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ABSTRACT

The study of photoionized environments is fundamental to many astrophysical problems. Up

to the present most photoionization codes have numerically solved the equations of radiative

transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately

very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings,

a self-consistent, three-dimensional radiative transfer code has been developed using Monte

Carlo techniques. The code, MOCASSIN, is designed to build realistic models of photoionized

nebulae having arbitrary geometry and density distributions, with both the stellar and diffuse

radiation fields treated self-consistently. In addition, the code is capable of treating one or more

exciting stars located at non-central locations.

The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous

cells. The physical conditions within each grid cell are determined by solving the thermal

equilibrium and ionization balance equations. This requires a knowledge of the local primary

and secondary radiation fields, which are calculated self-consistently by locally simulating

the individual processes of ionization and recombination. The structure and the computational

methods used in the MOCASSIN code are described in this paper.

MOCASSIN has been benchmarked against established one-dimensional spherically symmetric

codes for a number of standard cases, as defined by the Lexington/Meudon photoionization

workshops: at Meudon in 1985 and at Lexington in 1995 and 2000. The results obtained for

the benchmark cases are satisfactory and are presented in this paper. A performance analysis

has also been carried out and is discussed here.

Key words: atomic processes – ISM: abundances – H II regions – planetary nebulae: general.

1 I N T RO D U C T I O N

Amongst the first numerical models for photoionized gaseous neb-

ulae were those calculated by Flower (1968), Harrington (1968)

and Rubin (1968). These early models included the basic physical

processes of ionization and recombination of hydrogen and helium,

thermal balance and escape of the emitted photons from the nebula.

However, the success of these models was heavily limited by the

lack of reliable atomic data, as well as by the fact that a number of

important physical processes, such as charge exchange and dielec-

tronic recombination (Aldrovandi & Péquignot 1973; Péquignot,

Stasinska & Aldrovandi 1978; Storey 1981), were not accounted for

at the time. The evolution of photoionization modelling has gone

hand in hand with advances made in atomic physics and computer

technology. The application of photoionization models to a wider

range of ions has been aided by the photoionization cross-section
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calculations by Reilman & Manson (1979) and, more recently, by

the Opacity Project (Hummer et al. 1993). Compilations based on the

latter’s data (e.g. Verner & Yakovlev 1995) have made possible the

inclusion of accurate photoionization cross-sections for many more

ions in calculations. Mendoza (1983) presented a compilation of ra-

diative and collisional data for collisionally excited ultraviolet, opti-

cal and infrared lines which was widely adopted, with some of these

data still in use today, though most have been superseded by more re-

cent calculations such as the R-matrix calculations of the Iron Project

(Hummer et al. 1993) and the Belfast group (e.g. McLaughlin

& Bell 1998; Ramsbottom, Bell & Keenan 1998). Currently, radia-

tive and dielectronic recombination rates are still highly uncertain

or unavailable for some ions; recent efforts to improve the situation

have been reviewed by Nahar & Pradhan (1999) and Nahar (2000).

Most photoionization models include temperature-dependent ana-

lytical fits to these recombination rates, such as those of Aldrovandi

& Péquignot (1973) for radiative and high-temperature dielectronic

recombination, and those of Nussbaumer & Storey (1983) for low-

temperature dielectronic recombination.

Available computer power has increased enormously since the

dawn of photoionization modelling. This has allowed more complex
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MOCASSIN: a 3D MC photoionization code 1137

models to be built, including more ions, more frequency points,

more lines and more atomic levels. Nevertheless, the fundamen-

tal assumption of spherical symmetry has always been retained.

However, a glance at an image of any Galactic H II region will

immediately demonstrate that these objects are neither spherically

symmetric nor homogeneous. In addition, they usually have mul-

tiple exciting stars located at non-central positions in the nebula.

