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Using a fully analytical theory, we compute the leading-order corrections to
the translational, rotational and translation–rotation coupling mobilities of an
arbitrary axisymmetric particle immersed in a Newtonian fluid moving near an
elastic cell membrane that exhibits resistance towards stretching and bending. The
frequency-dependent mobility corrections are expressed as general relations involving
separately the particle’s shape-dependent bulk mobility and the shape-independent
parameters such as the membrane–particle distance, the particle orientation and the
characteristic frequencies associated with shearing and bending of the membrane.
This makes the equations applicable to an arbitrary-shaped axisymmetric particle
provided that its bulk mobilities are known, either analytically or numerically. For
a spheroidal particle, these general relations reduce to simple expressions in terms
of the particle’s eccentricity. We find that the corrections to the translation–rotation
coupling mobility are primarily determined by bending, whereas shearing manifests
itself in a more pronounced way in the rotational mobility. We demonstrate the
validity of the analytical approximations by a detailed comparison with boundary
integral simulations of a truly extended spheroidal particle. They are found to be in
a good agreement over the whole range of applied frequencies.
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1. Introduction
Hydrodynamic interactions between nanoparticles and cell membranes play an

important role in many medical and biological applications. Prime examples are drug
delivery and targeting via nanocarriers which release the active agent in disease sites
such as tumours or inflammation areas (Naahidi et al. 2013; Al-Obaidi & Florence
2015; Liu et al. 2016). During navigation through the blood stream, but especially
during uptake by a living cell via endocytosis (Doherty & McMahon 2009; Meinel
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et al. 2014; Agudo-Canalejo & Lipowsky 2015), nanoparticles frequently come into
close contact with cell membranes which alter their hydrodynamic mobilities in a
complex fashion.

Over the last few decades, considerable research effort has been devoted to study
the motion of particles in the vicinity of interfaces. The particularly simple example
of a solid spherical particle has been extensively studied theoretically near a rigid
no-slip wall (Lorentz 1907; Brenner 1961; Goldman, Cox & Brenner 1967a,b;
Cichocki & Jones 1998; Swan & Brady 2007; Franosch & Jeney 2009; Happel &
Brenner 2012), an interface separating two immiscible liquids (Lee, Chadwick &
Leal 1979; Bickel 2006, 2007; Wang, Prabhakar & Sevick 2009; Bławzdziewicz,
Ekiel-Jeżewska & Wajnryb 2010; Bickel 2014), an interface with partial slip (Lauga
& Squires 2005; Felderhof 2012) and a membrane with surface elasticity (Felderhof
2006a,b; Shlomovitz et al. 2013, 2014; Salez & Mahadevan 2015; Daddi-Moussa-Ider,
Guckenberger & Gekle 2016a,b; Daddi-Moussa-Ider & Gekle 2016; Saintyves et al.
2016). Elastic membranes stand apart from both liquid–solid and liquid–liquid
interfaces, since the elasticity of the membrane introduces a memory effect in
the system causing, e.g. anomalous diffusion (Daddi-Moussa-Ider et al. 2016a) or a
sign reversal of two-particle hydrodynamic interactions (Daddi-Moussa-Ider & Gekle
2016). On the experimental side, the near-wall mobility of a spherical particle has
been investigated using optical tweezers (Faucheux & Libchaber 1994; Lin, Yu &
Rice 2000; Dufresne, Altman & Grier 2001; Schäffer, Nørrelykke & Howard 2007),
digital video microscopy (Eral et al. 2010; Cervantes-Martínez et al. 2011; Dettmer
et al. 2014; Tränkle, Ruh & Rohrbach 2016) and evanescent wave dynamic light
scattering (Holmqvist, Dhont & Lang 2007; Michailidou et al. 2009; Lisicki et al.
2012; Rogers et al. 2012; Michailidou et al. 2013; Lisicki et al. 2014; Wang &
Huang 2014), where a significant alteration of particle motion has been observed in
line with theoretical predictions. The influence of a nearby elastic cell membrane
has been further investigated using optical traps (Kress et al. 2005; Shlomovitz et al.
2013; Boatwright et al. 2014; Jünger et al. 2015) and magnetic particle actuation
(Irmscher et al. 2012).

Particles with a non-spherical shape, such as spheroids or rod-like particles, have
also received researchers’ attention. The first attempt to investigate the Brownian
motion of an anisotropic particle dates back to Perrin (1934, 1936) who computed
analytically the drag coefficients for a spheroid diffusing in a bulk fluid. A few
decades later, Batchelor (1970) pioneered the idea that the flow field surrounding a
slender body, such as an elongated particle, may conveniently be represented by a line
distribution of Stokeslets between the foci. The method has successfully been applied
to a wide range of external flows (Chwang & Wu 1975) and near boundaries such
as a plane hard wall (De Mestre & Russel 1975; Schiby & Gallily 1980; Mitchell &
Spagnolie 2015) or a fluid–fluid interface (Blake & Fulford 1981). Using the multipole
expansion of the near-wall flow field, Lisicki, Cichocki & Wajnryb (2016) have
shown that to leading order the mobility of an arbitrary axisymmetric particle near
a hard wall can be expressed in closed form by combining the appropriate Green’s
function with the particle’s bulk mobility. Direct simulation numerical investigations
of colloidal axisymmetric particles near a wall have been carried out using boundary
integral methods (Hsu & Ganatos 1989), stochastic rotation dynamics (Padding &
Briels 2010; Neild et al. 2010) and finite element methods (De Corato et al. 2015).

Diffusion of micrometre-sized ellipsoidal particles has been investigated
experimentally using digital video microscopy (Han et al. 2006, 2009; Neild et al.
2010; Zheng & Han 2010). Experiments on actin filaments have been conducted using
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fluorescence imaging and particle tracking (Li & Tang 2004) finding that the measured
diffusion coefficients can appropriately be accounted for by a correction resting on the
hydrodynamic theory of a long cylinder confined between two walls. The confined
rotational diffusion coefficients of carbon nanotubes have been measured using
fluorescence video microscopy (Duggal & Pasquali 2006) and optical microscopy
(Bhaduri, Neild & Ng 2008), where a reasonable agreement has been reported with
theoretical predictions. More recently, the three-dimensional rotational diffusion of
nanorods (Cheong & Grier 2010) and rod-like colloids have been measured using
video (Colin et al. 2012) and confocal microscopy (Mukhija & Solomon 2007).

