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We have obtained an approximate expression for the impedance
function at all frequencies, temperatures, and coupling strengths
of an electron coupled to a polar lattice (a system commonly called
a polaron). The starting point for the calculation is the quantum
mechanical expression for the expected current. The phonon co-
ordinates are eliminated from this expression by well-known field-
theory techniques. The resulting exact “influence functional” is
then approximated by a corresponding quadratic “influence func-
tional” which, it is hoped, imitates the real polaron. Correction
terms are computed to account for the difference between the
approximate impedance and the exact polaron impedance in a
manner closely analogous to Feynman’s treatment of the polaron
self-energy. In fact, the analytic evaluation of the expression for
the impedance obtained here is carried out using the approximate

I. INTRODUCTION

N electron in a polar crystal interacts with the
surrounding crystal. The effect of this interaction
is to surround the electron with a distorted lattice: a
cloud of phonons. The nature of this system, “the
polaron,” has been extensively studied.'™ It is interest-
ing as a phenomenon in solids, but it has an extended
interest since it is one of the simplest examples of the
interaction of a particle and a field. It is in many ways
analogous to the problem of a nucleon interacting with
a meson field. (The extra complications of spin and iso-
topic spin do not, however, permit direct use of the
methods to be described here, without some extension
of their power.) In cases of practical interest, the
coupling between the electron and the longitudinal
optical modes of vibration of the crystal is sufficiently
strong that simple perturbation methods do not apply.
It is the strong-coupling aspect of the problem which
has aroused so much interest. For this reason, the
‘“polaron problem’ has generally been studied in a con-
siderably idealized form.

It is assumed that in the undistorted lattice the elec-
tron would move as a free particle (with possibly an
altered mass), that only the optical modes interact with
the electron, that they do so in a very simple way, and

!R. P. Feynman, Phys. Rev. 97, 660 (1955), hereafter to be
called I.

*H. Frohlich, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd., London, 1954), Vol. 3, p. 325.

3S. 1. Pekar, Zhur. Eksp. i Teoret. Fiz. 19, 796 (1949).
4T, D. Schultz, Phys. Rev. 116, 526 (1960).

“influence functional’’ that was successfully employed in minimiz-
ing the binding (and free) energy of the polaron in earlier calcula-
tions. However, the accuracy obtained using this approximation,
for the impedance calculation, is less satisfactory and its limita-
tions are discussed. Nevertheless, beginning at intermediate
coupling strengths, the approximate impedance produces a level
structure of increasing complexity and narrowing resonances as the
coupling strengthens. This suggests that further refinements may
be fruitful. Methods for finding a better quadratic influence func-
tional for use in our impedance expression as well as ways of
improving the expression further are suggested. A comparison of
our results with those of the Boltzmann equation points up
interesting differences which arise from reversing the order of
taking limits of zero frequency and coupling.

that they all have the same frequency. These are quite
drastic simplifications; however, sufficient data are not
available to improve these assumptions so as to repre-
sent any actual crystal. The methods given here do not
require these simplifications (except perhaps that the
electron’s kinetic energy is a quadratic function of its
momentum); the same techniques can be readily applied
to include variations of frequency and coupling of the
optical modes with wave number, influences of other
modes, etc., although some of the integrals done analyti-
cally here might have to be done numerically.

In discussing losses and mobility such idealization
may alter completely the true behavior, because some
essential loss mechanism such as lattice defects or inter-
action with acoustic phonons has been idealized away.
It is important to appreciate, therefore, that in all the
remaining analysis and discussion we shall be talking
only about a strictly idealized problem.

One of us! has shown that the ground-state energy
and effective mass of the polaron could be calculated
with considerable accuracy from a variational principal
obeyed by path integrals. Of more interest, experi-
mentally, is the mobility of the polaron and, more
generally, its response to weak, spatially uniform, time
varying - electric fields. This is a more complicated
problem involving the rate at which a drifting electron
loses momentum by phonon interactions, through emis-
sions of phonons or collisions with phonons already
present. In the practical situation at temperatures not
too near the melting point of the crystal the density of
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optical phonons is quite low as a result of the high energy
required to excite them. In our idealized model losses
can occur only through collisions with optical phonons,
so that these collisions could be analyzed by first finding
the collision cross section and then using the Boltzmann
equation (or equivalently the usual formulas for trans-
port cross section) to get the mobility.® This is the
technique generally employed in transport problems.
Yet there exists a class of transport problems in which
this cannot be done. If many phonons are colliding
simultaneously with an electron most of the time, and
if there are possibly quantum interferences among these
collisions (such that the cross section for scattering from
one phonon depends on the presence and behavior of
others), the collisions cannot be separated in time as
required for the validity of the Boltzmann transport
equation. What we need to calculate (the average posi-
tion of an electron at time ¢, if at =0 a pulsed electric
field was applied) can be easily written formally, but
little has been done with such a form unless the coupling
is weak or the collisions are well separated.®’

A secondary interest which we had in this problem
was to see if we could compute transport problems in
cases when not only the perturbation theory, but also
the Boltzmann equation is inadequate. Therefore, in
spite of its lack of reality, we have analyzed the problem
of the impedance of a polaron of arbitrary coupling
strength in an oscillating electric field, for arbitrary
temperatures (temperatures so high perhaps that the
Boltzmann factor ¢ #¢/*¥T for the energy #w of the
optical modes is not necessarily small).

In any specific range of conditions, such as low tem-
perature, high temperature, or high frequency of ex-
ternal electric field, etc., special approximations might
be made to obtain a better answer than is given by
our general formula. However, it was of interest to see
how well one could do in a general way for arbitrary
values of the parameters,

II. FORMULATION OF THE MOBILITY PROBLEM
IN TERMS OF THE ELECTRON
COORDINATES ALONE

If a weak alternating electric field E= Eqe™! is applied
to the crystal in the x direction, the current induced
(by motion of the electron) may be written as

3(v)=[=(v) I Eoe™. €

This defines the impedance function z(») which we wish
to calculate. We will assume that the crystal is isotropic
so that j=(&), where (x) is the expectation of the elec-
tron displacement in the x direction (taking the electric
charge as unity). The displacement {(x) is E/ivz(v).

5 J. Howarth and E. H. Sondheimer, Proc. Roy. Soc. (London)
A219, 53 (1953).

6 R. Kubo, J. Phys. Soc. Japan 12, 570, 1203 (1957).
7 M. Lax, Phys. Rev. 109, 1921 (1958).
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Transformed to time variables, this implies that

0

()= [ iG(r—0)E(o)do, @

where G(7), ¢ times the electron displacement at time =
induced by a pulsed electric field at time zero, has the
inverse transform

00

/ G()e " dr=G()=[vz(y) ] 3)

We take G(7)=0 for 7<0.8

The effect of a perturbing field E(¢) in the x direction
is to add to the complete Hamiltonian of the system H,
the term —xE(f)=—E- X (where x is the component
of the vector position of the electron X in the direction
of the field). If at some time (a), long before the field is
turned on [i.e., E(¥)=0 for < a] the state of the system
is represented by the density matrix p,, then the density
matrix at time 7 is U(r,8)p.U"(7,a). Thus, the ex-
pected position at time 7 is

(x(r))=Tr[xU(r,a)pU""(r,a)], 4)
where

Ulr,a) =exp{ —i / H- X, Bl 6)

is the unitary operator for the development of a state
in time with the complete Hamiltonian H— X- E.

