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Annals of Mathematics, 139 (1994), 1-50 

Mobius energy of knots and unknots 
By MICHAEL H. FREEDMAN, ZHENG-Xu HE AND ZHENGHAN WANG* 
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Introduction 

The behavior of a charged loop of string is a traditional subject for tea- 
time speculation. There are many tantalizing questions about extremal config- 
urations and dynamics. Recently O'Hara [O'H1-3] began to give this discussion 
a foundation by describing several "potential energies" for a C2 loop in 3-space 
and reminding topologists of the method physicists use-regularization-to 
make their defining integrals converge. Among these methods, potential ener- 
gies and their close relatives, the most interesting seems to be the energy E 
defined in the following paragraph. 

Let 7y = 7(u) be a rectifiable curve in W , where u belongs to an interval of 
R or the circle S1. For any pair of points 7y(u), 7y(v), denote by D(y(u), y(v)) 
the distance between them on the curve; i.e., the minimum of the lengths of 
subarcs of 7y with one endpoint at 7y(u) and the other at 7y(v). We define the 

*Research by Michael Freedman is partially supported by N.S.F. Grant DMS 89-01412 and the 
Minnesota Geometry Center, which is supported by N.S.F. Grant DMS 89-20161. Research by Zheng- 
Xu He is partially supported by N.S.F. Grant DMS 90-06954. Research by Zhenghan Wang is partially 
supported by N.S.F. Grant DMS 89-01412. 

Part of this work was announced at the NATO Advanced Research Workshop in "Topological Fluid 
Dynamics" at the Institute of Theoretical Physics, University of California, Santa Barbara, November, 
1991 (see [FrH2]), and another part appeared in the Bulletin of the A.M.S. 
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2 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

energy of the curve 'y relative to the point 7y(u) to be the following integral: 

(0.1) E(Jy {y(u)) = Ii(u)I2 - D(a(V>(u))2 } K7(v)I dv. 

Note that the function u |-- E(-y, ,y(u)) E [0, oc] is measurable. The following 
integral 

(0.2) E(7y) = JE(^y<y(u)) y(u) I du 

will be called the energy of the curve 7y. 
By equations (0.1) and (0.2) we obtain 

(0.3) E) 
I(V)-I ) 

i 
(U)12 -D((v), 7 (U))2 } 2 )I IV(V)I dudv. 

The following lemma is immediate. 

LEMMA 0.1. (i) E(ty, y(u)) and E(-y) do not depend on the parametriza- 
tion or orientation of the curve. 

(ii) Let T: JR3 - W3 be an affine similarity with a linear expansion equal 
to s. Then sE(T o y, T o 7y(u)) = E(y, 7y(u)) and E(T o y) = E(7y). [1 

A fundamental property of E(7y) is a form of the Mobius invariance. 

THEOREM 2.1. Let ̂ y be a simple closed curve in W3 and let T be a Mobius 
transformation of JR3 U {oo}. The following statements hold: 

(i) If T o y C R3, then E(T o y) = E(-y). 
(ii) If T o 'y passes through oc, then E((T o y) n 1R3) = E(y) - 4. 

We see that E is a regularization of 1/r2-potential energy1; and in the 
case of closed curves it differs only in normalization from the 1/r2-potential 
energy of O'Hara, EO/Hara = 1/2E - 2 (see [O'H1]). Note that there are 
competing candidates for the exponent equal to -2 in the definition of E. For 
example, the newtonian potential in W3 has an exponent equal to -1. When 
the exponent is strictly larger than -3, finite values are obtained for smooth 
simple loops. Exponents smaller than or equal to -2 yield energies that blow 
up as a simple loop ^y begins to acquire a double point, thus creating an 
infinite energy barrier to a change of topology. The exponent -2 is the largest 
exponent where a divergence is obtained if two distinct strands of 7y cross. To 
appreciate this it is sufficient to consider the contribution to (unregularized) 

1The usual newtonian potential in R3 is 1/r. 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 3 

energy from a unit-speed arc a of an x-axis arc and a unit-speed arc 3 of a 
y-axis near the origin: 

JJ( x2?y2)2 dx dy =J dpdO = oo. 
disk Op 

Such a barrier would not exist for the newtonian potential in IR3. Similarity 
and M6bius invariance are, of course, special to the exponent -2. 

In fact, if the energy of a curve 7y is finite and if u is the arc-length param- 
eter, then u F-- 7(u) must be a (topologically) tame bi-Lipschitz embedding 
(via Lemma 1.2 and Theorem 4.1). On the other hand, if 7y is a simple closed 
curve in 1R3 whose curvature is uniformly bounded, then the energy of 7y is 
bounded (via Proposition 1.5). 

Thus it is natural to address questions in the theory of knots and links2 
in terms of the energy of embedded curves in their isotopy classes. In this 
direction O'Hara proved that given simultaneous upper bounds on several 
geometric quantities, namely energy, length, and the L2 norm of the ciuvahjmp, 
only finitely many knot types can occur. We drop the hypotheses on length 
and the L2 norm of the curvature to prove the following theorem: 

THEOREM 3.3. Let -y be a simple closed curve in R3 and let c([y]) denote 
the topological crossing number of the knot type [y] of 7y. Then 

27rc([7y]) + 4 < E(y). 

Since the number K(n) of distinct knots, of at most n crossings satisfies 

2n < K(n) < 2 .24n 

(see [S], [T], [W]), the number of knot types with representatives below a given 
energy threshold can be bounded by an exponential. Precisely we have the 
following corollary: 

COROLLARY 3.5. The number of (isomorphism classes of) knots that can 
be represented by curves of E < M is bounded by 2. (24-4/2w,) (241/2,)M ~ 
(0.264) (1.6581M . 

In our normalization all (round) circles have E(circle) = 4, and this is 
the smallest possible value for the energy of closed curves in R3 (via Corollary 
2.2). On the other hand, if a closed curve 'y satisfies E(y) < 67r + 4, then 'y is 
unknotted (via Corollary 3.4). At this point it is interesting to compare the 
energy E(-y) -with the total curvature TKQ(y) = f I (-Y'(u)/ 1K'(u) I)'I du. Clearly 

2In this article, a knot or link means a topologically tame knot or link. 
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4 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

TK(circle) = 27r and, according to Milnor [Mi], TK(y) < 4w implies that -y is 
unknotted. However the functional TK is less coercive than B, since unlike 
Corollary 3.4 there are infinitely many 2-bridge knots, all having representa- 
tives with TK = 4wx + e for any given e > 0. 

Given a knot K, one may seek a loop AK of knot type K with minimal 
energy. In this article the existence of extremal functions will be established 
for irreducible knots. 

THEOREM 4.3. Let K be an irreducible knot. There exists a simple loop 
AK: $1 > R3 with knot type K such that E(QK) < E(a) for any other simple 
loop 'y: 1- JR3 of the same knot type. 

A simple loop -y in R3 of finite energy is called a locally extremal loop if 
E(ay) < E(y*) for any simple loop 7*, which is ambiently isotopic to 7y and 
which is contained in some neighborhood of 'y. We conjecture that any locally 
extremal loop is smooth (C?). By some elementary geometrical argument we 
will prove the following C1'1-regularity theorem: 

THEOREM 5.4. Let 'y be a locally extremal loop in R3. Then, in arc-length 
parametrization, 7y(s) is a C1'1 function. 

The organization of the article is already clear from the table of contents. 
We start in Section 1 with some elementary properties. In Section 2 we prove 
the M6bius invariance of the energy. In Section 3 we discuss the crossing 
number of knots and the average crossing number of curves in 3-space. We 
show that the average crossing number of a closed curve is bounded by its 
energy up to some multiple. Using this property, we prove in Section 4 that 
curves of finite energy are (topologically) tame. We also prove the existence 
of the extremal curves, which minimizes the energy in the family of loops 
representing any given irreducible knot. In Section 5 the extremal curves are 
shown to be in the class C1'1. We derive some variational formulas for the 
gradient of the energy in Section 6, while Section 7 contains some remarks on 
the energy of links. Finally in Section 8 we consider the extremal problem 
when the exponent in the definition of energy is no longer equal to -2. 

1. Elementary properties 

We will use X to denote either an interval of R or S1. Let 7y: X -> R3 be 
a rectifiable curve. This means that -y admits a locally integrable first-order 
derivative A1 = 'y'. In case of closed curves we will identify S' with R/fZ, where 
,> 0; and we may regard 7y as a periodic function defined on R with period e. 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 5 

Moreover, if the arc-length parametrization is used, then e equals the length 
of the curve and 

I;/2 fx+e/2 r 1 1 i 

(1. 1) E(-y) = dx](- - dy. 
f-/2 Jo-f/2 

1 (y ) -7 ( X) I12 -y I X-S1 2 t 

Example 1.1. The energy of a circle is 4. To show this let us assume 
that the radius of the circle is 1. Let tyo: R/(27rZ) -* R3 be an arc-length 
parametrization of the circle. If Iy - xl < 7r, then 

17o(y)-x) - = 2 sin(Iy - x1/2). 

Thus by equation (1.1) we have 

7r X+7r 11 

E(7yo) = j dx [2sin XY2xI1 - 1)2 } 

; [sin2 (3//2) y2] 

= 27rj [1 - 1] du 
O sin2 u u2 

= 27r (-cot u + -) /2 

Since cot u = 1/u-(1/3)u?+ ., we have cot u-1/u -0 as u 0. It follows 
that 

(1.2) E(7o) = 4. 

A map f: X -* Y between metric spaces is called L-Lipschitz if the 
distance (f (u), f (v)) < L distance (u, v), for all u, v E X. It is called L-bi- 
Lipschitz if f is L-Lipschitz and its inverse f: f (X) -* X exists and is also 
L-Lipschitz. 

LEMMA 1.2. Let 7y(u) be a rectifiable curve in R3 parametrized by the arc 
length. If E(y) is finite, then the mapping 'y: X -* R3 is L-bi-Lipschitz with 
the bi-Lipschitz constant L = L(y) depending only on E(-y). Furthermore 
L(y) converges to 1 when E(y) tends to 0. 

Proof. The first part of the lemma is due to O'Hara, but for the conven- 
ience of the readers we provide a somewhat different approach that proves 
both statements of the lemma. 

Since u is the arc-length parameter, the mapping u |-- +y(u) is Lipschitz 
with L = 1. We need to show that there is a constant L depending only on 
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6 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

E(7y) such that for any ul and u2, with u2 - = D(7y(ul),<y(u2)), we have 

(1.3) U2 - u1 < LI1y(u2) - y(u) I . 

Since the energy is invariant under affine similarities (via part (ii) of 
Lemma 0.1), we may assume that D(Y(ul),y(u2)) = U2- u1 = 4 and, fur- 
ther, that u1 = -2 and u2 = 2. Then inequality (1.3) reduces to 

(1.4) 4 < LI1y(2) - 7-2)1. 

Let t E (0, 2). Then 

E(7) > j dxj { K(s)-7(X) 12 I 12} dy 
-2+t 2 

> dx''d1y 
(1.5) J2 _;t 1| (y) 7 (X)12 |y X12} (1.5) ~~~2+t 2 1 

> 
tdx (17(2)f-7(-2)1 + 2f-y + + 2)2 

12 - t-(-2 + t) 1 }d 

By letting t = 1, we deduce that 

[ (1K(2) - '7(-2)I + 1)2 11 
l [K(2) - 7(-2)1(17(2) - 7(-2)1 + 2) - 4 

_ log [21a(2) - (-2)1 4 

Thus 

1K(2) - y(-2)1 > 
-2el/4eE('Y)' 

So inequality (1.4) holds for some L < 2el/4eE(e). 

Next, by letting t = (4 - 1(2) - '(-2)1)/8 in inequality (1.5), we obtain 

E (7) >j dxJ {(17(2)-7(-2)1 + 2-y + z + 2)2 

12- t - (-2+t)12} dy 

> ~~ dxj dy 
dzJ {(17(2) - 7(-2)1 + 2t)2 14- 2t12 

_ 2(4 + 1_(2) - _Y(-2)1)(4 - 17(2) - _ (-2)1)3 
(4 + 31y(2) - ' (-2)1)2(12 + 1K (2) - 7 (-2)1)2 

( 4 - 1K(2) - 'y(-2) 1 3 

16 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 7 

This implies that the bi-Lipschitz constant L goes to 1 as E(-y) tends to 0. 1I 

For a rectifiable curve Ty, the energy integrand in equation (0.3) is almost 
everywhere defined. If E(7y) is finite, then this integrand is an L1 function of 
u and v. So for every a' > 0 there is a 6' such that, for any subarc y6/ of 7y of 
length 6', 

(1.6) E y76) <C'. 