Yet, to the best of our knowledge, motion of a non-spherical particle in the vicinity
of deformable elastic interfaces has not been studied so far. In this contribution,
we examine the dynamics of an axisymmetric particle near a red blood cell (RBC)
membrane using theoretical predictions in close combination with fully resolved
boundary integral simulations. The results of the present theory may be used in
microrheology experiments in order to characterise the mechanical properties of the
membrane (Waigh 2016).

The paper is organised as follows. In § 2, we formulate the theoretical framework
for the description of the motion of a colloidal particle in the vicinity of an elastic
membrane. We introduce the notion of hydrodynamic friction, mobility and a model
for the membrane. In § 3 we outline the mathematical derivation of the correction
to the bulk mobility tensor of the particle due to the presence of an interface
and provide explicit expressions for the correction valid for any axially symmetric
particle. In § 4, we describe the boundary integral method (BIM) used to numerically
compute the components of the mobility tensor. Section 5 contains a comparison of
analytical predictions and numerical simulations for a spheroidal particle, followed
by concluding remarks in § 6. The mathematical details arising in the course of the
work are discussed in the appendices.

2. Hydrodynamics near a membrane
We consider an axially symmetric particle immersed in an incompressible

Newtonian fluid, moving close to an elastic membrane. The fluid is assumed to
have the same dynamic viscosity ⌘ on both sides of the membrane. As an example,
we will focus later on a prolate spheroidal particle as shown in figure 1. The position
of the centre of the particle is r0, while its orientation is described by the unit vector
u1 pointing along the symmetry axis. The laboratory frame is spanned by the basis
vectors {ex, ey, ez}.

We denote by z0 the vertical distance separating the centre of the particle from
the undisplaced membrane located at the plane z = 0 and extended infinitely in the
horizontal plane xy. It is convenient to introduce the body-fixed frame of reference,
formed by the three basis vectors {u1, u2, u3}. The unit vector u2 is parallel to the
undisplaced membrane and perpendicular to the particle axis, and u3 completes the
orthonormal basis. We define ✓ as the angle between u1 and ez such that cos ✓ = ez · u1.
The basis vectors in the particle frame are then given by u2 = (ez ⇥ u1)/|ez ⇥ u1| and
u3 = u1 ⇥ u2.

In the inertia-free regime of motion, the fluid dynamics is governed by the stationary
incompressible Stokes equations

⌘r2v(r) � rp(r) + f (r) = 0, (2.1)
r · v(r) = 0, (2.2)
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FIGURE 1. Illustration of a spheroidal particle located at z = z0 above an elastic cell
membrane. The short and long axes are denoted by a and c, respectively. The unit vector
u1 is pointing along the spheroid symmetry axis and u2 is the unit vector perpendicular
to the plane of the figure. The unit vector u3 is defined to be orthogonal to both u1 and
u2.

where v is the fluid velocity, p is the pressure field and f is the force density acting
on the fluid due to the presence of the particle. We omit the unsteady term in the
Stokes equations, since in realistic situations it leads to a negligible contribution to the
mobility corrections (Daddi-Moussa-Ider et al. 2016a). For a discussion accounting for
the unsteady term in the bulk flow, see recent work by Felderhof (2013). The flow
v(r) may be superposed with an arbitrary external flow v0(r) being a solution to the
homogeneous Stokes equations in the absence of the particle.

Consider now a colloidal particle near the membrane. The total force F, torque
T and stresslet (symmetric force dipole) S are linearly related to the velocities
(translational V and angular ⌦) of the particle relative to an external flow by the
generalised friction tensor (Kim & Karrila 2013)

0

@
F
T
S

1

A=

0

@
⇣ tt ⇣ tr ⇣ td

⇣ rt ⇣ rr ⇣ rd

⇣ dt ⇣ dr ⇣ dd

1

A

0

@
v0 � V
!0 � ⌦

E0

1

A , (2.3)

with v0 = v0(r0), the vorticity !0 = (1/2)r ⇥ v0(r0) and the rate of strain E0 =rv0(r0)
of the external flow (the bar denotes the symmetric and traceless part of the velocity
gradient).

A complementary relation defines the generalised mobility tensor
0

@
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⌦ � !0

�S

1

A=

0

@
µtt µtr µtd

µrt µrr µrd

µdt µdr µdd

1

A

0

@
F
T
E0

1

A . (2.4)

Upon examining (2.3) and (2.4), we note that the 6 ⇥ 6 mobility tensor µ is the
inverse of the friction tensor ⇣

⇣�1 =
✓

⇣ tt ⇣ tr

⇣ rt ⇣ rr

◆�1

=
✓

µtt µtr

µrt µrr

◆
= µ. (2.5)

Relations between other elements of the generalised mobility and friction tensors
may be found directly from (2.3) and (2.4). These are general properties of Stokes
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flows following from the linearity of the governing equations. Finding an explicit
form of these tensors requires the solution of Stokes equations (2.1) and (2.2)
with appropriate boundary conditions on the confining interfaces. Since we aim at
computing the particle mobility nearby a membrane endowed with surface elasticity
and bending resistance, a relevant model for the membrane dynamics needs to be
introduced at this point.

The Skalak model (Skalak et al. 1973) is well established and commonly used to
represent RBC membranes (Freund 2014). The elastic properties of the interface are
characterised by two moduli: elastic shear modulus S and area dilatation modulus
A. Resistance towards bending has been further included following the model of
Helfrich (1973) with the associated bending modulus B. In this approach, the
linearised tangential and normal traction jumps across the membrane are related to
the membrane displacement field h at z=0 and the dilatation ✏ by (Daddi-Moussa-Ider
et al. 2016a)

[�z↵] = �S

3
(�kh↵ + (1 + 2C)@↵✏), ↵ 2 {x, y}, (2.6)

[�zz] = B�
2
khz, (2.7)

where [ f ] := f (z = 0+) � f (z = 0�) denotes the jump of the quantity f across the
membrane. The dilatation ✏ := @xhx + @yhy is the trace of the strain tensor. The Skalak
parameter is defined as C := A/S. Here �k := @2

x + @2
y is the Laplace–Beltrami

operator along the membrane. The components �z↵ of the stress tensor in the fluid
are expressed in a standard way by �z↵ = �p�z↵ + ⌘(@↵vz + @zv↵) for ↵ 2 {x, y, z} (Kim
& Karrila 2013).

The membrane displacement h and the fluid velocity v are related by the no-slip
boundary condition at the undisplaced membrane, which in Fourier space takes the
form

v↵ = i!h↵|z=0, ↵ 2 {x, y, z}, (2.8)

with ! being the characteristic frequency of forcing in the system. The frequency-
dependent elastic deformation effects are characterised by two dimensionless
parameters, as described in Daddi-Moussa-Ider et al. (2016a)

� = 12z0⌘!