We use a time-ordered operator notation; all un-
primed operators are placed to the left, latest times
farthest to the left, then the matrix p at the right and
finally all primed operators on the right of p, with latest
times farthest to the right.® Thus, primed operators
are ordered oppositely to unprimed. We can, therefore,
write

U'_‘(T,a)=eXp{i/f [H/— X, -E(s)Jds}. (6)

The quantity £ is not an operator but simply a function
of s so that in (4), E'(s)=E(s). However, as we shall
see in a moment, it is convenient to handle a more
general case where E and E’ are different arbitrary
functions of s.

For weak fields we expand (4) to first order in E and
find an expression for #(7) of the form (2). Evidently,
—iG(r—0) is the response to a § function E, so we may
set E(s)=e8(s—a)=E'(s), substitute into (4), and ex-
pand the exponential to first order in e. However, we
note that (4) itself may be considered to be —¢ times the
first functional derivative with respect to E(r)— E'(7) of

g=Tr{U(b,a)pU"'(b,0)], (7

8 In our idealized model X and E will be in the same direction,
although in general (in the presence of magnetic field or aniso-
tropic crystalline fields), G and z will be tensors.

® R. P. Feynman, Phys. Rev. 84, 108 (1951).
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as b— 4o, and ¢ — — . That is to say, we calculate
g from (5), (6), and (7) with

E(s)=ed(s—o)+76(s—7) (8a)
and
E'(s)=ed(s—a)—90(s— 7). (8b)
The quantity we require is
G(r—0)=3(0%/919€) 1—e—. 9)

If the initial state is one of a definite temperature
T, then

pa=exp(—BH)/Q, (10)

where 8=1/kT and Q is a normalizing constant, which
we eliminate by calculating (1/2¢)(9%/3n9¢) evaluated
at e=n=0.

The Hamiltonian representing an electron in inter-
action with the vibrational modes of a crystal is

H=P/2m+Y x wxax'ax
+ V123« [Cx*ax’ exp(—iK- X)
+Cxax exp((K- X)]. (11)

In this expression, ax, ax' are the annihilation and
creation operation of phonons of momentum K, fre-
quency wx, coupled to the electron via the coupling
coefficient Cx; P is the momentum of the electron;
X is its coordinate; m is its effective mass calculateed in
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and Cx=12%4r"2012/| K|, where « is a constant related
to the dielectric constant; intermediate coupling corre-
sponds to a=6.

The quantity p,, the initial distribution, should be
e FH for the full Hamiltonian H. If the time (a) is
sufficiently far in the past we can just as well take
pa=constXexp(—fB 2 x wgax'ax). That is, we may
assume that in the past only the oscillators were in
thermal equilibrium at temperature 8. As a result of
the coupling, the entire system will come very quickly
to thermal equilibrium at the same temperature. The
energy of the single electron and its coupling are in-
finitesimal (of the order 1/V) relative to the heat bath
of the system of phonon oscillators, so that the exchange
of energy between the electron and the lattice will bring
everything to thermal equilibrium at the original lattice
temperature.

With this choice of p, the dependence of U, U’, and
pe in (7) on the phonon oscillator coordinates is suffi-
ciently simple so that the oscillator coordinates may be
eliminated and the entire expression reduced to a double
path integral involving the electrons coordinates only.
This reduction, explained in Appendix A, is carried out
by methods analogous to those used before by one of
the authors on problems in electrodynamics.?

The result is (taking g — —«, b — + )

a fixed lattice; V is the crystal volume. We take , ,
h=1, m=1. g g=//e“”®X(t>DX(t), (12)
As a specific example we shall take the simplified )
model of Frohlich? in which wg=1 independent of K, where
o r17dX(\2 17dX'(H)\2 oo
d= f [—(—) ——( ) ]dz— [EQ)- X()—FE@)- X' (6)Jd¢
—w L2\ dt 2\ dt o
i [ @K o ot A
o [ o[ [ ool XOJ-expliK- XOHX Do, 1
2 (27")3 —0 J—n
X {exp[—iK: X(s)]+exp[ —iK- X'(s)}+ia(wx, t—s){exp[— K- X(s)]—exp[ —iK. X'(s)]} Jdsdz.  (13)

The functions y(w,7) and a(w,7) are given in Appendix A. In the special case of Frohlich’s Hamiltonian the integral

on K can be performed to give

®p= f_ j F(d X@)?—}—(dxm )Z}M /~ +: [E()- X()—E'(¢)- X'(£)dt

2\ dt 2\ dt

o pte memilt-sl L 2 P(B) cos(t—s) et 2P(B) cos(t—s)
+ia2—3/2/ / [ -

| X()— X(s)]

where P(8)=[ef—17]".

| X'())—X'(5)]
2[e =0 4-2P(B) cos(t—s)]
| X'()— X(s)|

:ldtds, (14)

The double integral ©X(/)$ X'(?) is only over those paths which satisfy the boundary condition X(£)— X'(#)=0
at times ¢ approaching == . The boundary conditions on the paths at large positive or negative times, reflects

the arbitrariness of the initial electron state,
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Thus, we have reduced the problem of find G via (7),
(8), and (9) to that of finding the dependence of a path
integral (12) on the forcing functions E and E’. This
expression is exact [for the Hamiltonian (11)7] but quite
complicated. In the next section we discuss approximate
methods of evaluation.

III. A METHOD OF APPROXIMATION

In I, a path integral, similar to (14), had to be
evaluated. It was argued there that in some rough
approximation the “interaction of the charge with
itself”’ represented there by a term in the action function
S, 2782 11| X(£)— X(s)| 7L, might be imitated by a
function Sy in which this term is replaced by
1/2Ce =1 X({)— X(5)]2. One may think of the inter-

o T o v
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action term in S as indicating that at time ¢ the particle
acts as though it were in a potential 212 f"fe= (=9
X | X(£)— X(s)|~'ds resulting from the electrostatic
interaction of the electron with its mean charge density
of its previous positions [ the weight for different times
being ¢~ ¢7. The assumption then is that such a
potential may be roughly replaced by a parabolic
potential centered at the mean position of the electron
in the past [the weight for different times being
¢~»(¢=sY], In fact, the extra parameter w can be adjusted
to compensate partly for the error of using a parabolic
potential in place of the true potential form. This
argument strongly suggests that the dynamical behavior
of the electron, (its motion under an applied electric
field) might be described approximately if we replace
® by a Py, where

E'(¢)- X'(£)Jdt

iC e e
— / / (CX(0)— X(s)FLo-v1t42P(8) costoli—s)]

+LX'(0)— X' (s) Lere!t=214-2P(Bw) cosw(t—s)]

—2[X'()— X(s) | e =942 P(Bw) cosw(i—s)]}dids.

The parameters C and w are to be determined so as
to approximate ® as closely as possible. At zero tem-
perature (P=0), we shall fix C and w at the values
given in I. The assumption that ®, is a good approxi-
mation to ® for computing the mobility at low tem-
peratures is based on the supposition that the compari-
son Lagrangian, which gives a good fit to the ground-
state energy at zero temperature, will also give the
dynamical behavior of the system. In finding the
ground-state energy, the parameters can be chosen by
a variational principle but we know of no such principle
for the mobility. At finite temperatures the parameters
C and w can be determined from a variational principal
for the free energy which is a direct extension of the
method used in I for the ground-state energy, and re-
duces to it in the zero-temperature limit. Others!0:102
have derived in detail the expressions from which the
best C and w may be determined for finite 8. Thus, C
and w can be considered as known functions of o« and 8
even though, unfortunately, no closed analytic form
exists, and in any specific calculation they would have
to be evaluated numerically.

