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Abstract. The Möbius metric δG is studied in the cases where its domain G is an open
sector of the complex plane. We introduce upper and lower bounds for this metric in
terms of the hyperbolic metric and the angle of the sector, and then use these results
to find bounds for the distortion of the Möbius metric under quasiregular mappings
defined in sector domains. Furthermore, we numerically study the Möbius metric and
its connection to the hyperbolic metric in polygon domains.
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1. Introduction

One of the most important concepts in the geometric function theory is the intrinsic
distance. It means that, given two points in a domain, we do not only consider how close
these points are to each other but also how they are located with respect to the boundary
of the domain. In order to measure these kinds of distances, we need to use suitable
intrinsic or hyperbolic type metrics, which have been recently studied, for instance, in
[1, 5, 6, 7, 9, 12, 13, 14].

In this article, we focus on one of these intrinsic metrics, which is defined as follows:
For any domain G ⊂ Rn

= Rn ∪ {∞} whose complement (Rn\G) contains at least two
points, let the Möbius metric be the function δG : G×G→ [0,∞),

δG(x, y) = sup
a,b∈∂G

log(1 + |a, x, b, y|),(1.1)

where |a, x, b, y| is the cross-ratio defined in (2.1). This metric was first introduced in
[17, pp. 115-116] and then later studied more extensively by P. Seittenranta in his PhD
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thesis [15, Def. 1.1, p. 511], which is why it is sometimes also referred to as Seittenranta’s
metric.

Due to the Möbius invariance of the cross-ratio, the distances defined with the Möbius
metric are preserved under Möbius transformations, which is one of the most useful prop-
erties of this metric. However, there are still numerous open questions concerning this
metric. For instance, while it is known that the value of this metric is equal to that of
the hyperbolic metric ρ or the distance ratio metric j in some special cases, see Theorems
2.3 and 3.1, the Möbius metric is studied very little in other kinds of domains. To fill this
gap, our aim here is to find more information about the Möbius metric in the cases where
the domain G is either an open sector of the complex plane or a polygon.

The main result of this article is as follows:

Theorem 1.2. For all points x, y in an open sector Sθ with an angle 0 < θ < 2π, the
following inequalities hold:

(1) ρSθ(x, y) ≤ δSθ(x, y) ≤ min

{
2,

(
π sin(θ/2)

θ

)2
}
ρSθ(x, y), if θ < π,

(2) δSθ(x, y) = ρSθ(x, y), if θ = π,

(3) max

{
2arth

th(ρSθ(x, y)/2)

2
,

(
π sin(θ/2)

θ

)2

ρSθ(x, y)

}
≤ δSθ(x, y) ≤ 4ψ, if θ > π,

where

ψ =

{
min {ρSθ(x, y), arth ((θ/π)th(ρSθ(x, y)/2))} , if (θ/π)th(ρSθ(x, y)/2) < 1,

ρSθ(x, y) otherwise.

The structure of this article is as follows. First, in Section 3, we combine some already
known inequalities to create some initial bounds for the Möbius metric in a general domain.
Then, in Section 4, we study the Möbius metric defined in an open sector by showing
how the supremum of the cross-ratio in its definition (1.1) can be found. These results
will be used in Section 5, where we introduce bounds for the Möbius metric in terms
of the hyperbolic metric in a sector and prove Theorem 1.2. In Section 6, we apply
these results and prove bounds for the distortion of the Möbius metric under quasiregular
mappings of the unit disk into sector domains. Finally, in Section 7, we utilise the recent
computational methods from [11] to experimentally study the inequalities between the
Möbius and hyperbolic metric in polygon domains and formulate a few conjectures.

2. Preliminaries

First, define the following notations for the Euclidean metric. Let the distance from a
point x ∈ Rn to a non-empty set F ⊂ Rn be d(x, F ) = inf{|x− z| | z ∈ F}. For a domain
G ( Rn, denote dG(x) = d(x, ∂G) for all x ∈ G. Let the Euclidean diameter of a non-
empty set F be d(F ) and the Euclidean distance between two non-empty separate sets
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F0, F1 be d(F0, F1). Furthermore, denote the Euclidean open ball with a center x ∈ Rn

and a radius r > 0 by Bn(x, r), the corresponding closed ball by B
n
(x, r) and its boundary

sphere by Sn−1(x, r).
Let Rn

= Rn ∪ {∞} be as in the introduction, and also denote Cn
= Cn ∪ {∞}. For

all distinct points x, y ∈ Rn
, define the spherical (chordal) metric as in [5, (3.6), p. 29]:

q(x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2
, if x 6=∞ 6= y; q(x,∞) =

1√
1 + |x|2

.

For any four distinct points a, b, c, d ∈ Rn
, define the cross-ratio as [5, (3.10), p. 33]

|a, b, c, d| = q(a, c)q(b, d)

q(a, b)q(c, d)
,(2.1)

and note that, if ∞ /∈ {a, b, c, d}, then this definition yields

|a, b, c, d| = |a− c||b− d|
|a− b||c− d|

.

Other than the Möbius metric, we will be needing a few other hyperbolic type metrics.
Define the upper half-space Hn = {(x1, ..., xn) ∈ Rn | xn > 0}, the unit ball Bn = Bn(0, 1)
and the open sector Sθ = {x ∈ C\{0} | 0 < arg(x) < θ} with an angle θ ∈ (0, 2π). Here,
arg(x) ∈ [0, 2π) denotes the principal branch of the argument of a complex number
x ∈ C\{0}. Now, we can define the hyperbolic metric in these three domains by using the
following formulas, respectively [5, (4.8), p. 52 & (4.14), p. 55]:

chρHn(x, y) = 1 +
|x− y|2

2dHn(x)dHn(y)
, x, y ∈ Hn,

sh2ρBn(x, y)

2
=

|x− y|2

(1− |x|2)(1− |y|2)
, x, y ∈ Bn,

ρSθ(x, y) = ρH2(xπ/θ, yπ/θ), x, y ∈ Sθ,

From these formulas, it follows that:

th
ρH2(x, y)

2
=

∣∣∣∣x− yx− y

∣∣∣∣ , th
ρB2(x, y)

2
=

∣∣∣∣ x− y1− xy

∣∣∣∣ ,(2.2)

where y is the complex conjugate of y.
For a domain G ( Rn, the distance ratio metric [17, p. 25] introduced by Gehring and

Osgood [3] is the function jG : G×G→ [0,∞),

jG(x, y) = log(1 +
|x− y|

min{dG(x), dG(y)}
).
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As noted in [7, 2.2, p. 1123 & Lemma 2.1, p. 1124], this metric can be used to define
another metric, the so called j∗G-metric j∗G : G×G→ [0, 1],

j∗G(x, y) = th
jG(x, y)

2
=

|x− y|
|x− y|+ 2 min{dG(x), dG(y)}

.