S + A
, �B = 2z0

✓
4⌘!
B

◆1/3

, (2.9a,b)

Further details of the derivation of � and �B can be found in appendix A. The effects
of shear resistance and area dilatation are thus captured by �, while �B describes
the bending resistance of the membrane. In the steady case for which � = �B = 0,
corresponding to a vanishing frequency or to an infinitely stiff membrane, we expect
to recover the results for a hard no-slip wall.

In the case of periodic forcing or time-dependent deformation of the membrane, the
quantity of interest is the frequency-dependent mobility tensor. Our aim in this work
is to find all the components of µ(!) for an axisymmetric particle close to an elastic
membrane. Accordingly, due to the presence of the interface, the near-membrane
mobility will then have a correction on top of the bulk mobility µ0,

µ(!) = µ0 + 1µ(!), (2.10)
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stemming from the interaction of the flow created by the particle with the boundary.
To determine the form of µ(!) in an approximate manner, we use the results by
Lisicki et al. (2016) valid for a hard no-slip wall and generalize them to the case
of an elastic membrane. Their idea is based on a multipole expansion (Cichocki et al.
2000) of the flow field around an axially symmetric particle close to a boundary, with
a corresponding expansion of the force distribution on its surface. If the particle is
sufficiently far away from the wall, they have shown that the dominant correction to
its friction matrix can be viewed as an interaction between the centre of the particle
and its hydrodynamic image. They provide explicit expressions for the elements of the
friction tensor for all types of motion (translation, rotation and coupling terms) which
yields the corrected mobility tensor upon inversion. The same route may be followed
for a membrane, provided that the form of the Green’s tensor for the system is known.

A general Stokes flow can be constructed using the Green’s function G(r, r0) being
the solution of (2.1) and (2.2) subject to a time-dependent point force f (r)= F(t)�(r �
r0) with the appropriate boundary conditions on the membrane. In an unbounded fluid,
the Green’s tensor is the Oseen tensor (Kim & Karrila 2013) G0(r, r0) = G0(r � r0),
with G0(r)= (1+ rr/r2)/(8p⌘r) and r := |r|. In the presence of boundaries, the Green’s
tensor contains the extra term 1G describing the flow reflected from the membrane,
so that G =G0 + 1G.

The exact Green’s function for a point force close to a membrane has recently been
computed in Daddi-Moussa-Ider et al. (2016a). For the resolution of (2.1) and (2.2)
with a point force acting at r0 = (0, 0, z0), the two-dimensional Fourier transform in
the xy plane was used to solve the resulting equations with accordingly transformed
boundary conditions. The procedure has been previously described in detail and
therefore we only list the main steps for the determination of the Green’s tensor in
appendix A of this work.

3. Near-membrane mobility tensors

We search for the near-membrane mobility tensor, µ(!) = µ0 + 1µ(!) by
calculating the leading-order correction to the bulk mobility. To this end, we follow
the route outlined in a recent contribution by Lisicki et al. (2016) who derived
analytic expressions for the friction tensor of an axially symmetric particle in the
presence of a hard no-slip wall. The friction tensor, similarly to the mobility tensor,
can be split into the bulk and the correction term

⇣ = ⇣0 + 1⇣ . (3.1)

The final expressions for the corrected friction tensor involve elements of the bulk
friction tensor of the particle, and the distance- and orientation-dependent (derivatives
of) the appropriate Green’s function. For the hard no-slip wall treated in Lisicki
et al. (2016) the latter is the Blake tensor (Blake 1971) while in the present case
the frequency-dependent Green’s functions from Daddi-Moussa-Ider et al. (2016a)
are employed. The expressions for the friction tensor with a general Green’s function
read (Lisicki et al. 2016)

1⇣ tt = � 1
8p⌘

1
2z0

⇣ tt
0 gtt⇣ tt

0 + 1
(8p⌘)2

1
(2z0)2

⇣ tt
0 gtt⇣ tt

0 gtt⇣ tt
0 + O(z�3

0 ), (3.2)

1⇣ tr = � 1
8p⌘

1
(2z0)2

⇣ tt
0 gtd⇣ dr

0 + O(z�3
0 ), (3.3)
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1⇣ rt = � 1
8p⌘

1
(2z0)2

⇣ rd
0 gdt⇣ tt

0 + O(z�3
0 ), (3.4)

1⇣ rr = � 1
8p⌘

1
(2z0)3

[⇣ rr
0 grr⇣ rr

0 + ⇣ rr
0 grd⇣ dr

0 + ⇣ rd
0 gdr⇣ rr

0 + ⇣ rd
0 gdd⇣ dr

0 ] + O(z�4
0 ), (3.5)

where the directional tensors g are defined by

1G� � = 1
8p⌘

1
(2z0)a

g� �. (3.6)

Here, 1G� � are the multipole elements of the Green’s integral operator which will be
derived below. Further, � , � 2 {t, r, d} and a = 1 for tt, a = 2 for (tr, rt, td, dt) and
a = 3 for (dr, rd, rr, dd) parts. In (3.2)–(3.5) it should be understood that the tensors
are appropriately contracted to yield second-order tensor corrections.

We now apply this result to our system. Our goal is to obtain explicit expressions
for the mobility tensors for an axially symmetric particle in the presence of a
membrane in terms of its bulk mobilities. This can be done in two steps.

Firstly, we invert the friction relations (3.2)–(3.5), as detailed in appendix B, to
obtain analogous relations for the mobilities:

1µtt = 1
8p⌘

1
2z0

gtt + O(z�3
0 ), (3.7)

1µtr = � 1
8p⌘

1
(2z0)2

gtdµdr
0 + O(z�3

0 ), (3.8)

1µrt = 1
8p⌘

1
(2z0)2

µrd
0 gdt + O(z�3

0 ), (3.9)

1µrr = 1
8p⌘

1
(2z0)3

[grr � µrd
0 gdr + grdµdr

0 � µrd
0 gddµdr

0 ] + O(z�4
0 ). (3.10)

These expressions allow straightforward computation of the near-membrane
mobilities for axisymmetric particles of arbitrary shape if their bulk mobilities are
known, either numerically or analytically. Compared to a numerical inversion of the
friction tensor, which in principle would be preferable as it avoids the possibility of
negative mobilities (Lisicki et al. 2016), this approach has the advantage that explicit
analytical expressions for the mobility can be obtained.

