
Mobisaic: An Information System for a Mobile Wireless

Computing Environment

Geo�rey M. Voelker and Brian N. Bershad

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

Mobisaic is a World Wide Web information system
designed to serve users in a mobile wireless comput-
ing environment. Mobisaic extends the Web by allow-
ing documents to both refer and react to potentially
changing contextual information, such as current loca-
tion in the wireless network. Mobisaic relies on client-
side processing of HTML documents that support two
new concepts: Dynamic Uniform Resource Locators

(URLs) and Active Documents. A dynamic URL is
one whose results depend upon the state of the user's
mobile context at the time it is resolved. An active
document is one that automatically updates its con-
tents in response to changes in a user's mobile context.
This paper describes the design of Mobisaic, the mech-
anism it uses for representing a user's mobile context,
and the extensions made to the syntax and function
of Uniform Resource Locators and HyperText Markup
Language documents to support mobility.

1 Introduction

This paper describes Mobisaic, a system that uses

the World Wide Web [Berners-Lee et al. 92] to enable

information browsing in a mobile computing environ-

ment. Information browsing is an ideal mobile appli-

cation because it allows users to interact with their

environment as they work within it, it places minimal

requirements on a user-input device, and it cannot be

handled with large on-board caching. With mobile in-

formation browsing, users can discover who and what

is in their immediate surroundings, whether it is col-

leagues at a business meeting, speakers at a presen-

tation, projects in a lab, or displays in a museum. A

mobile information system can also allow users to exe-

cute general queries that incorporate information from

their environment, such as �nding the nearest cafe or

the nearest bus stop that will take them to a speci�c

location.

This research was sponsored by a National Science Foun-

dation Presidential Young Investigator Award, together with

matching funds from the Xerox Corporation.

Users of the World Wide Web rely on client

browsers to access information servers on the Internet.

With Web clients, users browse documents written in

the HyperText Markup Language (HTML) by travers-

ing hypertext links, called Uniform Resource Locators

(URLs), that load documents or invoke programs on

the information servers.

Mobisaic extends standard client browsers to take

advantage of mobility in two ways. First, Mobisaic

allows authors to reference dynamic information, such

as a user's location, in hypertext links called dynamic
URLs. When the user traverses a dynamic URL, the

client resolves any references to dynamic information

it may contain and sends the result to the server. Sec-

ond, Mobisaic supports active documents, documents

that present and automatically update information for

the user as the information they contain changes or

otherwise becomes invalid. The update is done by the

client browser, which receives noti�cations when the

dynamic information changes.

Dynamic information in Mobisaic is represented us-

ing dynamic environments [Schilit et al. 93B]. Just as

standard shells provide environment variables to cus-

tomize applications started from the shell (e.g., DIS-
PLAY), dynamic environments provide environment

variables for customizing mobile applications. For ex-

ample, a dynamic document might include a reference

to the Location dynamic environment variable to cus-

tomize its contents according to the user's current lo-

cation.

1.1 Related work

Researchers at Xerox PARC have broadly in-

troduced the idea of context-aware applications

[Schilit et al. 93A]. They initially proposed the no-

tion of dynamic environments as a means of represent-

ing and disseminating information from users' mobile

contexts throughout the system. Mobisaic is essen-

tially an application of those ideas to WWW brows-

ing. Projects at DEC WRL and MIT have moved the

World Wide Web client interface to a mobile device,

although they do not appear to incorporate informa-



tion from the user's mobile computing context into the

system.

1.2 Paper outline

The rest of this paper is organized as follows. Sec-

tion 2 gives an overview of the World Wide Web sys-

tem, and describes the extensions to the system used

for incorporating a user's mobile computing context

into the WWW. Sections 3 and 4 describe dynamic

URLs and active documents. Section 5 discusses how

Mobisaic can be useful in the desktop environment as

well as the mobile environment. Section 6 describes

the implementation of Mobisaic. Section 7 summa-

rizes.

