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Abstract. Let x : Mm → Sn be a submanifold in then-dimensional sphereSn without
umbilics. Two basic invariants ofx under the Möbius transformation group inSn are a 1-form
Φ called the Möbius form and a symmetric(0, 2) tensorA called the Blaschke tensor.x is
said to be Möbius isotropic inSn if Φ ≡ 0 andA = λdx · dx for some smooth functionλ.
An interesting property for a Möbius isotropic submanifold is that its conformal Gauss map is
harmonic. The main result in this paper is the classification of Möbius isotropic submanifolds
in Sn. We show that (i) ifλ > 0, thenx is Möbius equivalent to a minimal submanifold
with constant scalar curvature inSn; (ii) if λ = 0, thenx is Möbius equivalent to the pre-
image of a stereographic projection of a minimal submanifold with constant scalar curvature
in the n-dimensional Euclidean spaceRn; (iii) if λ < 0, thenx is Möbius equivalent to the
image of the standard conformal mapτ : Hn → Sn+ of a minimal submanifold with constant
scalar curvature in then-dimensional hyperbolic spaceHn. This result shows that one can use
Möbius differential geometry to unify the threedifferent classes of minimal submanifolds with
constant scalar curvature inSn, Rn andHn.

1. Introduction. Let x : M → Sn be anm-dimensional submanifold in then-
dimensional sphereSn without umbilics. Let{ei} be a local orthonormal basis for the first fun-
damental formI = dx · dx with dual basis{θi}. Let II = ∑

ijα hα
ij θiθjeα be the second fun-

damental form ofx andH = ∑
α Hαeα the mean curvature vector ofx, where{eα} is a local

orthonormal basis for the normal bundle ofx. We defineρ2 = m/(m − 1)·(‖II‖2−m‖H‖2),
where‖ ‖ is the norm with respect to the induced metricdx · dx on M. Then two ba-
sic Möbius invariants ofx, the Möbius formΦ = ∑

i Cα
i θieα and the Blaschke tensor

A = ρ2 ∑
ij Aij θiθj , are defined by (cf. [W])

Cα
i = − ρ−2

(
Hα,i +

∑
j

(hα
ij − Hαδij )ej (logρ)

)
,(1.1)

Aij = − ρ−2
(

Hessij (logρ) − ei(logρ)ej (logρ) −
∑
α

Hαhα
ij

)
(1.2)

− 1

2
ρ−2(‖∇ logρ‖2 − 1 + ‖H‖2)δij ,
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where Hessij and ∇ are the Hessian-matrix and the gradient with respect todx · dx. A
submanifoldx : M → Sn is called Möbius isotropic ifΦ ≡ 0 andA = λdx · dx for some
functionλ.

Let Hn be then-dimensional hyperbolic space defined by

Hn = {(y0, y1, . . . , yn) | − y2
0 + y2

1 + · · · y2
n = −1, y0 > 0} .

Let Sn+ be the hemisphere inSn whose first coordinate is positive. Letσ : Rn → Sn\{(−1, 0)}
andτ : Hn → Sn+ be the following conformal diffeomorphisms:

σ(u) =
(

1 − |u|2
1 + |u|2 ,

2u

1 + |u|2
)

, u ∈ Rn ,(1.3)

τ (y) =
(

1

y0
,
y1

y0

)
, y0 > 0, −y2

0 + y1 · y1 = −1 , y1 ∈ Rn .(1.4)

Then we can state our main result as follows:

CLASSIFICATION THEOREM. Any Möbius isotropic submanifold in Sn is Möbius equiv-
alent to one of the following Möbius isotropic submanifolds:

(i) minimal submanifolds with constant scalar curvature in Sn;
(ii) the images of σ of minimal submanifolds with constant scalar curvature in Rn;
(iii) the images of τ of minimal submanifolds with constant scalar curvature in Hn.

This paper is organized as follows. In Section 2 we give Möbius invariants and structure
equations for submanifolds inSn. In Section 3 we show that the conformal Gauss map of
an isotropic submanifold inSn is harmonic. In Section 4 we give conformal invariants for
submanifolds inRn andHn and relate them to the Möbius invariants of submanifolds inSn.
Using these relations we show that all submanifolds in (i), (ii) and (iii) of the classification
theorem are Möbius isotropic submanifolds . Then in Section 5 we prove the classification
theorem for Möbius isotropic submanifolds.

We would like to thank Professor U. Simon for his hospitality during our research stay
at the TU Berlin.

2. Möbius invariants for submanifolds in Sn. In this section we define Möbius in-
variants and recall structure equations for submanifolds inSn. For more detail we refer to
[W].

Let Rn+2
1 be the Lorentzian space with inner product

(2.1) 〈x,w〉 = −x0w0 + x1w1 + · · · + xn+1wn+1 ,

wherex = (x0, x1, . . . , xn+1) andw = (w0, w1, . . . , wn+1). Let x : M → Sn be am-
dimensional submanifold ofSn without umbilics. We define the Möbius position vectorY :
M → Rn+2

1 of x by

(2.2) Y = ρ(1, x) = (ρ, ρx) , ρ2 = m/(m − 1) · (‖II‖2 − m‖H‖2) > 0 .

Then we have the following
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THEOREM 2.1 ([W]). Two submanifolds x, x̃ : M → Sn are Möbius equivalent if and
only if there exists T in the Lorentz group O(n + 1, 1) in Rn+2

1 such that Y = Ỹ T .