Remarkably, the final formulae include only one bulk characteristic of the particle,
namely the tensors µrd

0 and µdr
0 which describe the rotational motion of the particle

in response to elongational flow. This form follows from the particular symmetries of
an axially symmetric particle with inversional symmetry (u1 $ �u1).

Secondly, to obtain the directional tensors g, we consider a general Green’s tensor
G(r, r0) =G0(r � r0) + 1G(r, r0) and a body placed at r0 with a force distribution f (r)
on its surface. The flow at a point r due to this forcing may be written as the integral
equation

v(r) =
Z

dr0G(r, r0) · f (r0), (3.11)

with the integral performed over the surface of the body. The idea of the derivation
of the correction is to find, given the force density, the flow incident on the particle
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itself due to the presence of an interface. Thus we consider (3.11) with only the
membrane interaction part 1G(r, r0) of the Green’s tensor and expand it in both
arguments around r = r0 = r0. The integrals of the subsequent terms on the right-hand
side reproduce the force multipole moments, while the expansion of the left-hand side
yields the multipole expansion of the flow field. By matching the relevant multipoles,
we find explicit expressions for the 1G� �, with � , � 2 {t, r, d}, as described in Lisicki
et al. (2016). The resulting formulae are

1G tt
↵� = lim

r,r0!r0
1G↵�, (3.12)

1G tr
↵� = lim

r,r0!r0

1
2✏↵µ⌫@µ1G⌫�, (3.13)

1Grt
↵� = lim

r,r0!r0
� 1

2✏µ⌫�@
0
⌫1G↵µ, (3.14)

1Grr
↵� = lim

r,r0!r0

1
4✏↵µ� ✏�⌫⌘@� @

0
⌘1Gµ⌫, (3.15)

1G td
↵�� = lim

r,r0!r0
@ 0
�1G↵�, (3.16)

1Gdt
↵�� = lim

r,r0!r0
@↵1G�� , (3.17)

1Gdr
↵�� = lim

r,r0!r0
� 1

2✏�µ⌫@
0
⌫@↵1G�µ

(↵�)

, (3.18)

1Grd
↵�� = lim

r,r0!r0

1
2✏↵µ⌫@

0
µ@�1G⌫�

(�� )

, (3.19)

1Gdd
↵�� � = lim

r,r0!r0
@↵@

0
�1G��

(↵�)(� �)

, (3.20)

where ✏↵µ⌫ is the Levi-Civita tensor and the symbol (↵�) denotes the symmetric and
traceless part with respect to indices ↵, �. Explicitly, the reductions for an arbitrary
third- and fourth-order traceless tensor read

M↵��

(↵�)

= 1
2(M↵�� + M�↵� ), (3.21)

M↵�� �

(↵�)(� �)

= 1
4(M↵�� � + M�↵� � + M↵��� + M�↵�� ). (3.22)

The prime denotes a derivative with respect to the second argument. We note that the
tensors 1Gdr,rd,dd are traceless due to the incompressibility of the fluid, and therefore
the trace need not be subtracted in the procedure of symmetrisation. We further remark
that (3.12) through (3.20) involves differentiations and elementary operations that are
well defined for complex quantities, and hence lead to convergent limits.

It is most natural to consider the correction in the reference frame of the particle,
spanned by the three unit basis vectors {u1, u2, u3}. In this frame, the mobility tensors
of an axisymmetric particle have the form

1µtt,rr =

0

@
1µtt,rr

11 0 1µtt,rr
13

0 1µtt,rr
22 0

1µtt,rr
13 0 1µtt,rr

33

1

A (3.23)

for translational and rotational motion, while the translation–rotation coupling tensor
reads

1µtr =

0

@
0 1µtr

12 0
0 0 1µtr

23
0 1µtr

32 0

1

A . (3.24)
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The rotation–translation coupling tensor 1µrt is obtained by simply taking the
transpose of the translation–rotation coupling tensor given above. (See supplemental
material available at https://doi.org/10.1017/jfm.2016.739 for the frequency-dependent
mobility corrections expressed in the laboratory frame).

4. Boundary integral method
Here we introduce the boundary integral method (Pozrikidis 2001) used to

numerically compute the mobility tensor of a truly extended spheroidal particle.
The method is perfectly suited for treating three-dimensional problems with complex,
deforming boundaries such as RBC membranes in the Stokes regime (Zhao & Shaqfeh
2011; Zhu 2014). In order to solve for the particle motion, given an applied force or
torque, we combine a completed double layer boundary integral method (CDLBIM)
(Power & Miranda 1987) with the classical BIM (Zhao, Shaqfeh & Narsimhan 2012).
The resulting equations are then discretised and transformed into a system of algebraic
equations as detailed in (Daddi-Moussa-Ider et al. 2016b; Guckenberger et al. 2016).

For the numerical determination of the particle mobility components, a harmonic
force F(t) = Aei!0t or torque T(t) = Bei!0t is applied at the particle surface. After a
short transient evolution, the particle linear and angular velocities can be described as
V(t) = Cei(!0t+�t) and ⌦(t) = Dei(!0t+�r) respectively. The amplitudes and phase shifts
can be determined accurately by fitting the numerically recorded velocities using
the trust region method (Conn, Gould & Toint 2000). In the laboratory frame, the
components µtt

↵� and µrt
↵� of the mobility are determined for a torque-free particle

as

µtt
↵� = C↵

A�
ei�t , µrt

↵� = D↵

A�
ei�r . (4.1a,b)

For a force-free particle, the components µtr
↵� and µrr

↵� are obtained from

µtr
↵� = C↵

B�
ei�t , µrr

↵� = D↵

B�
ei�r . (4.2a,b)

5. Spheroid close to a membrane: theoretical and numerical results
In this section, we present a comparison of our theoretical results to numerical

simulations using the example of a prolate spheroidal particle. To begin with, we
discuss the bulk mobility of a spheroid. Further on, we show the explicit form of
the correction, and finally compare the components of the corrected mobility matrix
to numerical simulations.

