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SUMMARY

We investigate the dynamics of a predator—prey model that explicitly accounts for the spatial position and
the movement behaviour of individual prey and predators, and does not assume the law of mass action.
We show that limited individual mobility greatly reduces fluctuations in total density, although average
densities and vital rates are virtually unaffected. We analyse the dynamics of patterns in the spatial
distribution of prey and predator, which are generated by the model, and show that population dynamic
observations at different spatial scales depend on the characteristic scale imposed by the individual

biology.

1. INTRODUCTION

Most, if not all, models describing the interactions
between biological populations are based on the
principle or law of ‘mass action’ (Metz & Diekmann
1986; Metz & De Roos 1991), thus assuming that
individuals mingle quickly and randomly and hence
potentially interact with a representative part of their
own or other populations. More specifically, if # and C
denote the total number of prey and predators present
within a certain area, respectively, and if at every time
all prey individuals are vulnerable to predation by all
predator individuals, the law of mass action assumption
results in the number of prey eaten per unit time
{predation rate) being proportional to the product of
and C:

predation rate ~ FC. (N

In mass action models, interaction rates are hence
completely determined by the density of individuals.
Other branches of science, e.g. chemistry and
astrophysics, have recognized that the dynamics
exhibited by mass action models are one extreme of a
spectrum (usually referred to as ‘reaction-limited’
kinetics), in which the diffusion rates of the reactants
(and hence their mobility) are high, but the reaction
probability on encounter is limited. At the other end of
the spectrum, usually referred to as ‘diffusion-limited’
kinetics, the diffusion of reactants controls the overall
interaction rates, as the reaction probability on
encounter is very high (Noyes 1961 ; Rice 1987 ; Hoshen
& Kopelman 1976; Kopelman 1988; Argyrakis &
Kopelman 1990). The mass action law, as exemplified
by (1), is always valid for reaction-limited processes,
but extreme deviations from it have been found both
theoretically and experimentally in the diffusion-
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limited case (Kopelman 1988 ; Argyrakis & Kopelman
1990).

Despite the fact that biological populations are
composed of individuals with limited mobility, few
studies (Kareiva & Odell 1987) have examined how
such limitation, possibly leading to deviations from the
mass action law, might influence the dynamics of
interacting, biological populations. In this paper we
present some preliminary results on the influence of
limited mobility on the dynamics of interacting
predator and prey populations. By using individual-
based, stochastic simulations we show that limited
mobility greatly reduces the fluctuations in predator
and prey densities, but equilibrium densities and overall
population rates are virtually unaffected. Our results
also show that population dynamical features are tied
to a characteristic spatial scale imposed by individual
biology. We discuss how our results relate to existing
theory on the dynamics of populations in non-
homogeneous environments.

2. MODEL DESCRIPTION

To incorporate limited individual mobility, which
automatically leads to only local individual inter-
actions and possibly to the violation of the mass action
law, into a model of an interacting prey and predator
population, we have to use an individual-based model
that keeps track of every single prey and predator and
their positions within the arena in which they interact.
In our model the spatial domain is represented by a
square lattice of 128 x 128 possible individual positions
or sites. Every site is either empty or occupied by at
most one prey and one predator individual. Movement
within the spatial domain and population dynamics
are modelled as discrete time processes. We have
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deliberately kept the rules governing the dynamic
processes at the individual level as simple as possible to
focus entirely on the effects of limited mobility.

Prey individuals are assumed stationary and do not
move, whereas predator movement between sites is
either homogeneous, that is, individuals are re-
distributed randomly over the entire lattice, or diffu-
sive, entailing random movement to one of four
neighbouring sites. In the latter case, if the destination
site is already occupied by a predator the individual
does not move at all, and if more individuals select the
same destination site only one, randomly selected,
candidate is allowed to move. Diffusive movement
limits the mobility of the predator in contrast to
homogeneous movement.