2 System overview

This section �rst provides a high-level overview of

the World Wide Web information system, and then

describes the extensions used for incorporating a user's

mobile computing environment into the system.

2.1 The World Wide Web

The three main components of a World Wide Web

(WWW) information system are documents, clients,

and information servers. The user interacts with the

system using a Web client, which lets the user name

and load documents from servers for viewing. Web

clients typically support a number of di�erent doc-

ument types, such as ftp, netnews, and Hypertext

Markup Language (HTML), and support connections

with a variety of information servers, such as ftp dae-

mons, news servers, and Hypertext Transport Proto-

col (HTTP) daemons. Documents are typically �les

on a server referenced by Uniform Resource Locators

(URLs), and they can contain a variety of information

types, including ASCII text formatted according to

HTML directives, embedded pictures, and audio and

video clips, as well as embedded URLs that are used

as hypertext links to other documents. URLs can also

name programs on HTTP daemons that, when exe-

cuted, produce an HTML document as output.

2.2 Extensions for a mobile WWW

In its current form, the Web infrastructure can-

not easily accommodate mobile clients because infor-

mation is either statically expressed in HTML docu-

ments, or because all non-static information must be

explicitly entered through form-based interfaces that

run on the client.

In its current form, the Web infrastructure cannot

easily accommodate mobile clients because the dy-

namic information it supports is either returned from

the server without incorporating any user context at

all, or is incorporated explicitly using forms-based in-

terfaces that require user input on the client. More-

over, there is no support for automatically updating

a document when it, or the reason for displaying it,

changes.

To better support the use of dynamic information,

we have extended the Web infrastructure to include:

� A network server that maintains mobile comput-

ing contexts within a client-speci�c domain;

� An asynchronous callback mechanism to notify

Web clients when a user's dynamic computing en-

vironment changes;

� A syntax for referencing dynamic information in

URLs and documents.

Representing mobile computing contexts.
Mobisaic uses dynamic environments to represent a

user's mobile computing context. The basic unit

in a dynamic environment is the dynamic environ-

ment variable, which is conceptually similar to a stan-

dard shell environment variable: dynamic environ-

ment variables have a name and a value, and they

can be accessed and changed to customize applica-

tions to the user's mobile computing environment just

as shell environment variables customize applications

launched from the shell. However, unlike shell envi-

ronment variables, which are associated with a login

process, dynamic environment variables are associated

with users and places, and have inde�nite lifetimes.

Applications on the network with su�cient privilege

can access and change dynamic environment variables,

and whatever changes they make can be seen by other

applications with su�cient access privileges.

Noti�cation of changes in mobile comput-
ing contexts. Active documents allow environmental

changes to be re
ected in the information displayed to

the user. If the information in an active document that

the client is displaying becomes invalid, then the client

can be noti�ed of the change so that it can display a

more relevant document. Client noti�cations contain

the name of the variable that changed, and its new

value.

For example, say that the user changes cell loca-

tions in the wireless environment. The wireless com-

munications system that is monitoring the user's lo-

cation can publish the new location by updating the

Location variable in the user's dynamic environment.

If the user were displaying a document that was sen-

sitive to location, the client would have subscribed to

the Location variable, and would receive a noti�ca-

tion informing it of the change. At this point, the

client could take action in response to the change, such

as loading a new document that relates to the user's

new location.

Syntax and scope. A Mobisaic client relies on a

syntax for referencing dynamic environment variables

within dynamic URLs and active documents. The

syntax supported by Mobisaic is of the form $(en-
vironment.variable), where environment and variable
denote a dynamic environment and dynamic envi-

ronment variable, respectively. For example, $(ber-
shad.Location) would reference the name of Brian's

current location in the wireless network. Mobisaic also

supports a shorthand notation for referencing vari-

ables in the user's dynamic environment. If the ref-

erence doesn't contain the name of an environment,

then Mobisaic assumes that the variable denoted is a

reference to the environment associated with the user.