Actually, we shall not be satisfied merely to replace
® by ¥, but we shall obtain a first correction to z(»)
by studying, in the next section, the first term in an

s M. A. Krivologz and S. I. Pekar, Bull. Acad. Sci. U.S.S.R.
21, 1, 13, 29 (1957).

(15)

expansion of exp[i(®—dy)]:

g=//e”’SDXZDX’z/[e”’03)XZDX’

+ / ¢ (d—B)DXDX'.  (16)

In this section, however, we will consider only the
first term,

o= / D XDX. 17

We can expect to evaluate the integral (17) exactly,
because the expression for &, is a quadratic form in
X()X’(¢) and all such “Gaussian” path integrals can
be evaluated exactly.® There are several ways to perform
the integration in (17). One way is to observe that the
expression (15) is obtained by eliminating the variable
Y from a system in which an electron interacts with a
single particle described by the Lagrangian

Lo=%(dX/d)*+31(dY/de)>—3k(X—Y)*+E-X. (18)
If we calculate the g for such a system by integrating
over all the Y variables first, then (17) results; provided
we choose k= (»2—w?) and M= (v*—w?)/w? where
2=w?44C/w. However, Ly can be re-analyzed as the
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sum of two normal modes,

Ly= %(M—{-I),(dXQ/dt)?—i-E- X+

2(M+1)
M
X [(d Xl/dt)2—'U2 X12]“*‘~_“E : le (19)
(M+1)

so that go can be written as the product of two factors,
one for each harmonic oscillator. For a single oscillator
of mass m and frequency w, coupled as I'(f)- X, the
value of g is given in Appendix A. Here we have two
oscillators, one of mass m;=M—+1=1v2/w? and frequency
w1=0 coupled with a I'(#)= E(¢), and a second oscillator
with me=M/M-+1, we=v, and T({)= — (M/M+1)E@)
= —[(v2—w?)/v*]E(¢). If the contributions of the two
normal modes are combined, g, takes the form

a0

go=eXp(Z:_ L= = (=) KL @)+ £ @)V ()

+{ﬂw—f@nm@»w) (20)
wherell
Yolo) = — () (r— i) [r— i)y —o]  (21)

and
T ( 2w?
AU(V):'Z— 76—2[5(1/—{—8)—}—5(1/——8)]—}—[1+2P(Bv)]
228

('1)2— w?

X— )[5(1/—{—7))-%-6(1/——1))]’. (22)

We have expressed E(¥) and E’({) by their Fourler

transforms
oo

f=[ E@erd.

—00

(23)

To obtain Go(r—0) we must evaluate g, for E and E’
given in (8), that is to say, we must substitute

f(V) = ee—iua+ neiw’
f/(V) = ee T — 1)87:”,

into (20), and find the term of order en. Evidently

(24)

i .
Go(r—a)z—z—f Yol )eHv—ody,  (25)

™

where Go(r—o) is the zeroth order approximation to
G(r—o0) [Eq. (2)]. Therefore,

Go(V) el +’LYO(V) . (26)

Since Yy is the classical response function for the
comparison system Lo, the result has the immediate

¢ is a small positive quantity and the limit € — 0 is to he
taken,

IDDINGS, AND PLATZMAN

interpretation that Go(v) is the response we would have
predicted for the system Lo had we treated it classically.
In addition, there is no temperature dependence in G,
(except through the variation of the parameters 7, w with
temperature). Both of these well-known results follow
from the linearity of L,.12:13 .

For a particle of mass m, for low frequencies,
G= —1i/mp? so that a comparison of this expression with
(21) and (26) gives an effective electron mass m=1%/w?.
This value for # is not the same as the more accurate
value given in I, but as Shultz* has shown, it is numeri-
cally not very different over a wide range of a. Thus,
the reactive part of Gy may be satisfactory, but the
dissipative (real part) appearing as it does all at the
single frequency v, must be only a very crude
approximation.

In the next section we shall compute the corrections
implied by the additional expansion terms in (16). We
shall find that the mass is now exactly that given in I,
and that the dissipatiion has a much more realistic
behavior.

IV. FIRST CORRECTION TERM

To evaluate the second term on the right-hand side
of (16) we shall have to integrate e®0(®—®;). In order
to see what is involved, consider only one of the terms
arising from $e?®o:

(2m)?

-]
“exp (iK-[X()— X(5)])

Ik

X [y(wk, t—s)+ialwk, i—s) ]dsdt

d*K
[Cx|?

XDX(HDX'(1). (27)

Other terms from ® are similar to (27) with some re-
placements of X by X', while the terms from &, we will
consider later. Evaluation of (27) requires a knowledge
of the path integral

R(K,t,s)=/e”’° ex ) {iK-[X()— X)) DXDX.  (28)

Once R(K ;) has been evaluated, (27) becomes an
ordinary multiple integral:

d3K 400 0
= / Cel? / / R 1,9)
(2m)? o S

X[y(wk, {—s)+ia(wk, t—s) Jdsdt.  (29)

2 F, L. Vernon, Jr., Ph.D. thesis, California Institute of Tech-
nology, 1959 (unpublished).

B R. W. Hellwarth, Hughes Research ILaboratories, Iourth
Quarterly Progress Report, September 15, 1958 (unpublished).
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The function R is easily evaluated. It is clearly given by
our general formula (20) with

£0)= (et ne )i K(evime)  (30)
and!*

(1)
Similarly, a term of the form (27) with X(¢) replaced

by X'(£) can be expressed in terms of our general path
integral (20) by using the proper f’s,

f(y) = (Ee—ivo_}_ ne—ivr)i_ Ke—irs

()= (ee " —ne— 7)1,

(32)
and
(33)

In this way, S ¢®®D XD X’ can be evaluated. Similarly
the term S ¢®®DXDX' may be obtained. To get
S e[ X(@)— X(5)POXDX', one can differentiate R
with respect to K twice and evaluate it at K=0.
(Details are given in Appendix B.)

The final result for the first-order change in G is

t'()= (e " —ne—7)i—Ke~t,

Gi=—iV () x()+@AC/w)r?/(*—w?)],  (34)
where
x(v) =/ [1—e**] ImS(u)du, (35a)
and ’
d*K 2K?
S(u)=/ ‘CKlz““*e_KZDUO/Z
(2m)3 3
[exp (iwgu)+2P(Bwx) cos(wxu) ]. (35b)

“Im” means the imaginary part and the function D(u)
is defined as

w?y

+4P(Bv) sin?(vu/2) |—iu+ uz/B:l. (35¢)

For Frohlich’s Hamiltonian, the integration over K may
be done to give

S(u)=2a/3+/m{[ D(u) 32 e!*+2P(B) cosu]}. (36)
We have found an approximate form for G(»):
G(v)=Go(»)+G1(v). (37)

From it we may find the impedance to first order in
G1(V):

v2(»)=1/Gr)~1/Go(v)—[1/Go(»)?]G1(»).