Furthermore, the quasihyperbolic metric introduced by Gehring and Palka in [4] is defined
as the function kG : G×G→ [0,∞)

kG(x, y) = inf
γ∈Γxy

∫
γ

|dx|
dG(x)

,

where Γxy consists of all the rectifiable curves in G joining x and y. Consider yet the
triangular ratio metric [1, (1.1), p. 683] sG : G×G→ [0, 1],

sG(x, y) =
|x− y|

infz∈∂G(|x− z|+ |z − y|)
,

which was originally introduced by P. Hästö in 2002 [8].
The following result expresses the main property of the Möbius metric:

Theorem 2.3. [15], [5, Thm 5.16, p. 75] The Möbius metric δG is Möbius invariant: If
G ⊂ Rn

is a domain such that Rn\G contains at least two points and h : Rn → Rn
is a

Möbius transformation, then for all x, y ∈ G,

δh(G)(h(x), h(y)) = δG(x, y).

Furthermore, δG = ρG for G ∈ {Bn,Hn}.

3. General inequalities

In this section, we will briefly review a few already existing inequalities and show how
they can be used to create bounds for the Möbius metric. Note that the inequalities found
here concern mostly the situation, in which the shape of the domain G is not known. For
instance, Corollary 3.5 gives us an inequality for a simply connected uniform domain G,
but its constants are probably not very sharp when compared to those that could be
obtained when knowing the exact shape of the domain G.

Theorem 3.1. [5, Thm 5.16, p. 75] For all points x, y in a domain G ( Rn,

jG(x, y) ≤ δG(x, y) ≤ 2jG(x, y)

and, in the special case G = Rn\{0}, δG = jG.

Theorem 3.2. [2, (3.2.1), p. 35] For all points x, y in a simply connected domain G ( R2,

1

2
kG(x, y) ≤ ρG(x, y) ≤ 2kG(x, y).

Theorem 3.3. [5, Cor. 5.6, p. 69] For all points x, y in a domain G ( Rn, jG(x, y) ≤
kG(x, y).
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Definition 3.4. [5, Def. 6.1, p. 84],[10, Def. 2.4, p. 8] A domain G ⊂ Rn is uniform if
there exists a number A ≥ 1 such that the inequality kG(x, y) ≤ AjG(x, y) holds for all
x, y ∈ G and the smallest such number A fulfilling this condition is called the uniformity
constant of G.

Corollary 3.5. If a domain G ( R2 is simply connected and uniform with the uniformity
constant AG, then

ρG(x, y)/(2AG) ≤ δG(x, y) ≤ 4ρG(x, y)

for all x, y ∈ G.

Proof. Follows from Theorems 3.3 and 3.2, and Definition 3.4. �

Now, let us find some bounds for the Möbius metric with the triangular ratio metric
and the j∗-metric in the cases of both a convex domain G and a non-convex one.

Lemma 3.6. [7, Lemma 2.1, p. 1124; Lemma 2.2, p. 1125 & Thm 2.9(i), p. 1129] For
all points x, y in a domain G ( Rn,

j∗G(x, y) ≤ sG(x, y) ≤ 2j∗G(x, y)

and, if G is convex, the constant 2 above can be replaced by
√

2.

Lemma 3.7. [7, Lemma 2.7(ii), p. 1128] For all points x, y in a convex domain G ( Rn,

th
jG(x, y)

2
≤ sG(x, y) ≤ thjG(x, y).

Corollary 3.8. For a domain G ( Rn such that Rn\G contains at least two points and
for all x, y ∈ G, the following inequalities hold:
(1) j∗G(x, y) ≤ th(δG(x, y)/2) ≤ th(2arth(j∗G(x, y))) ≤ 2j∗G(x, y),
(2) sG(x, y)/2 ≤ th(δG(x, y)/2) ≤ th(2arth(sG(x, y))) ≤ 2sG(x, y).
Furthermore, if G is convex, then for all x, y ∈ G
(3) sG(x, y)/

√
2 ≤ th(δG(x, y)/2),

(4) sG(x, y) ≤ th(δG(x, y)).

Proof. (1) Follows from Theorem 3.1 and the definition of j∗-metric.
(2) Follows from the first inequality and Lemma 3.6.
(3) Follows from the first inequality and Lemma 3.6.
(4) Follows from Theorem 3.1 and Lemma 3.7. �

Finally, let us consider the case where the domain G is an open sector. Note that neither
the inequalities of Corollary 3.10 nor Corollary 3.12 have the best possible constants. In
fact, they are only used to prove our main result, Theorem 1.2, in Section 5.

Theorem 3.9. [14, Cor. 4.9, p. 9] For a fixed angle θ ∈ (0, 2π) and for all x, y ∈ Sθ, the
following results hold:
(1) sSθ(x, y) ≤ th(ρSθ(x, y)/2) ≤ (π/θ) sin(θ/2)sSθ(x, y) if θ ∈ (0, π),
(2) sSθ(x, y) = th(ρSθ(x, y)/2) if θ = π,
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(3) (π/θ)sSθ(x, y) ≤ th(ρSθ(x, y)/2) ≤ sSθ(x, y) if θ ∈ (π, 2π).
Furthermore, these bounds are also sharp.

Corollary 3.10. For all points x, y ∈ Sθ, the following inequalities hold:

(1) max

{
2arth

(
θ√

2π sin(θ/2)
th
ρSθ(x, y)

2

)
, arth

(
θ

π sin(θ/2)
th
ρSθ(x, y)

2

)}
≤ δSθ(x, y) ≤ 2ρSθ(x, y), if 0 < θ < π,

(2) 2arth
th(ρSθ(x, y)/2)

2
≤ δSθ(x, y), if π < θ < 2π,

(3) δSθ(x, y) ≤ 4arth

(
θ

π
th
ρSθ(x, y)

2

)
, if π < θ < 2π and

θ

π
th
ρSθ(x, y)

2
< 1.

Proof. Follows from Corollary 3.8 and Theorem 3.9. �

Theorem 3.11. [10, Thm 1.7 & Thm 1.8, p. 6] An open sector Sθ is uniform with the
constant Aθ that fulfills

Aθ =
1

sin(θ/2)
+ 1, if 0 < θ ≤ π, and

max

{
2,

2 log(tan(θ/4)) + θ − π
log(1− 2 cos(θ/2))

}
≤ Aθ ≤ 4

(
θ

2π − θ

)2(
1

sin(θ/2)
+ 1

)
,

if π < θ < 2π.