By contrast, planetary nebulae (PNe) have only a single, centrally

located, exciting star. However, even for PNe, spherical symmetry

is not a realistic assumption, as demonstrated by observations with

instruments such as the Hubble Space Telescope, which reveal an

overwhelming variety in the shapes of planetary nebulae. These ob-

jects are very rarely circular in projection; a recent study inferred that

about 50 per cent of all known planetary nebulae are low-eccentricity

ellipticals, while only about 10 per cent are circular in projection,

with the remainder having more extreme elliptical or bipolar geome-

tries (Soker 1997, 2001). Some objects, for example the two young

planetary nebulae He 2-47 and PN M1-37 (also dubbed the starfish

twins; Sahai 2000), show even more complicated geometries, with

multiple lobes. Other PNe have fast, low-ionization emitting regions

(FLIERs; Balick et al. 1993, 1994, 1998), bipolar, rotating, episodic

jets (BRETs; e.g. Lopez, Meaburn & Palmer 1993), ansae, jets,

knots, filaments, tails or multiple envelopes (see e.g. Garcı́a-Segura

1997; Corradi et al. 1999; Perinotto 2000).

To our knowledge, only two three-dimensional photoionization

codes have been developed so far, one by Baesgen, Diesch &

Grewing (1990) and the other by Gruenwald, Viegas & de Broguiere

(1997). The first code used a fixed number of equally sized cells and

the on-the-spot approximation for the diffuse radiation field, with

only the six more abundant chemical elements being taken into ac-

count. The work by Gruenwald et al. improves on this by allowing a

more flexible spatial grid and by using an iterative technique for the

determination of the diffuse field and also by including 12 chemical

elements in the simulations.

Since most existing one-dimensional photoionization codes are

based on the numerical solution of the equations of radiative transfer

assuming spherical symmetry, their expansion to three dimensions

can be either very difficult or impracticable, resulting in very large

codes. The Monte Carlo approach to transfer problems provides

a geometry-independent technique which can handle the radiation

transport problem self-consistently. With this in mind, the MOCASSIN

code (MOnte CArlo SimulationS of Ionized Nebulae) was devel-

oped, in order to provide a three-dimensional modelling tool capa-

ble of dealing with asymmetric and/or inhomogeneous nebulae, as

well as, if required, multiple, non-centrally located exciting stars.

Section 2 contains a description of the general MOCASSIN archi-

tecture and of some of the main computational methods used in the

code. The code has been benchmarked against established spher-

ically symmetric one-dimensional photoionization codes for a set

of standard nebulae, and in Section 3 we present the results of this

benchmarking, together with a performance analysis of the codes.

In Section 4 we discuss the results of the benchmarking and present

some general guidelines on how to run the code efficiently.

2 D E S C R I P T I O N O F T H E M O N T E

C A R L O C O D E

2.1 Background

The Monte Carlo method has been widely applied to a variety of

astrophysical problems, such as the penetration of ultraviolet ra-

diation into the interiors of uniform or lumpy interstellar clouds

(Flannery, Roberge & Rybicki 1980; Boissé 1990), resonance-like

scattering in accretion disc winds (Knigge, Woods & Drew 1995)

and polarization maps for the circumstellar envelopes of protostars

(Fischer, Henning & Yorke 1994). In the examples described above

the absorption and scattering coefficients are not coupled to the ra-

diation field and, therefore, these problems do not require solution

by iteration.

However, Monte Carlo techniques have also been used for dust

radiative equilibrium calculations for some time – see e.g. Lefevre,

Bergeat & Daniel (1982), Lefevre, Daniel & Bergeat (1983) and,

more recently, Wolf, Henning & Secklum (1999). These authors use

a technique in which stellar and diffuse photon packets are emitted

separately; the number of diffuse photon packets (i.e. packets emit-

ted by the dust) is determined by the dust grain temperature, which

in turn is determined by the balance between the number of absorbed

and emitted photon packets. An initial guess for the dust grain tem-

perature is provided by the number of packets absorbed, and the

iteration continues until the grain temperatures converge. Using this

method the stellar luminosity is not automatically conserved dur-

ing the Monte Carlo simulation; only after the grain temperatures

have reached convergence is the stellar luminosity approximately

conserved. The convergence of such codes is often very slow and

requires a large number of iterations and simulation quanta in order

to reach the required accuracy.