As a matter of fact, the Möbius group inSn is isomorphic to the subgroupO+(n+1, 1) of
O(n+1, 1) which preserves the positive part of the light cone inRn+2

1 . It follows immediately
from Theorem 2.1 that

(2.3) g = 〈dY, dY 〉 = ρ2dx · dx

is a Möbius invariant (cf. [CH]). We call it the induced Möbius metric forx. Now let 	 be
the Laplace operator ofg. Then there is an identity given by

〈	Y,	Y 〉 = 1 + m2κ ,

whereκ is the normalized scalar curvature ofg (cf. [W]). We define

(2.4) N = − 1

m
	Y − 1

2m2 (1 + m2κ)Y .

Then we have

(2.5) 〈Y, Y 〉 = 〈N,N〉 = 0 , 〈Y,N〉 = 1 .

Moreover, if we take a local orthonormal basis{Ei} for the Möbius metricg with dual
basis{ωi}, then we have

(2.6) 〈Ei(Y ),Ej (Y )〉 = δij , 〈Ei(Y ), Y 〉 = 〈Ei(Y ),N〉 = 0 , 1 ≤ i, j ≤ m .

Let V be the orthogonal complement to the subspace inRn+2
1 spanned by{Y,N, Ei(Y )}.

Then we have the following orthogonal decomposition:

(2.7) Rn+2
1 = span{Y,N} ⊕ span{E1(Y ), . . . , Em(Y )} ⊕ V .

V is called the Möbius normal bundle ofx. A local orthonormal basis{Eα} for V can be
written as

(2.8) Eα = (Hα,Hαx + eα), m + 1 ≤ α ≤ n .

Now, let G+
n−m(Rn+2

1 ) be the Grassmannian manifold consisting of all positive definite ori-
ented(n − m)-planes in the Lorentz spaceRn+2

1 . The conformal Gauss mapf : M →
G+

n−m(Rn+2
1 ) ⊂ ∧n−m

(Rn+2
1 ) is then defined by

(2.9) f = Em+1 ∧ Em+2 ∧ · · · ∧ En .

Since{Y,N,E1(Y ), . . . , Em(Y ),Em+1, . . . , En} are Möbius invariant moving frame inRn+2
1

alongM, we can write the structure equations as

Ei(N) =
∑
j

AijEj (Y ) +
∑
α

Cα
i Eα ,(2.10)

Ej(Ei(Y )) = −AijY − δijN +
∑

k

Γ k
ijEk(Y ) +

∑
α

Bα
ij Eα ,(2.11)

Ei(Eα) = −Cα
i Y −

∑
j

Bα
ij Ej (Y ) +

∑
β

Γ
β
αiEβ ,(2.12)
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where{Γ k
ij } is the Levi-Civita connection of the Möbius metricg; {Γ β

αi} is the normal con-
nection forx : M → Sn , which is a Möbius invariant;A = ∑

ij Aijωi ⊗ ωj andΦ =∑
iα Cα

i ωi(ρ
−1eα) are called the Blaschke tensor and the Möbius form, respectively; and

B = ∑
ijα Bα

ij ωiωj (ρ
−1eα) is called the Möbius second fundamental form ofx. The rela-

tions betweenA, Φ, B and the Euclidean invariants ofx are given by (1.1), (1.2) and

(2.13) Bα
ij = ρ−1(hα

ij − Hαδij ) .

The integrability conditions for the structure equations (2.10) through (2.12) are given by (cf.
[W])

Aij,k − Aik,j =
∑
α

(Bα
ikC

α
j − Bα

ij Cα
k ) ,(2.14)

Cα
i,j − Cα

j,i =
∑

k

(Bα
ikAkj − Bα

kjAki) ,(2.15)

Bα
ij,k − Bα

ik,j = δijC
α
k − δikC

α
j ,(2.16)

Rijkl =
∑
α

(Bα
ikB

α
jl − Bα

ilB
α
jk) + (δikAjl + δjlAik − δilAjk − δjkAil) ,(2.17)

Rαβij =
∑

k

(Bα
ikB

β
kj − B

β
ikB

α
kj ) ,(2.18)

∑
i

Bα
ii = 0,

∑
ijα

(Bα
ij )

2 = m − 1

m
, tr A =

∑
i

Aii = 1

2m
(1 + m2κ) ,(2.19)

whereκ is the normalized scalar curvature ofg. From (2.16) and (2.19) we get

(2.20)
∑

i

Bα
ij,i = (1 − m)Cα

j .

DEFINITION 2.2. Letx : M → Sn be a submanifold inSn without umbilics. We call
x a Möbius isotropic submanifold inSn if Φ ≡ 0 and there exists a functionλ : M → R such
thatA = λg.

PROPOSITION 2.3. Let x : M → Sn be a Möbius isotropic submanifold in Sn. Then
the function λ in Definition 2.2has to be constant.

PROOF. SinceΦ ≡ 0 andA = λg, we can write (2.10) asdN = λdY , which implies
thatdλ∧dY = 0. Since{E1(Y ), . . . , Em(Y )} are linearly independent, we getλ = constant.

