

we used in the ‘Datasets’ section and the mobility network that we 

derived from these datasets in the ‘Mobility network’ section. In the 

‘Model dynamics’ section, we discuss the SEIR model that we overlaid 

on the mobility network; in the ‘Model calibration’ section, we describe 

how we calibrated this model and quantified uncertainty in its predic-

tions. Finally, in the ‘Analysis details’ section, we provide details on the 

experimental procedures used for our analyses of mobility reduction, 

reopening plans and demographic disparities.

Datasets

SafeGraph. We use data provided by SafeGraph, a company that aggre-

gates anonymized location data from numerous mobile applications. 

SafeGraph data captures the movement of people between CBGs, which 

are geographical units that typically contain a population of between 

600 and 3,000 people, and POIs such as restaurants, grocery stores or 

religious establishments. Specifically, we use the following SafeGraph 

datasets.

First, we used the Places Patterns39 and Weekly Patterns (v1)40 data-

sets. These datasets contain, for each POI, hourly counts of the number 

of visitors, estimates of median visit duration in minutes (the ‘dwell 

time’) and aggregated weekly and monthly estimates of the home CBGs 

of visitors. We use visitor home CBG data from the Places Patterns 

dataset: for privacy reasons, SafeGraph excludes a home CBG from this 

dataset if fewer than five devices were recorded at the POI from that CBG 

over the course of the month. For each POI, SafeGraph also provides 

their North American industry classification system category, as well 

as estimates of its physical area in square feet. The area is computed 

using the footprint polygon SafeGraph that assigns to the POI41,42. We 

analyse Places Patterns data from 1 January 2019 to 29 February 2020 

and Weekly Patterns data from 1 March 2020 to 2 May 2020.

Second, we used the Social Distancing Metrics dataset43, which con-

tains daily estimates of the proportion of people staying home in each 

CBG. We analyse Social Distancing Metrics data from 1 March 2020 to 

2 May 2020.

We focus on 10 of the largest metro areas in the United States 

(Extended Data Table 1). We chose these metro areas by taking a ran-

dom subset of the SafeGraph Patterns data and selecting the 10 metro 

areas with the most POIs in the data. The application of the methods 

described in this paper to the other metro areas in the original Saf-

eGraph data should be straightforward. For each metro area, we include 

all POIs that meet all of the following requirements: (1) the POI is located 

in the metro area ; (2) SafeGraph has visit data for this POI for every hour 

that we model, from 00:00 on 1 March 2020 to 23:00 on 2 May 2020; 

(3) SafeGraph has recorded the home CBGs of visitors to this POI for 

at least one month from January 2019 to February 2020; (4) the POI is 

not a ‘parent’ POI. Parent POIs comprise a small fraction of POIs in the 

dataset that overlap and include the visits from their ‘child’ POIs: for 

example, many malls in the dataset are parent POIs, which include the 

visits from stores that are their child POIs. To avoid double-counting 

visits, we remove all parent POIs from the dataset. After applying these 

POI filters, we include all CBGs that have at least one recorded visit to 

at least ten of the remaining POIs; this means that CBGs from outside 

the metro area may be included if they visit this metro area frequently 

enough. Summary statistics of the post-processed data are shown 

in Extended Data Table 1. Overall, we analyse 56,945 CBGs from the 

10 metro areas, and more than 310 million visits from these CBGs to 

552,758 POIs.

SafeGraph data have been used to study consumer preferences44 and 

political polarization45. More recently, it has been used as one of the 

primary sources of mobility data in the USA for tracking the effects of 

the COVID-19 pandemic26,28,46–48. In Supplementary Methods section 

1, we show that aggregate trends in SafeGraph mobility data match 

the aggregate trends in Google mobility data in the USA49, before and 

after the imposition of stay-at-home measures. Previous analyses of 

SafeGraph data have shown that it is geographically representative—for 

example, it does not systematically overrepresent individuals from 

CBGs in different counties or with different racial compositions, income 

levels or educational levels50,51.

US census. Our data on the demographics of the CBGs comes from 

the American Community Survey (ACS) of the US Census Bureau52. We 

use the 5-year ACS data (2013–2017) to extract the median household 

income, the proportion of white residents and the proportion of Black 

residents of each CBG. For the total population of each CBG, we use 

the most-recent one-year estimates (2018); one-year estimates are 

noisier but we wanted to minimize systematic downward bias in our 

total population counts (due to population growth) by making them 

as recent as possible.

The New York Times dataset. We calibrated our models using the 

COVID-19 dataset published by the The New York Times32. Their dataset 

consists of cumulative counts of cases and deaths in the USA over time, 

at the state and county level. For each metro area that we modelled, 

we sum over the county-level counts to produce overall counts for the 

entire metro area. We convert the cumulative case and death counts 

to daily counts for the purposes of model calibration, as described in 

the ‘Model calibration’ section.

Data ethics. The dataset from The New York Times consists of aggregat-

ed COVID-19-confirmed case and death counts collected by journalists 

from public news conferences and public data releases. For the mobility 

data, consent was obtained by the third-party sources that collected 

the data. SafeGraph aggregates data from mobile applications that 

obtain opt-in consent from their users to collect anonymous location 

data. Google’s mobility data consists of aggregated, anonymized sets 

of data from users who have chosen to turn on the location history 

setting. Additionally, we obtained IRB exemption for SafeGraph data 

from the Northwestern University IRB office.