Using Lemma 1.2, we obtain the following corollary: 

COROLLARY 1.3. Given 7y with E(7y) finite and given any e > 0, there 
exists some 6 > 0 so that any subarc 'y6 of length 6 is a (1 + c)-bi-Lipschitz 
embedding under the arc-length parametrization. El 

Note that 6 of Corollary 1.3 may depend on the curve 'y. 
Although a bound on the energy implies the bi-Lipschitz property for a 

curve, it does not imply that the curve is continuously differentiable. The 
reader may try to find an arc that has an infinitely turning tangent (i.e., many 
spirals) approaching some interior point, while having arbitrarily small energy. 
Hint: Fit together infinitely many segments si of circles with e/i degrees of arc 
and rapidly decreasing radius ri. Since E(si) = 0(02/i2) and the off-diagonal 
contributions to energy are very small when ri decreases quickly, the total 
energy can be made 0(e), while the total turning equal to jEj??1/i is infinite. 

The following lemma is obvious, but useful: 

LEMMA 1.4. Let 'y be a rectifiable curve and let 7Yk, k = 1,2,..., be 
subarcs of 'y with disjoint interiors. Then 

(1.7) ZE(7yk) < E(7y). El 
k 

We will end this section by showing that, for a simple closed curve 7y, 
E(y) is finite if y is only L2+6-integrable for some 6 > 0. In particular, if -y is 
C11, then E(7y) < 0o. The proof is quite lengthy, but the argument is relevant 
to Section 6. 

PROPOSITION 1.5. Let -y be a simple closed curve in R3 whose second 
derivative is L2+6-integrable for some 6 > 0. Then E(7y) is finite. 

Proof. Let u be an arc-length parameter for 'y. By assumption, y(u) is 
L2+6-integrable. Then I-y(u) | = 1 and 

1 

7y(v) - (u) = (v-u) f (u + t(v-u)) dt 
(1.8) o1 

= (V - u)-y(u) + (V _ U)2 j (1 - t)t(u + t(v - u)) dt. 
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8 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

It then follows that 

M(v) - y(u)I2 

(1.9) = (v-u)2 [1 + 2(v-u) (1 - t)(A(u), ~(u + t(v - u))) dt 

+(v-_U)2| (1 -t)a(u + t(v -u)) dt|] 

where (, ) denotes the inner product in R3. 
Since ty(u) E L2+6, we have by Holder inequality 

X I(u +t(v -u)) Idt = (v U) 1~( I d 

(1.10) < 1 II'u'2+6IV _ UI(-+6)1(2+6) 

- C Iv - uIC 
< I- 1u1/2 

where 1VA12+6 iS the L2+6-norm of K(u)I, a = (1 + 6)/(2 + 6) - 1/2 = 
6/(2(2 + 6) > 0, and C denotes some constant independent of u and v. 

Combining formulas (1.9) and (1.10), we get 

1 

1y(v) - 'y(u) 12 

u)2 -2(v-u) j - t)(a(u)), (u + t(v - u))) dt 

?0 (1. 11)1+ ((v-u) 1 ] 

2 /;1( _t) (y(u) , ty(u + t(v -u))) dt 

IV W~- Ul-2ogJ 

where 0 (x) denotes some quantity with I 0(x)I < KIxI for some constant K > 0 
independent of u and v. 

Therefore, for any c > 0, 

_________ 1 ~~dv du fJ {1 K(V) -(U)12 D ((u)< (V))2 } 
Iv-uI>E 

(1.12) =J {VY(v)-7(u)I2 (v u)2} dudv 

Iv-uI~c 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 9 

(1.12) =- JJ [-j (1-t)((u), 7(u + t(v-u))) dt 

Iv-ueI 

+ 0 VU12a)J du dv 

=-JJ|?-(j;(1-t)(a(u),w(u + tw)) dt) dudw + C6, 

IwI~c 

where C6 is uniformly bounded as c - 0+. 
It remains to show that the integral on the right-hand side of equation 

(1.12) is uniformly bounded. Denote this integral by I. Since Vt(u)I = 1, we 
have (-y(u), y(u)) = 0, a.e. Then 

he =(||| ( ) (w(u + tw)) dt du dw 
IwI~c 
o<t<1 

- JJJ 2(1 t) ((u) -y(u + tw) , <(u + tw)) dtdudw 

IwI~c 
o<t<1 

- J 2(1 -t) [jK-((u)-ty(u + tw), A(u + tw)) du1 dt dw. 

IWI>E 
o<t<1 

By Holder inequality 

rU+tW 
I-Ku) - -(u + tw)I ? j Vy(v)I dv < o (IwI +a); 

hence 

|;(-y(u)-ey(u +tw),~(u +tw)) du| < (I(wl 2+c') , l(u + tw)l du 

= O(IwI2+a)II)I1i 

= O(IwI +a). 

It then follows that 

1161 j | I IO(IW 2+a) dw 

j (Iwa-1) dw, 

which is finite. El 
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10 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

2. Mo-bius invariance of energy 

The energy E(y) is independent of parametrization and is unchanged if 
-y is changed by a similarity of RP3. In this section we prove a fundamental 
property of E(y): invariance under M6bius transformation. In order to state 
the following theorem more conveniently, we will make the convention that 
the energy of any nonrectifiable curve is infinite. 

THEOREM 2.1. Let -y be a simple closed curve in ]R3 and let T be a M6bius 
transformation of ]R3U {oo}. The following statements hold: 

(i) If T oyl C 3, then E(Toy)=E(a). 
(ii) If T o y passes through ox, then E((T o y) n ]R3) = E(y) - 4. 

Recall that the Mobius transformations of the 3-sphere S3 = ]R3 U {Xo} 
are the 10-dimensional group of angle-preserving diffeomorphisms generated 
by inversion in 2-spheres. If T is the inversion of ]R3 U {oo} in the 2-sphere 
{x E Ri33: Ix-aI = r}, where a E Ri3 and r > 0, then T is defined by 
T(x) = a + (,rllx -al)2(X -a). 

As an immediate application, we find that the circles have least energy. 
Actually it was the attempt to prove the extremal properties of the circles 
that lead to the discovery of Theorem 2.1. 

COROLLARY 2.2. For any loop y: 51 -* R3, the energy satisfies E(a) > 
4, where equality holds if and only if -y is a circle. 

Proof. Assume that -y is simple; otherwise E(-y) = +oo. Let T be a 
M6bius transformation that maps some point of -y to ox. Then E(-y) = 4 + 
E((Toy) n R3). Clearly E((Toy) n Rl3) > 0 and equality holds if and only if 
(TO Py) n ]R3 is a straight line. LI 

To prove Theorem 2.1 we need the following lemma: 

LEMMA 2.3. Let y(u): R/fZ -* ]R3 be a closed curve such that the posi- 
tive real function Va(u) is Lipschitz in u. Then, for any e > O0 

1 1D(y(u), K(u) I Vt(v) I du dv = 4 - + ) 
Iu-vI >e 

Note that if -y(u) is parametrized by arc length, then the error term in 
equation (2.1) vanishes for small e. 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 11 

Proof. Let L be the length of -y. We assume that E is small enough. Then 
the left-hand side of (2.1) is equal to 

- f [f K~~~v)I dv 1 V(u) Idu 
(2.2) JuER/eZ Llv ul>E D(-y(u), y(v))2 j 

(2.2)~~~ ~4 1 1 I=ER/z[L - - Vt(u)I du, 
JER/fz L E+ E__ 

where 
fu+E 

6+ = E+(u) = D(y(u + c), y(u)) = 1L$(t)I dt 

and 
u 

E_ = E_(u) = D(y(u), y(u - c)) = j Lty(t)I dt. 

Since h'(u)I is Lipschitz, (d/du)I-y(u)I E L?(]R/7Z). By an identity of 
calculus we have 

E+ E(u)l +,E2X (1 t) ( |Mu+C01l dt 

and 

=I kyU)I 62 (1 - t) ( d I (u - 't)) dt. 

It follows that 
1_ 1 1 

6?+ MY(u)| [1+ ?g(u)j fe(1 -t) ( ddai(u + ct)I) dt] 

(2.3) =- I) [1-1 (u)I j 1- t) (dI'Y(u+?et)I) dt+ 0(E2)1 

_ 1 1 f1 /d 

Vy(u)IE I '(u) 2 / ( ) du (u) ) d) (E) 

Similarly 

(2.4) e+ - ? (1- t) ( -Et) I dt + ?(E). Vy I~(u) Ic 1y(U)12 Jdu 

Then by equation (2.2) 

- II D(Y(U),Y?(v))2V1Y(v)I I(u)I dv du 
lu-vl >E 

(2.5) =4- JE/e (-+ ? (u)I du 
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12 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

(2.5) =4- f du ? f 1(1 -t)1 
(JeR/eZ E JUER/eZ Mu)J 

[ Mu IPYU+ - +t |I (u-Et)I] dtdu+O(cE). 

Note that f i~~ Ad<1(u ?,ct) I du 
uER/eZ (u +'Et) du 

=LR/Z d(logI-?(u+Et)I) = 0. 

Thus equation (2.5) is equal to 

4 - - + (1 -t) 

t ieR/Z ( IT(U) | 7(u + t) ) u Y( + et) I du 

-ER/eZ (I t(u) I 1i(u et)I)+K(u-et)Idu] dt. 

Since 
1 _ 1 _ My(u?+ct)I-h(u)I - 0(), 

K(u) I VMu + ct)I ML(u)I Mu(u + t)I 

equation (2.5) equals 
4 ?2 + (E) ? (c), 

which proves the lemma. 

For any closed curve -y: Ri/fZ -* R3 and for each E > 0 define 

(2.6) E6 (Iy) = JY(V)I2()I K(v)I dudv+4_ 2e I _ V(U) - yC)1 
Iu-vl?> 

Then by Lemma 2.3 we have 

= JJ [ -(U) )(V) 12 I,(V))2 ](U) IY(v)jdudv + 0(e). 

Iu-vI?e 

We deduce the following: 

COROLLARY 2.4. If Vt(u)I is Lipschitz in u, then 

(2.7) E(y) = lim E,(y). 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 13 

Proof of Theorem 2.1. Without loss of generality, we may assume that T 
is an inversion in a 2-sphere. Let us start with the case where T(-y) C ]R3. Let 
u E lR/fZ be the arc-length parameter of -y. Then I-y(u)I = 1 and I(To y)'(u)I = 
IT'(-y(u)) are both Lipschitz functions in u, where T'(.) denotes the differential 
of T. Hence E(y) = limbo+ E,(-y) and E(T o -y) = limbo+ EE(T o -y). 

By a calculation using the law of cosines, we have 

(2.8) IT'(y(u))I IT'(^y(v))I _ 1 

IT(-y(u)) - T(y(v))12 Lty(u) -y(V)12 

Integrating this over the region u - vI > c, we obtain EE(T o -y) = E6(y) (see 
(2.6)). Hence E(T o -y) = E(-y) by Corollary 2.7. 

Next let us assume that T(-y) passes through oc. Let Y1 = T(-y) n W3. If 
-Yi is not rectifiable, then neither is -y, and then E(-y) = E(7y) = ox. Thus we 
may assume that -Yi is rectifiable. Let u E R be the arc-length parameter for 
Y1. 

Clearly y - T-' (o) = T- (-y,) is a rectifiable curve. It has finite length 
if and only if -y is rectifiable. If -y is not rectifiable, then its energy E(-y) is 
infinite, and in this case we need to show that the energy of -Yi is also infinite. 
We will delay the proof of this until later. For now let us consider the case 
when -y is rectifiable. 