Bjorkman & Wood (2001) have described a general radiative equi-

librium and temperature correction procedure for use in Monte Carlo

radiative transfer codes having sources of temperature-independent

opacity, such as dust. Their technique makes use of information nat-

urally given by the Monte Carlo method, which, by tracking every

photon/energy packet, makes it easy to determine where in the sim-

ulation grid energy is being absorbed. When energy is deposited at a

given location, following a packet’s absorption, the local medium is

heated. Whenever this occurs the new local temperature is calculated

and the packet is then re-emitted accordingly. The packets are fol-

lowed in their path through the region, as they undergo scatterings

and absorptions followed by re-emissions, with the temperatures

being updated after each event, until the packets reach the edge of

the nebula and escape to infinity, hence contributing to the emergent

spectrum. Once all the stellar photon packets have escaped, the re-

sulting envelope temperature and the emergent spectrum are correct

without the need of any further iterations.

A great limitation of this method (Bjorkman & Wood 2001) is that

it cannot be applied to situations where the opacities are temperature-

dependent, as is the case in photoionized nebulae. There are two

reasons for the failure of this method when the opacity varies with

the local temperature: first, the number of photon packets absorbed

by the cell prior to a temperature update would be either too small

or too large; and, secondly, a change in temperature would also

imply a change of the interaction locations of previous packets,

signifying that the paths of the previous photon packets should have

been different. While it is clear that, when dealing with photoionized

gas, Bjorkman & Wood’s technique is not applicable, their work is

nevertheless very enlightening and should be taken into account for

further developments of the MOCASSIN code, when a treatment for

dust grains will be introduced.

A recent example of the application of the Monte Carlo tech-

nique to problems requiring solution by iteration is the work of

Lucy (1999), who obtained the temperature stratification and emer-

gent spectrum of a non-grey spherically symmetric extended stellar

atmosphere in local thermodynamic equilibrium (LTE). His results

show very good agreement with the predictions of Castor (1974),

hence demonstrating the validity of the Monte Carlo techniques
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1138 B. Ercolano et al.

applied, some of which were also used in the development of

MOCASSIN. The current work follows the approach described by Lucy

(1999) and also applied in the one-dimensional code developed by

Och, Lucy & Rosa (1998). They employed a different Monte Carlo

treatment of the radiative transfer in order to determine the tempera-

ture and ionization stratification iteratively for a spherically symmet-

ric photoionized nebula of uniform density. Some of the techniques

that they used are also described in detail by Lucy (1999, 2001,

2002). The basic concept is that, when calculating radiative equilib-

rium temperatures, conservation of stellar luminosity is more impor-

tant than the details of the spectral energy distribution. With this in

mind, conservation of stellar luminosity is enforced by using energy

packets of constant net energy throughout the simulations. More-

over, all absorbed packets are re-emitted immediately after every

absorption event. The frequencies of the re-emitted energy packets

are determined by the local gas emissivities. Although the frequency

distribution of the re-emitted packets will not be correct until the neb-

ular temperatures have converged, this method naturally enforces

radiative equilibrium at each point in the nebula and so naturally pro-

vides conservation of energy. This not only results in a simpler code

but also makes the convergence of the gas temperatures easier (Lucy

1999, 2001). Energy packets will be discussed in more detail in

Section 2.2.

2.2 Energy packets

The main principle of our treatment of a photoionized nebula con-

sists of locally simulating the individual processes of ionization and

recombination. The radiation field is therefore expressed in terms

of energy packets, ε(ν), which are the calculation quanta. ε(ν) is a

packet consisting of n photons of frequency ν such that

ε(ν) = nhν. (1)

In addition, we take all packets to have constant energy ε0. There are

several reasons for choosing to work with monochromatic, indivisi-

ble packets of radiant energy instead of photons. First of all, energy

packets are more computationally economic. Also, since they all

have the same energy, those packets emitted in the infrared will

contain a larger number of photons, which, as a consequence, will

not have to be followed individually (Abbott & Lucy 1985). Note

that all energy packets are followed until they escape the nebula,

including infrared energy packets. This is in order to allow the in-

troduction of dust particles into the radiative transfer treatment of

MOCASSIN, which is planned for the near future. Also, as the to-

tal stellar luminosity, L∗, is evenly split amongst the stellar energy

packets, the energy carried by a single packet in the time interval

�t , which represents the duration of the Monte Carlo experiment,

is given by

L∗

N
=

ε0

�t
, (2)

where N is the number of energy packets used in the simulation (Och

et al. 1998). Most importantly, the use of constant energy packets is a

natural way of imposing strict energy conservation at any point in the

nebula (Lucy 1999). So, when a packet of radiant energy ε(νa) =
ε0 is absorbed, it is immediately re-emitted with a frequency νe,

which is determined according to a frequency distribution set by

the gas emissivity of the current cell. The packet emitted, ε(νe),

will then have the same energy as the absorbed packet, ε(νa), mean-

ing that only the number, n, of photons contained in the packet is

changed.