Thus, $(Location) refers to the Location environ-

ment variable in the user's dynamic environment.

Mobisaic supports recursive references to dynamic

environment variables, so that environment or vari-



able names can themselves be references to dynamic

environment variables. For example, given that lo-

cations have dynamic environments associated with

them, $($(bershad.Location).Printer) would ref-

erence the Printer variable in the environment asso-

ciated with Brian's current location.

3 Using dynamic URLs

Dynamic URLs allow a single URL to return di�er-

ent documents or execute di�erent commands depend-

ing upon the state of the user's dynamic environment

at the time the query is executed. A URL is dynamic

if it references at least one dynamic environment vari-

able. For example, in our department we have written

HTML documents describing ourselves and the places

in which we work (see Figure 1). The name space of

these documents on our server is well structured, en-

abling the following dynamic URL to return the doc-

ument describing the user's current location:

http://www/places/$(Location).html
1

Another example of a dynamic URL is a Web server

that has a program busroute which takes a starting

location, a destination, and a time as arguments, and

returns an HTML document detailing how to get to

the closest bus stop on the shortest bus route to the

destination. A dynamic URL to �nd the bus route to

the Space Needle in Seattle would appear as:

http://www/htbin-post/voelker/busrouten

?$(Location)?SpaceNeedle?$(Time.TIME)

Note that the question marks in the query are stan-

dard HTML syntax denoting the arguments that are

passed to the program invoked on the server.

3.1 Resolving dynamic URLs

When a user selects a dynamic URL in a document,

the client browser is responsible for resolving all ref-

erences to dynamic environment variables within the

URL. The client obtains the values of dynamic envi-

ronment variables from the appropriate dynamic en-

vironment and replaces the references with the values

as strings. When all variable references have been re-

solved, the result is a standard URL that the client

then sends to the server. For example, if a user were

in o�ce 433 and selected the location description dy-

namic URL in the previous section, the client would

resolve the Location dynamic environment variable

in the user's context and send the resulting URL to

the server:

http://www/places/433.html

Having the Mobisaic client resolve the dynamic en-

vironment variable references gives the most 
exibility

to the system. The variable references could have been

resolved in two other places: the application, if the dy-

namic URL named a program on the server to execute,

1For brevity, we use www in place of our server at

www.cs.washington.edu.

Figure 1: The WhereAmI active document, referenced

by http://www/places/$(Location).html

or the server. If applications had to resolve the vari-

able references, then dynamic URLs would be limited

to naming only those applications that were modi�ed

to understand and use dynamic environment variables.

Likewise, if the server were to resolve the references,

then dynamic URLs would be limited to using only

dynamic environment aware servers. When the client

resolves the references, however, dynamic URLs can

evaluate to a URL that names any document or appli-

cation on any server that a standard URL can name.

4 Active documents

Active documents are HyperText Markup Lan-

guage documents that enable the Web client to au-

tomatically react to changes in a user's mobile com-

puting context. They enable the client to be able to

update the information being displayed without the

user having to navigate the Web, and place less of a

burden on the user to search for information by plac-

ing more of a burden on the author to organize it. This

tradeo� is possible in a mobile environment because

users who roam the wireless network are quite likely

to be interested about who and what is in their im-

mediate surroundings, and the information in a user's

mobile context is enough to enable a Web client to

do the searching on the user's behalf. In this way, it

changes the way users interact with the Web: they

spend less time searching for information because the

client presents it to them as they interact with their

surroundings.