At every time step after the predators have moved,
the following sequence of population dynamic processes
takes place: First, all prey individuals reproduce with
probability P, one offspring to one of the four
neighbour sites. If this site is already occupied by
prey, the newborn is aborted. This rule mimics a
density-dependent growth process. As a result of
predator movement and prey reproduction, a predator
individual may end up in the same site as a prey
individual. If the predator is not currently handling a
previous meal, it will eat the prey. Upon eating, the
predator cannot eat for the next 7}, time steps, while it
spends its time consuming. This rule implements a
mechanism comparable with a predator handling
time. After a predator has eaten £ meals it reproduces
R, (<4) offspring. Predator reproduction is assumed
density independent: if a randomly chosen destination
out of the four neighbour sites is occupied, a nearby
empty site is found. Finally, every time step a random
fraction P, of the predators dies.

Population densities and the number of births and
deaths are then measured and used to calculate per
capita vital rates, averaged over the total population.

The rules governing the processes at the individual
level are reminiscent of a Lotka—Volterra type of
predator—prey interaction with logistic prey growth, a
type II predator functional response, and a constant
predator conversion efficiency and death rate
{‘Rosenzweig—MacArthur’ model). The following set
of differential equations constitutes the simplest math-
ematical description of such a system:

dF/dt = rmF<1 ~E>~w‘f——c
K) l1+ar F

(2)
: ol

dC/dt=¢e : —i—aThFC nC,
where F and C are the densities of prey and predator,
rn and K represent the maximum average growth rate
and carrying capacity of the prey population, and g, 7,,
e and p represent the attack rate, the handling time,
the conversion efficiency and the random death rate of
the predator, respectively.

The properties of the model, described by (2), are
very well understood (see, for example, Freedman
1987). In a separate paper (McCauley ef al. 1991), we
compare in detail our stochastic simulation model, in
which both prey and predator move homogeneously,
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with the analytical model (2), and show a general
qualitative and quantitative agreement. More
specifically, the analytical model (2) exhibits large
amplitude oscillations for low values of ¢ and high
values of K (the ‘paradox of enrichment’ (Rosenzweig
1971)), as does our simulation model for low values of
P,. In the following sections we will report the effects
of limited predator mobility on the behaviour of the
simulation model.

3. AVERAGE DENSITIES, VITAL RATES,
DYNAMICS

Figure 1 illustrates the effect of limited predator
mobility on average densities and average vital rates.
The dynamics of the model were simulated over 500
time steps for a large number of different parameter
combinations. Simulations were done with both homo-
geneous and diffusive predator movement. Total prey
and predator densities and the number of births and
deaths were subsequently averaged over the last 250
time steps to exclude transient behaviour. (Although in
principle time averages cannot be equated with
statistical averages over many different runs when
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Tigure 1. The effect of limited predator mobility on average
densities and vital ratcs. (a) Average prey density with
diffusive predator movement against the average density
with homogeneous predator movement measured over the
cntire spatial domain. (b) Average predator functional
responsc as a function of average prey density in the case of
diffusive predator movement (symbols). The solid linc
represents the type II  functional responsc curve
(F(x) = ax/(1 +ar, x}), fitted to the cquivalent data points in
the case of homogencous predator movement.
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Figure 2. Dynamic behaviour of the number of (a) prey and

(b) predators in thc entirc spatial domain in case of

homogencous (dotted linc) and diffusive (solid line) predator

movement, respectively.  Parameter  values: P = 0.75,
T,=2,R,, =2, F=4and P, = 0.06.

dynamics are strongly oscillatory, the difference does
not seem to influence our results.)

The transition from homogeneous to diffusive pred-
ator movement (i.e. the introduction of mobility
limitation) does not seem to produce significant
differences in average prey (figure la) or predator
densities (not shown) in the entire spatial domain.
Perhaps more surprisingly, there are also no major
changes detected in the predators’ functional response
(i.e. number of prey eaten per predator) (figure 14)
when individual predators move diffusively, nor in
prey average growth rate (not shown). Arguably the
number of prey eaten per predator is slightly lower in
the case of diffusive predator movement, but in general
we conclude that the observed interaction rates do not
significantly violate the law of mass action when
calculated as averages over the total population.