3. Conformal Gauss map of submanifolds inSn. Letx : M → Sn be a submanifold
in Sn. We assume thatM is oriented. Then we can give the normal bundleN(M) of x an
orientation. Let{eα} be a local orthonormal basis forN(M) which gives the orientation.
Using the bundle isometryτ : N(M) → V defined byeα → (Hα,Hαx + eα), we can giveV
an orientation. We define the conformal Gauss mapf : M → G+

n−m(Rn+2
1 ) ⊂ ∧n−m

(Rn+2
1 )

by

(3.1) f = Em+1 ∧ Em+2 ∧ · · · ∧ En ,
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where{Eα} is an oriented orthonormal basis forV. We denote byIG the induced metric of
the standard embedding ofG+

n−m(Rn+2
1 ) in

∧n−m
(Rn+2

1 ). Our goal in this section is to prove
the following

THEOREM 3.1. Let x : M → Sn be a Möbius isotropic submanifold in Sn. Then its
conformal Gauss map f : (M, g) → (G+

n−m(Rn+2
1 ), IG) is harmonic.

Let (M, g) and(N, h) be two semi-Riemannian manifolds. We assume thatg is positive
definite andh is a metric of type(r, s). Then locally we can write

(3.2) g =
m∑

i=1

θ2
i , h = −

r∑
α=1

θ2
α +

r+s∑
λ=r+1

θ2
λ .

We denote by{θij } the connection forms ofg with respect to{θi} and denote by{θαβ, θαλ, θλµ}
the connection forms ofh with respect to{θα, θλ}. Here we use the following ranges of the
indices:

(3.3) 1 ≤ i, j ≤ m , 1 ≤ α, β ≤ r , r + 1 ≤ λ,µ ≤ r + s .

Then we have

dθi =
∑
j

θij ∧ θj ,(3.4)

dθα = −
∑
β

θαβ ∧ θβ +
∑
λ

θαλ ∧ θλ , dθλ = −
∑
β

θλβ ∧ θβ +
∑
µ

θλµ ∧ θµ .(3.5)

Now, letf : M → N be a smooth map. We define{fαi, fλi} by

(3.6) f ∗θα =
∑

i

fαiθi , f ∗θλ =
∑

i

fλiθi .

The second fundamental form{fαi,j , fλi,j } of f : M → N is defined by

dfαi +
∑
j

fαj θji −
∑
β

fβif
∗θβα +

∑
λ

fλif
∗θλα =

∑
j

fαi,j θj ,(3.7)

dfλi +
∑
j

fλj θji −
∑
α

fαif
∗θαλ +

∑
µ

fµif
∗θµλ =

∑
j

fλi,j θj .(3.8)

Thenf : M → N is harmonic if and only if

(3.9)
∑

i

fαi,i = 0 ,
∑

i

fλi,i = 0 , 1 ≤ α ≤ r , r + 1 ≤ λ ≤ r + s .

To prove Theorem 3.1 we study first the geometry of the Grassmannian manifold
G+

n−m(Rn+2
1 ) as a submanifold in the pseudo-Euclidean space

∧n−m
(Rn+2

1 ) with the inner
product induced by(Rn+2

1 , 〈 , 〉). Let Õ(n + 1, 1) be the manifold defined by

(3.10) Õ(n + 1, 1) = {T ∈ GL(n + 2, R) | tT I1T = J } ,

whereI1 = diag{−1, 1, . . . , 1} andJ =
(

0 1
1 0

)
⊕ diag{1, . . . , 1}. Then

T = (ξ−1, ξ0, ξ1, . . . , ξn) ∈ Õ(n + 1, 1)
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if and only if

〈ξ−1, ξ−1〉 = 〈ξ0, ξ0〉 = 0 , 〈ξ−1, ξ0〉 = 1 ,(3.11)

〈ξa, ξ−1〉 = 〈ξa, ξ0〉 = 0 , 〈ξa, ξb〉 = δab , 1 ≤ a, b ≤ n .(3.12)

Let π : Õ(n + 1, 1) → G+
n−m(Rn+2

1 ) be the fibre bundle defined by

(3.13) π(T ) = ξm+1 ∧ · · · ∧ ξn .

Then around each point inG+
n−m(Rn+2

1 ) there exists an open setU ⊂ G+
n−m(Rn+2

1 ) such that
we have a local section

(3.14) T = (ξ−1, ξ0, ξ1, . . . , ξn) : U → Õ(n + 1, 1) .

Thus the embedding ofG+
n−m(Rn+2

1 ) in
∧n−m

(Rn+2
1 ) can be written locally by the position

vector

(3.15) ξ = ξm+1 ∧ · · · ∧ ξn : U → ∧n−m(Rn+2
1 ) .

Since{ξ−1, ξ0, ξ1, . . . , ξn} is a moving frame inRn+2
1 alongU ⊂ G+

n−m(Rn+2
1 ), we can write

the structure equations as

(3.16) dξA =
∑
B

θABξB , −1 ≤ A,B ≤ n ,

whered stands for the differential operator onG+
n−m(Rn+2

1 ) and{θAB} are local 1-forms on
G+

n−m(Rn+2
1 ) . The integrability conditions for (3.16) are given by

(3.17) dθAB =
∑
C

θAC ∧ θCB , −1 ≤ A,B,C ≤ n .

Since (3.11) and (3.12) hold onU , we get from (3.16) that

θ0(−1) = θ(−1)0 = 0, θ00 = −θ(−1)(−1) ,(3.18)

θ0a = −θa(−1) , θ(−1)a = −θa0 , θab = −θba , 1 ≤ a, b ≤ n .(3.19)

We make the following convention on the range of indices:

1 ≤ i, j, k ≤ m , m + 1 ≤ α, β, γ ≤ n , −1 ≤ A,B,C ≤ n .