Corollary 3.12. For all points x, y ∈ Sθ,

(1)
sin(θ/2)

2(1 + sin(θ/2))
ρSθ(x, y) ≤ δSθ(x, y) ≤ 4ρSθ(x, y), if 0 < θ ≤ π,

(2)
1

8

(
2π

θ
− 1

)2
sin(θ/2)

1 + sin(θ/2)
ρSθ(x, y) ≤ δSθ(x, y) ≤ 4ρSθ(x, y) if π < θ < 2π.

Proof. Follows from Corollary 3.5 and Theorem 3.11. �

4. Möbius metric in open sector

In this section, our aim is to find ways to estimate the value of the Möbius metric
defined in an open sector Sθ. To do this, we will study the supremum of the cross-ratio
needed in the definition of the metric δSθ , in both cases where the angle θ is less than
π and greater than π. The main result of this section is Corollary 4.13 but, in order to
prove it, we need to consider several other results first.

Proposition 4.1. (1) If x, y ∈ H2 such that |x| = |y| = r > 0 and arg(x) ≤ arg(y), then
supa,b∈R |a, x, b, y| = |r, x,−r, y|.
(2) If x, y ∈ iR ∩ B2 such that Im(x) ≤ Im(y), then supa,b∈S1 |a, x, b, y| = | − i, x, i, y|.
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Proof. Since δH2(x, y) = supa,b∈R log(1 + |a, x, b, y|), both results can be verified by the
fact that δG = ρG for G ∈ {Bn,Hn} according to Theorem 2.3. �

Lemma 4.2. For all points x, y in an open sector Sθ with an angle 0 < θ < π such that
arg(x) ≤ arg(y) and |x| = |y| = r > 0, there is a Möbius transformation f that maps Sθ
onto the lens-shaped domain

B2((1− u)i, u) ∩B2((u− 1)i, u), u =
1

1− cos(θ/2)
> 1,

and x, y into f(x), f(y) ∈ iR ∩ B2 so that Im(f(x)) ≤ Im(f(y)).

Proof. Define the function f : C→ C,

f(z) =
−i(1 + eθi/2)(z − reθi/2)

(1− eθi/2)(z + reθi/2)
.(4.3)

Clearly, f is the Möbius transformation that fulfills

f(r) = −i, f(reθi/2) = 0, f(reθi) = i, f(0) =
− sin(θ/2)

1− cos(θ/2)
= −f(∞).(4.4)

By the general properties of Möbius transformations, f preserves the angles and must
turn a line into a circle if any three points chosen from it are no longer collinear after the
transformation. Thus, f maps two sides of the sector Sθ onto two circular arcs that are
symmetric with respect to the both coordinate axes, meet each other in the points f(0)
and f(∞) at an angle of θ, and out of which one contains the point i and the other one
the point −i. See Figure 1.

Consider a circle S1((1 − u)i, u), u > 1. Clearly, it is symmetric with respect to the
coordinate axes and i ∈ S1((1 − u)i, u). Using simple trigonometry, it can be calculated
that the two interior angles of the figure consisting of the real axis and the circular arc
S1((1− u)i, u) ∩H2 are

π

2
− arcsin

(
u− 1

u

)
∈
(

0,
π

2

)
.

If the value of this angle is θ/2, we can solve that

u =
1

1− cos(θ/2)
.(4.5)

By combining all our observations made above, we will have that, for all 0 < θ < π,

f(∂Sθ) = (S1((1− u)i, u) ∩H2) ∪ (S1((u− 1)i, u)\H2),

f(Sθ) = B2((1− u)i, u) ∩B2((u− 1)i, u),

where u is as in (4.5). The final part of the lemma is very trivial: From the behaviour
of the points in (4.4), we see that the transformation f maps the circle S1(0, r) onto the
imaginary axis and, if x, y ∈ S1(0, r) such that 0 < arg(x) ≤ arg(y) < θ, then clearly
f(x), f(y) ∈ [−i, i] so that −1 < Im(f(x)) ≤ Im(f(y)) < 1. �
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r

reθi/2

reθi

θ
2

f

i

0

-i

θ
2

Figure 1. Sector Sθ before and after the Möbius transformation f defined
in (4.3), when θ = 3π/4.

The result of Lemma 4.2 is very useful because it follows from the Möbius invariance
of the cross-ratio that the value of the Möbius metric between x, y ∈ Sθ can be calculated
in the lens-shaped symmetric domain f(Sθ) for f(x), f(y), see Figure 1.

Theorem 4.6. For all 0 < θ < π and x, y ∈ Sθ such that arg(x) ≤ arg(y) and |x| = |y| =
r > 0, the supremum supa,b∈∂Sθ |a, x, b, y| is given by the points a = r and b = reθi.

Proof. Let f be the Möbius transformation defined in (4.3), under which the open sector
Sθ with an angle 0 < θ < π is mapped onto a lens-shaped domain f(Sθ). For all points
x, y ∈ iR ∩ B2, choose a, b ∈ f(∂Sθ) so that the cross-ratio |a, x, b, y| is at greatest. Note
that, for all points u ∈ iR ∩ B2 and v ∈ C\B2, the inequality

max

{
|i− v|
|u− i|

,
| − i− v|
|u− (−i)|

}
≥ 1,(4.7)

holds. It follows from this that |x − a| ≤ |a − b| holds, because otherwise replacing a
either by i or −i would give a greater value for the cross-ratio |a, x, b, y|.
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Fix now a′ ∈ [x, a]∩ S1. By the inequality |x− a| ≤ |a− b| and the triangle inequality,

|a− b|
|x− a|

≤ |a− b| − |a− a
′|

|x− a| − |a− a′|
=
|a− b| − |a− a′|
|x− a′|

≤ |a
′ − b|
|x− a′|

.(4.8)

Let us yet show that there is a point b′ ∈ S1 such that

|a′ − b|
|y − b|

≤ |a
′ − b′|
|y − b′|

.(4.9)

If |y−b| ≤ |a′−b| holds for the point b′ ∈ [y, b]∩S1, then the inequality (4.9) follows from
the triangle inequality just like (4.8). If |y− b| > |a′− b| instead, then there is b ∈ {i,−i}
such that |y − b′| ≤ |a′ − b′| by the inequality (4.7) and the inequality (4.9) clearly holds
for this choice of b′.