The question arises as to whether it is more accurate to
expand in this way or to leave the formula as vz(y)

(38)

4 Equation (20) is a one-dimensional formula. Fér the case of
vector forces the product of two f’s is to be interpreted as a dot
product.
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=(Go+G1)~L Of course, if G, were truly small it would
not matter. However, there are excellent reasons to
believe that the expanded form is far more accurate.
This is best explained by considering a simple example
of a free particle to which we add a harmonic binding
as a perturbation. The resulting G’s are [®, arising
from 1m(d X/d¢)? only],

Go(n)=+iVo(v) = —i/mr? (39a)

and

Gi1(v) = — 1w/ mv, (39b)

where wg is the natural frequency of the oscillator. In
this case the expanded form of z(v) is

wz(v) =m(we2—v?). (40)
The true G(v) shows a structure (resonance at v=qy)
which is not reflected in an expanded form of G, but
which is precisely duplicated (for this linear system) if
one expands z(v). Therefore, we substitute (34) into (38)
to obtain the simple result,

—ivz(p)=r2—x(»). (41)

With x(v) given by (33), this is our final expression for
the impedance of the polaron. It is Egs. (41) and (35)
which we will evaluate in various limits and discuss in
the following sections.

The first term on the right-hand side of (41) is a pure
free-particle term, while x(») contains all of the correc-
tions due to the interaction with phonons. The entire
dependence of our results (41) on the trial action ®, is
in D(u), Eq. (35¢c). D(#) in turn appears only in the
exponential term in Eq. (35b). This exponential is an
effect due to recoil as can be seen by expanding the
exp(iK- X) term in the Hamiltonian as 147K- X (which
we may call a dipole, or linear coupling approximation).
If the expansion is made, then the exponential term
e K22 (W2 in (35b) will not appear. In other words, if
we had any problem in which the field oscillators were
coupled linearly to the electron’s coordinate X, then
our method would give us the exact formula for the
impedance irrespective of the choice made for the trial
functional ®,."® This is fact in the best argument for
treating the perturbation expansion (16) as an expansion
for z(v) in the manner of Eq. (38).

Therefore, insofar as the system of phonons behaves
as though they were linearly coupled, so there were no
recoil effects, (41) is exact. However, recoil effects are
included in (41); it is only that they are not included
precisely. They are approximated by finding their effect
for the imitative functional &, rather than the true
functional ®. For this reason we expect (41) to be an
excellent approximation to the true impedance of the
polaron.

15 Assuming that @, also implies a linear coupling and is a

quadratic functional of X(¢), X'(?).
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V. BEHAVIOR OF THE IMPEDANCE

For purposes of further analysis in which we shall
change the contour of integration on the variable %, we
list some properties of S(#). For real #, S*(u)=S5(—u)
and S(zu) is purely real. In addition S(%)=S(z8—u)
for complex #. The real part of D(x) must be positive
in order for the K integral to converge. Therefore, the
region of # where this happens, namely the strip parallel
to the real axis between the lines #=real and
u=real+18, is the region free of singularities for S(#).
In the limit of zero temperatures (8 — ) this strip,
over which S(#) is analytic, widens to include the entire
upper half-plane.

1. Zero Temperature, v <1; Effective Mass

For Frohlich’s case we consider first the case »<1,
B= 0. Then the path of integration [in the integral for
x(v)] along the real axis may be rotated to the path along
the positive or negative imaginary axis #=0 to Z=i
(depending on the sign of ¢#*). The resulting expression is

)=t [ et coshor)
—z(y)=v2——— ¢ (1 —coshyr
3\/7r_/0

.112_ w? w? —3/2
x[ (1—e—w)+~2r] dr. (42)
v

1)3

Therefore, z is purely imaginary for »<1 and there is
no dissipation at the absolute zero of temperature (a dc
field will continue to accelerate the electrons indefi-
nitely). The reason for this behavior is simply that there
are no existing phonons for the electrons to scatter off
and none can be created by the electrons until the
frequency » of the applied field is high enough to excite
the electrons to a state of energy #» higher than the
energy %o needed to create a phonon. If there is a range
of frequencies w down to zero (as for acoustic modes)
then a resistance exists at any frequency of the applied
field and at zero temperature. In the Frohlich model it
begins at y=1. Of course, a dc field will eventually
speed the electrons up until they can radiate phonons
and dissipate energy. However, this is a nonlinear effect
in the applied field strength and is not described by a
theory of the impedance. For extremely low frequencies
» we can put (1—coshyr)= —»272/2, The result is that

00

——iuz(v)=v2[1+—~a-—/ ue*
3\/7!' 0

XI:(f_wz)(l—e‘“”“)+z:~:u]w3/2du}. 43)

73

The polaron behaves like a free particle with an effective
mass. This mass is the same as the one derived in I, by
a modification of the variational ground-state energy
calculation.
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2. General Expression for Dissipation

The analytic properties of S(#) outlined at the be-
ginning of this section allows one to rewrite the expres-
sion for the Imyx(») in a form more convenient for com-
putation. We may write (35a) as

Imx(»)=Im / i sin(vae)S(u)du. (44)

Using the fact that S(«) is analytic between u=real and
u=real4¢8, we may change the contour of integration
in (44) from along the real axis to one which goes first
from O to 48/2 up the imaginary axis and then from i8/2
to i3/2+ o parallet to the real axis. (The closing piece
of the contour required at infinity does not contribute.)
Because S(iu) and sin(ivu)d(iu) are real, the leg of the
contour up the imaginary axis contributes nothing to
(44), which requires the imaginary part. The contribu-
tion from the remaining part of the contour (from

18/2 to iB/2-+ =) gives
Imy(v) =sinh(By/2) / ) cos(vu)Z(u)du, (45a)

where Z(u#)=S(u+18/2) is given by

=(u) fd3K|C|
u)= x|?
(2n)?

><%I{?cos(wxu) exp[ —3K2A(u)] (45b)
sinh{Bwx/2)

and A(u)=D(u-+1i8/2).
w? vz—w2\cosh(,8v/2)—cos(vu) ut B
so- | (o i
w2y sinh(8y/2) g 4

'1)2
The dc mobility g for the polaron is given by

]. (45¢)

wl=lm Imx(v)/».

»—0

Our results (44), therefore, gives
wi=t8] 2 (46)
0

For the case of Frohlich’s Hamiltonian, we find that

L) 200 332 sinh(,Bu/Z)/v 8
e _3\/7r sinh(83/2) \w)
“  cos(va) cos(u)du )
o [u2+a2—b cos(vu) ]2
where
a*=(%/4+ R coth(Bv/2), (47b)

b= RB/sinh(Bv/2),
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and

R=(v—w?)/w. (47¢)

3. Dissipation at Low Temperatures

For low temperatures ¢e7# and, therefore, ¢78* are very
much less than one, so that (47a) may be expanded as
a power series in b.