Then from (3.15) we get

dξ =
∑
α

ξm+1 ∧ · · · ∧ dξα ∧ · · · ∧ ξn(3.20)

=
∑
α

(−1)α−m−1θα(−1)ξ−1 ∧ ξm+1 ∧ · · · ∧ ξ̂α ∧ · · · ∧ ξn

+
∑
α

(−1)α−m−1θα0ξ0 ∧ ξm+1 ∧ · · · ∧ ξ̂α ∧ · · · ∧ ξn

+
∑
α,i

(−1)α−m−1θαiξi ∧ ξm+1 ∧ · · · ∧ ξ̂α ∧ · · · ∧ ξn .
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Thus the induced metricIG of G+
n−m(Rn+2

1 ) in
∧n−m

(Rn+2
1 ) is given by

(3.21) IG = 〈dξ, dξ〉 =
∑
α

(θα(−1) ⊗ θα0 + θα0 ⊗ θα(−1)) +
∑
αi

θ2
αi .

If we define

(3.22) φα(−1) = 1√
2
(θα(−1) − θα0), φα0 = 1√

2
(θα(−1) + θα0) ,

then we can write

(3.23) IG = −
∑
α

φ2
α(−1) +

∑
α

φ2
α0 +

∑
αi

θ2
αi .

Thus{φα(−1), φα0, θαi} is a local orthonormal basis ofT ∗G+
n−m(Rn+2

1 ), which implies thatIG

is a semi-Riemannian metric onG+
n−m(Rn+2

1 ) of type((n−m), (n−m)(m+1)). From (3.22),
(3.17), (3.18) and (3.19) we get

dφα(−1) =
∑
β

θαβ ∧ φβ(−1) + θ00 ∧ φα0 +
∑

k

1√
2
(θk0 − θk(−1)) ∧ θαk ,(3.24)

dφα0 =θ00 ∧ φα(−1) +
∑
β

θαβ ∧ φβ0 −
∑

k

1√
2
(θk(−1) + θk0) ∧ θαk ,(3.25)

dθαk = 1√
2
(θk0 − θk(−1)) ∧ φα(−1) + 1√

2
(θk(−1) + θk0) ∧ φα0(3.26)

+
∑
jβ

(−θjkδαβ + θαβδjk)θβj .

By (3.5) we obtain the following connection forms ofIG with respect to the orthonormal basis
{φα(−1), φα0, θαi}:

Ωα(−1)β(−1) = − θαβ , Ωα(−1)β0 = θ00δαβ , Ωα(−1)βk = 1√
2
(θk0 − θk(−1))δαβ ,(3.27)

Ωα0β(−1) = − θ00δαβ , Ωα0β0 = θαβ , Ωα0βk = − 1√
2
(θk(−1) + θk0)δαβ ,(3.28)

Ωαkβ(−1) = 1√
2
(θk(−1) − θk0)δαβ , Ωαkβ0 = 1√

2
(θk(−1) + θk0)δαβ ,(3.29)

Ωαkβj = − θjkδαβ + θαβδjk .

Now, letf : M → G+
n−m(Rn+2

1 ) be the conformal Gauss map of a submanifoldx : M →
Sn. Let {Y,N,E1(Y ), . . . , Em(Y ),Em+1, . . . , En} be the Möbius moving frame inRn+2

1
alongM. Then we can find a local sectionT of π : Õ(n + 1, 1) → G+

n−m(Rn+2
1 ) given by

(3.14) such that

(3.30) (Y,N,E1(Y ), . . . , Em(Y ),Em+1, . . . , En) = T ◦ f = (f ∗ξ−1, . . . , f ∗ξn) .
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It follows from (2.10), (2.11), (2.12) and (3.16) that

f ∗θ00 = 0 , f ∗θk(−1) = −
∑
j

Akjωj , f ∗θk0 = −ωk ,(3.31)

f ∗θij = ωij :=
∑

k

Γ
j
ikωk , f ∗θαβ = ωαβ :=

∑
i

Γ
β
αiωi ,(3.32)

f ∗θα(−1) = −
∑

i

Cα
i ωi , f ∗θα0 = 0 , f ∗θαk = −

∑
j

Bα
kjωj .(3.33)

If we define{fα(−1)i, fα0i , fαki} by

(3.34) f ∗φα(−1) =
∑

i

fα(−1)iωi , f ∗φα0 =
∑

i

fα0iωi , f ∗θαk =
∑

i

fαkiωi .

Then by (3.22) and (3.33) we have

(3.35) fα(−1)i = − 1√
2
Cα

i , fα0i = − 1√
2
Cα

i , fαki = −Bα
ki .

By definition (cf. (3.7) and (3.8)) the second fundamental form{fα(−1)i,j , fα0i,j , fαki,j } are
defined by the following formulas

dfα(−1)i +
∑
j

fα(−1)jωji −
∑
β

fβ(−1)if
∗Ωβ(−1)α(−1) +

∑
β

fβ0if
∗Ωβ0α(−1)

(3.36)
+

∑
βk

fβkif
∗Ωβkα(−1) =

∑
j

fα(−1)i,jωj ,

dfα0i +
∑
j

fα0jωji −
∑
β

fβ(−1)if
∗Ωβ(−1)α0 +

∑
β

fβ0if
∗Ωβ0α0

(3.37)
+

∑
βk

fβkif
∗Ωβkα0 =

∑
j

fα0i,j ωj ,

dfαki +
∑
j

fαkjωji −
∑
β

fβ(−1)if
∗Ωβ(−1)αk +

∑
β

fβ0if
∗Ωβ0αk

(3.38)
+

∑
βj

fβjif
∗Ωβjαk =

∑
j

fαki,jωj .