Thus, if a, b ∈ f(∂Sθ) give the supremum of |a, x, b, y| for given points x, y ∈ iR ∩ B2

and a′, b′ are chosen like above, it follows from the inequalities (4.8) and (4.9) that

|a, x, b, y| ≤ |a′, x, b, y| ≤ |a′, x, b′, y| ≤ sup
a′,b′∈S1

|a′, x, b′, y|.

By Proposition 4.1(2), if x, y ∈ iR∩B2 such that Im(x) ≤ Im(y), then supa′,b′∈S1 |a′, x, b′, y|
is given by a = −i and b = i. Since i,−i ∈ f(∂Sθ) ∩ S1, it must hold that

sup
a,b∈f(∂Sθ)

|a, x, b, y| = | − i, x, i, y|.

Because f preserves the cross-ratio as a Möbius transformation, we can now show that,
for all x, y ∈ Sθ such that |x| = |y| = r and arg(x) ≤ arg(y),

sup
a,b∈∂Sθ

|a, x, b, y| = sup
a,b∈f(∂Sθ)

|a, f(x), b, f(y)| = | − i, f(x), i, f(y)| = |r, x, reθi, y|.

�

Note that Theorem 4.6 does not hold in the case θ > π, as the following example shows.

Example 4.10. For x = e(1−k)θi/2 and y = e(1+k)θi/2 with 0 < k < 1 and π < θ < 2π,

lim
k→0+

|1, x, eθi, y|
|0, x,∞, y|

= lim
k→0+

sin(θ/2)

2 sin2((1− k)θ/4)
=

sin(θ/2)

2 sin2(θ/4)
=

cos(θ/4)

sin(θ/4)
< 1

and it follows that supa,b∈∂Sθ |a, x, b, y| is not attained with a = 1 and b = eθi.

However, we can still use Lemma 4.2 to calculate the supremum of the cross-ratio in the
Möbius metric for points x, y in a sector Sθ with θ > π, as can be seen from the following
result.

Corollary 4.11. For any open sector Sθ with an angle π < θ < 2π, there is a Möbius
transformation f that maps Sθ onto the domain

B2((1− u)i, u) ∪B2((u− 1)i, u), u =
1

1− cos(θ/2)
∈
(

1

2
, 1

)
,
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r

reθi

reθi/2 f i

00

-i

θ
2

θ
2

Figure 2. Sector Sθ before and after the Möbius transformation f defined
in (4.3), when θ = 5π/4.

and, for all x, y ∈ Sθ,
sup

a,b∈∂Sθ
|a, x, b, y| = sup

a,b∈f(∂Sθ)

|a, f(x), b, f(y)|.

Proof. Let the Möbius transformation f be as in (4.3) with, for instance, r = 1. The
proof now goes just like that of Theorem 4.6, but it must be noted that f maps the sides
of Sθ onto circular arcs that meet each other at an angle θ > π. Thus, f(Sθ) must be
an union of two disks B2((1− u)i, u) and B2((u− 1)i, u) instead of their intersection and
1/2 < u < 1 now, see Figure 2. The final part of the proof follows from the Möbius
invariance of the cross-ratio. �

Several computational experiments support the next conjecture.

Conjecture 4.12. If π < θ < 2π and x = re(1−k)θi/2 and y = re(1+k)θi/2 with r > 0 and
0 < k < 1, then

sup
a,b∈∂Sθ

|a, x, b, y| = max{|r, x, reθi, y|, |0, x,∞, y|}.

The results of this section about the supremum of the cross-ratio give us information
about the values of the Möbius metric δSθ defined in a sector domain.

Corollary 4.13. For all x, y ∈ Sθ with 0 < θ < 2π such that |x| = |y| and arg(x) ≤
arg(y),

δSθ(x, y) ≥ log

(
1 +

sin(θ/2) sin((arg(y)− arg(x))/2)

sin(arg(x)/2) sin((θ − arg(y))/2)

)
,

where the equality holds whenever θ ≤ π.

Proof. Let x = reui and y = revi with 0 < u ≤ v < θ. By Theorem 4.6 and Proposition
4.1(1), the supremum supa,b∈∂Sθ |a, x, y, b| is now found by choosing a = r and b = reθi if
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θ ≤ π, and these choices of a, b give a lower limit for the supremum if θ > π. The result
follows now directly from the definition of δSθ(x, y). �

5. Möbius metric and hyperbolic metric in open sector

In this section, we will study the connection between the Möbius metric and the hy-
perbolic metric in an open sector Sθ with an angle 0 < θ < 2π. The main result of this
section is Corollary 5.11, which will be used to prove Theorem 1.2. However, in order to
derive these results, we need to define the following quotient.

For all 0 < k < 1 and 0 < θ < 2π, define

Q(k, θ) ≡ log

(
1 +

sin(θ/2) sin(kθ/2)

sin2((1− k)θ/4)

)/
log

(
1 +

sin(kπ/2)

sin2((1− k)π/4)

)
.(5.1)

The quotient above is very much needed here because it equals to the value of the
quotient between the Möbius metric and the hyperbolic metric in certain cases, as will be
shown in the next lemma.

Lemma 5.2. For all x, y ∈ Sθ such that x = re(1−k)θi/2 and y = re(1+k)θi/2 with r > 0
and 0 < k < 1,

δSθ(x, y)

ρSθ(x, y)
= Q(k, θ), if 0 < θ < π; and

δSθ(x, y)

ρSθ(x, y)
≥ Q(k, θ), if π < θ < 2π.

Proof. Recall the trigonometric identities sin(u) = cos(π/2−u) and cos(2v) = 1−2 sin2(v).
It follows from these that

1− sin(kπ/2) = 1− cos((1− k)π/2) = 2 sin2((1− k)π/4).

By using this formula, we will have

ρSθ(x, y) = ρSθ(re
(1−k)θi/2, re(1+k)θi/2) = ρH2(rπ/θe(1−k)πi/2, rπ/θe(1+k)πi/2)

= log

(
|e(1−k)πi/2 − e−(1+k)πi/2|+ |e(1−k)πi/2 − e(1+k)πi/2|
|e(1−k)πi/2 − e−(1+k)πi/2| − |e(1−k)πi/2 − e(1+k)πi/2|

)
= log

(
1 + sin(kπ/2)

1− sin(kπ/2)

)
= log

(
1 +

2 sin(kπ/2)

1− sin(kπ/2)

)
= log

(
1 +

sin(kπ/2)

sin2((1− k)π/4)

)
.

Combining the expression above and Corollary 4.13, our result follows. �

While the result of Lemma 5.2 only holds for distinct points x, y ∈ Sθ that are symmetric
with respect to the angle bisector of the sector and fulfill |x| = |y|, Corollary 5.5 shows
us why studying the quotient Q(k, θ) is useful also outside these restrictions.