200 sinh(Br/2) 7 v\*® = cos(vu) cosu
L D L
34/ sinh(8/2) o (u*+a?)??
‘ 38Re=#"2 cos(vu) | 15 B2R2 P

(u24-a?) 4 (u24a?)?

w

[14cos2ovu) ]+ - - - }du. (48)

Now an integral like Jcos(\u)du/(u?-+a?)*? falls off
exponentially like (2m{A|)¥2(g)~3/%¢~Me as X increases.
Thus, the smallest values of A count, and these count
with the smallest power ¢7# in front. This permits us to
select the important terms for each v. For example, the
last term in brackets contributes when v=294-1 for
there is a contribution from cos(va) cos(#) cos(2vu). The
e# is compensated for by the ¢#¢~1/2 in front.

For <1+, and |1—»|>B", only the first term in
the expansion contributes and we obtain

? 3
Imx(v)%§a<——) (1—eP)ePO—1/2

w
X[( } v—1 I )1/2e—ﬁ{v—1[/23—R|v—1|

+(V+ 1)1/26_5(”+1)/26_R(V+1)]. (49)

As 8— o this shows a threshold at »=1. Below v=1
the result is nearly zero; above, it is ~%a(v/w)(r—1)1/2
Xexp[—R(v—1)]. This is the threshold to create one
optical phonon from the energy quantum #%» supplied
by the external field. If we have an excess energy v—1,
the final electron has momentum proportional to
(v—1)'2 and this appears as a factor because of the
phase space available. The cross section depends in
some way on the frequency above threshold; the factor
exp[—R(»—1)] is a rough approximation to this,
generated by our model ®,.

To study the dependence on 8 in a little more detail,
in case <1, (49) can be rewritten as

Ton(v) = Ja(o/20) [ (1—») V30— gR0=)
_I_ (1 +V)1/26—R(1+v)e—3_. (1 —_ V) 1/26—R(1—v)e—ﬁ

— (14») V2 RUg807. (50)

The terms are easily understood. In the first, an electron
absorbs a quantum of energy » to emit a phonon with
energy one. The chance that the electron has enough
energy, 1—v, to do this is ¢#¢=) In the second, the
electron absorbs a quantum » and also absorbs a phonon
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(they are present in number ¢~#) so the outgoing electron
momentum is (1+4»)/2, The third corresponds to the
electron absorbing a phonon and emitting a quantum
#v to the electric field. This emission contributes nega-
tively to the energy loss of the electric field. The fourth
term results from a particularly energetic electron of
energy exceeding 1--» radiating a phonon and emitting
a quantum to the field.

Since the dc mobility is given by the Imx(v)/» as
»— 0 (50) gives an expression at low temperatures for
the dc mobility of the Frohlich model. Using our trial
functional ®,, we find that

w 3
u=(——) (3/40)e* ety (51)

7

The dependence of (51) on the coupling strength a is
as ot for small « (and high 8) because the “best” w=v
for small @ (see I). This dependence on « is of course
the same as is derived by perturbation theory. As e
becomes large (e>>1) the best parameters satisfy the
relation v/w~a2. Therefore, the mobility x becomes
proportional to a~7e** at high coupling strengths. The
result (51) can not be compared directly with the results
of previous calculations®?®1%:17 because its temperature
dependence is ¢#/8 rather than the e dependence found
in the other approaches. At high 8 (where these previous
calculations are valid), the different dependence on
temperature would be experimentally unobservable.
However, the origin and significance of this (incorrect)
temperature dependence is interesting and will be dis-
cussed at some length in a later section.

Returning to our general expression for the Imyx(»)
(48), we see that there are other thresholds at higher
frequencies coming from higher terms in the sum (48).
For 8= « the next threshold is at y=v-1, the contribu-
tion above threshold being (2a/3)(v/w)*(r—2v—1)%2
Xexp[ —R(v—v—1)]. These higher thresholds corre-
spond to exciting the electron to an excited state of
energy v and emitting a phonon. The position of this
excited state (at v) and the higher ones along with the
selection rule that says these cannot be excited without
the emission of a p-state phonon is a fiction supplied
by our imitating action ;.

Of course, for strong couplings, there will be such
complicated excited states, with partial selection rules
leading to a complex curve for Imx(r). For strong
electron-phonon coupling, the electron is in effect bound
in a potential which it makes by distorting the lattice in
its neighborhood. If the lattice were held fixed in this
distorted state, we would expect the electron to have
various excited states in this potential. In fact, the
lattice moves so that ‘“‘states” are unstable, but for
large o the excitation energies are of order o? larger than
the lattice frequency so it cannot follow quickly enough.

16 F. Low and D. Pines, Phys. Rev. 98, 414 (1955).
17y, Osaka, Progr. Theoret. Phys. (Kyoto) 25, 4, 517 (1961).
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F1G. 1. Plot of Im x(») for a=3, w=2.5, v=3.4 and 3=100. » is
plotted in units of the optical mode frequency w and Im x(») is
plotted in units of (m/w).

™ x(v)

The Imyx(r) should have a maximum when » is equal to
a frequency which can be absorbed in going to such an
excited “state.” The widths of these maxima reflect
the lifetimes of these ‘“‘states” for phonon emission.
Naturally, we cannot expect our approximate formula
(35a) to give such detailed results correctly.’® It is
reassuring, however, that our method gives such a
realistic looking behavior, and strongly suggests that it
represents a long step forward toward the correct
Imyx(v). In the last section we outline some ways of
improving the Imx(»). When the coupling is not too
strong (e=3), these thresholds are weak and hard to
see, and the curves will have a “washed out” appear-
ance. In Figs. 1-3 are given curves of Imyx(») vs » for
a=3, a=5, a=7 and for low temperatures (8= 100).
These figures show the resonance effects very nicely. As
a functon of frequency each curve consists of maxima
of increasing width. As a function of & the curves show
more maxima of decreasing width as « increases. All
of the curves were computed numerically on an IBM
7090 computer, using an infinite power series expansion
of (47a) in terms of K functions (Bessel functions of
imaginary argument). The values of the parameters used
werew=2.5,9=34 fora=3,w=2.1,v=4.0fora=35, and
w=1.6, v=>5.8 for a=7.
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24! 4 6 8

10 12 14 16 18 20 22

v

F16. 2. Plot of Im x{») for a=S5, w=2.1, v=4.0, and =100. » is
plotted in units of the optical mode frequency w and Im x(») is
plotted in units of (m/w).

18 Pekar, in the strong-coupling limit, using Gaussian trial wave
functions for the electron, finds an excited state at precisely v.
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Fi1c. 3. Plot of Im x(») for a=7, w=1.6, v="5.8, and 8=100. » is
plotted in units of the optical mode frequency w and Im x(») is
plotted in units of (m/w).

4. Behavior at High Temperatures

For high temperatures, 8 is small and (disregard for
a moment the variation of w/v with temperature) A()
varies like #2/8. Therefore, only small # will be of im-
portance in the exponent, and we can expand A()
(45¢) as

Alw)=1/8[(w*+8%/4)
— (P =/ 12) (/414 . (52)

The leading term is, therefore, that of perturbation
theory, and our formula is insensitive to the trial func-
tional @®,. Actually this is even more accurate than it
appears, because as T rises the parameters v and w
change in just such a way that v®>—w? falls making the
approximation (52) still better.10.102

At very high temperatures the perturbation theory
works because the electron has on the average, an energy
high compared to the lattice frequency. In this case the
effective polarization should fall to zero in the limit of
infinite temperature. We, therefore, expect that the
accuracy of our formula will increase as the temperature
rises.