It follows from (3.27) through (3.29) and (3.31) through (3.35) that

fα(−1)i,j = − 1√
2

(
Cα

i,j −
∑

k

Bα
ikAkj + Bα

ij

)
,(3.39)

fα0i,j = − 1√
2

(
Cα

i,j −
∑

k

Bα
ikAkj − Bα

ij

)
,(3.40)

fαki,j = −(Bα
ki,j + Cα

i δkj ) .(3.41)
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Thus we know from (2.19) and (2.20) that the conformal Gauss mapf : M → G+
n−m(Rn+2

1 )

is harmonic if and only if

(3.42)
∑

i

Cα
i,i −

∑
i,j

Bα
ij Aij = 0 , (m − 2)Cα

k = 0 , 1 ≤ k ≤ m , 1 ≤ α ≤ n .

In the casem = 2, the first equation of (3.42) is exactly the Euler-Lagrange equation for
the Willmore functional (which is the Möbius volume functional, cf. [W]). The surfaces inSn

satisfying this equation are known as Willmore surfaces inSn. The conformal Gauss map of
a surface inSn has been studied by Bryant ([BR]) forn = 3 and Rigoli ([R]) forn > 3 by
using complex coordinate on the surface. It follows immediately from (3.42) that

THEOREM 3.2 ([BR], [R]). A surface x : M → Sn is Willmore if and only if its
conformal Gauss map is harmonic.

In the casem > 2, we know that the conformal Gauss map ofx : M → Sn is harmonic
if and only if it satisfies

(3.43) Cα
k ≡ 0 ,

∑
i,j

Bα
ij Aij ≡ 0 , 1 ≤ k ≤ m, m + 1 ≤ α ≤ n .

Since for any Möbius isotropic submanifold we haveCα
k ≡ 0 andAki ≡ λδki for someλ,

which implies (3.42). Thus we complete the proof of Theorem 3.1.

4. Conformal invariants for submanifolds in Rn and Hn. Let σ : Rn → Sn and
τ : Hn → Sn+ be the conformal maps definded by (1.3) and (1.4). Usingσ and τ , we
can regard submanifolds inRn andHn as submanifolds inSn. In this section we give the
conformal invariants for submanifolds inRn andHn, and relate them to the Möbius invariants
for submanifolds inSn. By using these relations, we show that any minimal submanifolds
with constant scalar curvature inRn, Hn andSn are Möbius isotropic.

Let x : M → Sn be a minimal submanifold with constant scalar curvature inSn. Then
by the Gauss equation we know thatρ2 = m/(m − 1) · (‖II‖2 −m‖H‖2) is a constant. Thus
from (1.1) and (1.2) we get

Cα
i = 0 , Aij = 1

2
ρ−2δij .

By definitionx is a Möbius isotropic submanifold inSn.
Let u : M → Rn be a submanifold without umbilics inRn. Let {ẽi} be a local or-

thonormal basis for the first fundamental form̃I = du · du with the dual basis{θ̃i}. Let
Ĩ I = ∑

ijα h̃α
ij θ̃i θ̃j ẽα be the second fundamental form ofu andH̃ = ∑

α H̃ αẽα be the mean
curvature vector ofu, where{ẽα} is a local orthonormal basis for the normal bundle ofu. We



562 H. LIU, C. WANG AND G. ZHAO

define

g̃ =ρ̃2du · du , ρ̃2 = m/(m − 1) · (||Ĩ I ||2 − m||H̃ ||2) ,(4.1)

B̃α
ij =ρ̃−1(h̃α

ij − H̃ αδij ) ,(4.2)

C̃α
i = − ρ̃−2

(
H̃ α,i +

∑
j

(h̃α
ij − H̃ αδij )ẽj (log ρ̃)

)
,(4.3)

Ãij = − ρ̃−2
(

Hessij (log ρ̃) − ẽi (log ρ̃)ẽj (log ρ̃) −
∑
α

H̃ αh̃α
ij

)
(4.4)

− 1

2
ρ̃−2

(
‖∇ log ρ̃‖2 +

∑
α

(H̃ α)2
)

δij .

We call the globally defined tensors̃g, Φ̃ = ∑
iα C̃α

i θ̃i ẽα , Ã := ρ̃2 ∑
ij Ãij θ̃i θ̃j and

B̃ = ρ̃
∑

ijα B̃α
ij θ̃i θ̃j ẽα the Möbius metric, the Möbius form, the Blaschke tensor and the

Möbius second fundamental form ofu : M → Rn, respectively.
Now, letσ : Rn → Sn be the conformal map given by (1.3). We definex := σ ◦u : M →

Sn. Thenx is a submanifold inSn without umbilics. We denote byΦ andA the Möbius form
and the Blaschke tensor ofx defined by (1.1) and (1.2), and denote byg andB the Möbius
metric and the Möbius second fundamental form defined by (2.3) and (2.13) forx = σ ◦ u,
respectively. Our goal in this section is to prove the following

THEOREM 4.1. g = g̃, B = dσ(B̃), Φ = dσ(Φ̃) and A = Ã. In particular,
{g̃, B̃, Φ̃, Ã} are conformal invariants for submanifolds in Rn.