Lemma 5.3. [14, Lemma 4.2, pp. 7-8] For given two distinct points x , y ∈ H2, there
exists a Möbius transformation g : H2 → H2 such that |g(x)| = |g(y)| = 1 and Im(g(x)) =
Im(g(y)) .

(1) If Im(x) = Im(y) , then g(z) = (z−a)/r where a = Re((x+ y)/2) and r = |x−a| .
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(2) If Re(x) = Re(y) = a and r =
√

Im(x)Im(y), then g is the Möbius transformation
fulfilling g(a− r) = 0, g(a) = 1 and g(a+ r) =∞.

(3) In the remaining case, the angle α = ](L(x, y),R) belongs to (0, π/2). Let
S1(c1, r1) and S1(c2, r2) be two circles centered at the real axis and orthogonal
to each other, such that x, y ∈ S1(c1, r1) and c2 = L(x, y) ∩ R. Then g is de-
termined by g(B2(c1, r1) ∩ H2) = B2 ∩ H2 , g(c1 − r1) = −1, g(c1 + r1) = 1 and
g(S1(c2, r2) ∩H2) = {yi | y > 0}.

Lemma 5.4. [14, Lemma 4.5, p. 8] For all distinct points x, y ∈ Sθ with 0 < θ < 2π,
there is a conformal mapping f : Sθ → Sθ such that f(x) = e(1−k)θi/2 and f(y) = e(1+k)θi/2

for some k ∈ (0, 1).

Proof. Consider a conformal map h : Sθ → H2, h(z) = zπ/θ. Fix g : H2 → H2 as the
Möbius invariant map of Lemma 5.3 for the points h(x), h(y). Define a conformal mapping
f = h−1 ◦ g ◦ h. Since |g(h(x))| = |g(h(y))| = 1 and Im(g(h(x))) = Im(g(h(y))), we can
write g(h(x)) = e(1−k)πi/2 and g(h(y)) = e(1+k)πi/2 for some 0 < k < 1. By using this k,
we will have the points f(x) = e(1−k)θi/2 and f(y) = e(1+k)θi/2. �

Corollary 5.5. For all 0 < θ < 2π and distinct x, y ∈ Sθ,

inf
0<k<1

Q(k, θ) ≤ δSθ(x, y)

ρSθ(x, y)
≤ sup

0<k<1
Q(k, θ), if 0 < θ ≤ π

inf
0<k<1

Q(k, θ) ≤ δSθ(x, y)

ρSθ(x, y)
, if π < θ < 2π

where f(x) = e(1−k)θi/2 and f(y) = e(1+k)θi/2.

Proof. Let the mappings f, g, h be as in Lemma 5.3 and the proof of Lemma 5.4. Note
that, even though the mapping f of does not necessarily preserve the distance δSθ(x, y),
by Theorem 2.3 and the conformal invariance of the hyperbolic metric,

δH2(h(x), h(y)) = δH2(g(h(x)), g(h(y))) = ρH2(g(h(x)), g(h(y))) = ρH2(h(x), h(y)),

ρSθ(x, y) = ρSθ(f(x), f(y)),

for all points x, y ∈ Sθ. It follows from this that

inf
x,y∈Sθ

δSθ(f(x), f(y))

ρSθ(f(x), f(y))
≤ δSθ(x, y)

ρSθ(x, y)
≤ sup

x,y∈Sθ

δSθ(f(x), f(y))

ρSθ(f(x), f(y))
,

which leads to the result of our corollary by Lemmas 5.2 and 5.4. �

Before studying the values of the quotient Q(k, θ), consider yet the following proposi-
tion.

Proposition 5.6. (1) For all constants u, v ∈ (0, π], the quotients sin(uk)/ sin(vk) and
sin((1− k)v)/ sin((1− k)u) are increasing with respect to 0 < k < 1 if and only if u ≤ v,
and decreasing if u > v instead.
(2) The quotient sin(t/2)/t is decreasing with respect to 0 < t < 2π.
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(3) The quotient t sin(t)/ sin2(t/2) is decreasing with respect to 0 < t < 2π.
(4) The quotient log(1 + µq)/ log(1 + q) is increasing with respect to q > 0 if 0 < µ ≤ 1,
and decreasing if µ > 1.

Proof. (1) First, define a function f1 : [0, π] → R, f1(t) = sin(t/2) − 2t, and note that
by calculus f1(t) ≤ 0 for all 0 ≤ t ≤ π. Now, consider the function f2 : (0, π] → R,
f2(u) = u cos(uk)/ sin(uk) with 0 < k < 1. By differentiation and simple trigonometric
identities,

f ′2(u) =
sin(uk/2)− 2uk

2 sin2(uk)
=

f1(uk)

2 sin2(uk)
≤ 0

so f2 is decreasing with respect to 0 < u ≤ π. Finally, denote f3 : (0, 1) → R, f3(k) =
sin(uk)/ sin(vk), where u, v ∈ (0, π] are constants. By differentiation,

f ′3(k) =
u cos(uk) sin(vk)− v sin(uk) cos(vk)

sin2(vk)
≥ 0 ⇔ u cos(uk)

sin(uk)
≥ v cos(vk)

sin(vk)

⇔ f2(u) ≥ f2(v) ⇔ u ≤ v.

This is enough to prove the result because 1/f3(1− k) is increasing (or decreasing) with
respect to 0 < k < 1 whenever f3 is.

(2) Define f4, f5 : (0, 2π) → R, f4(t) = sin(t/2), f5(t) = t. Since f4(0) = f5(0) = 0
and f ′4(t)/f ′5(t) = cos(t/2)/2 is decreasing with respect to t, by [5, Thm B.2, p. 465],
f4(t)/f5(t) is decreasing, too.

(3) Denote f6 : (0, 2π) → R, f6(t) = t sin(t)/ sin2(t/2). By differentiation and some
trigonometric identities,

f ′6(t) =
(sin(t) + t cos(t))(1− cos(t))− t sin2(t)

2 sin4(t/2)
=

(sin(t)− t)(1− cos(t))

2 sin4(t/2)
≤ 0,

so f6 is decreasing for 0 < t < 2π.
(4) Define f7, f8 : (0,∞) → R, f7(q) = log(1 + µq), f8(q) = log(1 + q). Note that

f7(0) = f8(0) = 0 and f ′7(q)/f ′8(q) = µ(1 + q)/(1 + µq) is increasing with respect to q > 0
if 0 < µ ≤ 1 and decreasing if µ > 1. By [5, Thm B.2, p. 465], the quotient f7(q)/f8(q)
is increasing (or decreasing) whenever f ′7(q)/f ′8(q) is, so the result follows. �

Theorem 5.7. For all 0 < k < 1 and 0 < θ < 2π, the quotient Q(k, θ) defined in (5.1)
fulfills

1 ≤ Q(k, θ) ≤ (π sin(θ/2)/θ)2, if θ < π,

(π sin(θ/2)/θ)2 ≤ Q(k, θ) ≤ 1, if θ > π.