Let N E (100, ox) and let e E t0, .001). Define 

Ei(s/ 
= II 

I [yi (u) (V) 12 D (_ _j (u), 
_ 

(v) ) 2 ] 
(2.9) ue[-N,N] 

u-vj >E 

* P1(u) IIY1(V ) I du dv . 

Since D(-yi(u), yi(v)) =u - vI and IVyj(u)I = 1, we have for positive e 

EN(y) = f 1 1(u)I 1V1(v)I dudv Ii 1yi (u) - yi v j2 
uE[-N,N] 
lu-v >E 

(2.10) -vfN L/ vuiu (v du 

= II Ki~u~;i~)I2dudv - 4 
1l yla (U) - ay (V) 12e 

uE[-N,N] 
lu-v Ie 

Now let -y be parametrized in such a way that, for any u E [-N - 1, N + 
1] C Ri/fZ (choose ? > 2N + 2), we have -y(u) = T-' o yl(u). Similarly define 
EN (-y) by equation (2.9), where -yi is replaced by y. Let L be the length of -y. 
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14 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

Then by a similar argument to that in Lemma 2.3, we have 

EN(y)= ff V(u)I MI'(O)I dudv I] kx(u) - -y(v)12 
UE[-N,N] 
Iu-vI>E 

-N [J v-ul>E D(-y(u)< y(v))2 dv] IAY(u)Idu 
= ff L$Mu) IIK(M) du dv 

] 7(U) -7(v)12 

(2 .11 ) uE[ HN,Nj 
ju-vj>? 

JN| ( 1_+-) Vt(u)Idu?+ Lj (u)I du 

= ff Vu)IL MO)I udv 
II IV(u) - 7(v)12 

UE[-N,N] 
Iu-vI>E 
4N 4 
- + (E) + ? |y(u))I du, 

where e+ and e_ are defined as in equation (2.2) and 0(9e) may depend on N. 
On the other hand, equation (2.8) implies that 

i(u)l K(v)l Jd ud Mu(u) I KM du dv. 
171 (u) - tY1 (v) 12 17 (u) - 7 (V) 2 UE [ N,N] UE [-N,N] 

Iu-vI>c Iu-vI?E 

Combining the last three formulas, we have 

EN(71) - EN(a) = -4 K(u)I du + 0(9e). L -N 

By letting e -* 0, we obtain 

(2.12) E (y1 -E (y) =E-L length (T- 1 o -y([-N, N])) 

(recall that -y(u) = T-1-yj(u) for u E [-N - 1, N + 1]). By the definition of 
energy, limN,+O EN(-yl) = E(-y1) and limN,+O EN(-y) = E(-y). It follows that 
E(-y1) is finite if and only if E(-y) is finite. In case they are finite, part (ii) of 
Theorem 2.1 follows from equation (2.12) if we let N -* +oo. 

It remains to show that the energy of -Y1 is infinite if -y is not rectifiable. 
Assuming this, we see that T-1(-y1) = y - T-1(oo) has infinite length. This 
means that either T-1 o -yl((-oo, -1)) or T-1 o -y((1, ox)) has infinite length. 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 15 

Without loss of generality let us assume the former. Then 

E(-yi) JJ [ du (u)Y(v)jv2 u-vI2 d 
uE(-oo,-1] 

vE[O,1] 

fdu dv -lo2 
J1 h'i (U) (V) 12 

uE(-xo,-1] 
vE[O,1] 

= ff I(T 0 -yl)'(u) (T 0 -yl)'(v) dudv - log2 
IT]1lo -~,(u) - T-1 oyl()1 

uE(-oo,-1] 
vE[O,1] 

> 6 I(T-1 o -yi)'(u)) du-log 2 

00, 

where 6 > 0 is some constant independent of u. The proof of Theorem 2.1 is 
thus complete. 

3. Energy bounds the average crossing number 

In this section we will show that the average crossing number of a closed 
curve -y is bounded by the energy up to some multiple. As a direct consequence, 
given any positive constant M, there are only finitely many ambient isotopy 
classes of embeddings of S that can be represented by a curve of E < M. 

Recall that (see [FrH1], pp. 196-197) the average crossing number c(Y) of 
a rectifiable curve -y: X * W3 (over itself) is 

(3.1) c(ay) = c(-') = 1 JJ I(W(x (vM (v) a(z))I dxdy. 47r I ̂~~~ ( y) (X) 13 
XxX 

In the numerator of the integrand we see the absolute value of the scalar triple 
product of three vectors. If the curve y is simple and has bounded curvature, 
the integrand is actually bounded, since near the diagonal of X x X the 
numerator undergoes a double degeneracy (see inequality (3.9) below). 

For any planar curve Tj: X -+ R2, the number of self-crossings of r is 
just 1/2 the cardinality (= a natural number or oc) of the subset {(x, y) E 
X x X;x 7& y,ij(x) = r7(y)}. Let -o: X -k R3 be a rectifiable curve. For any 
0 in the sphere S2 of unit vectors in R3, let Po :3 W-+ R2 be the orthogonal 
projection in the direction 0 (Po(O) = 0). Let n(-y; 0) be the number of self- 
crossings of the planar curve Po o y. We have the following characterization of 
the average crossing number: 
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16 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

LEMMA 3.1. Let -y: X -* R3 be a simple rectifiable curve. Then the 
average crossing number of -y is just the number of self-crossings of its 0- 
projections averaged over 0 E $2: 

(3.2) c(y) = f | n(-y; 0) dS, 
OeS2 

where dS denotes the area form on S2. 

Proof. Consider the map F: X x X - diagonal - $2 defined by 

F(x, y) = (x) - y(y) 

The Jacobian of this map satisfies, 

I (Ay(x), y(y),y(X) - W(y))I det (dF)I = j(x)- (Y)3 , a.e. (x, y) E X x X - diagonal. 

(Compare [Ar] and [FrHi].) Hence c(y) is the area of the unsigned images 
of F (counting multiplicities) divided by 4ir (see equation (3.1)). On the 
other hand, for any 0, the number of self-crossings of the planar curve Po o -, 
n(-y; 0), is equal to the cardinality of F-1(0). This implies that the area of the 
unsigned images of f is equal to the integral of n(-y; 0) (cf. [Fe]). Hence we 
have equation (3.2). D 

For a knot K in ]R3, the topological notion, crossing number of K, is 
defined to be the minimum of n(-y; 0), where -y is any simple closed curve in the 
isotopy class of K and 0 is any unit vector in 3-space. If -y is a tame embedding 
of gi, then the corresponding knot will be denoted by [-y]. Moreover, if -y is 
rectifiable, then by Lemma 3.1 the crossing number of the knot [-y] is bounded 
by the average crossing number of y. 

It is convenient to broaden our picture from closed curves to proper rec- 
tifiable embeddings of Ri in RI3. Such embeddings will also be called proper 
rectifiable lines in ]R3. 

THEOREM 3.2. For any proper rectifiable line -y: ]R -* R3, the average 
crossing number satisfies 

(3.3) c(y) < - E(y). 2ir 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 17 

y(x+s) 

,Yx;x+s 

FIGURE 3.1 

Proof. Let -y(x) be parametrized by arc length. For any fixed x E Ri define 
an associated auxiliary function Gx: ]R - R as follows: 

GX (S)= dy Gm~s) ~ { y(y) - yWxI2 -(y -X)2 d 

f+oo( 1 1 ) 

+ ] 
[IVy(X + S)-y(X)I + ?y-X-SI]2 (y X)2 dy 

- jX+ { 1 } dy+ 1y(x~s)-y(x)J 

The upper limit of integration for y is +oo if s > 0 and -ox if s < 0. Similarly 
the ? sign is + if s > 0 and - if s < 0. For s > 0, Gx(s) is the energy relative 
to 'y(x) of the curve -Yx;x+s, which we obtain from -y I[x,x+s] by joining a ray in 
the direction of the vector -y(x + s) - -y(x) (see equation (0.1) and Figure 3.1). 
If s < 0, then Gx(s) is the negative of the energy relative to -y(x) of a similar 
curve in the opposite direction. Clearly Gx(?O) = 0 and Gx is continuous as 
a function in s. 

The key to the proof is to imagine the dynamical process, where by a 
forward (and then a backward), the ray from -y(x), which is tangent to -y, is 
wrapped around -y, giving the family of curved "rays" -Yx;x+s along the way. We 
then find an estimate for the integrand of equation (3.1) in terms of quantities 
such as dGx(s)/ ds (see inequality (3.10)). This integrates to give an estimate 
of c(-y) in terms of, the regularized energy. 
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18 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

9(x,y) 

-y y) 

9(y~x) 
y (x) \ 

FIGURE 3.2 

For a.e. x E IR, Gx is an absolutely continuous function. We have for a.e. 
x, s e R, 

dsxKs 
x ? 

a)-'~)2 
-__ 

(3.4) ds |a(X + s)- (X)12 a(+s) Ih(x + s) - () 

For any x e JR and a.e. y E R let us define O(x, y) E [0, ir] by 

6 j angle between '(y) and `(Y)'(x) 7 if X < Y, 
- angle between - y(y) and y(Y)-'(x), if x > y, 

(see Figure 3.2). 
Then for a.e. s > 0, 

a (A(x + s), Y(x + s) - (x)) 
I-K (x ? S) - _ _ _ _ _ _ _ _ _ _ __I (3.6) as =(x+ s) - (x)I 

= cos O(x, x + s), 

and hence, 

1- -I-(x + s) --y(x) I = 1- cos O(x,x + s) 

(3.7) s = 2sin2 O(x, x + s) 
2 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 19 

A similar argument shows that the above equality also holds for a.e. s < 0. 
By equations (3.4) and (3.7) we have 

(3.8) dGx(s) > 2sin2 H(x,x+s) 1forae sR 
dbs - 2 [my(X +S) - 'y(X)12' o 1. R 

On the other hand, for a.e. x, y eC R 

W (a~z, (p)) IY(Y) y(x) < sin 0(x, y) sin 0(y, x) 

(3.9) < 4sin ( 2 Y) sin (Y7 ) 
2 2 

< 2 sin2 9(xY)+ 2 sin26(yX) 2 2 

(see (3.5)). Combining inequalities (3.8) and (3.9), we obtain 

(3.10) IQ(Mx) , y(y) < y(y) - y(x)) I < {Gx (y - x) + aGy(x -y) 
IVy(y) - (X)I3 ay ax 

Therefore 
|| Mx)j 7(y)- 7 y(y)I- dx dy 

_ 1frOG(Y)--0) Oy(- <h { i -X) + aG? (x 3Y) dx dy 

(3.11) =1 dx dyG2(y-x) 

+00 [+00 aGy(x - Y) 
? J (y] Ox dx 

r+00 
- 21 (Gx(oo) - Gx(-oo)) dx. 

Note that, for any -oo < t- < 0 < t+ < 0, we have 

Gx(t+) - Gx(t) )< {d(x?s)-y(x)12 Is } 
- E(-y -y(x)). 

It follows that Gx(oo) - Gx(-oo) < E (y -y(x)). Then formula (3.11) implies 
that 

||~~_ 
1( 

(y)-_ )7()7(X) )13( 
) dxdy < 21 E(-y, -(x)) dx. 

But the right-hand side in the above formula is equal to 2E(-y) by equation 
(0.2); so inequality (3.3) follows. [1 
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20 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

Note that any proper rectifiable line -yi: R I- R3 gives rise to a simple 
closed curve OY1 in S3 = JR3 U {oc} which passes through the point at infinity. 
In case 'Yi is tame, its knot type, denoted by [-Y1] or [-yi], is well defined. It is 
elementary to show that 

(3.12) crossing number( [yi]) < c(-yi). 

THEOREM 3.3. Let -y be a simple closed curve in 1R3 and let c([y]) denote 
the crossing number of the knot type [-y] of 'y. Then 

27rc([-y]) + 4 < E('y). 

In Section 4 we will see that any simple closed curve of finite energy is 
tame and hence defines a (finite) knot type. 

Proof. If the knot type ['y] is represented by a proper rectifiable line Y1 
in ]R3, then by inequality (3.12) and Theorem 3.2 

c([ay]) < c('yi) < - E(-yi). 