The dynamics of the predator—prey model with
limited predator mobility are, however, very different
from its density-limited counterpart, as is illustrated in
figure 2. With homogeneous predator movement and a
high predator death rate, P,, the simulated prey and
predator densities are more or less constant over time.
The coeflicients of variation (cvs: standard deviation/
average value) of these time series are usually in the
order of 0-0.05, as a result of stochastic influences.
Decreasing the predator death rate leads to a sudden
and large increase (usually more than one order of
magnitude) in the cvs of the prey and predator
densities over time. Both populations then display large
amplitude cycles, similar to oscillations found in the
predator—prey model described by (2) (i.e. limit cycles
(McCauley ef al. 1991)). When predators move
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diffusively, the sudden increase in ¢v and the con-
comitant cycles in total density do not occur. For all
parameter combinations we have used, the dynamics
resemble a noisy signal (with relatively small devi-
ations) around a roughly constant number of prey and
predators (figure 2). The limitation of mobility
inherent in predator biology has obviously reduced
the predator—prey fluctuations.

4. SPATIAL HETEROGENEITY AND ITS
DYNAMICGS

The explanation of the apparent stabilization should
be found in the spatial interaction of prey and predators
in our model. In the case of diffusive predator
movement, the spatial distribution of both prey and
predator can be shown to be clustered via a variety of
methods, e.g. visual inspection, spatial correlation
functions (Cliff & Ord 1981) and hierarchical analysis
of variance (Moellering & Tobler 1972). However, as
we have shown in the previous section, this het-
erogeneity in spatial distribution does not lead to
significant changes in total densities and population
level average rates, nor to the introduction of obvious
density dependence in these rates (for instance,
‘pseudo-interference’ (Free et al. 1977)). Such mechan-
isms are invoked by classical theories to explain
reduced population fluctuations in spatially hetero-
geneous environments (Hassell & May 1973 ; Free et al.
1977).

Visual inspection of the simulation results also
shows that the heterogeneous distributions of prey and
predator change continuously over time. To gain more
insight into the dynamics of the spatial pattern we have
studied the fluctuations in (local) prey and predator
densities at different spatial scales. cvs and auto-
correlation functions were computed for the time series
of prey and predator density within a randomly
positioned, square section {(a window) of the total
lattice. By using differently sized windows, a relative
measure of variability in prey and predator density was
obtained as a function of the spatial scale of obser-
vation. Figure 3 shows the results of this procedure
for the time series of prey density obtained from the
simulation presented in figure 2.
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Figurc 3. Variability in prey density, expressed in terms of
the cocfficient of variation of the simulated time series, as a
function of the spatial scale of obscrvation. Homogencous
predator movement (open squarcs), diffusive predator
movement (solid triangles). Parameter valucs as in figure 2.
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Figure 4. Temporal autocorrelation functions on different
spatial scales of observation for the same time series of prey
density as used in figure 3. Homogeneous predator movement
{dotted line), diffusive predator movement (solid line). (a)
16 x 16 sites; () 32 x 32 sites; (¢} 128 x 128 sites.

On small spatial scales, the variability in prey
density over time under homogeneous and diffusive
predator movement is roughly similar (figure 3). On
larger spatial scales the two deviate more and more,
with the variability under diffusive predator movement
decreasing approximately in proportion to the square
root of the area of the observation window (figure 3).
The transition between these two regimes seems to be
rather abrupt.

Figure 4 shows examples of the autocorrelation
functions, which were constructed from the time series
of prey and predator density within the observation
windows. The periodicity in the density fluctuations
under homogeneous and diffusive predator movement
are also similar on the smaller spatial scales (figure 4).
However, an increase in window size leads to a
dampening of the autocorrelation function, implying
that, in addition to exhibiting smaller fluctuations, the
dynamics on larger spatial scales also show less
temporal correlation.

The limitation of predator mobility therefore seems
to stabilize the dynamics ‘statistically’ (as opposed to
stabilization by a biological mechanism in the in-
teraction), as the reduction in fluctuations is a scale-
related phenomenon, and fluctuations on small spatial
scales are invariably large. The transition point, where
the av in the case of limited mobility starts to deviate
from the cv in the case of density-limited dynamics
(figure 3), can be adopted as a definition of the
‘natural’ or ‘characteristic’ spatial scale of the system
{cf. the correlation length (Huang 1987; Grimmett
1989)). This characteristic spatial scale is imposed on
the spatial domain by the limited predator mobility.
On smaller scales the dynamics of prey and predators
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are reminiscent of a homogeneously mixing, density-
limited predator—prey interaction. The limited move-
ment, however, leads to only weak coupling between
parts of the spatial domain that are far apart in terms
of the characteristic scale. Their dynamics are hence
out of phase. The dynamics in total population sizes
result as a superposition of the dynamic signals from all
these weakly correlated parts, with the phase
differences obviously counteracting fluctuations.