Mobility network

Definition. We consider a complete undirected bipartite graph G V E= ( , ) 

with time-varying edges. The vertices V are partitioned into two disjoint 

sets C c c= { , …, }m1 , representing m CBGs, and P p p= { , …, }
n1

, represent-

ing n POIs. From US census data, each CBG ci is labelled with its popula-

tion Nci
, income distribution, and racial and age demographics. From 

SafeGraph data, each POI pj is similarly labelled with its category (for 

example, restaurant, grocery store or religious organization), its phys-

ical size in square feet a pj
, and the median dwell time d pj

 of visitors to 

pj. The weight wij
t( ) on an edge (ci, pj) at time t represents our estimate 

of the number of individuals from CBG ci visiting POI pj at the tth hour 

of simulation. We record the number of edges (with non-zero weights) 

in each metro area and for all hours from 1 March 2020 to 2 May 2020 

in Extended Data Table 1. Across all 10 metro areas, we study 5.4 billion 

edges between 56,945 CBGs and 552,758 POIs.

Overview of the network estimation. The central technical challenge 

in constructing this network is estimating the network weights 

W w= { }t
ij

t( ) ( )  from SafeGraph data, as this visit matrix is not directly 

available from the data. Our general methodology for network estima-

tion is as follows.

First, from SafeGraph data, we derived a time-independent estimate 

W  of the visit matrix that captures the aggregate distribution of visits 

from CBGs to POIs from January 2019 to February 2020.

Second, because visit patterns differ substantially from hour to hour 

(for example, day versus night) and day to day (for example, before 

versus after lockdown), we used current SafeGraph data to capture 

these hourly variations and to estimate the CBG marginals U(t), that 



is, the number of people in each CBG who are out visiting POIs at hour 

t, as well as the POI marginals V(t), that is, the total number of visitors 

present at each POI pj at hour t.

Finally, we applied the iterative proportional fitting procedure (IPFP) 

to estimate an hourly visit matrix W(t) that is consistent with the hourly 

marginals U(t) and V(t) but otherwise ‘as similar as possible’ to the dis-

tribution of visits in the aggregate visit matrix W , in terms of Kullback–

Leibler divergence.

IPFP is a classic statistical method31 for adjusting joint distributions 

to match prespecified marginal distributions, and it is also known in the 

literature as biproportional fitting, the RAS algorithm or raking53. In the 

social sciences, it has been widely used to infer the characteristics of 

local subpopulations (for example, within each CBG) from aggregate 

data54–56. IPFP estimates the joint distribution of visits from CBGs to POIs 

by alternating between scaling each row to match the hourly row (CBG) 

marginals U(t) and scaling each column to match the hourly column 

(POI) marginals V(t). Further details about the estimation procedure 

are provided in Supplementary Methods section 3.

Model dynamics

To model the spread of SARS-CoV-2, we overlay a metapopulation 

disease transmission model on the mobility network defined in the 

‘Mobility Network’ section. The transmission model structure fol-

lows previous work15,20 on epidemiological models of SARS-CoV-2 but 

incorporates a fine-grained mobility network into the calculations of 

the transmission rate. We construct separate mobility networks and 

models for each metropolitan statistical area.

We use a SEIR model with susceptible (S), exposed (E), infectious (I) 

and removed (R) compartments. Susceptible individuals have never 

been infected, but can acquire the virus through contact with infectious 

individuals, which may happen at POIs or in their home CBG. They then 

enter the exposed state, during which they have been infected but are 

not infectious yet. Individuals transition from exposed to infectious at 

a rate inversely proportional to the mean latency period. Finally, they 

transition into the removed state at a rate inversely proportional to the 

mean infectious period. The removed state represents individuals who 

can no longer be infected or infect others, for example, because they 

have recovered, self-isolated or died.

Each CBG ci maintains its own SEIR instantiation, with Sc
t( )
i

, E c
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i
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i

 

and Rc
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 representing how many individuals in CBG ci are in each disease 

state at hour t, and N S E I R= + + +c c
t

c
t

c
t

c
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i i i i i
. At each hour t, we sample 

the transitions between states as follows:
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where λ p
t( )

j
 is the rate of infection at POI pj at time t; wij

t( ), the ijth entry of 

the visit matrix from the mobility network (see ‘Mobility network’), is 

the number of visitors from CBG ci to POI pj at time t; λc
t( )

i
 is the base rate 

of infection that is independent of visiting POIs; δE is the mean latency 

period; and δI is the mean infectious period.

We then update each state to reflect these transitions. Let 

S S S∆ = −c
t

c
t

c
t( ) ( +1) ( )

i i i
 and likewise for E∆ c

t( )
i

, I∆ c
t( )
i

 and R∆ c
t( )
i

. Then, we make 

the following updates:

S N∆ = − (4)c
t

S E
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→
( )

i ci ci

E N N∆ = − (5)c
t

S E
t

E I
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→
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→
( )

i ci ci ci ci

I N N∆ = − (6)c
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E I
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I R
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R N∆ = . (7)c
t

I R
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i ci ci

The number of new exposures. We separate the number of new ex-

posures N S E
t

→
( )

ci ci

 in CBG ci at time t into two parts: cases from visiting 

POIs, which are sampled from S N λ wPois(( / )∑ )c
t

c j
n

p
t

ij
t( )

=1
( ) ( )

i i j
, and other 

cases not captured by visiting POIs, which are sampled from 

S λBinom( , )c
t

c
t( ) ( )

i i
.

First, we calculate the number of new exposures from visiting POIs. 

We assume that any susceptible visitor to POI pj at time t has the same 

independent probability λ p
t( )

j
 of being infected and transitioning from 

the susceptible (S) to the exposed (E) state. As there are wij
t( ) visitors 

from CBG ci to POI pj at time t, and we assume that a S N/c
t

c
( )

i i
 fraction of 

them are susceptible, the number of new exposures among these 

visitors is distributed as w S N λ λ w S Nbinom( / , ) ≈ Pois( / )ij
t

c
t

c p
t

p
t

ij
t

c
t

c
( ) ( ) ( ) ( ) ( ) ( )

i i j j i i
. 