According to Theorem 2.1, the energy will increase exactly by 4 if a M6bius 
transformation is used to move the proper rectifiable line -Yi off infinity and 
into a closed curve -y. El 

Since an essential knot must have 3 or more crossings, we obtain the 
following corollary: 

COROLLARY 3.4. Any rectifiable loop with energy less than 6ir + 4 
22.84954 is unknotted. El 

Computer experiments of [Ah], as reported in [O'H3] and independently 
by Steve Bryson, yield an essential knot (a trefoil) with energy _- 74. Fol- 
lowing these experiments, D. Kim, R. Kusner and G. Stengle [Ki] analytically 
solved for the minimum energy of linear (2,3)-torus knots on (circular) tori of 
revolution in S3. They obtained Emin l 74.41204. 

According to Tutte [T], the number of "rooted" planar graphs with n 
edges is 

2(2n)!3n 
(3.13) Tr (n) = (2)!3 

Thus the smaller number T(n) of isomorphism classes of planar embeddings 
of graphs with n edges satisfies 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 21 

Given a knot diagram D with n-crossings, let D+ be the closed union of 
complementary regions for which an arc to infinity meets the diagram in an 
odd number of points. The union D+ is a thickening of a planar graph G with 
n edges. Furthermore this correspondence 

{D, n crossings} -* {G, with n edges} 

is at most 2n to 1. Thus the number of knot diagrams with exactly n crossings 
is bounded by 2n(T(n)) < 2(24n). If a knot type is represented by a diagram 
with fewer than n crossings, then nugatory crossings may be added to make the 
number of crossings exactly n. Therefore the number K(n) of knot diagrams 
with at most n crossings must satisfy 

(3.15) 2n < K(n) < 2(24n). 

Theorem 3.3 and inequality (3.15) may be combined to yield the following: 

COROLLARY 3.5. The number of (isomorphism classes of) knots that can 
be represented by curves of E < M is bounded by 2. (24-4/2w,) * (241/27r)M 

(0.264) ( 1 .658) M. [1 

The idea of using Tutte's results to obtain an upper bound on the number 
of knots occurs in a manuscript of Welsh [W]. Sumners, by studying two bridge 
knots, has shown that the number of distinct knots of n crossings grows at 
least as fast as 2n (see [S]). 

The following theorem gives a direct estimate for the average crossing 
number of a simple closed curve in terms of its energy. Such estimates will be 
useful in proving the tameness of curves of finite energy. The proof is a little 
more involved than the previous theorem. 

THEOREM 3.6. For any simple rectifiable curve -y: 1 3 W, the average 
crossing number satisfies 

11 1 
(3.16) c(ay) < 1 E() + -. 

Proof. By Lemma 0.1 we may assume that the length f of -y is 2. Suppose 
that -y: R/2Z - W3 is parametrized by arc length. Then by equation (1.1) 

) 1 j dx { I[(Y) -y(X)I2 -3(y _X)2 } 
Let x E R. Define an associated auxiliary function Gx [-1,1] -* R by 

Gx(s)= ix {() -y(X)I12-( -2} dy 

This content downloaded from 128.111.247.66 on Thu, 12 Dec 2013 00:19:45 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


22 M.H. FREEDMAN, Z.-X. HE AND Z. WANG 

The upper limit of integration for y is x + 1 if s E [0, 1] and x-1 for s E [-1, 0]. 
For s = 0, either definition gives Gx(0) = 0. For s E [0,1], GX(s) is the energy 
relative to y(x) of the curve 7Yx;x+s, which we obtain from y I[x,x+s] by joining 
a straight segment of length 1 - s in the direction of the vector -y(x + s) - -y(x) 
(similar to Figure 3.1). If s E [-1, 0], then GX(s) is the negative of the energy 
relative to y(x) of a similar curve in the opposite direction. 

For a.e. x E IR and a.e. s E [0,1) we have 

dGx(s) fX+1 a k dy 
ds +s as [Iy(X + S) -(X)I + y -X-S]2| 

Jx+1 (-2)[ I' y(x + s)- y(x)l - 1] as d 

(3.18) +S [y(x + s) - y(x)f + y - x - s]3 

= [1-a IY(x+ s) - y(x)I] 

I[v(x + s) - y(x)12 [Ijy(X + s) - y(x)I + 1 -S]2 

For any x E R and a.e. y E R with Ix - yJ < 1, let us define O(x, y) E [0, 7r] 
as in equation (3.5) (see Figure 3.2). Then, as above, for a.e. s E [0,1) 

1-- (x + s) - 7(X)J = 1- cosO(x,x + s) 
(3.19) As = 2 sin2 0(x, X+ s) 

2 

Now we will restrict s e [0, 1/2]. Then 1-s > 1/2 > s > ly(x+s)- y(x)I. 
Then equations (3.18) and (3.19) yield 

(3.20) dGx (s) > 2 i 2 0(x,x + s) 3 1 (3.20) ~ds ? si 2 4 yX S)-yX12 

A similar argument shows that the above inequality also holds for a.e. 
s E [-1/2, 0]. 

On the other hand, for a.e. x, y E R with Ix - I < 1 

(3.21) (X ), t(y), -.Y(Y) - -y(x) < 2 sin2 O(X ,) + 2sin2 o(Y X) 
I-()- y(x) 

(see inequality (3.9)). Combining inequalities (3.20) and (3.21), we obtain 

(3.22) I(A(x), A(y), <Y(y) - y(x)) <4 aGx (y - x) aGY(X-y) 
3 )(y) - 7(x)13 - 3 ay ax 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 23 

whenever IY - xj < 1/2. Therefore 

f j(~I (X), j (y)< y (y) -(x)) I dx dy 
I ~~~~~ y (y) - yX)1 

Iy-xl<1/2 
(x,y)ER/2ZxR/2Z 

4 a IGx(y-x) + aG (x Y)} dxdy 

ly-xl<1/2 

4 1 dx j / aGx(y - x) dy 

(3.23) 4 1 tY+l/2 aG(x -y) 
? 3] dy ] dx 

- 41 j(Gx(1/2) - Gx(-1/2)) dx 
3 -1 

+ 3 f'(Gy(1/2) - GU(-1/2)) dy 

- 3 j (Gx(1/2) - Gx(-1/2)) dx. 

By equation (3.18), Gx is nondecreasing on [0, 1]. Similarly it is nondecreasing 
on [-1, 0]. Thus Gx(1/2) - Gx(-1/2) < Gx(1) - Gx(-1); and by equations 

(3.23) (and (3.17)) we have 

f| f (Ay(x)A y(y)< y(y) - y(x) )I dx dy 
I I ~~I ~(y) - X)1 

(3.24) ly-xl<1/2 
8 1 8 

<- I| {Gx(1) -Gx(-1)} dx = -E(-y). ~3 J3 

On the other hand, 

ff I(AI(x)W,(y),<y(y) -y(x))I dxdy 
II ~~~I (y) - y()1 

1>ly-xl>1/2 

J dx dy 
-~~~~~ JJ l(y) - -y(X) 12 
l>ly-xl>1/2 

- II { V(y)-(X) 12 (y X)2} 
1>ly-xl>1/2 

(3.25) ? dx iy>ly-l>/2 - d)2 
1 _ _ - x)2>1 
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(3.25) K JJ {IV(y)-7(X) 12 (y-X)2} dxdy 
R/2ZxR/2Z 

+ f 1-1 ( +dy fX+l dy 

=E(y) + 4. 

Combining (3.24) and (3.25), we obtain 

(3.26) || a(X), (Y), - (Y) 'Y(X))I dxdy < !!E(7) + 4, 

R/2ZxR/2Z 

which implies inequality (3.16) by equation (3.1). 0 

It follows from Theorems 3.6 and 2.2 that there is a universal constant 
Co > 0 such that for any simple closed curve -y 

(3.27) c(y) < CoE(-y). 

The best constant for Co in inequality (3.27) is not known. 
The energy of an arc bounds the average crossing number of a subarc 

in its interior. Considering the middle fifth of arcs, we obtain the following 
lemma: 

LEMMA 3.7. Let y: [-58, 56] -4 3 be a unit-speed rectifiable arc and let 
y- be the restriction of -y to [-6, 8]. Then 

1 U (Ay(v),AM(u)7y(v) -y(u)) Idud < 2 E(y) 
=7 I-y] ~ () -_ U 3 dudv 

UvE[-6,6] 

Proof. We may assume that 6 = 1/4. For any x E [-6,8] = [-1/4,1/4] 
and s E [-1, 1] define Gm(s) as in the proof of Theorem 3.6 (equation (3.17)). 
Then the estimate (3.22) holds for a.e. x, y E [-1/4,1/4]. Carrying out the 
integration analogous to formulas (3.23) and (3.24) gives the result. E 

4. Tameness and minimizers for knots 

In Section 2 we found that the circles minimize the energy among all closed 
curves in W3. We now take up the issue of minimizing the energy within a 
knot type. Since rectifiable loops may be topologically "wild", it is interesting 
that the finiteness of the energy implies that tameness of the curve. 

We recall that an embedding -y of X into a 3-manifold M3 (in our case M is 
either R3 or S3) is tame if there is a topological ambient isotopy which deforms 
the curve into some smooth embedding of X into M3; or equivalently there 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 25 

exists an extension of the embedding X = X x {0} -? M3 to an embedding 
X x 2-+ M3 (see [Mol). 

THEOREM 4.1. Suppose that X is an open interval or $1. Any curve 
y: X - 3 with finite energy is tame. 

Proof. By a classical result of Bing [Bi] it is enough to show that -y is 
locally tame. That is, for any point on -y there is an open and tame subarc of 
oy that contains the point. By the remark before Corollary 1.3 there is some 
8o > 0 such that the energy of any subarc of -y with length < 58o is bounded 
by some small positive number, say, e = 0.02. Let w be any point on oy. Let 
6 < 6o be a positive number such that -y contains a subarc 11w;56 of length 56 
with the middle point at w. This is possible, since X is either an open interval 
or W1. Let Tw;6 be the subarc of 7qw;56 of length 6 which also has a middle point 
at w. By Lemma 3.7 and our assumption on 6 we deduce that the average 
crossing number of 11w;6 is at most 2E/(37r) < .01. Using Lemma 3.1, we see 
that n(rlw;6; 0) vanishes for some 0 E $2. That is, the orthogonal projection P6 
takes the arc ?7w;6 into a simple arc in the plane. A classical result in complex 
analysis says that any simple arc in a plane is tame; i.e., the embedding of 
the arc extends to an embedding of the product arc x R into R2. Thickening 
the product structure in the plane with 0-parallel lines gives a taming of the 
arc r/w;6 in ]R3. Hence %w;6 is tame. Since w is arbitrary, we conclude that -y is 
locally tame and, hence, tame. El 

The following compactness property will be quite useful in showing the 
existence of extremal curves. 

LEMMA 4.2. Let -Yi: [-Ni, Ni] -? R3 be a sequence of rectifiable curves of 
uniformly bounded energy. Assume that the curves are all parametrized by arc 
length and that N = limi~,, Ni exists and is positive. If -yi (0) is a bounded 
sequence of points, then there is a subsequence -~ik of PYi, which converges 
locally uniformly to a rectifiable simple curve ty: [-N, N] -? R3. Moreover 

E(-y) < lim infE(^yik) 

A similar result holds for sequences of closed curves. 

Proof. We may assume that limckO E( yIk) exists. By Lemma 1.2 all -yi 
are uniformly bi-Lipschitz. On the other hand, PYj(O) are uniformly bounded, 
so we may use Ascoli's theorem to conclude that some subsequence of -~i, say, 
-ikN converges locally uniformly to a bi-Lipschitz mapping Ay: [-N, N] --3 

Denote the energy integrand of equation (0.3) by G.(u, v). Since 

D(-y(u), y(v)) < lim inf D(yik (u),ik(v)) 
ik--+00 

(NkWINk( 
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and 
l(U) I < li~m inof lak(u) 

for a.e. u 7& v we have 

Q(u, v) < lim inf Gk (u, v). 
Zk-+O 

Since Gyik is a nonnegative function, by Fatou's lemma 

(4.1) E(y) = JJ G(uv) dudv < lim inf Jf GYk (u, v) du dv 

= lim E( Ik). 