The bulk translational and rotational mobility tensors of a general axisymmetric
particle have the form

µtt,rr
0 = µt,r

k u1u1 + µt,r
? (1 � u1u1). (5.1)

The third-order tensors µrd
0 and µdr

0 have the Cartesian components

(µrd
0 )↵�� = µrdu� ✏�↵�u�

(�� )
, (5.2)

(µdr
0 )↵�� = µdru↵✏���

(↵�)
u� , (5.3)

,!#5�%5#�$�!6�C$5��1D19�12�5�1%�8%%"��((( 31�2#9�75 !#7�3!#5�%5#�$ �8%%"����) �!9 !#7��� �����:6� ���
 ��

�!( �!1�5��6#!��8%%"��((( 31�2#9�75 !#7�3!#5 �0 9D5#$9%*�!6�,1�2#9�75��5"1#%�5 %�!6�/$*38!�!7*�.92#1#*��! ��
��53����
�1%��
��	�����$C2:53%�%!�%85�,1�2#9�75

https://doi.org/10.1017/jfm.2016.739
http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.739
http:/www.cambridge.org/core


Mobility of an axisymmetric particle near an elastic interface 219

where, following from the Lorentz reciprocal theorem (Kim & Karrila 2013)

µdr = µrd =: �. (5.4)

Note that due to the axial and inversional symmetry in bulk, we have µtr
0 = µrt

0 = 0
and µtd

0 = µdt
0 = 0.

For a prolate spheroidal particle of eccentricity e, analytical results are available and
the bulk mobility coefficients are given by Kim & Karrila (2013, table 3.4)

µt
k = 1

6p⌘c
3
8

�2e + (1 + e2)L
e3

, (5.5)

µt
? = 1

6p⌘c
3

16
2e + (3e2 � 1)L

e3
, (5.6)

µr
k = 1

8p⌘c3

3
4

2e � (1 � e2)L
e3(1 � e2)

, (5.7)

µr
? = 1

8p⌘c3

3
4

�2e + (1 + e2)L
e3(2 � e2)

, (5.8)

where a and c are the short and long axis of the spheroid and

e =
r

1 �
⇣a

c

⌘2
, L = ln

✓
1 + e
1 � e

◆
. (5.9a,b)

To obtain the final ingredient µrd, we observe from the definitions in (2.3) and (2.4)
that µrd

↵�� = µrr
↵�⇣

rd
��� and µdr

↵�� = �⇣ dr
↵��µ

rr
�� , leading to

µrd = µr
?⇣

rd. (5.10)

The component rd of the friction tensor is (Kim & Karrila 2013)

⇣ rd

8p⌘c3
= 4

3
e5

�2e + (1 + e2)L
. (5.11)

Therefore we obtain the rd coefficient of the mobility tensor

�= e2

2 � e2
. (5.12)

Having introduced the bulk hydrodynamic mobilities of a spheroid, we turn our
attention to the membrane correction which in the frame of the particle can be written
as in (3.23) and (3.24). We find that the corrections to the translational mobilities as
given in general form in (3.7) can, for a spheroid, be written in closed form as

8p⌘(2z0)1µtt
11 = P sin2 ✓ + Q cos2 ✓ , (5.13)

8p⌘(2z0)1µtt
13 = (P � Q) sin ✓ cos ✓ , (5.14)

8p⌘(2z0)1µtt
22 = P, (5.15)

8p⌘(2z0)1µtt
33 = P cos2 ✓ + Q sin2 ✓ , (5.16)
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and 1µtt
13 = 1µtt

31. Thus they have the desired symmetry of (3.23). Expressions for
P(�, �B) = PS(�) + PB(�B) and Q(�, �B) = QS(�) + QB(�B) are provided explicitly in
appendix C.

For the translation–rotation coupling, the non-vanishing mobility corrections as
given by (3.8), can be cast in the frame of the particle as

8p⌘(2z0)
21µtr

12 = � sin ✓(M + N cos2 ✓), (5.17)
8p⌘(2z0)

21µtr
23 = �M cos ✓ , (5.18)

8p⌘(2z0)
21µtr

32 = �� cos ✓(M + N sin2 ✓), (5.19)

where M and N are now functions of the parameters � and �B, and can likewise be
decomposed into shearing and bending contributions. The dependence on the bulk rd
mobility � is explicitly separated out.

Finally, considering the rotational part as stated by (3.10), the non-vanishing
components of the mobility correction in the frame of the particle can conveniently
be cast in the following forms

8p⌘(2z0)
31µrr

11 = A0 + A2 cos2 ✓ , (5.20)
8p⌘(2z0)

31µrr
13 = D sin ✓ cos ✓ , (5.21)

8p⌘(2z0)
31µrr

22 = C0 + �C2 cos2 ✓ + �2C4 cos4 ✓ , (5.22)
8p⌘(2z0)

31µrr
33 = H0 + H2 cos2 ✓ , (5.23)

and with 1µrr
13 =1µrr

31. All the functions depend on (�, �B) and are decomposed into
bending and shearing parts in appendix C. In addition, the functions C, D and H
depend on the coefficient �.

It can be seen that the mobility corrections for an axisymmetric particle in
their dominant terms possess a simple angular structure. The latter stems from the
contraction of the particle friction tensors (which have an axial symmetry, dictated by
their shape, with respect to the body axis) with the vertical multipole components of
the Blake tensor (which have the same structure but with respect to a different axis,
i.e. the vertical direction). This contraction requires transformation of corresponding
tensors into the common frame of reference, which generates simple polynomials
in sine and cosine functions of the inclination angle as discussed in Lisicki et al.
(2016).

In the following, we shall present a comparison between these analytical predictions
and numerical simulations using the BIM, presented in § 4. We consider a prolate
spheroid of aspect ratio p := c/a = 2, inclined at an angle ✓ = p/3 to the z axis,
positioned at z0 = 2c above a planar elastic membrane. For the membrane, we
take a reduced bending modulus EB := c2S/B = 3/2 for which the characteristic
frequencies � and �3

B have the same order of magnitude. The Skalak parameter
is C = 1. Corresponding data showing the effect of the inclination angle and the
reduced bending modulus can be found in the Supporting Information. Our analytical
predictions are applicable for large and moderate membrane–particle distances for
which c/z0 ⇠ O(1) where we find good agreement with numerical simulations.

Henceforth, the mobility corrections will be scaled by the associated bulk values.
For diagonal terms, we choose the corresponding diagonal elements, namely µt,r

k for
µt,r

11 and µt,r
? for µt,r

22,33. For non-diagonal terms, we use an appropriate combination of

bulk mobilities, that is
q

µt,r
k µt,r

? for translations and rotations. The translation–rotation

coupling tensors are scaled by
p

µt
?µr

?.
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FIGURE 2. (Colour online) The scaled translational mobility correction components versus
the scaled frequency. The spheroid is located above the membrane at z0 = 2c inclined at an
angle ✓ =p/3 from the vertical. The analytical predictions of the real and imaginary parts
of the translational mobility corrections are shown as dashed and solid lines, respectively.
The corrections due to shearing and bending are shown respectively in green (bright
grey in a black and white printout) and red (dark grey in a black and white printout).
Horizontal dotted lines represent the hard-wall limits from Lisicki et al. (2016). BIM
simulations are marked as squares and circles for the real and imaginary parts, respectively.
For the membrane parameters we take a reduced bending modulus EB := B/(c2S) = 2/3
and the Skalak parameter C = 1.