The number of new exposures among all outgoing visitors from CBG 

ci is therefore distributed as the sum of the above expression over all 

POIs, S N λ wPois(( / )∑ )c
t

c j
n

p
t

ij
t( )

=1
( ) ( )

i i j
.

We model the infection rate at POI pj at time t, λ β I V= ( / )p
t

p

t
p
t

p
t( ) ( ) ( ) ( )

j j j j
,  

as the product of its transmission rate β
p

t( )

j

 and proportion of  

infectious individuals I V/p
t

p
t( ) ( )

j j
, where V w= ∑p

t
i
m

ij
t( )

=1
( )

j
 is the total number 

of visitors to pj at time t. We model the transmission rate at POI pj at 

time t as

β ψd
V

a
= , (8)

p

t
p

p
t

p

( ) 2

( )

j j

j

j

where a pj
 is the physical area of pj, and ψ is a transmission constant 

(shared across all POIs) that we fit to data. The inverse scaling of trans-

mission rate with area a pj
 is a standard simplifying assumption57. The 

dwell time fraction d ∈ [0, 1]pj
 is what fraction of an hour an average 

visitor to pj at any hour will spend there (Supplementary Methods sec-

tion 3); it has a quadratic effect on the POI transmission rate β
p

t( )

j

 because 

it reduces both the time that a susceptible visitor spends at pj and the 

density of visitors at pj. With this expression for the transmission rate 

β
p

t( )

j

, we can calculate the infection rate at POI pj at time t as

λ β
I

V
ψd

I

a
= = . (9)p

t

p

t p
t

p
t p

p
t

p

( ) ( )

( )

( )

2

( )

j j

j

j

j

j

j

For sufficiently large values of ψ and a sufficiently large proportion 

of infected individuals, the expression above can sometimes exceed 

1. To address this, we simply clip the infection rate to 1. However, this 

occurs very rarely for the parameter settings and simulation duration 

that we use.

Finally, to compute the number of infectious individuals at pj at time 

t, I p
t( )

j
, we assume that the proportion of infectious individuals among 

the wkj
t( ) visitors to pj from a CBG ck mirrors the overall density of infec-

tions I N/c
t

c
( )

k k
 in that CBG, although we note that the scaling factor ψ can 

account for differences in the ratio of infectious individuals who visit 

POIs. This gives

∑I
I

N
w= . (10)p

t

k

m
c

t

c
kj
t( )

=1

( )

( )
j

k

k

In addition to the new exposures from infections at POIs, we model 

a CBG-specific base rate of new exposures that is independent of POI 

visit activity. This captures other sources of infections, for example, 

household infections or infections at POIs that are absent from the 

SafeGraph data. We assume that at each hour, every susceptible 
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individual in CBG ci has a base probability λc
t( )

i
 of becoming infected 

and transitioning to the exposed state, where

λ β
I

N
= (11)c

t c
t

c

( )

base

( )

i

i

i

is the product of the base transmission rate βbase and the proportion 

of infectious individuals in CBG ci. βbase is a constant (shared across all 

CBGs) that we fit to data.

By adding all of the above together, the expression for the distribu-

tion of the overall number of new exposures in CBG ci at time t becomes
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The number of new infectious and removed cases. We model ex-

posed individuals as becoming infectious at a rate that is inversely 

proportional to the mean latency period δE. At each time step t, we as-

sume that each exposed individual has a constant, time-independent 

probability of becoming infectious, with

( )N E δ~ Binom , 1/ . (13)E I
t

c
t

E→
( ) ( )

ci ci i

Similarly, we model infectious individuals as transitioning to the 

removed state at a rate that is inversely proportional to the mean infec-

tious period δI, with

( )N I δ~ Binom , 1/ , (14)I R
t

c
t

I→
( ) ( )

ci ci i

We estimate δE = 96 h (refs. 20,58) and δI = 84 h (ref. 20) based on previous 

studies.

Model initialization. In our experiments, t = 0 is the first hour of 1 March 

2020. We approximate the infectious I and removed R compartments 

at t = 0 as initially empty, with all infected individuals in the exposed E 

compartment. We further assume that the same expected initial preva-

lence p0 occurs in every CBG ci. At t = 0, every individual in the metro area 

has the same independent probability p0 of being exposed E instead of 

susceptible S. We thus initialize the model state by setting

S N E= − (15)c c c
(0) (0)

i i i

( )E N p~ Binom , (16)c c
(0)

0i i

I = 0 (17)c
(0)

i

R = 0. (18)c
(0)

i

Aggregate mobility and no-mobility baseline models. To test 

whether the detailed mobility network is necessary, or whether our 

model is simply making use of aggregate mobility patterns, we tested an 

alternative SEIR model that uses the aggregate number of visits made to 

any POI in the metro area in each hour, but not the breakdown of visits 

between specific CBGs to specific POIs. Like our model, the aggregate 

mobility model also captures new cases from visiting POIs and a base 

rate of infection that is independent of POI visit activity; thus, the two 

models have the same three free parameters (ψ, scaling transmission 

rates at POIs; βbase, the base transmission rate ; and p0, the initial fraction 

of infected individuals). However, instead of having POI-specific rates 

of infection, the aggregate mobility model captures only a single prob-

ability that a susceptible person from any CBG will become infected 

due to a visit to any POI at time t; we make this simplification because 

the aggregate mobility model no longer has access to the breakdown 

of visits between CBGs and POIs. This probability λ
t

POI
( )

 is defined as

� ������ ������
λ ψ

w

nm

I

N
=

∑ ∑
, (19)

t i
m

j
n

ij
t

t

t

POI
( ) =1 =1

( )

Average mobility at time

( )

where m is the number of CBGs, n is the number of POIs, I(t) is the total 

number of infectious individuals at time t, and N is the total population 

size of the metro area. For the base rate of infections in CBGs, we assume 

the same process as in our network model: the probability λc
t( )

i
 that a 

susceptible person in CBG ci will become infected in their CBG at time t 

is equal to βbase times the current infectious fraction of ci (equation (11)). 