This proves the lemma in the first case. It is easy to see that the same proof 
works for sequences of closed curves. [1 

As a functional defined in the space of all curves, E is nonnegative and 
(by Lemma 4.2 and its proof) lower semicontinuous in the topology of locally 
uniform convergence. 

Now let K be a nontrivial knot. Let Yi, PY2,... be a sequence of loops in 
j3 of knot-type K with energy approaching the infimum. We may assume 
that each curve has unit length and that all curves lie in some fixed bounded 
region. Then we may use Lemma 4.2 to obtain a subsequence that converges 
uniformly to some closed curve COO. However the knot type of the limit curve 
may not be the same as the curves in the sequence. There is the possibility 
that representatives of K may "pull tight" and disappear in the limit. To 
keep the limit COO in the same knot class we may suitably deform the curves 
by Mobius transformations. This would work only for irreducible knots. The 
Mobius transformations can only be used to prevent the degeneration of one 
component in case the knot is a connected sum of two. The "size" of the 
two summands cannot be controlled at the same time. For example, if the 
"pull-tight" phenomena occur near two points that are just a unit spherical 
distance away, no Mobius transformation of $3 can have a large derivative (in 
the spherical norm) near both points. 

The main result of this section is the following existence theorem: 

THEOREM 4.3. Let K be an irreducible knot. There exists a simple loop 
PYK: $1 ]R 3 with knot-type K such that E(-K) ? E(a) for any other simple 
loop -y: 1 -+ 3 of the same knot type. 

We lay the groundwork for the proof with the following definition and 
lemmas: 

Definition. Let B C S3 be a closed topological ball; i.e., B is a subset 
homeomorphic to the unit ball U = {w E R3; IwI < 1}. We say that a loop by C 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 27 

R3 has its knot type captured in the topological ball B if ($3 -int(B); a-int(B)) 
is homeomorphic to the unknotted pair (U, J), where J = {(u, 0, 0); 0 < 
U < 1}. 

The following property follows from 3-manifold topology: 

LEMMA 4.4. If a nontrivially knotted loop -y has its knot type captured 
in each of the closed topological balls B1 and B2, then B1 n B2 is nonempty. 

Proof. By contradiction, assume that B1 n B2 = 0. Then (B2;y fl B2) is 
a subpair of ($3 - int(Bl); -y - int(Bi)). By the assumption on B1 we deduce 
that (B2; yB2) can be embedded into the unknotted pair (U, J). This means 
that (B2; y n B2) is also unknotted (i.e., homeomorphic to (U, J)). Since B2 
captures the knot type of -y, it follows that -y is unknotted, a contradiction. [D 

LEMMA 4.5. For any nontrivially knotted tame loop -y in $3 there is some 
e > 0 such that no closed topological ball of spherical diameter < 6 captures 
the knot type of the loop. 

Proof. Let Qk, 1 < k < n, be a finite number of tame open topological 
balls whose union contains -y such that, for each k, Qk is some regular tubular 
neighborhood of a closed subarc of -y. These topological balls exist, since -y 
is tame and, hence, locally tame. Let Bk = 3 -Qk. Then each Bk captures 
the knot type of ny. Now let B be any closed topological ball that captures 
the knot type of ny. By Lemma 4.4, B intersects each Bk = $3 - Qk. Hence 
B cannot be contained in Qk. As B n -a $ 0 and the open sets Qk cover -y, we 
deduce that B cannot have an arbitrarily small spherical diameter. [1 

In the following, the term diameter will mean euclidean diameter. 

LEMMA 4.6. For any manifold M > 0 there is some 6 = b(M) > 0 such 
that the following statement holds: If -y is a nontrivially knotted loop with 
E(-y) < M, then there is a Mobius transformation T of $3, which takes -y to 
a loop -y* = T(y) c R3 so that length(-y*) = 1 and no closed topological ball of 
diameter < 6 captures the knot type of -y*. 

Proof. Let p be a point on ^y where the tangent exists. Let T1 be the 
inversion in a unit sphere centered at p. Then T1 (p) = oc and, hence, nYi = T1 o-y 
is a closed curve in ?3, which passes through oc. Clearly the knot type of nYi 
can be captured by a closed topological ball contained in W3. On the other 
hand, by Lemma 4.5 there is some El > 0 such that no topological ball of 
spherical diameter < El can capture the knot type of '?. It follows that, for 
some e > 0, no topological ball in I3 of diameter < e can capture the knot 
type of 'Yi So by resealing and translating the curve, we may assume that 'l is 
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captured by a closed topological ball Bo, with Bo C U the unit ball centered at 
the origin, but is not captured by any closed topological ball in ]R3 of diameter 
< 1/2. 

Let fYi = -{oo}. Theorem 2.1 implies that E(-y,) = E(^y) -4 < M -4. 
Then for some 61 depending only on M, there is a (round) sphere in R3 disjoint 
from '1 such that its radius is at least 61 and the distance from 0 to its center 
is at most 1. In fact, if no such 61 exists, then there would exist a sequence 
of rectifiable lines whose energy is bounded by M - 4, such that the limiting 
curve would fill up the ball of radius 1 centered at 0. That is certainly a 
contradiction to Lemma 4.2. 

Let S be such a sphere. Let Is be the inversion on S. We claim that there 
is some 62 depending only on M such that the knot type of the curve Is 'iY1 
is not captured in any closed topological ball of diameter < 62. In fact let B 
be a closed topological ball that captures the knot type of Is o '1. Then, as 
(Is)-' = Is, the topological ball Is(B) captures the knot type of '1. It follows 
that either oo E Is(B) or the diameter of IS(B) is at least 1/2. On the other 
hand, by Lemma 4.4, IS(B) nB Bo $ 0 and hence IS(B) n U $& 0. As the radius 
of S is bounded from below by 61 and the center of S lies in U, conclude that 
the diameter of B = IS(Is(B)) is bounded from below by some 62. 

Clearly Is o 'Y is contained in the interior of the sphere S. So by Lemma 
1.2 its length should be bounded by a constant depending on M. Rescaling 
this curve if necessary, we may obtain a curve -y* of unit length that satisfies 
the conditions of the lemma. [1 

Proof of Theorem 4.3. As above, let -Y1, Y2, .... be a sequence of loops in 
R3 of knot-type K with energy approaching to the infimum. Since 
limkO E(-yk) exists, there is some uniform bound M on E(-yk). By Lemma 
4.6 and Theorem 2.1 we may assume that all loops have unit length and that 
there is some 6 > 0 such that no closed topological ball in W3 of diameter 
< 6 captures the knot type of Nyk. We may further assume that all curves 
are contained in some bounded region. Thus by Lemma 4.2, after subtracting 
a subsequence, we may assume that -fk converges uniformly to a limit loop 
AfK C W3 with 

(4.2) E(-yK) < lim E(-yi) = energy infimum. 
-+Too 

We will show some (and hence all) Nfk are ambiently isotopic to ̂ YK. This will 
imply that the knot type is conserved in the limit and, by (4.2), AYK is the 
energy minimizer. 

By Theorem 4.1 we know that ̂ YK is tame. So there is some regular 
tubular neighborhood M (homeomorphic to $1 x R2) of ̂ YK in W3. Corollary 
1.3 allows the construction of an exceedingly thin, locally straight, closed, 
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regular tubular neighborhood K C M of yK in W3. The idea is to take an 
even number of points on yK separated by some small f > 0 in arc length and 
to fit together thin solid cylinders of length approximately f whose axes are 
the straight line segments between adjacent points. Corollary 1.3 also shows 
that the ratio width/length of these cylinders can be taken to approach zero 
as f -- 0. The "fitting together" can be done in various ways. Rather than 
give a detailed construction which the interested reader could provide, we will 
be content to give the specifications K should satisfy. 

We require K to be the union of adjacent closed cylinders Cn, n = 
1,2,...,N= 2j, so that 

(1) N/2 = j > 700M + 2. 
(2) Each Ceven is an isometric embedding of D2 x [0, ?] and each Codd is 

some 1.01-bi-Lipschitz embedding of D2 x [0, 1]. Here D2 denotes the closed 
disk of radius r in the plane. 

(3) The ratio r/f is so small that within any cylinder Cn and for each k, 
the arcs of -yk n Cn have total length < 1.1f. 

(4) (700M)(1 + 1.1) /?2 + 4r2 < 6. 
Condition (3) can be achieved since each -yk has energy bounded by M. 
Let us show that K is a regular tubular neighborhood of -YK. That is, tYK 

is ambiently isotopic to the core curve of K. The fundamental group of M -yK 
may be written as a free product with amalgamation over rl (OK) - ZD 2: 

(4.3) Z ( i-7r, (M-yK) -71 (K--yK) *7rg (M-int(K )). 
iri(N 

It follows that both summands on the right are isomorphic to Z E 2. In 
particular 7r,(K - yK) - 202. Then it follows from 3-manifold topology that 
the pair (JK,-yK) is homeomorphic to the standard pair (S1 x R2, ?1 x {0}). 
Hence K is a regular tubular neighborhood of -yK. 

By the uniform convergence of {Yk}, after dropping a finite number of 
curves Yk , we may assume that nyk C JK. It remains to show that -Yk is ambiently 
isotopic to -YK in K. We fix the index k. 

Call a cylinder Cn, n even, good if 

(4.4)E(~ n+3 
(4.4) E '-Y (mY jm) < 0.01, 

and bad otherwise. By Lemma 1.4 there are at most 700M bad cylinders. On 
a good cylinder, Lemma 3.6 and conditions (2) and (3) above assure us that 
the average crossing number satisfies 

C('Yk n Cn) < 0.02/(37r) < 0.005. 
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0-back of cylinder wall 

projected image yi 

FIGURE 4.1 

By Lemma 3.1 it follows that there is some orthogonal projection 7ra with 
0 almost perpendicular to the axis of Cn = D2 x [f, ?], which projects the 
subarc -Yi n (D2 x [0.1k, 0.91]) injectively into the cylinder wall OD2 x [-X, j] 
of C,. In particular, the projection lines to the cylinder wall of, say, fk n 
(D2 x [0.2f, 0.8f]), do not meet any other part of Nfk (see condition (3)). 

There is exactly one spanning arc k of -fk in the subcylinder D2 x 
[0.21, 0.8f] of Cn, where a "spanning arc" means an arc in the subcylinder 
which joins the two faces D2 x {0.2f, 0.8f}. By condition (3) all other arcs of 
vi n (D2 x [0.21, 0.8f]) have length smaller than or equal to 0.1f. Consequently 
there is an arc 3 that spans the 0-back wall of Cn and meets the projected 
image of Nfk transversally in exactly one point. Then 3 = ra1 (i3) is an embed- 
ded disk separating Cn C ! and meeting fk transversally in one point. (See 
Figure 4.1.) 

Now consider the separating disks t3n for each good even index n. Since 
there can be at most 700M bad cylinders, by condition (1) there exist at least 
two separating disks. These disks divide K into many small topological balls, 
which by condition (4) all have diameter < 6. The curve yk meets each of the 
small topological balls in an arc, which is unknotted in the topological ball by 
the irreducibility of [-'k] and the fact that the knot type of fk is not captured 
in a closed topological ball of diameter < 6. Thus Nfk is an unknotted core 
curve in K. This implies that -YK, also a core curve in K, has the same knot 
type as ')k. The proof of Theorem 4.3 is thus complete. Ed 
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5. Regularity of extremal loops 

Let y: 1 -- I3 be a loop of finite energy. We call ay an extremal loop 
if E(ay) < E(^y*) for any other loop -y* which is ambiently isotopic to -y. If 
E(ay) < E(Py*) holds for those loops -y* which are ambiently isotopic to -y and 
are contained in some small neighborhood of -y, then -y is called a locally 
extremal loop. In this section we will show that any locally extremal loop -y 
is in C1'1. That is, in arc-length parametrization, the function s n-* -y(s) is 
differentiable and the derivative -y'(s) is Lipschitz in s. 

Let us first introduce an elementary reflection argument. Let H be a 
(closed) halfspace bounded by a (geometric) plane, or a (closed, round) ball, 
in W3. We say that H touches a loop -y at wi and w2, if W1, w2 E ay n OH and 
-y is disjoint from the interior of H. Suppose that H touches -y at wl and w2; 
then the two touching points will divide the loop into two (closed) subarcs, 
say, -Yi and -Y2. We may assume that the length of -yi is less than or equal to 
the length of -y2. Let 7, be the image of -yi under the inversion in OH. Form 
a new loop -Y2 U 71 and denote it by AyH. Clearly, AH C R3. 