This section describes how to write active docu-

ments and how the client handles them when they are



being viewed by the user. To illustrate these processes,

it also describes a set of pages collectively called the

WhereAmI active document, which is a guide for vis-

itors to our department. Each page in it corresponds

to a place in our wireless network, and contains a brief

description of the place, links to the home pages de-

scribing the occupants of the place, and links to pages

describing any projects housed in the place. When a

user selects this active document, the client loads the

page corresponding to the user's location. Then, as

the user changes rooms, the client automatically dis-

cards the page describing the old room and replaces it

with the one describing the new room. Each page in

the WhereAmI active document can be loaded using

the dynamic URL from the previous section:

http://www/places/$(Location).html

Authors write active documents just like they write

standard HTML documents, with one addition. They

must place a subscribe command in the document

which lists the dynamic environment variables that

the client must subscribe to when it loads the docu-

ment. In e�ect, the variables listed in the subscribe

command are the elements of a user's mobile context

that, when they change value, invalidate the informa-

tion in the document. The new values of the variables

also provide the information necessary for the client

to determine which document to load in place of the

current one.

A subscribe command is embedded in an HTML

comment line. By having the subscribe command em-

bedded in a comment, active documents remain back-

wards compatible and can be loaded by standard Web

clients that do not support the features of Mobisaic.

The command has the following form:

<!{ (subscribe to variable variable ... ) {>

Variable is a standard reference to a dynamic envi-

ronment variable. When the client loads the document

and parses subscribe commands, it subscribes to each

variable speci�ed in the command.

When the client receives a noti�cation for a sub-

scribed variable indicating that the variable has

changed value, the new value of the variable in the no-

ti�cation determines what action the client will take

in the face of this noti�cation. The new value of the

variable can be an explicit directive to the client:

reload Re-execute the URL that loaded the current

document. If the URL is dynamic, the references

to dynamic environment variables are resolved

again.

load URL Execute a new URL and load the docu-

ment in the same window.

spawn URL Execute a new URL and load the doc-

ument in a new window.

close Close the current window.

Otherwise, the client does not interpret the new

value and simply reloads the document. If the URL

naming the document is a dynamic URL, then the

client will evaluate the dynamic URL as if the user

had selected it.

For the WhereAmI active document, each page has

the following subscribe command:

<!{ (subscribe to $(Location)) {>

The commands tells the client that, when it loads

the page, it should subscribe to the Location vari-

able in the user's dynamic environment. When this

variable changes value, the client will receive a noti-

�cation with the new value of Location. Since the

value is not an explicit command to the client, it will

ignore the value itself and use the noti�cation as a

signal to reload the active document. And since the

URL naming the document is dynamic, the client will

re-evaluate it and load the active document that de-

scribes the user's new location.

4.1 Arbitrary client noti�cations

In addition to receiving noti�cations for any active

documents the client is displaying, the client can also

receive noti�cations that do not refer to any of its

displayed documents. To receive such noti�cations,

the client subscribes to the MOBISAIC-STREAM
variable in the user's dynamic environment. Any pro-

cess can then send noti�cations to the client to, for

example, spawn a window to load a new document

that might be of interest to the user.

5 Mobisaic on the desktop

AlthoughMobisaic was originally inspired for use in

a mobile computing environment, it can also be useful

in the desktop environment. There are a number of

information sources in the WWW that produce infor-

mation periodically, and it is straightforward to write

documents in Mobisaic that tap into these sources.

Some documents that have already been written in-

clude simple cron scripts that, early in the morning,

publish the URLs for the Dr. Fun and Dilbert comic

pages to a list of interested users running Mobisaic.

The published URLs spawn new windows showing the

contents of the pages. When users come in to work

in the mornings, the daily comic pages are already

showing on their screens.

As another example, we use active documents to-

gether with electronic mail to implement a distributed,

recommendation-based \hot list" of new and interest-

ing pages. Our local departmental version of Mosaic

has been modi�ed to make it easy to forward URLs

to others in our department using email, so now it is

common practice for people to forward onto friends

URLs that they have discovered and �nd interesting.

The email messages generated by Mosaic have a spe-

cial mail tag, X-URL, that contains the URL being

forwarded. A user's incoming mail �lter �nds these

tags and publish the URLs in them to the user's Web

client. The result is that, when users have a URL

forwarded to them, a window automatically appears



on their screen displaying the document referenced by

the URL.