Putting it together, the aggregate mobility model defines the number 

of new exposures in CBG ci at time t as

� �������� �������� � �������� ��������( ) ( )N S λ S λ~ Binom , + Binom , .
(20)S E

t
c

t t
c

t
c

t
→

( ) ( )
POI
( )

New infections from visiting POIs

( ) ( )

Base rateof new CBG infections

ci ci i i i

All other dynamics remain the same between the aggregate mobility 

model and our network model, and we calibrated the models in the same 

way, which we describe in the ‘Model calibration’ section. We found 

that our network model substantially outperformed the aggregate 

mobility model in predictions of out-of-sample cases: on average across 

metro areas, the out-of-sample r.m.s.e. of our best-fit network model 

was only 58% that of the best-fit aggregate mobility model (Extended 

Data Fig. 1). This demonstrates that it is not only general mobility  

patterns, but specifically the mobility network that allows our model 

to accurately fit observed cases.

Next, to determine the extent to which mobility data could aid in 

modelling the case trajectory, we compared our model to a baseline 

SEIR model that does not use mobility data and simply assumes that 

all individuals within an metro area mix uniformly. In this no-mobility 

baseline, an individual’s risk of being infected and transitioning to the 

exposed state at time t is

λ β
I

N
= , (21)t

t
( )

base

( )

where I(t) is the total number of infectious individuals at time t, and 

N is the total population size of the metro area. As above, the other 

model dynamics are identical, and for model calibration we performed a  

similar grid search over βbase and p0. As expected, we found both the 

network and aggregate mobility models outperformed the no-mobility 

model on out-of-sample case predictions (Extended Data Fig. 1).

Model calibration and validation

Most of our model parameters can either be estimated from SafeGraph 

and US census data, or taken from previous studies (see Extended Data 

Table 2 for a summary). This leaves three model parameters that do 

not have direct analogues in the literature, and that we therefore need 

to calibrate with data: (1) the transmission constant in POIs, ψ (equa-

tion (9)); (2) the base transmission rate, βbase (equation (11)); and (3) the 

initial proportion of exposed individuals at time t = 0, p0 (equation (16)).



In this section, we describe how we fitted these parameters to pub-

lished numbers of confirmed cases, as reported by The New York Times. 

We fitted models for each metro area separately.

Selecting parameter ranges for ψ, βbase and p0. We select parameter 

ranges for the transmission rate factors ψ and βbase by checking whether 

the model outputs match plausible ranges of the basic reproduction 

number R0 before lockdown, as R0 has been the study of substantial 

previous work on SARS-CoV-259. Under our model, we can decompose 

R0 = Rbase + RPOI, where RPOI describes transmission due to POIs and Rbase 

describes the remaining transmission (as in equation (12)). We first 

establish plausible ranges for Rbase and RPOI before translating these 

into plausible ranges for βbase and ψ.

We assume that Rbase ranges from 0.1 to 2. Rbase models transmission 

that is not correlated with activity at POIs in the SafeGraph dataset, 

including within-household transmission and transmission at POI cat-

egories that are not well-captured in the SafeGraph dataset. We chose 

the lower limit of 0.1 because beyond that point, base transmission 

would only contribute minimally to overall R, whereas previous stud-

ies have suggested that within-household transmission is a substan-

tial contributor to overall transmission60–62. Household transmission 

alone is not estimated to be sufficient to tip the overall R0 above 1; for 

example, a single infected individual has been estimated to cause an 

average of 0.32 (0.22–0.42) secondary within-household infections60. 

However, because Rbase may also capture transmission at POIs that are 

not captured in the SafeGraph dataset, to be conservative, we chose 

an upper limit of Rbase = 2; as we describe below, the best-fit models for 

all 10 metro areas have Rbase < 2, and 9 out of 10 have Rbase < 1. We allow 

RPOI to range from 1 to 3, which corresponds to allowing R0 = RPOI + Rbase 

to range from 1.1 to 5. This is a conservatively wide range, as a previous 

study59 estimated a pre-lockdown R0 of 2–3.

To determine the values of Rbase and RPOI that a given pair of βbase and 

ψ imply, we seeded a fraction of index cases and then ran the model 

on looped mobility data from the first week of March to capture 

pre-lockdown conditions. We initialized the model by setting p0, the 

initial proportion of exposed individuals at time t = 0, to p0 = 10−4, and 

then sampling in accordance with equation (16). Let N0 be the number 

of initial exposed individuals sampled. We computed the number of 

individuals that these N0 index cases went on to infect through base 

transmission, Nbase, and POI transmission, NPOI, which gives

R
N

N
= (22)POI

POI

0

R
N

N
= . (23)base

base

0

We averaged these quantities over stochastic realizations for each 

metro area. Supplementary Figure 6 shows that, as expected, Rbase is 

linear in βbase and RPOI is linear in ψ. Rbase lies in the plausible range when 

βbase ranges from 0.0012 to 0.024, and RPOI lies in the plausible range (for 

at least one metro area) when ψ ranges from 515 to 4,886; we therefore 

consider these parameter ranges when fitting the model.