If H is a halfspace, then nY1 is just the mirror image of -Yi in the plane OH. 
As the subarcs -Yi and -y2 are on the same side of the plane OH, the energy 
integrand in equation (0.3) corresponding to AYH is pointwise less than or equal 
to that corresponding to -y. Thus 

(5.1) E(yH) < E(ay), 

where equality holds if and only if either -Yi C OH or -Y2 C OH. Since any ball 
is Mobius equivalent to a halfspace, and since the energy is invariant under 
Mobius transformations (via part (1) of Theorem 2.1), the above property also 
holds in case H is a ball. 

For a point b on -y let Wb be the set of points w E W3 such that 
distance(w,b) = distance(w,^y). In other words, b E Wb if and only if it 
is the center of a ball (of radius 1w - bl) that touches the curve at b. If -y 
is differentiable at b, then Wb is contained in the normal plane to the curve 
through b. This property can be extended to the case where -y has finite energy, 
although the curve may not admit a normal plane at b. 

LEMMA 5.1. Let b be a point on a loop -y of finite energy. Then the set 
Wb is contained in some plane through b. 

Proof. Suppose that Wb is not contained in a line through b; otherwise 
our lemma would be trivially true. Let q1, q2 C Wb such that q1, q2 and 
b are not colinear. Then the circle obtained as the intersection of spheres 

IqibI (v) $q2-bl(q2) determines a "tangent direction" through b. Let P be 
the plane through b normal to this tangent direction. If some q3 E Wb fails 
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to be in this plane, then the complement of the three open balls bounded by 
S2 1-bl (qj), IIq 2-bj (q2) and S2jq3-bj (q3), respectively, has some neighborhood for 
b that is contained in a (round) cone of angle < wT with vertex at b. Since -y is 
a closed curve contained in the complement of these three balls, and since the 
curve passes through b, we deduce that y contains two subarcs, both of which 
have an endpoint at b and are contained in the cone. Then it is elementary 
to show that the energy integrand in equation (0.3) integrated over pairs of 
points on the two subarcs is infinite (see also Corollary 1.3). Therefore the 
energy of -y is infinite, contradicting our assumption. Thus all points of Wb 
are contained in the plane P. LI 

A loop -y is in C1'1 if and only if there is some constant ro > 0 such that, 
for any b E y, the set Wb contains a (planar) disk with radius ro and center 
at b. This is what we will show for a locally extremal loop. The following 
lemma is crucial. 

LEMMA 5.2. Let -y be a locally extremal loop. There is 6 > 0 so that any 
ball B of radius r < 6 with int(B) n yK = 0 meets y in a connected (possibly 
empty) set Bn yK. 

Proof. Suppose that ty minimizes the energy in the co-neighborhood of the 
curve, where co > 0. That is, E(y) < E(y*) for any loop -y* that is ambiently 
isotopic to -y and that is contained in the co-neighborhood of -y. 

As -y is a closed curve with finite energy, there is some 6 > 0, 26 < co, such 
that the energy of any subarc of -y of length < 56 is bounded by 0.0002 (see 
the remark before Corollary 1.3). Hence, by Lemma 3.7, the average crossing 
number of any subarc of -y of length < 6 is at most 0.0004/(37r) < 0.0001. On 
the other hand, using Corollary 1.3, we may choose 6 so small that, given a 
pair of points w1 and w2 on the curve with distance(w1, w2) < 26, the shorter 
component of y - {W1, W2} is almost straight, i.e., its bi-Lipschitz constant is 
close to 1, say, L < 1 + 10-10. 

Let B be a ball of radius r < 6 that touches -y at points wl and w2. As 
above, let -yj and y2 be the closed subarcs of y with endpoints at wl and w2, 
with length(-y) < length(y2); and let nj be the image of -Y1 under the inversion 
in the sphere OB. We have yB = y2 U j1. Since 2r < 26 < so, and since I'i is 
contained in the ball B touching -y, yB is contained in the co-neighborhood of 
-y. We still need to show that yH is isotopic to ny. By inequality (5.1) and the 
extremal property of the energy of ny, this would imply that E(yH) = E(a); 
and, therefore, either -Yi or y2 is contained in OB. Thus ay nOB is connected. 

By our assumption on 6, -Yj is L-bi-Lipschitz with L < 1 + 10-10. Then 
the spherical angle between any two points inYi nfl OB (seen from the center 
of B) must be very small, < 0.01. In particular, it follows that the spherical 
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angle between wi and w2 on OB is at most 0.01, thus distance(w1, w2) < 0.01r. 
As -Yi is L-bi-Lipschitz, we have length(^y) < 0.OlrL < 0.02r. 

Without loss of generality, we may assume that B is centered at 0 and 
that wl = (0, 0, r). Let 3 be the subarc of ny of length r with its middle 
point at wl. Clearly -Yi is contained in the middle 25th of 3 and, therefore, 
by the L-bi-Lipschitz property the points on -y -/3 are at least r/3 away from 
the points on -Yi or RYE. Let /OB = (3 - yi) U j1. Since r < 6, the average 
crossing number c(:) is at most 0.0001. Using estimate (5.1) and Lemma 3.7 
again, we may also obtain c(3B) < 0.0001. It follows by Lemma 3.1 that for 
some unit vector 0, which is 0.1-close to the vector (0, 0, 1), the orthogonal 
projection in the direction of 0 maps both 3 and /B injectively into the plane 
perpendicular to 0. Since 3 and /B are contained in the ball of radius r/2 
centered at wl = (0, 0, 1), each projection line through a point of / or /B 
passes through a unique point on the upper half of the sphere OB. Using 
these projection lines, we deduce that there is some simple arc -y* (or ny1) on 
the upper half of the sphere OB, with endpoints wl and w2, such that / (or /B) 
is ambiently isotopic to (/1- -yi) U y* (or (/- ) U i, respectively). Moreover 
these isotopies can be chosen so that they leave the points in y - / fixed and, 
therefore, give isotopies of ny with -y2 U y* , and YB with y2 U 7, respectively. 
Now it is elementary to see that y2 U y* and y2 U * are ambiently isotopic. 
It follows that -y is ambiently isotopic to YB, thus completing the proof of the 
lemma. R 

LEMMA 5.3. Under the assumptions of Lemma 5.2, for each b in -y, the 
set Wb contains a planar disk of radius 6 with center b. 

Proof. Let X6/s be the open 6-neighborhood of ny. Let the set G: fld -* y 
be a multivalued function defined as follows: For any point q E K, Lemma 5.2 
tells us that the points of -y closest to q are a closed arc. We define G(q) to be 
the set of all points on this arc. Clearly, if p E -y and q E Na, then p E G(q) 
if and only if q E Wp. Thus G-1(b) is the intersection of Wb with the open 
6-ball centered at b. 

By Lemma 5.1, Wb and hence G-1 (b) are contained in a plane Pb. Let D6 
be the open disk in Pb of radius 6 and center b. We will show that D6 = G-1 (b) 
and, hence, that Wb contains the closure of Dr (as Wb is closed). 

By contradiction let us assume that D6 $& G-1(b). Then there is some 
point w E D6 - G-1(b). Let c = distance(w, OD6) = 6 - Jw - bl. Let / be the 
subarc of ny of length c and with its middle point at b. Let wi and w2 be the 
endpoints of./1. Let i = 1 or 2. Construct an arc ai as follows: If wi is not in 
Pb, let ai be the line segment joining w and wi; and if wi E Pb, then choose 
ai to be an arc joining w and wi obtained from the line segment from w to wi 
by slightly perturbing its interior off Pb. Clearly their union oa = al U a2 can 
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X 

FIGURE 5.1 

be kept inside Ea. Since a n Pb contains at most the three points w, wl and 
W2 and these three points do not belong to G-1(b), we have ar n G-1(b) = 0. 
Hence G(a) C y-{b}. 

On the other hand, since the image by G of any point is connected (begin- 
ning a closed arc or a point), and since the "graph" Uq{q} x G(q) c A/s x -y 
(where q E .N/%) is connected and closed, it is elementary to show that G 
maps the connected arc ar onto a connected subset of -y. The diameter of this 
image G(a) is at most c + 26 < 36 and wi, w2 E G(a). Then we deduce that 
the length of -y - / is at most 36 and subsequently the total length of -y is 
< 36 + e < 46, a contradiction because 6 was chosen to be small. LI 

We are now ready to prove the regularity theorem. 

THEOREM 5.4. Let -y be a locally extremal loop in lR3. Then in arc-length 
parametrization, -y(s) is a C1'1 function. 

Proof. Let 6 be the constant in Lemma 5.2. Let r be a fixed number with 
6/2 < r < 6. At any point b E -y let Cb be the boundary circle of the planar 
disk of radius r centered at b, which is contained in Wb (see Lemma 5.3). 
Let Xb be the union of all closed balls of radius r centered at points in Cb. 

Then clearly -y n Xb = {b}. Locally -y is constrained to pass through an axially 
symmetrical quadratic cusp. (See Figure 5.1.) 

By Lemma 1.2 the norm of the difference quotients (y(so)- y(si))/(so-si) 
converges to 1 if si \ so. If -y(so) = b, then the passage of y through the cusp 
at b implies that the spherical angle of the difference quotients converges to 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 35 

some unit vector perpendicular to Wb. Thus -y(s) has a derivative -y'(s) for 
any s. 

The r-disks Dy(t) are mutually disjoint. It follows that r angle 
(-y'(s),-y'(s + As)) < distance(-y(s),-y(s + As)) < As. Since I-y'l = 1, it 
follows that (-y'(s + As) - y'(s))/As < 1 for As small enough. Hence v(s) is 
a Lipschitz function with Lipschitz constant 1/r < 2/6. a 

6. Remarks on the gradient flow 

Let -y: R/fZ -R3 be a simple closed C1'1 curve. Then for any C1'1- 
function h: R/fZ - 

3 consider the curve family yt: R/fZ -* 123 defined by 

(6.1) -yt(u) = -y(u) + th(u), 

where t E R. For t close to 0, each yt is a simple closed C1'1-curve and, hence, 
E(-yt) is finite (see Proposition 1.5). If t s-4 E(-yt) is differentiable at t = 0, 
then the derivative is called the gradient of E at y in the direction of h and 
is denoted by 

d 
(6.2) VhE(y) = -E( yt) dt t= 

LEMMA 6.1. Let -y: R/fZ -* R3 be a simple closed C1'1 curve and let 
h: R/fZ -- - R3 be any C1'1 function. Then VhE(-y) exists and is given by 

VhE(ty) = 2 II [ ('j(u), h(u)) (y(v) - -y(u), h(v) - h(u)) 

(6.3) veR/eZueR/eZ 

MO__Mu__ du dv. -Y (V) - -Y (u) R 

Remark. The integral in (6.3) is usually not absolutely convergent near 
the diagonal. Such an integral is defined in general by 

(6.4) J f(u,v) dudv= lim f(u,v) du dv, 

1U-V1?E 

whereas the limit exists. It is left to the reader to check the convergence of 
the integral in equation (6.3) in this sense. 

Proof. By Lemma 2.3 we have 

E() jj Kt(u) I-t() dudv + 4 - 2- 
1 - yt -yt(V) 12 

1U-V1?E 
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and 
lim E.(yt) = E(-yt). 

Then 

dt 
f -yt (v)-yt (u),h(v)- h(u)) 

= I] V~~~I yt (v) - -yt (u)1Mtu)Vtv)dv 
1U-V1>E 

+ II[ (v')tU ('tu), h (u)) 
+ JJ t Lt(V)-t (U) 12 KVt(u)I 

(6.5) 1U-v1>E 

+ Iyt(v)-(u)12 (t(),h( ()) dudv 

-2 [ [ F (^Yt(u), h(u)) _ (,Yt (v)y(u), h (v)-uh( u))v) JJf t Q(U) 12 -yt(v) - yt(U)12 J 

1U-v1>E 

Vy(u)I Vtv)I du dv. 
lyt (u) - yt (V)2 

Since -Yt and h are C1'1 functions, it follows that 

yt(v) - yt(U) = t(u)(v - u) + (v - U)2 j(i -A)at(u + A(v - u)) dA, 

h(v) - h(u) = h(u)(v - u) + (v - U)2 j(i A)h(u + A(v - u)) dA. 