Let σ : Rn → Sn be the conformal map given by

(4.5) x = σ(u) =
(

1 − |u|2
1 + |u|2 ,

2u

1 + |u|2
)

, u ∈ Rn .

Then for any vectorV ∈ TuRn we have

(4.6) dσ(V ) = 2

1 + |u|2 {−(u · V )x + (−u · V, V )} .

Thus we get

(4.7) dx · dx = 4

(1 + |u|2)2
du · du .

Now, let u : M → Rn be a submanifold inRn andx = σ ◦ u : M → Sn. We denote by
{ẽi} and{ẽα} local orthonormal basis fordu · du and the normal bundle ofu respectively, and
define

(4.8) ei = 1 + |u|2
2

ẽi , eα = 1 + |u|2
2

dσ(ẽα) .
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Then {ei} is a local orthonormal basis fordx · dx with dual basis{θi} and {eα} is a local
orthonormal basis for the normal bundle ofx in Sn. It follows from (4.6) that

ei(x) = 1 + |u|2
2

dσ(ẽi(u)) = −(u · ẽi (u))x + (−u · ẽi (u), ẽi(u)) ,(4.9)

eα = 1 + |u|2
2

dσ(ẽα) = − 2u · ẽα

1 + |u|2 (1, u) + (0, ẽα)

(4.10) = −(u · ẽα)x + (−u · ẽα, ẽα) .

By (4.9) we get

(4.11) eiej (x) = 1 + |u|2
2

((−δij , 0) + (−u · ẽj ẽi(u), ẽj ẽi(u))) mod(x, ei(x)) .

Thus (4.10) and (4.11) yield

(4.12) hα
ij = 1 + |u|2

2
h̃α

ij + ẽα · uδij , Hα = 1 + |u|2
2

H̃ α + ẽα · u .

It follows from (4.12) and (4.7) that

ρ2 = (1 + |u|2)2

4
ρ̃2 ,(4.13)

g = ρ2dx · dx = ρ̃2du · du = g̃ .(4.14)

It is clear thatg̃ is a conformal invariant. By (4.12) and (4.13) we get

(4.15) Bα
ij = ρ−1(hα

ij − Hαδij ) = ρ̃−1(h̃α
ij − H̃ αδij ) = B̃α

ij .

By (4.10) we get

deα = (−u · dẽα, dẽα) mod(x, dx) ,

which implies that

(4.16) θαβ = deα · eβ = dẽα · ẽβ = θ̃αβ .

Let {Hα,i } and{H̃ α,i } be the covariant derivatives of the mean curvature vector in the
normal bundle ofx = σ ◦ u : M → Sn andu : M → Rn, respectively. By definition we have

dHα +
∑
β

Hβθβα =
∑

i

Hα,i θi , dH̃ α +
∑
β

H̃ βθ̃βα =
∑

i

H̃ α,i θ̃i .

Sinceθ̃i = ((1 + |u|2)/2)θi, from (4.12) and (4.16) we get

(4.17) Hα,i =
(

1 + |u|2
2

)2

H̃ α,i −1 + |u|2
2

∑
j

(h̃α
ij − H̃ αδij )(ẽj (u) · u) .

By (4.13) we get

(4.18) ej (logρ) = 1 + |u|2
2

ẽj (log ρ̃) + ẽj (u) · u .
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We define{Cα
i } and{C̃α

i } by (1.1) and (4.3), respectively. It follows from (4.17) and (4.18)
that

(4.19) Cα
i = C̃α

i .

Let {θij } and{θ̃ij } be the Levi-Civita connections ofdx · dx anddu · du with respect to the
basis{ei} and{ẽi}, respectively. Then by (4.7) we have

(4.20) θij = θ̃ij + 2u · ẽj (u)

1 + |u|2 θ̃i − 2u · ẽi (u)

1 + |u|2 θ̃j .

We define the Hessij (logρ) and Hessij (log ρ̃) by

d (ei(logρ)) +
∑
j

ej (logρ)θji =
∑
j

Hessij (logρ)θj ,

d (ẽi (log ρ̃)) +
∑
j

ẽj (log ρ̃)θ̃j i =
∑
j

Hessij (log ρ̃)θ̃j .

Using (4.18) and (4.20), we get

Hessij (logρ) =
(

1 + |u|2
2

)2

Hessij (log ρ̃) + (u · ẽi (u))(u · ẽj (u))

+ 1 + |u|2
2

( ∑
α

h̃α
ij (ẽα · u) + (u · ẽj (u))ẽi(log ρ̃) + (u · ẽi (u))ẽj (log ρ̃)

)
(4.21)

+
(

1 + |u|2
2

− 1 + |u|2
2

∑
k

(u · ẽk(u))ẽk(log ρ̃) −
∑

k

(u · ẽk(u))2
)

δij .

Using (4.12) and (4.18), we also get

ei(logρ)ej (logρ) +
∑
α

Hαhα
ij

=
(

1 + |u|2
2

)2 (
ẽi (log ρ̃)ẽj (log ρ̃) +

∑
α

H̃ αh̃α
ij

)

+ 1 + |u|2
2

(ẽi (log ρ̃)(ẽj (u) · u) + ẽj (log ρ̃)(ẽi(u) · u))(4.22)

+ (ẽi(u) · u)(ẽj (u) · u) + 1 + |u|2
2

h̃α
ij (ẽα · u)

+
( ∑

α

(ẽα · u)2 + 1 + |u|2
2

∑
α

(ẽα · u)H̃ α

)
δij ,
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1

2

(
‖∇ logρ‖2 − 1 +

∑
α

(Hα)2
)

= 1

2

(
1 + |u|2

2

)2(
‖∇ log ρ̃‖2 +

∑
α

(H̃ α)2
)

+ 1 + |u|2
2

( ∑
k

ẽk(log ρ̃)(ẽk(u) · u) +
∑
α

H̃ α(ẽα · u)

)
(4.23)

+ 1

2

∑
k

(u · ẽk(u))2 + 1

2

∑
α

(u · ẽα(u))2 − 1

2
.