In figure 2 we compare the components of the translational mobility calculated
from (5.13)–(5.16) with those obtained from BIM simulations. For the diagonal
components we observe that the real part of the complex mobility corrections is
monotonically increasing with frequency. The imaginary part exhibits a non-monotonic
bell-shaped dependence on frequency that peaks around � ⇠ 1. The off-diagonal
components 13 and 31 show a more complex dependence on frequency. In the
vanishing frequency limit, we recover the corrections near a hard wall with stick
boundary conditions recently calculated by Lisicki et al. (2016). We further remark
that for the present inclination of ✓ = p/3 the components 33 and 13 are principally
determined by bending resistance whereas the shearing effect is more pronounced in
the components 11 and 22. A very good agreement is obtained between analytical
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FIGURE 3. (Colour online) The scaled coupling mobility corrections versus the scaled
frequency. Black and blue symbols refer to the tr and rt components, respectively, obtained
from BIM simulations. The other colours are the same as in figure 2.

predictions and numerical simulations for all components over the entire range of
frequencies.

By examining the off-diagonal component 31 shown in figure 2(b), it is clear that
the shearing- and bending-related parts may have opposite contributions to the total
translational mobility. This observed trend implies that upon exerting a force along u1,
there exists a drift motion along u3, either away or towards the membrane, depending
on the shearing and bending properties. In fact, for a membrane with bending-only
resistance, such as a fluid vesicle, the spheroid is pushed away from the membrane
in the same way as near a hard wall. On the other hand, for a membrane with
shearing-only resistance, such as an artificial capsule, the motion is directed towards
the membrane.

Figure 3 shows the corrections to the translation–rotation coupling mobility versus
the scaled frequency computed from (5.17) and (5.19). We observe that bending
resistance is essentially the dominant contributor to the coupling mobility. It can be
shown that this trend is always the case regardless of spheroid orientation. The BIM
simulation results are consistent with the fact that the tr and rt mobility tensors are
the transpose of each other and a good agreement is obtained between analytical
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FIGURE 4. (Colour online) The scaled rotational mobility correction component versus the
scaled frequency. Black and blue symbols refer to the 13 and 31 components, respectively,
obtained from BIM simulations. The colour code is the same as in figure 2.

predictions and simulations. The coupling terms are generally very small compared
to the relevant bulk quantities. This makes them somewhat more difficult to obtain
precisely from the simulations which explains the small discrepancy notable in
figure 3(a).

In figure 4 we present the corrections to the components of the rotational
mobility tensor as calculated by (5.20)–(5.23) compared to the BIM simulations.
We remark that the shearing contribution manifests itself in a more pronounced way
for the rotational mobilities. Moreover, the correction to the rotational motion is
less noticeable compared to the translational motion especially for the off-diagonal
component. This observation can be explained by the fact that the rotational mobility
corrections exhibit a faster decay with the distance from the membrane, scaling as
z�3

0 compared to z�1
0 for translational motion. Again, a good agreement is obtained

for the rotational mobility corrections between analytical predictions and numerical
simulations.
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6. Conclusions
In this paper we have computed the leading-order translational, rotational and

translation–rotation coupling hydrodynamic mobilities of an axisymmetric particle
of arbitrary shape immersed in a Newtonian fluid in the vicinity of an elastic cell
membrane. The resulting equations contain (i) the particle-independent multipole
elements of the near-membrane Green’s integral operator which have been calculated
in analytical form in the present work and (ii) the mobility tensor of the particle
in bulk. The mobility corrections are frequency-dependent complex quantities due
to the memory induced by the membrane. They are expressed in terms of the
particle orientation and two dimensionless parameters � and �B that account for the
shearing and bending-related contributions, respectively. In the zero-frequency limit,
or equivalently for infinite elastic and bending moduli, we recover the mobilities
near a hard no-slip wall. We apply our general formalism to a prolate spheroid and
find very good agreement with numerical simulations performed for a truly extended
spheroidal particle over the whole frequency spectrum.
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Appendix A. The Green’s function for an elastic membrane
The Green’s functions for an elastic membrane have been derived and discussed in

detail in earlier papers (Daddi-Moussa-Ider et al. 2016a; Daddi-Moussa-Ider & Gekle
2016). Here, we only sketch the derivation which starts with a two-dimensional
Fourier transform of the Stokes equations and boundary conditions. It is convenient
to introduce an orthogonal basis in the xy plane, spanned by the unit vectors el = q/|q|
and et = ez ⇥ el, respectively parallel and perpendicular to the wave vector q. This
basis is rotated by the angle � = arctan(qy/qx) with respect to the laboratory frame.

After the pressure has been eliminated from the Fourier-transformed momentum
equations, the following set of ordinary differential equations is obtained

q2ṽt � ṽt,zz = F̃t

⌘
�(z � z0), (A 1a)

ṽz,zzzz � 2q2ṽz,zz + q4ṽz = q2F̃z

⌘
�(z � z0) + iqF̃l

⌘
�0(z � z0), (A 1b)

ṽl = iṽz,z

q
, (A 1c)

where �0 is the derivative of the Dirac delta function. After some algebra, it can be
shown that the traction jump due to shearing as stated in (2.6) imposes at z = 0 the
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following discontinuities

[ṽt,z] = �iB↵q2ṽt|z=0, [ṽz,zz] = �4i↵q2ṽz,z|z=0, (A 2a,b)

where ↵ := S/3B⌘! is a characteristic length for shear and area dilatation with B :=
2/(1 + C). The normal traction jump as given by (2.7) leads to

[ṽz,zzz] = 4i↵3
Bq6ṽz|z=0, (A 3)

where ↵3
B := B/4⌘!, with ↵B being a characteristic length for bending. The

dimensionless numbers � and �B stated in (2.9) are defined as � := 2z0/↵ and
�B := 2z0/↵B.