Proof. Note that the quotient Q(k, θ) can be written as log(1 + q0(k, θ))/ log(1 + q1(k)),
where

q0(k, θ) =
sin(θ/2) sin(kθ/2)

sin2((1− k)θ/4)
, q1(k) =

sin(kπ/2)

sin2((1− k)π/4)
.(5.8)
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Clearly,

q0(k, θ)

q1(k)
= sin(θ/2)

sin(kθ/2)

sin(kπ/2)

(
sin((1− k)π/4)

sin((1− k)θ/4)

)2

.

Trivially, q0(k, θ)/q1(k) = 1, whenever θ = π. It follows from Proposition 5.6(1) that
q0(k, θ)/q1(k) is increasing with respect to k if 0 < θ < π, and decreasing if π < θ < 2π.
Thus, this quotient is bounded by its limit values

µ0(θ) ≡ lim
k→0+

q0(k, θ)

q1(k)
=

θ sin(θ/2)

2π sin2(θ/4)
, µ1(θ) ≡ lim

k→1−

q0(k, θ)

q1(k)
=

(
π sin(θ/2)

θ

)2

.

By Proposition 5.6(2)-(3), both of the functions µ0(θ) and µ1(θ) are decreasing with
respect to 0 < θ < 2π. Since µ0(π) = µ1(π) = 1, this means that the functions µ0, µ1 are
greater than or equal to 1 for 0 < θ < π, and less than or equal to 1 for π < θ < 2π. It
follows that

(5.9)
q1(k) ≤ µ0(θ)q1(k) ≤ q0(k, θ) ≤ µ1(θ)q1(k), if 0 < θ < π, and

µ1(θ)q1(k) ≤ q0(k, θ) ≤ µ0(θ)q1(k) ≤ q1(k), if π < θ < 2π.

Recall now the expression for the quotient q1(k) from (5.8). This quotient q1(k) must be
strictly increasing with respect to 0 < k < 1, because it has a strictly increasing positive
numerator sin(kπ/2) and a strictly decreasing positive denominator sin2((1−k)π/4). Since
q1(k) has limit values limk→0+ q1(k) = 0 and limk→0+ q1(k) = ∞, it maps the interval
(0, 1) onto (0,∞). Furthermore, we already earlier noted that µ1(θ) ≥ 1 if 0 < θ < π,
and µ1(θ) ≤ 1 if π < θ < 2π. It follows from these observations, inequalities in (5.9) and
Proposition 5.6(4) that, if 0 < θ < π,

inf
0<k<1

Q(k, θ) = inf
0<k<1

log(1 + q0(k, θ))

log(1 + q1(k))
≥ inf

0<k<1

log(1 + q1(k))

log(1 + q1(k))
= 1,

sup
0<k<1

Q(k, θ) ≤ sup
0<k<1

log(1 + µ1(θ)q1(k))

log(1 + q1(k))
= lim

q1→0+

log(1 + µ1(θ)q1)

log(1 + q1)
= µ1(θ),

and, if π < θ < 2π,

inf
0<k<1

Q(k, θ) ≥ inf
0<k<1

log(1 + µ1(θ)q1(k))

log(1 + q1(k))
= lim

q1→0+

log(1 + µ1(θ)q1)

log(1 + q1)
= µ1(θ),

sup
0<k<1

Q(k, θ) ≤ sup
0<k<1

log(1 + q1(k))

log(1 + q1(k))
= 1,

which proves the theorem. �

It can be verified that the number 1 in the inequalities of Theorem 5.7 is the best
possible constant by showing that it is the limit value of the quotient Q(k, θ) whenever
k → 1−. However, the bound (π sin(θ/2)/θ)2 in Theorem 5.7 does not seem to be sharp.
According to several numerical test, the quotient Q(k, θ) is monotonic with respect to k,
either decreasing when 0 < θ ≤ π or increasing when π ≤ θ < 2π, which would lead into
the following result.
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Conjecture 5.10. For all 0 < k < 1 and 0 < θ < 2π, the quotient Q(k, θ) fulfills

1 = lim
k→1−

Q(k, θ) ≤ Q(k, θ) ≤ lim
k→0+

Q(k, θ) =
θ sin(θ/2)

2π sin2(θ/4)
, if θ < π,

θ sin(θ/2)

2π sin2(θ/4)
= lim

k→0+
Q(k, θ) ≤ Q(k, θ) ≤ lim

k→1−
Q(k, θ) = 1, if θ > π.

Finally, we will have the following result.

Corollary 5.11. For all 0 < θ < 2π and x, y ∈ Sθ, the following inequalities hold:

(1) ρSθ(x, y) ≤ δSθ(x, y) ≤ (π sin(θ/2)/θ)2ρSθ(x, y), if θ < π,

(2) δSθ(x, y) = ρSθ(x, y), if θ = π,

(3) (π sin(θ/2)/θ)2ρSθ(x, y) ≤ δSθ(x, y), if θ > π.

Proof. Follows from Corollary 5.5, Theorem 5.7 and the fact that Q(k, π) = 1. �

Remark 5.12. If Conjecture 5.10 holds, then the coefficient (π sin(θ/2)/θ)2 in Corollary
5.11 can be replaced by θ sin(θ/2)/(2π sin2(θ/4)), which gives us even sharper bounds for
the Möbius metric.

Note that Corollary 5.11 does not offer an upper bound for the metric δSθ in terms
of ρSθ in the case θ > π. As stated in Corollary 5.5, Q(k, θ) is only a lower limit for
the quotient δSθ(x, y)/ρSθ(x, y), so the result of Theorem 5.7 gives us this upper bound.
Specifically, even though Q(k, θ) ≤ 1 for π < θ < 2π, the inequality δSθ(x, y) ≤ ρSθ(x, y)
does not hold, as will be shown next.

Lemma 5.13. For all π < θ < 2π, there are some points x, y ∈ Sθ such that δSθ(x, y) >
ρSθ(x, y).