A third application uses active documents to dis-

play and update stock quotes. A background �lter

monitors a stock quote information source, and, in

a dynamic environment for stock prices, publishes

the latest values of the stocks it monitors as they

change. Documents displaying the information for

a given stock subscribe to the dynamic environment

variable associated with the stock in the stock dy-

namic environment. When users view a document

describing or referencing a stock, the document will

update itself as new stock values are published in the

dynamic environment variable for stocks.

6 Implementation

This section discusses our implementation of Mo-

bisaic and the changes we applied to a standard Web

client to use them.

6.1 Dynamic environments

Dynamic environments [Schilit et al. 93B] support

a network-based publish and sub-

scribe paradigm [Oki et al. 93]. A dynamic environ-

ment is maintained by a subscription-based server to

which applications broadcast queries and from which

applications receive multicast noti�cations. We use

the zephyr noti�cation system [DellaFera et al. 88] to

implement the publish and subscribe facilities. Zephyr

allows programs to subscribe to any number of mes-

sage classes and class instances to which other pro-

grams can address and send messages. Since multiple

programs can subscribe to the same message class and

class instance, a message to a class and instance will

be multicast to all subscribing programs. A dynamic

environment server is a zephyr client that listens to

a speci�c zephyr message class for dynamic environ-

ments and a class instance that is the name of the

environment it serves. Applications that interact with

dynamic environments send zephyr messages with the

dynamic environment message class, the name of the

environment as the class instance, and the name of the

dynamic environment variable as the recipient.

We chose to use zephyr because it provides network

transparency, automatic subscriber-based routing, au-

thentication, asynchronous noti�cation, and the abil-

ity to run redundant zephyr clients supporting redun-

dant instances of the same dynamic environment. (We

presently do not take advantage of zephyr's authenti-

cation system or support for redundancy). Zephyr is

not without its drawbacks, however. It operates only

within relatively small administrative domains, such

as a department or campus. It cannot distribute in-

formation quickly to many hosts, which can become

a problem in the current system during heavy load.

(This bottleneck and a possible solution to it are dis-

cussed in [Schilit and Theimer 94].) Fortunately, a C

library interface hides the use of zephyr from Web

clients, so changing to a new transport should be rel-

atively easy.

6.2 Client modi�cations

Any Web browser can be modi�ed to support dy-

namic URLs and active documents provided that it

supports an interface for loading and reloading docu-

ments, spawning and closing windows, and the ability

to add an asynchronous input descriptor to its set of

inputs. A client library handles all communication

with dynamic environments, and parses dynamic en-

vironment variable references. Filters, supplied by the

library, are applied to the input and output communi-

cation paths. The �lter on the output stream resolves

references to dynamic environment variables embed-

ded in dynamic queries, and the �lter on the input

stream subscribes the client to dynamic environment

variables embedded in active documents. If the client

supports an internal interface for document and win-

dow manipulation, then it can be directly linked with

the Mobisaic client library. For those clients that only

support an external interface or do not have an in-

terface for adding asynchronous input descriptors, we

have a wrapper program that handles dynamic envi-

ronments and controls the Web client as a child pro-

cess.

Our prototype Mobisaic client is the X Mosaic

client [Andreessen and Bina 94] extended with the

Mobisaic client library. The X Mosaic client has a rel-

atively clean internal interface for loading documents

and spawning windows, so most of the code changes

were to add the �le descriptor for the dynamic en-

vironment communication channel to the list of input

descriptors, the callback to handle asynchronous input

on the descriptor, and calls to the Mobisaic library �l-

ters on the input and output communication paths.

Overall, our changes added less than 60 lines to the

client.