The Green’s tensor in this basis {el, et, ez} has the form

G̃(q, z,!) =

0

@
G̃ll 0 G̃lz

0 G̃tt 0
G̃zl 0 G̃zz

1

A . (A 4)

The components of the Green’s functions for z > 0 are expressed by

G̃zz = 1
4⌘q

✓
(1 + q|z � z0|)e�q|z�z0| +

✓
i↵zz0q3

1 � i↵q
+ i↵3

Bq3(1 + qz)(1 + qz0)

1 � i↵3
Bq3

◆
e�q(z+z0)

◆
,

(A 5)

G̃ll = 1
4⌘q

✓
(1 � q|z � z0|)e�q|z�z0| +

✓
i↵q(1 � qz0)(1 � qz)

1 � i↵q
+ izz0↵

3
Bq5

1 � i↵3
Bq3

◆
e�q(z+z0)

◆
,

(A 6)

G̃tt = 1
2⌘q

✓
e�q|z�z0| + iB↵q

2 � iB↵q
e�q(z+z0)

◆
, (A 7)

with the off-diagonal components

G̃lz = i
4⌘q

✓
�q(z � z0)e�q|z�z0| +

✓
i↵z0q2(1 � qz)

1 � i↵q
� i↵3

Bzq4(1 + qz0)

1 � i↵3
Bq3

◆
e�q(z+z0)

◆
,

(A 8)

G̃zl =
i

4⌘q

✓
�q(z � z0)e�q|z�z0| +

✓
� i↵zq2(1 � qz0)

1 � i↵q
+ i↵3

Bq4z0(1 + qz)
1 � i↵3

Bq3

◆
e�q(z+z0)

◆
.

(A 9)

The terms which contain e�q|z�z0| are the Fourier-transformed elements of the Oseen
tensor and do not depend on the elastic properties of the membrane. The remaining
part comes from interactions with the interface. We now back transform (A 4) to the
laboratory frame. Defining

G̃±(q, z,!) := G̃tt(q, z,!) ± G̃ll(q, z,!), (A 10)

and performing the inverse spatial Fourier transform (Bracewell 1999), we find that
the Green’s functions for a point force acting at r0 = (0, 0, z0) can be presented in
terms of the following convergent infinite integrals

Gzz(r,!) = 1
2p

Z 1

0
G̃zz(q, z, z0,!)J0(⇢q)q dq, (A 11)
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Gxx(r,!) = 1
4p

Z 1

0
(G̃+(q, z, z0,!)J0(⇢q) + G̃�(q, z, z0,!)J2(⇢q) cos 2⇥)q dq,

(A 12)

Gyy(r,!) = 1
4p

Z 1

0
(G̃+(q, z, z0,!)J0(⇢q) � G̃�(q, z, z0,!)J2(⇢q) cos 2⇥)q dq,

(A 13)

Gxy(r,!) = sin 2⇥
4p

Z 1

0
G̃�(q, z, z0,!)J2(⇢q)q dq, (A 14)

Grz(r,!) = i
2p

Z 1

0
G̃lz(q, z, z0,!)J1(⇢q)q dq, (A 15)

Gzr(r,!) = i
2p

Z 1

0
G̃zl(q, z, z0,!)J1(⇢q)q dq, (A 16)

where ⇢ :=
p

x2 + y2 is the radial distance from the origin, and ⇥ := arctan(y/x) is the
angle formed by the radial and x axis. Furthermore, Gxz = Grz cos⇥ , Gyz = Grz sin⇥ ,
Gzx = Gzr cos ⇥ , Gzy = Gzr sin ⇥ and Gyx = Gxy. Here Jn denotes the Bessel function
(Abramowitz & Stegun 1972) of the first kind of order n.

In the vanishing frequency limit, or equivalently for infinite membrane shearing and
bending rigidities, the well-known Blake tensor (Blake 1971) is recovered for all the
components of the Green’s functions.

Appendix B. Derivation of general mobility relations
Here we sketch the manipulations that lead from the corrected friction tensor, given

by (3.2) through (3.5), to the mobility correction in (3.7) through (3.10). We shall
focus on the tt part only, since the others follow analogously. Relation (2.5), rewritten
as µ⇣ = 1, defines the relations between elements of the friction and mobility tensors
of a particle close to a membrane. The membrane-corrected tt friction tensor and the
membrane-corrected tt mobility are thus related by

µtt⇣ tt + µtr⇣ rt = 1, (B 1)
µtt⇣ tr + µtr⇣ rr = 0 (B 2)

from which we have

µtt = [⇣ tt � ⇣ tr(⇣ rr)�1⇣ rt]�1. (B 3)

We know from (3.2) to (3.5) that the corrected friction has the following structure

⇣ tt = ⇣ tt
0 + 1⇣ tt, (B 4)

⇣ rr = ⇣ rr
0 + 1⇣ rr, (B 5)

⇣ tr = 1⇣ tr, (B 6)
⇣ rt = 1⇣ rt, (B 7)

with the known distance dependence of these elements. Moreover, for an axially
symmetric particle, we have

⇣ tt
0 = (µtt

0)
�1, ⇣ rr

0 = (µrr
0 )�1, (B 8a,b)
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since the bulk friction and mobility tensors are diagonal. We now rewrite (B 3) as

µtt = µtt
0[1 + (1⇣ tt)µtt

0 � (1⇣ tr)(⇣ rr
0 + 1⇣ rr)�1(1⇣ rt)µtt

0]�1 (B 9)

and expand the expression 1/(1 + �) = 1 � � + �2 � . . . around the bulk quantities.
Restricting to quantities decaying slower than z�3

0 , we immediately find (3.7). An
analogous procedure leads to the tr, rt and rr mobilities, where the elements of
the bulk friction and mobility tensors combine to contribute only in the form of
µdr

0 = µrr
0 ⇣ rd

0 and µrd
0 = �⇣ dr

0 µrr
0 . The latter relations follow from the definitions (2.3)

and (2.4).

Appendix C. Expressions required for the spheroid mobilities
The results for the correction are given in terms of the wall–particle distance z0, its

inclination angle ✓ and functions denoted by capital letters in (5.13) through (5.23)
of the dimensionless shearing and bending parameters, � and �B. Below, we provide
explicit expressions for these functions. They can conveniently be expressed in terms
of higher-order exponential integrals (Abramowitz & Stegun 1972). The contributions
from the membrane shearing (index S) and bending (index B) are given separately. By
summing up both, we arrive at the final expressions. Notably, in the limit of vanishing
frequency, our results are in complete agreement with those given by Lisicki (2015),
Lisicki et al. (2016).