Given this stabilization hypothesis, scaling argu-
ments (Huang 1987; Grimmett 1989) can be exploited
to predict that, above the characteristic scale, the
observed cv under diffusive predator movement
decreases with the square root of the area of the
observation window. (Briefly, scaling theory con-
jectures that a quantity of dimension (length}” is
proportional to £”, with £ the characteristic length
scale of the system, or, equivalently, that this quantity
only changes with changes in the ratio between the
unit of length and the characteristic length scale.} As
we have hypothesized that the time series of the total
number of individuals within a given observation
window results as a superposition of the dynamic
signals from regions that are far apart in terms of the
characteristic spatial scale, it follows that the variance
of this time series should be inversely proportional to
the number of these, almost independent, regions
within the window, 1.e. to the quotient of window size
and the characteristic spatial scale. (Note also that we
have consistently used characteristic spatial scale to
refer to an area measure.) We therefore predict that the
cv under diffusive predator movement varies as:

. . .. . _L
(window size/characteristic spatial scale) 2.

Linear regression of v against window size using the
last five observations from figure 3 in case of diffusive
movement yields a slope of —0.47 (standard error,
0.04), consistent with this prediction.

If we furthermore assume that the characteristic
scale under homogeneous predator movement is
proportional to the total lattice size (16384 sites), the
same arguments imply that a relative estimate of the
characteristic scale under diffusive movement can be
obtained from:

16384 X (¥ gistusive/ CVnomogeneous) > (3)
in which ¢Vyonagencous A0 CVyisraave are the coefficients
of variation of the time series of total population size in
the entire spatial domain in the case of homogeneous
and diffusive predator migration, respectively.

Equation (3) allows us to study how the charac-
teristic scale changes with increasing predator mobility.
An increase in predator mobility can be modelled by
increasing the number of diffusive steps taken by the
predators per unit time, whereas all population
dynamic processes and interactions only take place
once every time step. The results show a roughly linear
increase of the characteristic scale with predator
mobility (see figure 5).

To test our idea that the observed characteristic
scale is set by the restricted movement behaviour of the
predator, we derived theoretically the relation between
the number of diffusive steps taken per unit time and
the average area influenced by the predator over the
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Figure 5. Estimated, relative measure of the characteristic
spatial scale (symbols) and average lifetime range of the
predator (solid line) as a function of the number of diffusive
migration steps taken by the predator per unit time. See text
for details.

course of its lifetime (referred to below as ‘average
lifetime range’). If unhampered by conspecifics, an
individual predator performs a two-dimensional ran-
dom walk from its position at birth. Given this
situation, we calculated the probability distribution for
an individual predator taking Af diffusive steps per
unit time, to die after N time steps at a distance D from
its place of birth. This distribution was subsequently
used to calculate the total number of sites within the
average distance travelled between birth and death, as
a measure of the ‘average lifetime range’ of the
predator (the probability distribution for the position
(x,y) after § steps taken during a two-dimensional
random walk can simply be expressed as the product of
the binomial distributions, characterizing two inde-
pendent, one-dimensional random walks, by choosing
the lines y =x and y =—x as a new coordinate
system). Figure 5 shows that both the characteristic
spatial scale and the average lifetime range exhibit the
same, linear relation with the number of diffusive steps
taken per unit time. (Note that equation (3) yields a
relative measure of the characteristic spatial scale and
that the agreement between the absolute values of the
two quantities should not be taken as significant.) The
agreement lends support to our claim that the charac-
teristic spatial scale is determined by the individual
behaviour.