The extent to which SARS-CoV-2 infections had spread in the USA 

by the start of our simulation (1 March 2020) is currently unclear63. To 

account for this uncertainty, we allow p0 to vary across a large range 

between 10−5 and 10−2. As described in the next section, we verified that 

case count data for all metro areas can be fit using parameter settings 

for βbase, ψ and p0 within this range.

Fitting to the number of confirmed cases. Using the parameter 

ranges described above, we grid-searched over ψ, βbase and p0 to find 

the models that best fit the number of confirmed cases reported by 

The New York Times32. For each metro area, we tested 1,500 different 

combinations of ψ, βbase and p0 in the parameter ranges specified above, 

with parameters linearly spaced for ψ and βbase and logarithmically 

spread for p0.

In the ‘Model dynamics’ section, we directly model the number of 

infections but not the number of confirmed cases. To estimate the num-

ber of confirmed cases, we assume that an rc = 0.1 proportion20,58,64–66 

of infections will be confirmed, and moreover that they will confirmed 

exactly δc = 168 h (7 days)20,66 after becoming infectious. From these 

assumptions, we can calculate the predicted number of newly con-

firmed cases across all CBGs in the metro area on day d,

∑ ∑N r N= , (24)d
c

i

m

τ d δ

d δ

E I
τ

cases
(day )

=1 =24( −1)+1−

24 −

→
( )

c

c

ci ci

where m indicates the total number of CBGs in the metro area and for 

convenience we define N E I
τ

→
( )

ci ci

, the number of newly infectious people 

at hour τ, to be 0 when τ < 1.

From the dataset of The New York Times, we have the reported number 

of new cases N̂
d

cases

(day )
 for each day d, summed over each county in the 

metro area. We compare the reported number of cases and the number 

of cases that our model predicts by computing the r.m.s.e. between 

each of the D = ⌊T/24⌋ days of our simulations,

( )∑
D

N Nr.m.s.e . =
1

− ˆ . (25)
d

D
d d

=1
cases
(day )

cases

(day )
2

For each combination of model parameters and for each metro area, 

we quantify the model fit with the data from The New York Times by 

running 30 stochastic realizations and averaging their r.m.s.e. Note 

that we measure model fit based on the daily number of new reported 

cases (as opposed to the cumulative number of reported cases)67.

Our simulation spans 1 March to 2 May 2020, and we use mobility 

data from that period. However, because we assume that cases will be 

confirmed δc = 7 days after individuals become infectious, we predict 

the number of cases with a 7-day offset, from 8 March to 9 May 2020.

Parameter selection and uncertainty quantification. Throughout this 

paper, we report aggregate predictions from different parameter sets of 

ψ, βbase and p0, and multiple stochastic realizations. For each metro area, 

we: (1) find the best-fit parameter set, that is, with the lowest average 

r.m.s.e. on daily incident cases over stochastic realizations; (2) select 

all parameter sets that achieve an r.m.s.e. (averaged over stochastic 

realizations) within 20% of the r.m.s.e. of the best-fit parameter set; 

and (3) pool together all predictions across those parameter sets and 

all of their stochastic realizations, and report their mean and 2.5–97.5th 

percentiles.

On average, each metro area has 9.7 parameter sets that achieve an 

r.m.s.e. within 20% of the best-fitting parameter set (Supplementary 

Table 6). For each parameter set, we have results for 30 stochastic 

realizations.

This procedure corresponds to rejection sampling in an approxi-

mate Bayesian computation framework15, for which we assume an error 

model that is Gaussian with constant variance; we pick an acceptance 

threshold based on what the best-fit model achieves; and we use a 

uniform parameter grid instead of sampling from a uniform prior. It 

quantifies uncertainty from two sources. First, the multiple realiza-

tions capture stochastic variability between model runs with the same 

parameters. Second, simulating with all parameter sets that are within 

20% of the r.m.s.e. of the best fit captures uncertainty in the model 

parameters ψ, βbase and p0. This procedure is equivalent to assuming 

that the posterior probability over the true parameters is uniformly 

spread among all parameter sets within the 20% threshold.

Model validation on out-of-sample cases. We validate our mod-

els by showing that they predict the number of confirmed cases on 

out-of-sample data when we have access to corresponding mobility 
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data. For each metro area, we split the available dataset from the The 

New York Times into a training set (spanning from 8 March 2020 to 

14 April 2020) and a test set (spanning from 15 April 2020 to 9 May 

2020). We fit the model parameters ψ, βbase and p0, as described in the 

‘Mobility network’ section, but using only the training set. We then 

evaluate the predictive accuracy of the resulting model on the test 

set. When running our models on the test set, we still use mobility data 

from the test period. Thus, this is an evaluation of whether the models 

can accurately predict the number of cases, given mobility data, in a 

time period that was not used for model calibration. Extended Data 

Figure 1 shows that our network model fits the out-of-sample case data 

fairly well, and that our model substantially outperforms alternative 

models that use aggregated mobility data (without a network) or do 

not use mobility data at all (see ‘Aggregate mobility and no-mobility 

baseline models’). Note that we only use this train/test split to evaluate 

out-of-sample model accuracy. All other results are generated using 

parameter sets that best fit the entire dataset, as described above.

Analysis details

In this section, we include additional details about the experiments 

that underlie the figures in the paper. We do not include explanations 

for figures that are completely described in the main text.