VI. WEAK-COUPLING LIMIT; THE
BOLTZMANN EQUATION

In the limit of weak coupling (Cx small or & small)
the “best” model parameters are v=w or C=0. That is,
the model of (15) becomes the bare free electron.
Perturbation theory is also simply the expansion (16)
but with &, just the free-electron influence functional
[i.e.,, D{u)=—iu+u?/B]. Therefore, our series
Got+Gi+ - - - for the admittance agrees with perturba-
tion theory in the weak-coupling limit.

One would expect then, that in the limit of weak
coupling the mobility in constant fields obtained here
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would be exactly that obtained from the Boltzmann
equation using perturbation theory for the electron-
phonon scattering cross sections. This turns out to be
not true; the question being whether the limit » — 0 is
taken before or after the limit of weak coupling
|Cx |2~ 01is taken. A detailed comparison of our result
to that of the Boltzmann equation for weak coupling
is instructive.

The Boltzmann equation for a particle with mo-
mentum distribution f(P) in an electric field E(Z) in
the « direction is

8f/ 014 Eaf/0P,= — / [v(P— P)/(P)

—y(P'— P)f(P") Jd*P'/(2m)%.  (33)

In (53), v(P — P’) is the probability per second that an
electron of momentum P is scattered to momentum P’
by collisions with the phonon gas. This rate, using the
usual perturbation theory, is

y(P = P')= 2| Cic| [ (1— e B+X)16(3 P"2— } P*+-wxc)
+(etr—1) (3P -} Pr—00)]. (54
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The first term in (54) is just the probability to emit a
phonon of momentum K=P'—P. The second term is
the probability to absorb a phonon of momentum K.

The Maxwell distribution, fo(P)=(2m/B) 3/%¢—FF"2,
is a solution of (54) with no electric field since

y(P = P) fo(P) =P’ — P) fo(P"). (55)

If E is a very weak, spatially uniform field varying
as E=Ege®!, the deviation of f from equilibrium can
be written as f= fo[ 1+ Ee”*P,h(P)], where A(P) is a
function of P? satisfying [using (54)]

(wh+B)P = ——/'y(P — P)

X[Ph(P)— P, h(P)]d*P'/(2m)3.  (56)
The current j is — Eoet /" P 2h(P) fo(P)d*P, so the im-
pedance is given by 1/z(v)=— S P2h(P)fo(P)dP.
Multiplying (56) by P #(P)fo(P) and integrating over
all P, we find another expression for the impedance:

1
Efffo(P)'y(P—» P’)[th(P)—~Px'h(P’):I?d“P’d:*P-I—iufPﬁhz(P)fD(P)d:‘P (2m)?

2(v)=

(277)36[ / P2h(P) fo(P)d“P:r

The integral equation is quite difficult to solve in
general. We will content ourselves with an approximate
analysis. The expression (57) has been written so that
it is stationary® for variation of % about the true
solution (56). That is, errors in % will appear only in
second order in z(»).

The simplest approximate solution to (56) is that
h(P) is a constant. Then (57) gives

z(»)—iv=T, (58)
where
r=? f / JoPyy(P— P)
? X (Pa—P./)'d*Pd*P'/ (2r)%. (50)

This represents a frequency-independent pure resistance
T. Thus, T should be compared to the x(») of (35a).
To do so we substitute (54) into (59). One sees that the
first term in brackets in (54) gives the same contribution
as the second, so calling P’=P=~K we get (replacing

BIf y=0 (57) is a minimum, giving the useful variational
principle for u™! discussed by Wilson [A. Wilson, T'keory of Metals
(Cambridge University Press, New York, 1959), p. 300].

(57)
K.2 by K/3)
8
= K?|Cx|2P(wx) fo( P
3(2@2// |Cx|2P(r) fo(P)
X o[L(P—K)2—1P'—wi Jd*PdK.  (60)

Next we replace the § function by 8(x)= S &e***du/2r.
The P integral is then readily evaluated to give

00

=g f BK (2r)%| Cx| B K2 / du P{wx)

—®

Xexp[ —iuwg— 3K —iu+u?/B)]. (61)

Replacement here of # by #-+18/2 shows that I'=p?
from (45a) if A(u) takes on its free-particle value,
u*/B+p/4.

This result is what we expected but there are two
points to be made. Firstly, we made no assumption that
» was small in solving the Boltzmann equation. Why
then do we not find that I'=TImx(»)/» as a function of
frequency instead of a constant, the limit as »—> 0 of
Imx(v)/»? The answer does not lie in trying to solve (56)
more exactly, for if we take a high-frequency case so
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that the collision term in (56) is negligible compared to
the v term, in first approximation k= (8/i») and is
indeed constant as we assumed. That is, (58) is a closer
approximation to the prediction of (56) the Aigher the
value of » relative to I'. The answer is that the original
formulation of the Boltzmann equation is faulty at high
frequencies. It is assumed that the collisions are made
and that between collisions the particle drifts in the
electric field. But at higher frequencies new processes
are possible in which, for example, the electron absorbs
a quantum 7 from the field and radiates a phonon. In
the quantum theory for higher » this cannot be analyzed
as the succession of two independent events. Therefore,
at the higher frequencies we may use our formulas (35).
If the results deviate from that of the Boltzmann equa-
tion we must conclude the latter is inaccurate,

The second point to discuss is this. We did not solve
the Boltzmann equation exactly; presumably, therefore,
T is not exact. Why then is our result g~! from (51) not
asymptotically exact as « — 0, in spite of our argument
that our formulas should be correct in perturbation
theory? The reason is easy to see from (57). For finite v,
as the coupling gets weaker the collision term falls below
v and T is in fact exact. Thus, for any v other than zero
in the limit of infinitesimal coupling our result (45) is
exact. However, for y=0, to get the exact answer no
matter how small the coupling, the full Boltzmann
equation must be solved and our result for u, (45), is
only an approximation. [Mathematically, the lack of
uniform convergence arises when we invert G and
expand, because the resistive part of x(») exceeds the
leading (reactive) term »® no matter how small the
coupling is if »=0.]

Although not exact, our result (45) for w1 is still a
good approximation to the solution of the Boltzmann
equation. The value of 4! obtained for Frohlich’s model
at low temperature from (51) varies as ~l¢#, while
from the Boltzmann equation we know that it should
vary as a constant times ¢%.5 But because of the rapid
variation of the exponent these two are hard to dis-
tinguish (for example, the temperature at which the
mobility reaches a given value is imperceptibly different
in the two cases). At higher temperatures our results
for g (46) no longer behaves as ¢e#/B. In this case the
values obtained from (46) and the Boltzamnn equation
would come closer together. (At extremely low tem-
peratures Frohlich’s model, of course, fails. Although
acoustic phonons are not very effective, they cannot be
disregarded for there are virtually no optical phonons
excited.) As a test of our approximate solution of the
Boltzmann equation we have also analyzed a system
interacting at high temperature with acoustic phonons
with |Cx|? proportional to K2, wg= Ko, and 871> m,2.
Such a coupling leads to a relaxation time for the elec-
trons which varies inversely with their velocity. In this
case u is proportional to 3 in either theory, but Eq. (46)
gives a result 32/97 or 13% higher than the more
accurate solution of (56) given by (59).
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VII. SUGGESTIONS FOR IMPROVING ACCURACY

The entire dependence of our result (35) for the
polaron impedance on the imitating quadratic influence
functional &, is contained in D(#) which is expressed in
terms of the model’s response function, ¥y(»). If in the
expansion we used a more elaborate (but still quadratic)
Py, then all results would be the same but with a D(«)
coming from a different ¥o(v) in (35). What is the best
Yo(r) to take? We note that V,(v) was also the first
approximation to the desired function ¥ (»)= [ivz(») I
A natural suggestion, therefore, is that the best ¥,(v)
is the “true admittance function of the real polaron”.
Since the true ¥(») is unknown, perhaps the next best
alternative would be to use a V() in (35) such that
the 2(») itself equals [i»¥,(v) T™; that is to use a ¥o(v)
which satisfies (35) self-consistently.