Let {Aij } and{Ãij } be the tensor defined by (1.2) and (4.4), respectively. Then we get from
(4.13), (4.21), (4.22) and (4.23) that

(4.24) Aij = Ãij .

Now, we come to the proof of Theorem 4.1. It follows from (4.14) thatg = g̃. We take
ωi = ρθi = ρ̃θ̃i . Then by (4.24) we getA = Ã. From (4.8) and (4.13) we getdσ(ρ̃−1ẽα) =
ρ−1eα . Thus we get from (4.15) and (4.19) thatdσ(B̃) = B anddσ(Φ̃) = Φ. This completes
the proof of Theorem 4.1.

It follows from (4.3) and (4.4) that

THEOREM 4.2. The images of σ of minimal submanifolds with constant scalar curva-
ture in Rn are Möbius isotropic submanifolds in Sn.

Let Rn+1
1 be the Lorentzian space with inner product

〈y,w〉 = −y0w0 + y1w1 + · · · + ynwn, y = (y0, . . . , yn),w = (w0, . . . , wn).

Let Hn = {y ∈ Rn+1
1 | 〈y, y〉 = −1, y0 > 0} be then-dimensional hyperbolic space. We

define now the conformal invariants for the submanifolds inHn. Let y : M → Hn be a
submanifold inHn without umbilics. Let{êi} be a local orthonormal basis for〈dy, dy〉 with
dual basis{θ̂i}. Let Î I = ∑

αij ĥα
ij θ̂i θ̂j êα be the second fundamental form ofy andĤ =∑

α Ĥ αêα the mean curvature vector ofy, where{êα} is a local orthonormal basis for the
normal bundle ofy. We define

ĝ =ρ̂2〈dy, dy〉, ρ̂2 = m/(m − 1) · (‖Î I‖2 − m‖Ĥ‖2) ,(4.25)

B̂α
ij =ρ̂−1(ĥα

ij − Ĥ αδij ) ,(4.26)

Ĉα
i = − ρ̂−2

(
Ĥ α,i +

∑
j

(ĥα
ij − Ĥ αδij )êj (log ρ̂)

)
,(4.27)

Âij = − ρ̂−2
(

Hessij (log ρ̂) − êi (log ρ̂)êj (log ρ̂) −
∑
α

Ĥ αĥα
ij

)
(4.28)

− 1

2
ρ̂−2

(
‖∇ log ρ̂‖2 + 1 +

∑
α

(Ĥ α)2
)

δij .
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We call ĝ the Möbius metric ofy, B̂ = ρ̂
∑

ijα B̂α
ij θ̂i θ̂j êα the Möbius second fundamental

form of y, Φ̂ = ∑
iα Ĉα

i θ̂i êα the Möbius form ofy andÂ = ∑
ij ρ̂2Âij θ̂i θ̂j the Blaschke

tensor ofy, respectively.
SetDn = {u ∈ Rn | |u|2 < 1}. Let µ : Dn → Hn be the conformal diffeomorphism

given by

(4.29) µ(u) =
(

1 + |u|2
1 − |u|2 ,

2u

1 − |u|2
)

.

Thenu = µ−1 ◦ y : M → Dn is a submanifold inDn without umbilics. We denote by
{g̃, B̃, Φ̃, Ã} the basic Möbius invariants foru = µ−1 ◦ y : M → Dn ⊂ Rn. Using the same
method as in the proof of Theorem 4.1, we can prove that

THEOREM 4.3. ĝ = g̃, B̂ = dµ(B̃), Φ̂ = dµ(Φ̃) and Â = Ã. In particular,
{ĝ, B̂, Φ̂, Â} are conformal invariants for submanifolds in Hn.

Let τ : Hn → Sn+ be the conformal diffeomorphism defined by (1.4). Then we have
τ = σ ◦ µ−1. Thus from Theorem 4.1 and Theorem 4.3 we get

THEOREM 4.4. Let y : M → Hn be a submanifold in Hn without umbilics. Let
x = τ ◦ y : M → Sn+. Then we have

g = ĝ , B = dτ(B̂) , Φ = dτ(Φ̂) , A = Â .

In particular, {ĝ, B̂, Φ̂, Â} are conformal invariants for submanifolds in Hn.

It follows immediately from (4.27) and (4.28) that

THEOREM 4.5. The images of τ of minimal submanifolds with constant scalar curva-
ture in Hn are Möbius isotropic submanifolds in Sn.

5. The classification of Möbius isotropic submanifolds inSn. In this section we
prove the classification theorem mentioned in Section 1.

Let x : M → Sn be a Möbius isotropic submanifold inSn. By definition we have

(5.1) Aij = λδij , Cα
i ≡ 0 .