5. DISCUSSION AND CONCLUSIONS

The model results reveal a very important aspect of
the individual behaviour that strongly influences the
population dynamics. The behaviour of individuals
(e.g. movement and interactions) automatically
imposes a characteristic scale on the spatial domain.
Observations on scales smaller or larger than this
characteristic scale are entirely different: the dynamics
on small spatial scales are largely determined by the
biological aspects and characteristics of the interaction
between the individuals, and resemble the behaviour of
density-limited models. With increasing spatial scale,
the dynamic signals of smaller-scale regions, which are
only weakly correlated with each other, are super-
imposed to yield dynamic phenomena that bear less
and less resemblance to the smaller scale dynamics, as
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a result of the averaging influence of lumping weakly
correlated subdomains. In mass-action based models
with homogeneous mixing of individuals, the range of
individuals is ‘infinite’, and all observations hence
pertain to a spatial scale much smaller than the
characteristic scale. Interpretation of population dy-
namic phenomena therefore requires insight into the
relation between the spatial scale of observation and
the spatial scale set by the individual biology.

The absence of mass action implies that there is
significant variability in local prey and predator
density as perceived by the individual members of both
populations. In other words, there is spatial het-
erogeneity at the individual level. It is very remarkable
that this fact does not significantly influence the static
properties of the interaction rates, when assessed at the
level of the total population, while having such a
profound effect on dynamics.

The relation between spatial heterogeneity and
stability has been a central issue in predator—prey
theory for a long time. The combination of limited
dispersal, as a
asynchrony in dynamics between different regions is a
well-known stabilizing mechanism of global dynamics,
when local dynamics are unstable (see, among others,
Crowley 1981; Hassell & May 1988; Reeve 1988;
Taylor 1990). Broadly speaking, three classes of models
have been used to study and corroborate the mentioned
relation: (i) Metapopulation models (Murdoch &
Oaten 1975; Crowley 1981; Diekmann ef af. 1988,
1989; Reeve 1988, 1990; Freedman & Takeuchi
19894, b; Hastings 1990; Ives 1991) model a collection
of subpopulations in distinct environmental patches,
linked by individual dispersal; (ii) Diffusion equation
models (Segel & Jackson 1972; Levin 1974; Okubo
1980; Hastings 1990) use diffusion terms to describe
dispersal of individuals throughout a continuous spatial
domain, in conjunction with terms describing the
population dynamics locally; (iii) A class of models
that describes phenomenologically the dynamics within
a continuous spatial domain of a single, non-randomly
distributed prey and predator population (Hassell &
May 1973; Murdoch & Stewart-Oaten 1989). A
necessity for asynchrony between different regions and
hence for global stability is some form of variability on
the smallest spatial scale. In all these models, such
variability is introduced by assuming a priori, for
instance, environmental heterogeneity, a (fixed)
aggregated distribution of prey or predator or the
occurrence of stochastic, catastrophic events. In sharp
contrast, the variability on the individual level in our
model is very much a model result itself and is
generated by the limited mobility of individuals.

Maybe more important than the apparent stabiliz-
ation of global dynamics within the model is the
generation of distinct spatial patterns that change over
time. We hereby chose the population as our level of
interest. Metapopulation and diffusion equation
models have invariably assumed mass action type
dynamics at the smallest spatial scale, either an
individual patch (metapopulations) or a single location
in space (diffusion equation models). Essentially, these
models thus distinguish two separate types of individual

synchronizing mechanism, and
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mowvement, taking place at very different spatial scales:
(1) the individual mixing, necessary for the interactions
within the local population; and (ii) long range,
individual dispersal between various subpopulations.
It is the stabilizing role of the latter, and the resulting
patterns at the level of the metapopulation, that are
investigated. Obviously, in these models there is no
direct relation between the dynamics of a local
(sub)population and its spatial distribution.

In the present study we investigated the generation
of spatial patterns within a single population living in
a continuous spatial domain, the dynamics of these
patterns and their relation with the various population
dynamical and movement processes, taking place at
the level of the individual. Without assuming an a prior:
subdivision of the environment, or aggregative be-
haviour of prey or predator individuals, a patchy
spatial distribution of both populations results. The
temporal dynamics of this distribution were studied,
using time series analysis at different spatial scales.
New theoretical concepts, such as the characteristic
spatial scale described here, and new methods seem
necessary to gain more insight in this field. An in-depth
analysis of the spatial patterns generated by the model
is outside the scope of the current article and will be
given in a future publication (Wilson et al. 1991},

We thank Bill Gurney, Bill Laidlaw, Hans Metz, Bill
Murdoch and Roger Nisbet for inspiring discussions. A.D.R.
and W.W. were supported by post-doctoral fellowships of the
University of Calgary, and the research supported by a
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