Then 
(yt(v) - yt(u), h(v) - h(u)) 

= ('t(u), h(u))(v _ U)2 

+ (v-U)3J (1A)(jt(u + y(v-U)), h(u)) dA 

+ (V-U)3 j )(7t(u), h(u + A(v-u))) dA 

+ O((V -U)4) 

A similar expression holds for Jyt(v) - yt(u)12 = (yt(V) - yt(U), yt(V) -yt(U)). 

It follows that 

(Yt(V) - yt(u), h(v) - h(u)) 
1yt(v) - yt(u)12 

- { (t(u), h(u)) + (v-u) -A) [(At(u + A(v - u)), h(u)) 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 37 

+ (yt(u), h(u + A(v - u))) dA + O((v-u)2) 1 
Iyt (U) 12 

{ 2(v-u)j1; (1 - A)Qt(u+A(v-u)),>~t(u))dA 

+ O((v - U)2)} 

_(tt(U), h(u)) + (v - u) 
I /t(u)12 I?/t(u)12 

* j (31 - A) (t(u + A(v - u)), h(u)) + ('t(U), h(u + A(v -u))) 

-2(7t(u), h(u)) at(u + A(v u)), Ijt(u)-z) dA I't (U) \12 

+ O((v - U)2). 

Hence 

(ot(u), h(u)) _ (yt(v) - yt(U), h(v) - h(u)) 

I at (U) 12 
1 
Vyt(v) - yt(u)12 

=(v-u) (1-A) 

(6.6) . [-(t(u + A(v - u)), h(u) )- ('Yt(u), h(u+A(v-u))) 
[ Vy~~~~~~ t (U) 12 Vt(U) 12 

+ 2('t t(u), h(u)) (u + A(v - u)) j (U)) 

dA+O0((v-u)2). 

Similarly 

(6.7) $Mtu) KtivI _ ___ 

( -yt(u)- yt(v)12 (u v)2 + ju-v1J 

Then by equations (6.6) and (6.7) 

[ (t(U), I(u)) (yt(V) - yt(U), h(v) - h(u))1 yt(u)I Kit(v)I 
Kt(u)12 yt(v) - yt(u)12 j Vyt(v) - yt(u)12 

- (vuj(1 - A) 
( v - U) 

(6.8) * -(t(u + A(v -u)), 4 ( ) -h(u + A(v- U)), t()2) 
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(6.8) + 
2(-t(u), h(u)) (t(u + A(v-u)),y jt(u) 1dA + (1). 

Therefore 

dt 

=2 1 (v u) 
(1 A) 

IV-ul>E 

u + A(v u)), h(u) h(u + A(v- u)), IZ(UI2) 

+ 2(7t(u), h(u)) K7t(u + A(v -u)), It(u~4)] dAdvdu + 0(1) 

IWI?E 

(6.9) H + Aw), It%(u)l2) - 1KA t (U)12) 

+ 2(7t(u), h(u)) (u + Aw), dA dw du + 
0(_) 

= 2 fff (1-A) 

xER/ezwE[-f/2,e/2],1w I>E,AE 0,1 

*$'t(x - Aw)12 /-\hx) Lyt(x -Aw)12 / 

-t~ Aw)I'1 +2KAt(x-Aw), h(x-Aw)) KIt(x)l yt(x -Aw) 

* dAdwdx + 0(l). 

Since h and at are Lipschitz, we have 

h(x- Aw) _ h(x) + 0(W), 

t(x - Aw)12 - Vt(x) + (W), 
Kt(x -Aw)12 I-t()1 

t(x - Aw) _ 

= t(x) + (W), 
Ki'(x -Aw)14 - $(X)14 

and 

(-t(X - Aw), h(x - Aw)) = (Kt(x), h(x)) + O(w). 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 39 

Then by equation (6.9) 

d Es (yt) dt 

-2 JJ (I -A) 

wE[-e/2,e/2],IwI>E 

-7t(x), -t(x)2) 
- h(x), -'t(x)) 

+ 2(ytw(), h(x)) K1t (X), j< W) 1 dA dw dx + 0(1) + 0(1) 

--2 (Il -1A) 1 d (Kt (x). ,h(x)) dAdwdx+o(I). II] ~~~'i~ i2 h't (X)12 
wE[-e/2,e/2],IwI>E 

The triple integral on the right-hand side is 0. It follows that d/(dt)E(-yt) is 
uniformly bounded and converges uniformly to the integral in equation (6.3) 
as c -* 0+. D 

The next lemma follows from the proof of Lemma 6.1. 

LEMMA 6.2. Let -y be a simple loop of class Cal. As a functional in h, 
VhE(-y) is linear and bounded in C1'1 (Sl; R3). L 

As a consequence of Lemma 6.2, we obtain the following: 

COROLLARY 6.3. Let yk be a sequence of simple loops that converge to 
-y in C1'1. Then E(-y) = limko E(-yk) [1 

For a simple closed C1'1 curve -y(u) let Pw(u): W3 -* l3 be the orthogonal 
projection of li3 onto the normal vector plane to ey at -y(u). Then 

(6.10) P~(U) (w) = W - (W___________u (6.10) ~ ~~~ ~ ~~~~~~~~~~ ( 1(U) 12 

Let 

N I~ d (~(u<\ 
(6.11) N7(U)= l-(u)I du (1V(u)J 

Note that N(u) is a.e. well defined and parallel to the principal normal if 
defined. 

Assume that -y: R/fZ -* R3 is a simple closed C3', curve for some a > 0. 
Define G.: JR/fZ -) li3 by 

f [2IP-(U)(y(v) - y(u)) 1 KMv)I (6.12) Gy (u) = 2 - i~)-yu1 - N~~ yv - yu dv, 
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where the right-hand-side integral is well defined, in the sense of equation 
(6.6), and I Gy (u)l is uniformly bounded. Note that Gy (u) is the L2 gradient 
of E at y. 

LEMMA 6.4. Let -y: R/fZ -* ]R3 be a simple closed C3'a curve and let 
h: R/fZ -* R3 be a C2'a function such that (h(u), y(u)) = 0 for u E R/fZ. 
Then 

(6.13) VhE(-y) = (G', h) = J((G.(u), h(u)) I (u)I du. 

Proof. By equation (6.5) we know that 

d - E,(-yt) I t=o 

2 f ((u), h (u)) I a(u) II l(V) JI J I K(U)I2 I-y(u) - Y(V)I2 
IU-V >I 

ff (y(v)-y(u), h(v)-h(u)) (v) 1 (u) I du dv -2 ~~~~I y (V) - y(U)I14 VvIL()dd 

jU-VI>E 

2 2j 
[U-Vl>. e (K (U) j j(U) y(V)I2 Ih(u)) du] M1(v) I dv 

+ 4f ("y (v) -y (u),h h(u)) V(u)I V(v)I dudv. II y (V) - _y(U)I14 
IU-VI>E 

Using integration by parts for the first integral on the right-hand side 
above, we obtain 

-EE(yt) It=o dt 

--2 1 v) I dv J UV?EK ( u(u)) y(v) y(u)I2' 

X [iv-l~e |<(V)^du)| 1h(u)j ~() __(U)2d]ln~)l 
+ L ( ( - (v) -y(u)) h(u)) (v)Idv] 1(u)I du 

- 11 4-U1>E () -(u) y(U)) 14 v)I dVhU)IdU f/f 4IPN7(u)(yv ~) 

v-uIE I[y(v) (-Y(U)I4) IN(v)I dv, (u7I 

yv - y(u)I -y2 dvh(u)) 1(u)Iudu. 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 41 

It is elementary to show that the right-hand term converges to (Ga, h) as 
e ) 0+. LI 

Remark. Using a more refined argument, one may show that Lemma 6.2 
holds where n' and h are L2+6-integrable for any 6 > 0. 

One of the equivalences of the Smale conjecture (see [Ha2]) is the fact 
that the space of all smooth, unknotted, simple, closed loops is homotopy 
equivalent to the space of round loops (- RP2). This remarkable fact suggests 
that there may be some physical procedure, continuous in initial conditions, 
that will evolve a "tangled" but unknotted simple loop through embeddings 
to a round circle. Because E(-y) blows up if a self-crossing is approached, a 
function space flow 

(6.14) =-grad(E(-y)) 

is a plausible candidate. 
To give the right-hand side of equation (6.14) precise meaning it is nec- 

essary to have an inner product defined on the space of variations u to -y. 
Oded Schramm observed that if ny is not already a round circle, there exists a 
Mobius-invariant inner product (, ) on the tangent bundle of R3 restricted to 
yTR3 J. At p E -y the unit sphere in TpR3 is the sphere Sr C R3, whose center 
is at p and with radius r, determined by the condition 

(6.15) linm D (inv x inv y) (ix inv y) = 1. 

Where x and y approach p along -y from opposite sides, invsr is the inversion in 
Sr, D is the arc length along invsP(-y) and d represents the euclidian distance. 
Now Schramm's inner product on variations becomes: 

(6.16) ((u, v)) = J(u(t), v (t)) ( dt, dt) a12 dt. 

Now the formal gradient is defined by 

(6.17) ((grad E, v)) = dE(v). 

Unfortunately we do not know any of the basic theory (existence, regu- 
larity, uniqueness, and convergence) for such equations. Also we do not know 
if the space of unknotted simple loops contains any E-critical points besides 
round circles. According to Hatcher there is no topological necessity for such 
points. The "tangled" unknot indicated in Figure 6.1 is an interesting unknot- 
ted initial condition for (6.14). 

Figure 6.1 is an example of an (unknotted) proper knot diagram with 32 
crossings. It cannot be connected to a round diagram by a family of knot 
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bite bite 
knob knob 

FIGURE 6.1 

diagrams without the number of crossings increasing to at least 33. (Proof: 
Consider the three basic Reidemeister moves I, II, and III (cf. [Ka]). Since 
all triangles and bi-gons in the diagram alternate, no type II or III moves are 
available. There are no mono-gons, hence no type I moves. The initial move 
must be I-1 or II-', either of which increases the crossing number.) From 
the picture it looks like a maximum of 36 crossings must occur in the family. 
We wonder if "gradient flow" will shrink the "knob" relative to the "bite" and 
undo the tangle. 

Because we have a conformally invariant gradient, we may normalize by 
keeping one point of -y at oc. This leads to the consideration of the spaces 
XK = {? vertically asymptotic simple lines with a finite knot type K}. From 
the Appendix (equivalence 6) of [Ha2] and [Hal] one finds the homotopy type 
of Xk to be K(7r, 1), where ir is Outa(7r1(S3\k)) = the group of outer auto- 
morphisms of 7r,(S3\k), which agree with some inner automorphism on the 
peripheral subgroup. This group is trivial for the trivial knot type, but has 
elements of infinite order whenever (S3\.AI(K)) contains an essential torus 
(e.g., satellite knots) or an annulus, which is not a union of fibers in a Seifert 
fibered structure on (S3,K). Also elements of finite order occur for knots 
with finite-order symmetries, which do not embed in circle actions. Thus for 
"knotted z-axes" the topology of the function space suggests that, for some 
knot types K, there should be critical points for E of all indexes = 0, 1, 2,... 
At present, no critical points of positive index are known to exist. 

Because E is Mobius invariant, any -y admitting a symmetry group G C 

Mdb(S3) would retain this symmetry under a gradient flow. In [FIRL] a purely 
topological investigation shows that there is no obstruction to symmetry pre- 
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MOBIUS ENERGY OF KNOTS AND UNKNOTS 43 

serving a homotopy from unknotted symmetric curves to round circles. It is 
still open whether a similar result holds for parameter families of symmetric 
unknots. 