It follows from (2.10) and Proposition 2.3 that

(5.2) dN = λdY

for some constantλ. Using (5.1) and the last equation in (2.19), we get

(5.3) Aij = 1

2m2 (1 + m2κ)δij , κ = constant,

whereκ is the normalized scalar curvature of the Möbius metric. By (5.2) we can find a
constant vectorc ∈ Rn+2

1 such that

(5.4) N = 1

2m2 (1 + m2κ)Y + c .
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It follows from (5.4) and (2.5) that

(5.5) 〈c, c〉 = − 1

m2 (1 + m2κ) , 〈Y, c〉 = 1 .

Then we consider the following three cases: (i)c is timelike; (ii) c is lightlike; (iii) c is
spacelike.

First, we consider the case (i) that〈c, c〉 = −r2 with r = √
1 + m2κ/m > 0. By (2.2)

and〈Y,N〉 = 1 we know that the first coordinate ofY is positive and ofN is negative. Thus
by (5.4) we know that the first coordinate ofc is negative. So there exists aT ∈ O+(n+ 1, 1)
such that

(5.6) (−r, 0) = cT = NT − r2

2
YT .

Let x̃ : M → Sn be the submanifold which is Möbius equivalent tox such thatỸ = YT

(cf. Theorem 2.1). Then we havẽN = NT . Since

(5.7) cT = (−r, 0) , 〈Ỹ , cT 〉 = 1 , Ỹ = ρ̃(1, x̃) ,

we get

(5.8) ρ̃ = r−1 = constant.

It follows from (5.6) and (2.4) that

(5.9) (−r, 0) = Ñ − r2

2
Ỹ , Ñ = − 1

m
	̃Ỹ − 1

2
r2Ỹ .

Sinceρ̃ = r−1, we know fromg̃ = ρ̃2dx̃ ·dx̃ that the Laplace operator	M of dx̃ ·dx̃ is given
by 	M = ρ̃2	̃. Thus by (5.9) we get

(5.10) 	Mx̃ + mx̃ = 0 .

By Takahashi’s theorem ([T]) we know thatx̃ : M → Sn is a minimal submanifold. The
normalized scalar curvaturẽκ of dx̃ · dx̃ is a constant given by

(5.11) κ̃ = ρ̃2κ = m2κ

1 + m2κ
.

Next, we consider the case (ii) that〈c, c〉 = 0. By making use of a Möbius transformation
if necessary, we may assume thatc = (−1, 1, 0). Thus by (5.4) and (2.4) we have

(5.12) c = (−1, 1, 0) = N = − 1

m
	Y .

We write x = (x0, x1). ThenY = (ρ, ρx0, ρx1). By (5.5) and (5.12) we get〈Y, c〉 =
ρ(1 + x0) = 1, which implies thatx0 �= −1 andx(M) ⊂ Sn\{(−1, 0)}.

Now, let σ−1 : Sn\{(−1, 0)} → Rn be the stereographic projection from the point
(−1, 0) ∈ Sn. We defineu = σ−1 ◦ x : M → Rn. Then by (1.3) we have

(5.13) Y = ρ(1, x) =
(

ρ,
ρ(1 − |u|2)

1 + |u|2 ,
2ρu

1 + |u|2
)

.
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From〈Y, c〉 = 1 we getρ = (1 + |u|2)/2. Thus we get from (5.13) that

Y =
(

1 + |u|2
2

,
1 − |u|2

2
, u

)
.

The Möbius metric ofx is given by

(5.14) g = 〈dY, dY 〉 = du · du ,

which is exactly the first fundamental form ofu = σ−1 ◦ x : M → Rn. In particular, the
Laplace operator	 of g coincides with the Laplace operator ofdu · du. Comparing the last
coordinate in (5.12), we get	u = 0. Thusu = σ−1◦x : M → Rn is a minimal submanidold.
By (5.14) and (5.4) we know that the normalized scalar curvature ofu is exactly the scalar
curvatureκ of g. Since〈c, c〉 = −(1 + m2κ)/m2 = 0, we getκ = −1/m2.

Finally, we consider the case that〈c, c〉 = r2 with r =
√

−(1 + m2κ)/m > 0. By
making use of a Möbius transformation if necessary, we may assume thatc = (0, r, 0). We
write x = (x0, x1). ThenY = (ρ, ρx0, ρx1). It follows from (5.5) that〈Y, c〉 = ρrx0 = 1,
which implies thatx0 > 0 andx(M) ⊂ Sn+.

Now, let τ : Hn → Sn+ be the conformal diffeomorphsim defined by (1.4) andy =
τ−1 ◦ x : M → Hn ⊂ Rn+1

1 . Since〈Y, c〉 = ρrx0 = 1, we getx0 = 1/rρ. By (1.4) we get
y0 = 1/x0 = rρ and

(5.15) Y = (ρ, ρx0, ρx1) =
(

y0

r
,

1

r
,
y1

r

)
.

It follows that

(5.16) g = 〈dY, dY 〉 = r−2〈dy, dy〉 .

The Laplace operator	M of 〈dy, dy〉 is given by	M = r−2	. By (5.4) and (2.4) we have

(5.17) − 1

m
	Y + r2

2
Y = − r2

2
Y + (0, r, 0) ,

which is equivalent to the equation

(5.18) 	My − my = 0 .

Thusy = τ−1 ◦ x : M → Hn is a minimal submanifold. Since the Möbius metricg has con-
stant scalar curvature, we know from (5.16) thaty : M → Hn has constant scalar curvature.

Thus we complete the proof of the classification theorem.
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