Proof. For x = e(1−k)θi/2 and y = e(1+k)θi/2 with 0 < k < 1, the distance ρSθ is as in the
proof of Lemma 5.2 and, consequently,

lim
k→0+

δSθ(x, y)

ρSθ(x, y)
≥ lim

k→0+

|0, x,∞, y|
ρSθ(x, y)

= lim
k→0+

log(1 + 2 sin(kθ/2))

log
(
1 + sin(kπ/2)/ sin2((1− k)π/4)

) =
θ

π
> 1.

�

Finally, we can combine the inequalities of Corollary 5.11 with our earlier results from
Section 3 in order to show that Theorem 1.2 holds.

5.14. Proof of Theorem 1.2. Follows directly from Corollaries 3.10, 3.12 and 5.11.
Note that Theorem 1.2 only contains the best ones out of the bounds found and, for
instance, the lower bound for δSθ(x, y) in Corollary 3.10(1) is never better than the one in
Corollary 5.11(1). Similarly, it can be shown that Corollary 5.11 has always better lower
bounds than Corollary 3.12.
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6. Möbius metric under quasiregular mappings

In this section, we will yet briefly consider the behaviour of the Möbius metric under K-
quasiregular mappings. This topic has already been researched in [15], see for instance [15,
Thm 5.12, pp. 528-529], but we can improve the existing results with our new bounds for
the Möbius metric in sector domains. However, let us first define all the concepts needed.

Definition 6.1. [5, pp. 289-288] Choose a domain G ⊂ Rn and let the function f : G→
Rn be ACLn, as defined in [5, p. 150]. Suppose that there exists a constant K ≥ 1 such
that the inequality

|f ′(x)|n ≤ KJf (x), |f ′(x)| = max
|h|=1
|f ′(x)h|,(6.2)

where Jf (x) is the Jacobian determinant of f at point x ∈ G, holds a.e. in G. Then the
function f is called quasiregular and the smallest constant K ≥ 1 fulfilling the inequality
(6.2) is the outer dilatation of f . Similarly, the inner dilatation of f is the smallest
constant K ≥ 1 such that the inequality

Jf (x) ≤ K`(f ′(x))n, `(f ′(x)) = min
|h|=1
|f ′(x)h|(6.3)

holds a.e. in G. The function f is K-quasiregular, if max{KI(f), KO(f)} ≤ K, where
KI(f) and KO(f) are the inner and the outer dilatation of f , respectively.

See [5, (7.1), p. 104] and [16] for the definition of the conformal modulus of a curve
family Γ and denote it by M(Γ). For any non-empty subsets F0, F1 ( Rn, let ∆(F0, F1;Rn)
be the family of all the closed non-constant curves joining these two subsets F0 and F1.
Furthermore, denote the Euclidean line segment between two points x, y ∈ (Rn ∪ {∞})
by [x, y] and let ek be the kth unit vector of the n-dimensional space, k = 1, ..., n. Now,
we can define the Grötzsch capacity [5, (7.17), p. 121] as the decreasing homeomorphism
γn : (1,∞)→ (0,∞),

γn(s) = M(∆(Bn, [se1,∞];Rn)), s > 1.

Note that, if n = 2, we have the following explicit formulas [5, (7.18), p. 122]

γ2(1/r) =
2π

µ(r)
, µ(r) =

π

2

K(
√

1− r2)

K(r)
, K(r) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

.

By using the definition of the Grötzsch capacity, we can define also an increasing homeo-
morphism ϕK,n : [0, 1]→ [0, 1], [5, (9.13), p. 167]

ϕK,n(r) =
1

γ−1
n (Kγn(1/r))

for 0 < r < 1, K > 0; ϕK,n(0) = 0, ϕK,n(1) = 1,

and a number λn [5, (9.5) p. 157 & (9.6), p. 158]

log λn = lim
t→∞

((γn(t)/ωn−1)1/(1−n) − log t),
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where ωn−1 is the (n−1)-dimensional surface area of the unit sphere Sn−1(0, 1). For every
n ≥ 2, 4 ≤ λn < 2en−1, and λ2 = 4.

The Schwarz lemma is one of the most well-known results in the distortion theory and,
while its original version is about the distortion of the Euclidean metric under holomorphic
functions, there exists the following modified version of the Schwarz lemma that tells about
the distortion of the hyperbolic metric under K-quasiregular mappings.

Theorem 6.4. [5, Thm 16.2, p. 300 & Thm 16.39, p. 313] Let G,G′ ∈ {Hn,Bn},
f : G → f(G) ⊂ G′ be a non-constant K-quasiregular mapping and α = KI(f)1/(1−n).
Now,

(1) th
ρG′(f(x), f(y))

2
≤ ϕK,n

(
th
ρG(x, y)

2

)
≤ λ1−α

n

(
th
ρG(x, y)

2

)α
,

(2) ρG′(f(x), f(y)) ≤ KI(f)(ρG(x, y) + log 4)

holds for all x, y ∈ G. Furthermore, in the two-dimensional case n = 2,

(3) ρG′(f(x), f(y)) ≤ c(K) max{ρG(x, y), ρG(x, y)1/K}

for all x, y ∈ G, where

c(K) = 2arth(ϕK,2(th(1/2))) ≤ v(K − 1) +K, v = log(2(1 +
√

1− 1/e2)) < 1.3507,

as in [5, Thm 16.39, p. 313]. Here, c(K) → 1 when K → 1 and, by the conformal
invariance of the hyperbolic metric, the result (3) also holds for any two simply connected
planar domains G, G′ because they can be mapped conformally onto the unit disk B2.

Corollary 6.5. If Sθ is a sector with angle 0 < θ ≤ π and f : Sθ → Sθ is a non-constant
K-quasiregular mapping, then

δSθ(f(x), f(y)) ≤ c(K) min

{
2,

(
π sin(θ/2)

θ

)2
}

max{δSθ(x, y), δSθ(x, y)1/K}

for all x, y ∈ Sθ.

Proof. Follows from Theorems 1.2(1)-(2) and 6.4(3). �

A similar result holds for a non-convex sector.

Corollary 6.6. If Sθ is a sector with angle π < θ < 2π and f : Sθ → Sθ is a non-constant
K-quasiregular mapping, then

δSθ(f(x), f(y)) ≤ 4c(K) max

{(
θ

π sin(θ/2)

)2

δSθ(x, y),

(
θ

π sin(θ/2)

)2/K

δSθ(x, y)1/K

}
for all x, y ∈ Sθ.

Proof. Follows from Theorems 1.2(3) and 6.4(3). �
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Corollary 6.7. If Sθ is a sector with angle π < θ < 2π and f : Sθ → Sθ is a non-constant
K-quasiregular mapping, then

th
δSθ(f(x), f(y))

4
≤ c(K)

θ

π

(
2th

δSθ(x, y)

2

)1/K

for all x, y ∈ Sθ.