To find a self-consistent ¥o(v) is not, in general, easy.
However, one might use the results calculated here, for
example, and re-insert them as a new ¥Yo(») in (35) and
recalculate z(v) to find a second iteration, which might
provide an even better impedance with which to re-
calculate again if necessary. Aside from the great
amount of work involved and questions of convergence
of the procedure, we cannot even be sure if a substantial
improvement would result; however, the following ob-
servations do suggest that a self-consistent solution of
(35) could result in a considerable increase in accuracy.

In the variational principle of I, one can try a trial
action functional .Sy which is more general than the two
parameters one employed there and which describes an
electron coupled to a general linear system,

So-—-%/(d—);ft—)—)?dt—l—% /h(t—s)x(l)x(s)dtds. (62)

Then, putting A(t)= S h(r)e*'dv/2x, one finds that the
function h(v) which gives the lowest energy in the
variational principal at zero temperature, satisfies the
integral equation

2
h(w) = / / K?| Cx | 2d°K (1— cospr)
3(2m)3
X e wKrg ikl dr  (63)
where
) / " ) e
C\T)= ‘_COSMT —
—u*h(p) (2r)

The Egs. (35) treated as a self-consistent set with
D(u) generated from Y (»)=[»2+x(v) 1! can be trans-
formed for B=0 at least, to exactly this same pair of
Egs. (63) and (64). In this case x(—iu) replaces h(u).
We therefore, can conclude (for 8=0) that if one tries as
a trial action functional that for an electron coupled to
a general linear system, no such system will produce a
better result than one which has an impedance which is
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the self-consistent solution of (35).2 (Possibly the same
is true for arbitrary 8, but we have not checked this
point.) These considerations substantiate further the
interpretation of the expansion (38) in terms of an
impedance rather than an admittance.

The above point, and the existence of a minimum
principle for the Boltzmann equation, suggest that some
minimum principle exists for the mobility x(—iu) in
quantum mechanics at arbitrary 8.

Another way to improve accuracy is to try to include
the next term ($—®,)? in the expansion. The integrals
to be performed still are of the form required for the
evaluation of the (#—®;) term but with more com-
plicated driving forces E and E’. Although the calcula-
tion would proceed straightforwardly it would, in
general, be very laborious. However, for certain values
of » and B3, one could do what amounts to the same thing
in a somewhat easier way, For example, for 71<rv<1
the various terms in (50) could be improved by calcu-
lating the appropriate cross sections more accurately.
The cross section to absorb a quantum from the electric
field and emit a single phonon requires matrix elements
of quantities like x, exp(iK: X,). Equation (50) corre-
sponds to calculating these with the propagator
exp(i®,), but an improvement can be made by calcu-
lating them with the propagator

[1+4(®— Bo) ] exp(i®o).

For zero frequency the Boltzmann equation can be
used with the rates y(P’— P) calculated with the
propagator exp(i®y); further improvement would again
result by adding a correction for the difference of @
and ®,.
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APPENDIX A

In this appendix we discuss a fundamental path
integral (or trace) such as (7) for a single one-dimen-
sional oscillator, in terms of which all other path
integrals can be immediately evaluated.

The oscillator Hamiltonian H=$?/2+w??/2. Let

U=exp{—i " [Ht‘f"Y(t)Qt]dl},

o0
U'=exp {% R4 /+~/’(t)q’t]dt} ;
—o0
and p,=e f2/Q. The Tr(Up, V" ')=g may be done in
several ways, for example by writing it in terms of path
20 One probably cannot get x () from (63) and (64) by iteration
for one finds x (—%u) only approximately this way and one cannot

pass to an accurate value on the real line from an imperfect
knowledge on the negative imaginary axis alone.
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integrals and performing the resulting Gaussian inte-
grals.'? As an alternative method we choose to represent
the trace in free oscillator eigenfunctions. In this repre-
sentation (pg)n,n=e€""*(1—e#*) and

g=Y nn GrmyuGom ¥ e Pen(1— g B9), (A1)

where Gn,. is given in reference (9), Eq. (38) and
Gm,’ is the same expression with v’ replaced by v.
By expanding

expl (x+i8)(y+iE*) 1= Zt(x—f-ié)‘(y#—ié*)‘/ tl

in powers of x and y, one can show that Gn,, may also

be written as
LEE)m(iE*)

Gm,n=G0,0(m n !)_1/2655* , (AZ)
t (t—m)!(t—mn)!

where

o0
£=i(2w) 102 / ety (1)dL. (A3)

The summation over . and # in our expression for g can
be done by the binomial theorem if one uses this ex-
pression for Gu,.; but the one in reference (4), Eq. (38),
for Gm,»', calling =7+, where 7 is the free index in
G, permits summing first over » then over v. The
final result is

8= GooGoo'BEE*
X exp[(1—ePe) 1 (ig— it ) (ig* —i *e5v)].

Substituting in for Gy and Ggy’, we find that

(A4)

0 oo
g=exp(%i f v (U7 ()]

Xy, 1= 5) il ()= (5) Talo, z—s>}dzds), (AS)

where

y(w, i—s)=(1/w) sinw(i—s), >s
=0, t<s (A6)
and
alw, I—s)=(1/2w) cosw(t—s)[1+2PBw)]. (A7)

If v(»), ¥'(»), ¥(»), a(v) are the Fourier transforms of
v(#), ¥'(t), etc., so that, for example,

()= / 2V 0)edn) 2, (A8)

then the expression for g can be written in Fourier
space as

i e
§= exp(: (=) =¥ (=) K[y&) +¥ ()]

T J oo

Xy(w,V)+i[7(V)—v’(V)]a(w,V)}dV)- (A9)
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Here,!!

ylwp)=1/(v—ie)?—w? (A10)
and

a(wp)=(r/2w)[142P(Bw) [8(r+w)+d(r—w)].

For the case of the Hamiltonian (11), we can represent
the particle motion by a path integral on X(¢). Then we
have in fact a large number of independent oscillators,
each coupled to the particle. The K mode of frequency
wk is coupled by a y(f)=Cxexp[sK- X(#)]. Each of
these modes contributes a factor like (A9) to g so that
the final exponent is a sum of contributions from each
oscillator mode.