Counterfactuals of mobility reduction. Associated with Fig. 2a and 

Supplementary Tables 4, 5. To simulate what would have happened if we 

changed the magnitude or timing of mobility reduction, we modified 

the real mobility networks from 1 March to 2 May 2020, and then ran our 

models on the hypothetical data. In Fig. 2a, we report the total number 

of people per 100,000 of the population ever infected (that is, in the 

exposed, infectious and removed states) by the end of the simulation.

To simulate a smaller magnitude of mobility reduction, we interpo-

late between the mobility network from the first week of simulation 

(1–7 March 2020), which we use to represent typical mobility levels, 

and the actual observed mobility network for each week. Let W(t) rep-

resent the observed visit matrix at the tth hour of simulation, and let 

f(t) = t mod 168 map t to its corresponding hour in the first week of 

simulation, since there are 168 h in a week. To represent the scenario 

in which people had committed to α ∈ [0, 1] times the actual observed 

reduction in mobility, we construct a visit matrix W α

t( )�  that is an α-convex 

combination of W(t) and Wf(t),

�W αW α W= + (1 − ) . (26)
α

t t f t( ) ( ) ( )

If α is 1, then �W W=α

t t( ) ( ) , and we use the actual observed mobility 

network for the simulation. On the other hand, if α = 0, then W W=α

t f t( ) ( )� , 

and we assume that people did not reduce their mobility levels at all 

by looping the visit matrix for the first week of March throughout the 

simulation. Any other α ∈  [0, 1] interpolates between these two 

extremes.

To simulate changing the timing of mobility reduction, we shift the 

mobility network by d ∈ [−7, 7] days. Let T represent the last hour in 

our simulation (2 May 2020, 23:00), let f(t) = t mod 168 map t to its cor-

responding hour in the first week of simulation as above, and similarly 

let g(t) map t to its corresponding hour in the last week of simulation 

(27 April–2 May 2020). We construct the time-shifted visit matrix W d

t( )�

�









W

W t d T

W t d

W

=

if 0 ≤ − 24 ≤ ,

if − 24 < 0,

otherwise.

(27)d

t

t d

f t d

g t d

( )

( −24 )

( −24 )

( −24 )

If d is positive, this corresponds to starting mobility reduction  

d days later; if we imagine time on a horizontal line, this shifts the time 

series to the right by 24d hours. However, doing so leaves the first  

24d hours without visit data, so we fill it in by reusing visit data from 

the first week of simulation. Likewise, if d is negative, this corresponds 

to starting mobility reduction d days earlier, and we fill in the last  

24d hours with visit data from the last week of simulation.

Distribution of predicted infections across POIs. Associated with 

Fig. 2b, Extended Data Fig. 2 and Supplementary Fig. 10. We run our 

models on the observed mobility data from 1 March–2 May 2020 and 

record the number of predicted infections that occur at each POI. Spe-

cifically, for each hour t, we compute the number of expected infections 

that occur at each POI pj by taking the number of susceptible people 

who visit pj in that hour multiplied by the POI infection rate λ p
t( )

j
 (equa-

tion (9)). In Fig. 2b and Supplementary Fig. 10, we sort the POIs by their 

total predicted number of infections (summed over hours) and plot 

the cumulative distribution of infections over this ordering of POIs. In 

Extended Data Fig. 2, we select the POI categories that contribute the 

most to predicted infections and plot the daily proportion of POI infec-

tions each category accounted for (summed over POIs within the  

category) over time.

Reducing mobility by capping maximum occupancy. Associated with 

Figs. 2c and Extended Data Fig. 3. We implemented two partial reopen-

ing strategies: one that uniformly reduced visits at POIs to a fraction of 

full activity, and the other that ‘capped’ the number of hourly visits at 

each POI to a fraction of the maximum occupancy of that the POI. For 

each reopening strategy, we started the simulation on 1 March 2020 

and ran it until 30 May 2020, using the observed mobility network from 

1 March to 30 April 2020, and then using a hypothetical post-reopening 

mobility network from 1 May to 30 May 2020, corresponding to the 

projected impact of that reopening strategy. Because we only have ob-

served mobility data from 1 March to 2 May 2020, we impute the missing 

mobility data up to 30 May 2020 by looping mobility data from the first 

week of March, as in the above analysis on the effect of past reductions 

in mobility. Let T represent the last hour for which we have observed 

mobility data (2 May 2020, 23:00). To simplify the notation, we define

h t
t t T

f t
( ) =

if < ,

( ) otherwise,
(28)





where, as above, f(t) = t mod 168. This function leaves t unchanged if 

there is observed mobility data at time t, and otherwise maps t to the 

corresponding hour in the first week of our simulation.

To simulate a reopening strategy that uniformly reduced visits to 

an γ fraction of their original level, where γ ∈ [0, 1], we constructed 

the visit matrix







�W
W t τ

γW
=

if < ,

otherwise,
(29)γ

t
h t

h t

( )
( )

( )

where τ represents the first hour of reopening (1 May 2020, 00:00). In 

other words, we use the actual observed mobility network up until hour 

τ, and then subsequently simulate an γ fraction of full mobility levels.