C.1. Translational mobility
For the functions P and Q, we find the shearing contribution as

PS(�) = �5
4

+ �2

8
� 3i�

8
+ 2i�

B
�2 +

✓
��

2

2
+ i�

2

✓
1 � �2

4

◆◆
ei�E1(i�), (C 1)

QS(�) = � 3
2 ei�E4(i�), (C 2)

and the bending part

PB(�B) = �1
4

+ i�3
B

24
(�+ + �B), (C 3)

QB(�B) = �5
2

+ i�B

 ✓
�2

B

12
+ i�B

6
+ 1

6

◆
�+ +

✓
�2

B

12
� i�B

3
� 1

3

◆
e�i�BE1(�i�B)

+
p

3
6

(�B + i)��

!
, (C 4)

with

�± = e�izBE1(�izB) ± e�izBE1(�izB), (C 5)

�2 = e(2i�)/BE1

✓
2i�
B

◆
, (C 6)

�B = e�i�BE1(�i�B), (C 7)

where zB := �Be2ip/3 and the bar denotes the complex conjugate. The function En is
the generalised exponential integral, En(x) =

R1
1 t�ne�xt dt.
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C.2. Translation–rotation coupling
The translation–rotation coupling is determined by the functions M and N, which we
similarly decompose into two parts. Recalling that B = 2/(1 + C), the shearing part
reads

MS(�) = 3
4

� i�
✓

1
4

+ 1
B

◆
+ 3�2

8
+ i�3

8
� �2

2

✓
1 + i� � �2

4

◆
�1 � 2�2

B2
�2, (C 8)

NS(�) = �3
4

+ i�
✓

1
2

+ 2
B

◆
� 3�2

8
+ i�3

8
+ �2

✓
1 + i�

4
+ �2

8

◆
�1 + 4�2

B2
�2,

(C 9)

while the bending part is

MB(�B) = 3
4

� i�3
B

8
+ �4

B

24
�B + �3

B

24
 , (C 10)

NB(�B) = 9
4

� i�3
B

8
� �3

B

4

✓
i � �B

6

◆
�B + �3

B

24
 � i�3

B

4
�+, (C 11)

where we defined

�1 = ei�E1(i�), (C 12)
 = zBe�izBE1(�izB) + zBe�izBE1(�izB). (C 13)

C.3. Rotational mobility
The rotational mobility is described by a set of functions. The functions A0 and A2
defined for the component 1µrr

11 in (5.20) are given by

A0,S(�) = �3
2

+ i�
2

✓
1 + 1

B

◆
+ �2

✓
1
2

+ 1
B2

◆
� i�3

2
�1 � 2i�3

B3
�2, (C 14)

A2,S(�) = 1
2

+ i�
2

✓
1
B

� 1
◆

+ �2
✓

1
B2

� 1
2

◆
+ i�3

2
�1 � 2i�3

B3
�2, (C 15)

A0,B(�B) = �A2,B(�B) = �1 + i�3
B

6
(�+ + �B). (C 16)

For the component 1µrr
13, the function D defined in (5.21) is given by

DS(�) = �1
2

+ i�
2

✓
1 � 1 � �

B

◆
+ �2

✓
1
2

+ �
4

� 1 � �
B2

◆

+ i�3
✓

2(1 � �)
B3

�2 � �+ 1
2

�1 + �
4

◆
+ ��

4

4
�1, (C 17)

DB(�B) = �1 + 3�
2

+ �3
B

4

✓
�i�+ 2i

3
�B + 2i�+ + � 

3

◆
+ ��

4
B

12
�B. (C 18)

Further, the shearing-related parts of C0, C2 and C4 as defined for the correction
1µrr

22 in (5.22) read

C0,S(�) = �3
2
(1 + �2) +

✓
i�2�2

8
� �(1 � �)�

2
� i(1 � �)2

2

◆
�3�1 � 2i

B3
(1 � �)2�3�2
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+ i�
4

✓
�2 + 2 + 2(1 � �)2

B

◆
+ �2

4

✓
�2 � 2�+ 2 + 4(1 � �)2

B2

◆

� i��3
✓

1
2

� 3�
8

◆
� �

2�4

8
, (C 19)

C2,S(�) = 3�
4

� �3(2 + i�)

✓
i � 3

32
�(� � 2i)

◆
�1 � 2i

B3
(4 � 3�)�3�2

+ i�
2

✓
3�
8

+ 4 � 3�
B

◆

+�2
✓

3�
16

+ 1 + 4 � 3�
B2

◆
+ i�3

✓
9�
32

+ 1
◆

� 3�
32
�4, (C 20)

C4,S(�) = �3
4

+ 3i�
✓

� 1
16

+ 1
2B

◆
+ 3�2

✓
� 1

16
+ 1

B2

◆
+ i�3

✓
� 9

32
� 6

B3
�2

◆

+ 3
8
�3
✓

i � � � i
4
�2
◆
�1 + 3

32
�4, (C 21)

and the bending-related parts read

C0,B(�B) = �1 � 3�(1 + �) + i�3
B

8
�(�+ 4) � �3

B

24
(i�2�2

B + 4��B � 4i)�B

+ �3
B

6

✓
i�+ � � + i�2

4
�B( + �B�+)

◆
, (C 22)

C2,B(�B) = 6 � 9
4
�� i�3

B

✓
1 � 3�

32

◆
+
✓

1
3

� i��B

32

◆
�4

B�B + �3
B

3
 

+ i��4
B

32
( + �B�+), (C 23)

C4,B(�B) = 9
4

� 3i�3
B

32
+ i�5

B

32
�B � i�4

B

32
( + �B�+), (C 24)

Finally, the functions H0 and H2 defined for the component 1µrr
33 in (5.23) read

H0,S(�) = �1 � 3
4
�2 + i�

✓
�2 + 2

2B
+ �

2

16

◆
+ �2

✓
2 + �2

B2
+ �

2

16

◆

+ �
2�3

32
(i�2 � 4i + 4�)�1

+�3
✓

3i�2

32
� 2i

B3
(�2 + 2)�2

◆
� �

2�4

32
, (C 25)

H2,S(�) = �1
2

� 3
4
�2 + �

✓
3i
16
�2 + i�

B
+ i

2
� i

2B

◆
+ �2

✓
3
16
�2 + �+ 1

2
+ 2�

B2
� 1

B2

◆

+ �3

32

✓
9i�2 + 16i�+ 64i(1 � 2�)�2

B3
+ (4 + 6�+ 3i��)(�� � 2i�� 4i)�1

◆

� 3�2�4

32
, (C 26)
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and

H0,B(�B) = �2
✓

�3
4

+ i�3
B

32
� i�5

B

96
�B + i�4

B

96
( + �B�+)

◆
, (C 27)

H2,B(�B) = �1 + 3�� 9
4
�2 + �3

B

✓
i�
✓

3
32
�� 1

2

◆
+ 1

6

✓
i + ��B � 3i�2�2

B

16

◆
�B

◆

+ i�2�4
B

32
( + �B�+) + �3

B

6
(� + i�+). (C 28)
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