Our infrastructure for wireless mobile computing is

still under construction, but Mobisaic Web clients for

two di�erent environments are being developed. The

�rst Mobisaic client will be the existing modi�ed X

Mosaic client running on a laptop running Linux. The

laptop will use a Proxim RangeLan2 wireless ethernet

PCMCIA card to communicate with the wireless net-

work. An infrared receiver attached to the serial line

detects transmissions from infrared beacons placed in

rooms and hallways for �ne-grained location informa-

tion. The second Mobisaic Web client will be the W*

Web client running in the Wit [Watson 94] environ-

ment.

7 Summary

This paper has described a World Wide Web infor-

mation system called Mobisaic that investigates infor-

mation browsing in a mobile wireless computing en-

vironment. Mobisaic introduces two mechanisms, dy-

namic URLs and active documents, for incorporating

contextual information from a user's mobile comput-

ing environment into the Web. Dynamic URLs allow

a single URL to return di�erent documents or execute

di�erent commands depending upon the values of the

embedded variables at the time the URL is selected by

the user. Active documents use dynamic environment

variables to have the client to subscribe to noti�ca-



tions that invalidate their contents with respect to the

current state of the user's mobile computing context.

Minimal modi�cations are required to Web clients

and the URL syntax to support the features of Mobi-

saic. Web servers need no modi�cations whatsoever.

A library hides the details of the communicationmech-

anism and provides �lters for parsing and resolving

dynamic environment variable references, making it

straightforward to modify a Web client to take advan-

tage of the features of Mobisaic Web system.

Acknowledgements

We would like to thank Marc Fiuczynski, Ed La-

zowska, Hank Levy, Stefan Savage, Terri Watson,

George Forman, and John Zahorjan for their sugges-

tions on Mobisaic. Bill Schilit at Xerox Parc has been

incredibly helpful in discussing context-aware applica-

tions. Finally, special thanks are due to Xerox PARC

for supplying us with the software and hardware that

began our experiment in mobile computing.

References

[Andreessen and Bina 94] Marc Andreessen and Eric

Bina. \NCSA Mosaic: A Global Hypermedia Sys-

tem" In Internet Research, 4(1):7{17, Spring 1994.

[Berners-Lee et al. 92] Tim Berners-Lee, Robert Cail-

liau, Jean-Francois Gro�, and Bernard Pollermann.

\World-Wide Web: The Information Universe" In

Electronic Networking: Research, Applications, and
Policy, 2(1): 52{58, Spring 1992.

[DellaFera et al. 88] C. Anthony DellaFera, Mark W.

Eichen, Robert S. French, David C. Jedinsky, John

T. Kohl, and William E. Sommerfeld. \The Zephyr

Noti�cation Service." In Proceedings of the USENIX
1988 Winter Conference, Winter 1988.

[Oki et al. 93] Brian Oki, Manfred P
uegl, Alex

Siegel, and Dale Skeen. \The InformationBus |An

Architecture For Extensible Distributed Systems"

In Proceedings of the Fourteenth ACM Symposium
on Operating System Principles, December 1993.

[Schilit and Theimer 94] Bill N. Schilit and Marvin

M. Theimer. \Disseminating Active Map Informa-

tion to Mobile Hosts" To appear in IEEE Network,
September, 1994.

[Schilit et al. 93A] Bill N. Schilit, Norman Adams,

Rich Gold, Michael Tso, and Roy Want. \The

ParcTab mobile computing system." In Proceedings
of the Fourth Workshop on Workstation Operating
Systems, pp. 34{39, October 1993.

[Schilit et al. 93B] Bill N. Schilit, Marvin Theimer,

and Brent B. Welch. \Customizing mobile applica-

tions." In Proceedings of the USENIX Symposium
on Mobile & Location-Independent Computing, pp.
129{139, August 1993.

[Watson 94] Terri Watson. \Application Design for

Wireless Computing." In Proceedings of the Work-
shop on Mobile Computing Systems and Applica-
tions, November, 1994. To appear.