To simulate the reduced occupancy strategy, we first estimated the 

maximum occupancy Mpj of each POI pj as the maximum number of 

visits that it ever had in one hour, across all of 1 March–2 May 2020. As 

in previous sections, let wij
t( ) represent the ijth entry in the observed 

visit matrix W(t), that is, the number of people from CBG ci who visited 

pj in hour t, and let V p
t( )

j
 represent the total number of visitors to pj  

in that hour, that is, w∑i ij
t( ). We simulated capping at a β fraction of 

maximum occupancy, where β ∈ [0, 1], by constructing the visit matrix 

W β

t( )�  for which the ijth entry is

͠
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This corresponds to the following procedure: for each POI pj and time 

t, we first check whether t < τ (reopening has not started) or whether 

V βM≤p
t

p
( )

j j
 (the total number of visits to pj at time t is below the allowed 

maximum βMpj
). If so, we leave wij

h t( ) unchanged. Otherwise, we compute 

the scaling factor 
βM

V

pj

pj

t( )
 that would reduce the total visits to pj at time t 

down to the allowed maximum βMpj
, and then scale down all visits from 

each CBG ci to pj proportionately. For both reopening strategies, we 

calculate the predicted increase in cumulative incidence at the end of 

the reopening period (30 May 2020) compared to the start of the reo-

pening period (1 May 2020).

Relative risk of reopening different categories of POIs. Associated 

with Fig. 2d, Extended Data Fig. 5 and Supplementary Figs. 11, 15–24. 

We study separately the reopening of the 20 POI categories with the 

most visits in SafeGraph data. In this analysis, we follow previous stud-

ies28 and do not study four categories: ‘child day-care services’ and 

‘elementary and secondary schools’ (because children under 13 are 

not well-tracked by SafeGraph); ‘drinking places (alcoholic beverages)’ 

(because SafeGraph seems to undercount these locations28) and ‘nature 

parks and other similar institutions’ (because boundaries and therefore 

areas are not well-defined by SafeGraph). We also exclude ‘general 

medical and surgical hospitals’ and ‘other airport operations’ (because 

hospitals and air travel both involve many additional risk factors that 

our model is not designed to capture). We do not filter out these POIs 

during model fitting (that is, we assume that people visit these POIs, and 

that transmissions occur there) because including them still increases 

the proportion of overall mobility that our dataset captures; we simply 

do not analyse these categories, because we wish to be conservative 

and only focus on categories for which we are most confident that we 

are capturing transmission faithfully.

This reopening analysis is similar to the previous experiments on 

reducing maximum occupancy versus uniform reopening (see ‘Reduc-

ing mobility by capping maximum occupancy’). As above, we set the 

reopening time τ to 1 May 2020, 00:00. To simulate reopening a POI 

category, we take the set of POIs in that category, V, and set their activ-

ity levels after reopening to that of the first week of March. For POIs 

not in the category V, we keep their activity levels after reopening the 

same, that is, we simply repeat the activity levels of the last week of our 

data (27 April–2 May 2020): This gives us the visit matrix W
t( )�  with 

entries

V

V
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As in the above reopening analysis, f(t) maps t to the corresponding 

hour in the first week of March, and g(t) maps t to the corresponding 

hour in the last week of our data. For each category, we calculate the 

predicted difference between (1) the cumulative fraction of people who 

have been infected by the end of the reopening period (30 May 2020) 

and (2) the cumulative fraction of people infected by 30 May 2020 

had we not reopened the POI category (that is, if we simply repeated 

the activity levels of the last week of our data). This seeks to model the 

increase in cumulative incidence by the end of May from reopening the 

POI category. In Extended Data Fig. 5 and Supplementary Figs. 15–24, 

the bottom right panel shows the predicted increase for the category 

as a whole, and the bottom left panel shows the predicted increase 

per POI (that is, the total increase divided by the number of POIs in 

the category).

Per-capita mobility. Associated with Fig. 3d, Extended Data Fig. 6 and 

Supplementary Fig. 3. Each group of CBGs (for example, the bottom 

income decile) comprises a set U  of CBGs that fit the corresponding 

criteria. In Fig. 3d and Extended Data Fig. 6, we show the daily per-capita 

mobilities of different pairs of groups (broken down by income and by 

race). To measure the per-capita mobility of a group on day d, we take 

the total number of visits made from those CBGs to any POI, 

U P w∑ ∑ ∑c p t d
d

ij
t

∈ ∈ =24
24 +23 ( )

i j
, and divide it by the total population of the CBGs 

in the group, U N∑c c∈i i
. In Supplementary Fig. 3, we show the total num-

ber of visits made by each group to each POI category, accumulated 

over the entire data period (1 March–2 May 2020) and then divided by 

the total population of the group.

Average predicted transmission rate of a POI category. Associated 

with Fig. 3e and Extended Data Tables 3, 4. We compute the predicted 

average hourly transmission rate experienced by a group of CBGs U  at 

a POI category V  as

UV

U V

U V

β
w β

w
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, (32)
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where, as above, β
p

t( )

j

 is the transmission rate at POI pj in hour t (equa-

tion (8)), wij
t( ) is the number of visitors from CBG ci at POI pj in hour t, 

and T is the last hour in our simulation. This represents the expected 

transmission rate encountered during a visit by someone from a CBG 

in group U  to a POI in category V.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

Inferred hourly mobility networks as well as the estimated models 

are available at the project website (http://covid-mobility.stanford.

edu). Raw census data (https://www.census.gov/programs-surveys/

acs), case and death counts from The New York Times (https://github.

com/nytimes/covid-19-data) and Google mobility data (https://www.

google.com/covid19/mobility/) are also publicly available. Mobile 

phone mobility data are freely available to researchers, non-profit 

organizations and governments through the SafeGraph COVID-19 Data 

Consortium (https://www.safegraph.com/covid-19-data-consortium).