Proof. By Theorems 1.2(3), 6.4(3) and 3.9(3),

th
δSθ(f(x), f(y))

4
≤ θ

π
th
ρSθ(f(x), f(y))

2
≤ θ

π
th

(
c(K)

2
max{ρSθ(x, y), ρSθ(x, y)1/K}

)
≤ θ

π
th

(
c(K)

2
max{2arth(sSθ(x, y)), (2arth(sSθ(x, y)))1/K}

)
.

It follows from [14, Thm 5.3, p. 11] that

th

(
C

2
max{2arth(t), (2arth(t))1/K}

)
≤ Ct1/K

for all 0 < t < 1, K ≥ 1 and C ≥ 1. Consequently,

th
δSθ(f(x), f(y))

4
≤ c(K)

θ

π
sSθ(x, y)1/K .

By Corollary 3.8(2), sSθ(x, y) ≤ 2th(δSθ(x, y)/2), so the result follows. �

Remark 6.8. Neither Corollary 6.6 nor Corollary 6.7 offers a bound for the distortion
that is always better than the result of the other corollary, which can be seen by studying
the case where θ → π− and c(K) = K = 1 for varying points x, y ∈ Sθ.

Corollary 6.9. If Sθ is a sector with angle 0 < θ < 2π and f : B2 → Sθ is a non-constant
K-quasiregular mapping, then, for all x, y ∈ B2,

δSθ(f(x), f(y)) ≤ c(K) min

{
2,

(
π sin(θ/2)

θ

)2
}

max{δB2(x, y), δB2(x, y)1/K},

if 0 < θ ≤ π, and

δSθ(f(x), f(y)) ≤ 4c(K) max{δB2(x, y), δB2(x, y)1/K} if π < θ < 2π.

Proof. Follows from Theorems 2.3, 1.2 and 6.4(3). �

Corollary 6.10. If Sθ is a sector with angle 0 < θ ≤ π and f : B2 → Sθ is a non-constant
K-quasiregular mapping, then for all x ∈ B2 such that |x| ≥ (e− 1)/(e+ 1),

|f(x)| ≤ |f(0)|
(

1 + |x|
1− |x|

)c(K)u(θ)

with u(θ) = min

{
2,

(
π sin(θ/2)

θ

)2
}
.
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Proof. By the triangle inequality, Theorems 3.1, 1.2 and 6.4(3), and [5, (4.14), p. 55],

log
|f(x)|
|f(0)|

≤ log
|f(x)− f(0)|+ |f(0)|

|f(0)|
= log

(
1 +
|f(x)− f(0)|
|f(0)|

)
≤ log

(
1 +

|f(x)− f(0)|
min{dSθ(f(x)), dSθ(f(0))}

)
= jSθ(f(x), f(0)) ≤ δSθ(f(x), f(0))

≤ u(θ)ρSθ(f(x), f(0)) ≤ c(K)u(θ) max{ρB2(x, 0), ρB2(x, 0)1/K}

= c(K)u(θ) max

{
log

1 + |x|
1− |x|

,

(
log

1 + |x|
1− |x|

)1/K
}
,

and, if the inequality

log
1 + |x|
1− |x|

≥
(

log
1 + |x|
1− |x|

)1/K

⇔ 1 + |x|
1− |x|

≥ e ⇔ |x| ≥ e− 1

1 + e

holds, then we will have

log
|f(x)|
|f(0)|

≤ c(K)u(θ) log
1 + |x|
1− |x|

⇔ |f(x)| ≤ |f(0)|
(

1 + |x|
1− |x|

)c(K)u(θ)

.

�

Remark 6.11. Note that Corollary 6.10 refines [5, Thm 16.19(1), p. 306] when n = 2.

7. Möbius metric in polygon

In this section, we will introduce a few open questions related to the Möbius metric
inside a polygon domain. Especially, we are interested in the inequality between the
Möbius metric and the hyperbolic metric defined in a polygon. All the computational
findings and Figure 3 have been made with MATLAB programs from [11].

Even though the inequality ρSθ(x, y) ≤ δSθ(x, y) holds in all convex sectors by Theorem
1.2 and these metrics are equivalent in such convex domains as the unit disk and the upper
half-plane, our computer experiments verify that neither of metrics is always greater than
or equal to the other in all polygonal domains, not even in all convex polygons.

Conjecture 7.1. If G ( R2 is any bounded polygonal domain, there are always some
points x, y, u, v ∈ G such that ρG(x, y) < δG(x, y) and ρG(u, v) > δG(u, v).

However, the values of these two metrics do not differ very much from each other in the
domain Gk shaped like a regular convex k-gon with k vertices ep2πi/k, p = 0, 1, ..., k − 1,
especially as the value of k grows and this domain resembles more and more the unit disk,
where these metrics are equivalent.

Conjecture 7.2. If Gk is the above regular k-gon and x, y ∈ ∩Gk are distinct points,
then

lim
k→∞

(δGk(x, y)/ρGk(x, y))→ 1.
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Max 1.8002 at 0.04 + i*0.06, Min 0.61268 at 0.4 + i*0.06Figure 3. Contour plot of the quotient δG(x, y)/ρG(x, y), when G is the
polygon with vertices 1, e0.95πi/3, 0.1eπi/3, e1.05πi/3, e2πi/3, eπi, e4πi/3, e5πi/3, the
point x is fixed as 0, and y varies inside G.

Furthermore, recall from Corollary 3.5 that the inequality δG(x, y) ≤ 4ρG(x, y) holds
for all points x, y in a simply-connected domain G, and our computer tests suggests that
this result can be improved in the case of polygonal domains.

Conjecture 7.3. For all polygonal domains G ( R2, the inequality ρG(x, y)/2 ≤ δG(x, y) ≤
2ρG(x, y) holds for all x, y ∈ G.

Figure 3 contains an example of a non-convex polygon where the values of the quotient
δG(x, y)/ρG(x, y) vary at least on the interval [0.73, 1.64]. Note that, based on our com-
puter tests, the latter constant in the inequality of Conjecture 7.3 can be replaced with
a smaller one when considering only convex domains. Another interesting notion is that
by Corollary 3.5 the uniformity constant AG of a domain G is fulfills

AG ≥ ρG(x, y)/(2δG(x, y)

for all points x, y in the domain x, y, so computing the maximum value of the quotient
ρG(x, y)/(2δG(x, y) gives an lower bound for the uniformity constant AG.
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