We shall need the functions (A10), (A11) and super-
positions of them (sums for various frequencies) which
we call ¥(v), A(v). We shall also need another function
D(u) defined as

(A11)

+0
D(u)=="! [ {sin(wu) Y (v)+[1—cos(vu) JA(v) }dv,

” (A12)
and A(u) defined as D(u-i8/2). All these functions are
related to ¥(»), in fact to its imaginary part Im¥(»).
We need it only for »>0, since Im¥Y(—»)=—Im¥Y(»).
For a single oscillator, from (AS5) as we have Imy(»)
=—(n/2w)[6(r—w)—(»r+w)]. But a(r) can also be
written as

eP+1

eh—1

T <63”+1

2w\ef’—1

d(r—w)+ 6(v+w));

hence, a(v)=—coth(8r/2) Imy(»). Further, since the
poles of a general Y(») lie above the real axis, the real
part of ¥(») can be obtained from the imaginary part.

Proceeding in this way, we find the following expressions
for all the functions in terms of Im¥ (»):

2 ImY (u)udp

Y(p)=-— Al13
( 7Jo (v—ie)2—pu? (A13)
e —1
Alp)= ,_( ) ImY(»), (A41)
-1
2 2(1—cosvu)
D(u)= ———/ (1——6“”-{———————) ImY (»)dv, (A15)
T Jo ef—1
and
h(By/2)— v
Alu)= —E Leosh(Br/2)— costu) ] ImV(v)dv. (A16)

T sinh(8v/2)

Although derived for a single oscillator, these relations
are linear and hold for any superposition of oscillators,

IDDINGS, AND PLATZMAN
APPENDIX B
We give here the details of the calculation of the first

order correction to G;. As explained in the text, we can
calculate an expression like (28) by substituting (30)
and (31) into (20). If we write
i o . .
g°=exp[— f ne* (ee” Y 0+inAoe—”’)dv:|

™

for the expression (20) calculated for K=0, the result
(20) with K included as in (30) and (31) is

R(K 1,5)

iK? _
=g" exp[—— / |eit—e¥2| 2(V g+iA o)dv
4
iK, _ ‘ )
+2_, (ewt_ews)(ee—wayo_*_,inA 06~ivr)dv
T

K, ' ) )
—|-“2—- /(e_“'t—‘6_1'”3)176””7(1/70‘{—1:140)(1))}. (B1)
m

We shall ultimately only need the result to the first
order in en [see (9)], so differentiating R with respect
to # and ¢, putting e=%=0 and calling the result
2r(K t,5), we get (there is a 1/3 for averaging over
directions of K)!4

i
r(Kit,s)= {— / Ve =) dy
2

'y
K2
3(8x?)

/(eivt_ ei”)e“i”"Ygdu
X/(eiyt__eius)iA 0('“)6—'1;17

+ (ei,ut__ *i#-')gi"’[Yo(#) +i4 0(#)](#“]

iK?

XCXP[; / ‘ ei”—einl 2( Yo+'LA o)dﬂ]. (BZ)

The first term is Go(7—o) times the path integral with
e=n=0.Such a term arises no matter what we integrate,
so in total it gives Go(r— o) S €'®(®— Py) D XD X', This
term just cancels when we remember that we must
divide (9%g/d7nd¢) by g evaluated at e=»n=0 for normali-
zation, Therefore, this does not contribute to G, the
first correction of G from Gy, and we omit it. The other
terms are later to be multiplied by a function of {—s=#
only, and integrated on ¢ and s. Hence, we let i=u-s
and integrate on all s’s to get [note ¥o(—»)="Y*(»),
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Ao(—r)=4>)]
K2

(K, t—s)= {——1

P / 2(1—cosvu) Yo(v)

[Vo(p)+2iA0(v) Je* ('_")dV]
Xe |:iK2 /(1 cosvu)(Vo+ido)d } (B3)
X —_ - 14 0 (124
P 2w

This will make a contribution to Gi(r—¢). It is already
in the form of a Fourier transform so for the contribu-
tion to G(v) we omit the integral on » and the factor
e?=, According to (29) we must next multiply
r(K; t—s) by y(wg,u)+ia(wx,m) and integrate on u.
This is best done by dividing the range of % from 0 to «
and from — o to 0, and in the latter putting # — —u
so that all integrals are over positive % only.
The integral in the exponent is —K?/2 times

i
———/(1—cosuu)[Yg(v)—}—iAo(V):ldy

T

=+i[Yo(u)+Yo(— ) ]+ 2[As(0)—As(w)] (B4

1017

[where Yo(t), Ao(¢) are the inverse transforms of ¥o(v),
Ao(»)]. Expression (46) is equal to D(), defined in
(35¢) for #>0, and D(—u) for <0, since Yo(%)=0 for
#<0. Thus, this term in #(K, {—s) contributes a piece

K2
_?yo(y)[yo(V)JrziAo(v)]

X/ (1—cosvu) [ y(wk,u)+y(wg, —u)

+2ia(wg,u) Je Py, (BS) -

Adding the three other corresponding pieces from
exp{tK-[ X'(t)— X'(s)]}, etc., multiplying by |Cx|?%
and integrating over K [see Eq. (30)] gives the first
term in (35). The second term is gotten in an analagous
way from ®;. We need to expand our expression for
r(K,t—s) just to first order in K2 The terms like
e D) gre replaced by one. The resulting expression
is an integral on u, f3”(1—e#*)So(w)du, where
2 coswu

Solu)= ImC(ei‘”“—i———) =C sinwu.

ePw —

The integral on # gives Cv?/w(»?*—w?), as in the last
term of (34).
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Phonon Frequency Distribution in Vanadium at Several Temperatures

K. C. TUrBERFIELD AND P. A. EGELSTAFF
Atomic Energy Research Establishment, Horwell, England

(Received December 4, 1961; revised manuscript received April 18, 1962)

The energy spectrum of a beam of 4 A neutrons scattered by vanadium has been measured using a con-
ventional time-of-flight technique. Analysis of the results using the methods described by Placzek and
Van Hove has been carried out to determine the frequency distribution of phonons in vanadium. The
sample was held at 206, 300, and 860°K, and the effect of temperature on the phonon spectrum was observed.

The lower part of this spectrum is not “Debye” in form, but the departures from this simple shape become
less at increasing temperatures. The upper peak in the phonon spectrum previously observed is relatively
insensitive to temperature. A high-energy tail to the observed neutron spectrum is discussed; it is probable
that this indicates a tail to the phonon distribution, which previous measurements at room temperature

had failed to reveal.

1. INTRODUCTION

INCE Born and von Kdrmén! published their theory

of vibrations in crystal lattices, considerable atten-
tion has been devoted to the calculation of the distribu-
tion of frequencies and the variation of specific heat
with temperature. Blackman? has given a review of the
techniques of calculation, the results of the calculations,
and their comparison with measured specific heat
curves, Recently, frequency distributions have been

1 M. Born and T. von Kérman, Physik Z. 13, 297 (1912).

2 M. Blackman, Handbuch der Physik (Springer-Verlag, Berlin,
1955), Vol. 711, p, 325.

studied by neutron scattering techniques which allow
much more detailed information to be obtained than
with the older methods. Scattering data obtained using
vanadium can be interpreted without difficulty, as the
scattering is almost entirely incoherent. This material
has been the subject of experiments by Stewart and
Brockhouse? and by Eisenhauer ef al.* Unfortunately
(as discussed below), these experiments lack the pre-

3 A. T. Stewart and B. N. Brockhouse, Revs. Modern Phys. 30,
250 (1958).

4 C. M. Eisenhauer, M. I. Pelah, D. J. Hughes, and H. Palevsky,
Phys. Rev. 109, 1046 (1958).