Code availability

Code is publicly available at the project website (http://covid-mobility.

stanford.edu).
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Extended Data Fig. 1 | Mobility-based epidemiological model and its 

predictions. a–c, Predicted (blue) and true (orange) daily case counts for our 

model (a), which uses hourly mobility networks, an SEIR model (b) that uses 

hourly aggregated mobility data and a baseline SEIR model (c) that does not use 

mobility data (see Methods, ‘Aggregate mobility and no-mobility baseline 

models’ for details). Incorporating mobility information improves out-of-sample 

fit and using a mobility network, instead of an aggregate measure of mobility, 

further improves fit: on average across metro areas, the out-of-sample error 

(r.m.s.e.) of our best-fit network model was only 58% that of the best-fit 

aggregate mobility model. All three models are calibrated on observed case 

counts before 15 April 2020 (vertical black line). The grey crosses represent the 

daily reported cases; as they tend to have great variability, we also show the 

smoothed weekly average (orange line). Shaded regions denote the 2.5th and 

97.5th percentiles across sampled parameters and stochastic realizations.
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Extended Data Fig. 2 | Distribution of POI infections over time. We selected 

the POI categories that our models predicted to contribute the most to 

infections, and plotted the predicted proportion of POI infections that each 

category accounted for over time. Our model predicts time-dependent 

variation of where transmissions may have occurred. For example, full-service 

restaurants (blue) and fitness centres (brown) contributed less to predicted 

infections over time, probably due to lockdown orders closing these POIs, 

whereas grocery stores remained steady or even grew in their predicted 

contribution, probably because they remained open as essential businesses. 

Hotels and motels (yellow) also feature in these plots; most notably, the model 

predicts a peak in their contributed infections in Miami around mid-March, 

which aligns with college spring break, as Miami is a popular vacation spot for 

students. The proportions are stacked in these plots, and the y axes are 

truncated at 0.7 because every plot would only show ‘other’ from 0.7 to 1.0.



Extended Data Fig. 3 | Trade-off between new infections and visits lost from 

reopening. We simulate reduced maximum occupancy reopening starting on 

1 May 2020 and run the simulation until the end of the month. Each dot 

represents the level of occupancy reduction: for example, capping visits at 50% 

of the maximum occupancy. The y coordinate represents the predicted 

number of new infections incurred after reopening (per 100,000 population) 

and the x coordinate represents the fraction of visits lost from partial 

reopening compared to full reopening. Shaded regions denote the 2.5th and 

97.5th percentiles across parameter sets and stochastic realizations. In four 

metro areas, the predicted cost of new infections from reopening is roughly 

similar for lower-income CBGs and the overall population, but in five metro 

areas, the lower-income CBGs incur more predicted infections from reopening. 

Notably, New York City (NYC) is the only metro area in which this trend is 

reversed; this is because the model predicts that such a high fraction—65% (95% 

confidence interval, 62–68%)—of lower-income CBGs in NYC had been infected 

before reopening that after reopening, only a minority of the lower-income 

population is still susceptible (in comparison, the second highest fraction 

infected before reopening was 31% (95% confidence interval, 28–35%) for 

Philadelphia, and the rest ranged from 1 to 14%).
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Extended Data Fig. 4 | Reduced maximum occupancy versus uniform 

reduction reopening. In comparison to partially reopening by uniformly 

reducing visits, the reduced maximum occupancy strategy—which 

disproportionately targets POIs during their most risky high-density periods—

always results in a smaller predicted increase in infections for the same number 

of visits. The y axis plots the relative difference between the predicted increase 

in cumulative infections (from 1 May to 30 May 2020) under the reduced 

occupancy strategy compared to the uniform reduction strategy. The shaded 

regions denote the 2.5th and 97.5th percentiles across the sampled parameters 

and stochastic realizations.



Extended Data Fig. 5 | POI attributes in all 10 metro areas combined. a, b, The 

POIs from all metro areas are pooled and the quantities from the mobility data 

are shown. a, The distribution of dwell time. b, The average number of hourly 

visitors divided by the area of the POI in square feet. Each point represents one 

POI; boxes depict the interquartile range across POIs; data points outside the 

range are shown as individual dots. c, d, The data are pooled across model 

realizations from all metro areas and model predictions are shown for the 

increase in infections (per 100,000 population) because of reopening a POI 

category. c, Data per POI. d, Data for the category as a whole. Each point 

represents a model realization; boxes depict the interquartile range across 

realizations; data points outside the range are shown as individual dots. Across 

MSAs, we model 552,758 POIs in total, and we sample 97 parameters and 30 

stochastic realizations (n = 2,910); see Supplementary Table 6 for the number of 

sets per metro area. Colours are used to distinguish the different POI categories, 

but do not have any additional meaning.
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Extended Data Fig. 6 | Daily per-capita mobility over time. a, b, We compare mobility in the lowest and highest deciles of CBGs based on median household 

income (a) and the percentage of white residents (b). See Methods, ‘Analysis details’ for details.



Extended Data Table 1 | Dataset summary statistics from 1 March to 2 May 2020
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Extended Data Table 2 | Model parameters

If the parameter has a fixed value, we specify it under ‘Value’; otherwise, ‘Variable’ is used to indicate that it varies across CBG, POI or metro area.



Extended Data Table 3 | Predicted transmission rate disparities at each POI category between income groups

We report the ratio of the average predicted transmission rate encountered by visitors from CBGs in the bottom income decile to that for the top income decile. A ratio greater than 1 means that 

visitors from CBGs in the bottom income decile experienced higher (more dangerous) predicted transmission rates. See Methods, ‘Analysis details’ for details.
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Extended Data Table 4 | Predicted transmission rate disparities at each POI category between racial groups

We report the ratio of the average predicted transmission rate encountered by visitors from CBGs with the lowest (bottom decile) proportion of white residents versus that for the top decile. A 

ratio greater than 1 means that visitors from CBGs in the bottom decile experienced higher (more dangerous) predicted transmission rates. See Methods, ‘Analysis details’ for details.
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