7. Energy of links 

The energy can also be defined for links. Let yi, -2,...,. yk: * JR3 
be a link consisting of disjoint embeddings. The total energy of the link 
(-y, - 2,. **, Yk) is defined to be 

k k 1 
(7.1) TE(y , Y2,... , k) =E E (yi , yi) + ? E(- i, 1j)i, 

i~~~~l~ i'j="i:sj 

where 

(7.2) E = E 

and for i 7& j, 

(7.3) E(yi, yj)= I MI ViKjd(v)Iudv 
S1 xS1 

Let c(yi, -yj) be the average crossing number of -yi and -yj (see [FrH1], 
pp. 196-197) so that 

(7.4) 
1 1f I(yi(u),jv) -yj(v) -yi( ))I dudv. 

= 4ir I]I -yj(V) - U 1 
S1 x$1 

Then we have immediately 

(7.5) cQ-yi,-yj) ? 
1 

E(tyiIyj) if i/j. 

By Theorem 3.6 

(7.6) c(-yi,y) < 1 E(yivyi) + 1 

As a consequence, we have the following: 

COROLLARY 7.1. Let M > 0. There are finitely many link types that can 
be represented by a set of disjoint embeddings of $1 into JR3 with TE < M. 

Proof. Let Yi,, .2 ... , yk: 1- R3 be disjoint embeddings with 

TE(-i,,y2,... , -Yk) < M. As each loop contributes at least 4 to the energy, 
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we deduce that the number of components k is bounded by M/4. On the 
other hand, inequalities (7.5) and (7.6) imply that 

k k 11k k 
E C bi, -0i + 2 E b~ti, -Yi) < 12M + -. 
i~~~l ~i,j=lij 

Thus the total crossing number of the link represented by (-y1, 72,... ,7k) is 
bounded by 11/(127r)M + k/ir, hence the corollary. D 

As before, we are interested in the extremal configurations of links. An 
elementary computation for two planar concentric circles shows the infimum 
for the total energy of links is 8 while no link attains it. If only essential 
links are considered, the least energy configuration must be a Hopf link (see 
Corollary 7.4). If both (or even one) component is a round circle, the least 
energy configuration is located by Corollary 7.3. It is an open problem how 
to prove that this configuration has least energy in its isotopy class. 

Let y: $1 W R3 be an embedding. Let p(x, y, z) be a point in 1R3\S1. 
Then the energy of p with respect to -y is defined by 

E(-y, p) = 
I 
i(U) 

I du. 

Setting ds2) = E(-y, p)2 (dx2 + dy2 + dz2), then ds8) is a new metric 
on 1R3\-y which is conformal to the euclidean metric. In fact ds2 completes E0y) 
to a smooth (C?) metric on S3\-Y. It is obvious that the energy of a curve 
in S3\-Y with -y (i.e., the energy cross term) is exactly the length of the curve 
with respect to the new metric ds2 

Now consider the case where -y is a round circle. Since the energy is 
Mobius invariant, we may assume that -y is {(X,y,O)1 X2 + y2 = 1} in the 
x - y plane. Then we have the next theorem. 

THEOREM 7.2. The sphere S3\-y with metric ds2E(7) is isormetric to hyper- 
bolic space crossing a circle, H2 X 1 , where S1 is the unit circle. 

Proof. By the M6bius invariance of energy, we may make the computation 
for -y' = z-axis. For any p(x, y, z) not on the z-axis we have 

(7p) | 2 + y2 + (t - Z)2 dt = 
X2+y2 

Hence 

ds2 ) = ~2 ?2 (dx2 + dy2 + dz2). 
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Changing x, y to polar coordinates {I CS6 yields 

72 
ds2) = (dr2 ?r2d02 + dz2) 

2 (dr2 + dz2 ? d02) 

The first two terms describe the hyperbolic metric in the coordinates of 
the halfspace model. Transforming the z-axis back to -y in IR, we obtain the 
theorem. D 

It is easy to check that the energy cross term of the z-axis, with any round 
circle lying on a plane {z = const} and the origin on the z-axis, is 2ir2. Since 
a round circle has energy 4, the total energy of this Hopf link is 8 + 2ir2. 

COROLLARY 7.3. The least energy configuration for a Hopf link with both 
(or even one) component a round circle is obtained by any Mobius transforma- 
tion of {(z-axis), -y} into R3. All Hopf links obtained in this way have total 
energy 8 + 2ir2. 

Remark. The obvious representative for the Hopf link 

{(X, y, 0) 11 X2+ y2 = 1} U {(0, y, Z) I (y _ 1)2 + Z2 = 1} 

is not an extremal configuration. 

Proof of Corollary 7.3. By Theorem 7.2, S3\-y with the new metric is 
H2 X1. The energy cross term of a curve in S3\S1 with -y is its length in 
ds2). Fixing -y shows that the least energy configuration will be -y with the 
shortest closed geodesic that links -y, provided such a closed geodesic is round. 
But the factor circles of 1H12 x S are all the shortest, simply linking closed 
geodesics in 1H12 x S and round ones in S3. 0 

COROLLARY 7.4. The absolute minima for total energy among essential 
links are topologically a Hopf link. 

Proof. By Corollary 7.3 an essential link L of the smallest possible total 
energy satisfies E < 8 + 2ir2. By inequality (7.5) it is easy to check that it 
must have only two components. Hence 

8+47rc(-y1,-y2) < TE(-yl,-y2) < 8+2r2 

Consequently c(-yl, y2) < 7r/2. Therefore L is a Hopf link. D 

8. 1/r'-potential energy 

The energy E can be thought of as an 1/r2-potential energy. In this 
section we make a few remarks on 1/ra-potential energy in general. 
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Let -y = y(u) be a rectifiable curve in JR3. Using the same notation as 
before, for any real number a define the 1/ra-potential energy Ea(y) by the 
following integral: 

(8.1) E&()=II { (u)Ly(v) la D( y(u, Iy(v))} K7(u) I V(v) I du dv. 
u,v 

For simplicity we will assume that a > 0 in the following. There are 
corresponding results for a < 0. 

The following properties are immediate: 

PROPOSITION 8.1. (1) Ea(-y) is independent of the parametrization or 
orientation of the curve. 

(2) Ea(-y) is invariant under euclidean isometry. 
(3) If R3 is rescaled by a linear factor s, then Ea(sy) = s2-aEa(y). D 

PROPOSITION 8.2. Let -y be a simple closed C3-curve in R3. Then Ea(-y) 
is finite for a < 3. 

Proof. Let u be an arc-length parameter for -y. Using L$'(u) I = 1 and 

7(V) - y(u) = (u)(V - u) + 2() (V - U)2 + O((V -)3), 

we have 

(8.2) hiv- =):2 ( tv -)2 + (9((v -u)) 

Thus for any e > 0 

II {a(v)~y (u)Ia D(y(v),y(u))c} dudv 
Iv-ul>E 

- I I {K(v) - a(u)a- l j UcV } dudv 

(8.3) Iv-ul>e 

- JJ O9((v _U)2-a) dudv 

Iv-ul>E 

JJ O(w2-a) dwdu. 
u,IwI>c 

Thus, for a < 3, Ea(y) is finite. O 

On the other hand, it is easy to check that, for the unit circle and a > 3, 
integral (8.1) is divergent. 
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We show that, for each 0 < a < 3, there exists a rectifiable, simple, closed 
curve -yo realizing the infimum of 1/ra-potential energy among curves of length 
= 1. 

PROPOSITION 8.3. For 0 < a < 3 let C be the rectifiable, simple, closed 
curves of length 1. Then there exists a rectifiable, simple, closed curve -yo in 
C with Ea(yo) < Ea(y) for other -y in this class C. 

Proof. Let {1yi : $1 = R/Z- WR3, 1-Y(u) I = 1}, i = 1, 2,..., be a sequence 
of curves in C and Ea(yi) approaching the infimum of Ea(y) over all curves 
with arc-length parametrization in C. By translation we may assume that 
each curve passes through the origin of IR3. As in Lemma 1.2 the functions -yj 
are all 1-Lipschitz, so by Ascoli's theorem there is a convergent subsequence 
71, 72, * ... (use the same indices) converging in Co to a Lipschitz embedding -yo. 

Denote the energy integrand of equation (8.1) by Ga : {u, vlu 7 v} 
JR+. Clearly Ga is the pointwise limit of Ga. Since Ga is a positive function, 
by Fatou's lemma 

Ea (Yo) = | GaI ddv < lim || Ga du dv 
Z-4+OO0J 

(8.4) U'V UV 
= lim E~y) D 

i- 4+0O 

Next we attempt to determine the shape of the minimizers. 

THEOREM 8.4. For 0 < a < 3 any minimizer -yo for Ea(y) is a planar, 
convex, simple, closed curve. 

The main ingredient in the proof is the following reflection lemma. The 
proof is the same as in Section 5. Given a closed curve -y in R3, a plane P is 
a plane of support for -y if -y n P 7& q, -y c Hp, the positive closed halfspace 
determined by P. 

LEMMA 8.5. Let -y be a closed curve in I3 with P a plane of support such 
that -ynP is disconnected. Let p and q belong to distinct connected components 
of -y nP; divide -y into two arcs, a and 3, a U 3 = y and a n 3 = p U q. 

Let -y' = aU/, where / is the reflection of 3 in P. Then Ea(QyI) < Ea(-y). 
Note that -y' has the same length as -y. O 

Proof of Theorem 8.4. Consider the relation R C S2 x 51 given by (0, s) E 
R if and only if there exists a plane of support P with 0 1 P, s c P n yo and 
-yo C Hp, the positive closed halfspace determined by P. Clearly R is a closed 
set. 
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For 0 E ?2, R1(0) is either the entire circle, is disconnected or has the 
Cech cohomology of a point (i.e., an interval or point). For s E ?1, JZ(s) C S2 
is geodesically convex and also has the Cech cohomology of a point. E 

LEMMA 8.6. Either -yo is planar or there exists a plane of support P with 
-yo n P disconnected. 

Proof. Suppose neither conditions hold. Let S- be the closed subset 
of ?1 for which -yo has a plane of support. Both surjections R -* S- and 
1? _+ ?2 satisfy the hypothesis of the Vietoris theorem (see [Br], p. 202); i.e., 
all point inverses have the Cech homology of a point and therefore induce 
isomorphisms on Cech cohomology. Since H2(SZ) O 0 Z H2(?2, ), 
we have a contradiction. E 

LEMMA 8.7. The curve -yo is planar. 

Proof. If not, by the previous lemma there is a plane of support P with 
Yof nP disconnected. By Lemma 8.5 we may reduce the energy of -Yo, contra- 
dicting minimality. O 

LEMMA 8.8. The curve -yo is a convex plane curve. 

Proof. If -yo is not convex, let L be a line "of support" meeting -Yo in a 
disconnected set. As in Lemma 8.5, write -yo = a U 3 with an 3 a pair of 
points lying in different components of myo n L. Again reflecting / in L would 
yield a lower energy curve -' = a U /, contradicting minimality. O 

Conjecture. For 0 < a < 3 any length = 1 minimizer of Ea energy is a 
round circle of radius 1/(27r). 

In Lemma 1.2, we showed that, for a = 2, finite energy implies bi- 
Lipschitz. This is also true for 2 < a < 3, and the proof is left as an exercise. 

From the Introduction we know that, for 2 < a < 3, Ea(y) blows up 
when a simple closed loop -y begins to acquire a double point. We reexamine 
this blowup using the following model: Given 0 < c < 1, let 

-Yi: {(X,0,) I 1xI < 1}, 

-Y2: {(,Y,0) IYI < 1}. 
Then, by an elementary computation, the crossing energy 

E a(,,) =] (x) 2()dx dy 
7172 

is A2-? + o(2) + B when a $ 2, and A log(1 +?E-2) + (E2) + B when a = 2 
for some constants A and B. 
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It is clear that, when 2 < a < 3, 

Ea?(_y1,y2)- +oO as e- , 0 

and Ea(y-,y2) is still finite as e -* 0+ if 0 < a < 2. But 

d 
-E?(_y1,y2)-- +oo as e- 0+ 

if 1 < a < 2. Although, when 1 < a < 2, Ea(y) does not blow up when -y 
crosses itself, the derivative does blow up. This suggests that if there exists a 
gradient flow for 1 < a < 2, then, because of this infinite-derivative barrier, 
self-crossing would never occur. For the newtonian potential in IR3, a = 1, we 
see no reason that a gradient flow should preserve embeddedness. 
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