2.3 Initiation

In our modelling the gaseous region is approximated by a three-

dimensional Cartesian grid, where the ionizing source can be placed

at the centre or anywhere else in the grid. This feature is very use-

ful when dealing with axisymmetric nebulae, since, by placing the

source in a corner of the grid, we need only consider one eighth

of the nebula, which can then be reconstructed in full at the end of

the simulation. This allows the running of models with much higher

spatial resolution than those which would be possible if a full neb-

ula had to be considered, by putting the source in the centre and,

therefore, not making use of any symmetry properties of the object.

Switches built inside the code allow the user to specify whether

the nebula has some degree of symmetry and, if so, whether the

symmetry is to be used.

Inside each grid cell, all nebular properties, such as the mass

density of the gas (ρ), the electron temperature and density (T e and

N e), and the frequency-dependent gas opacity and emissivity (κν

and j ν), are constant by definition. Thermal balance and ionization

equilibrium are imposed in each grid cell in order to obtain the

physical conditions in the local gas.

The energy packets are created at the position of the ionizing

source and they all carry the same energy ε0, as discussed in the

previous section. The frequency, ν, of each individual packet emitted

is derived from the input spectrum of the ionizing source according

to the probability density function

p(ν) =
Fν dν

∫ νmax

νmin
Fν′ dν ′

=
Fν dν

L∗/
(

4πR2
∗

) , (3)

where Fν is the stellar flux and R∗ is the stellar radius. This is then the

probability of an energy packet being emitted with a frequency lying

in the interval (ν, ν + dν). The upper and lower integration limits,

νmin and νmax, have to be chosen properly, depending on the input

spectrum, in order to ensure that the bulk of the radiation is included

in the frequency range. As the source emits energy isotropically,

the direction of travel of every energy packet emitted is chosen

randomly. This is done by choosing two random numbers, α and β,

in the interval [0, 1], and calculating the following quantities:

w = 2α − 1,

t =
√

1 − w2,

θ = π(2β − 1),

u = t cos θ,

v = t sin θ.

(4)

The random unit vector in Cartesian coordinates is then (u, v, w)

(Harries & Howarth 1997).

2.4 Trajectories

Once a stellar packet is created at the source and launched into the

nebula, its trajectory must be computed as it undergoes absorptions

followed by re-emissions due to bound–free and free–free processes.

The trajectory ends when the packet reaches the edge of the neb-

ula, where it escapes to infinity and contributes to the emergent

spectrum.

There are two methods to track the packets and determine the

locations of the absorption events. Consider a packet of frequency

νp, emitted in the direction û. The first of these methods consists

of calculating the run of optical depth, τνp , at the energy packet

frequency νp, from the location at which the packet is emitted to

C© 2003 RAS, MNRAS 340, 1136–1152
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MOCASSIN: a 3D MC photoionization code 1139

the edge of the ionized region along the direction of travel, û. The

probability of absorption along that path is then given by

p(τνp ) = e−τνp (5)

and the normalized cumulative probability function is given by

P(l) =
∫ τνp (l)

0
e−τνp dτνp

∫ ∞
0

e−τνp dτνp

= 1 − e−τνp (l), (6)

where τνp (l) is the optical depth to the absorption event and l is

the path-length. The position at which the energy packet will be

absorbed will then be determined by choosing a random number in

the interval [0, 1] and comparing it against P(l). In reality, it is more

convenient to use the inverse approach, where the optical depth from

the energy packet source to the event can be derived from the inverse

of equation (7)

τνp (l) = − ln(1 − UR) (7)

where U R is a random number in the interval [0, 1]. Once τνp (l)

has been calculated, then the path-length can be directly derived

(Harries & Howarth 1997).

The second method was suggested by Lucy (1999) and it consists

of testing whether an absorption event occurs, on a cell-by-cell basis.

In other words, assume that, within each uniform cell, the random

path of a packet between events is given by equation (7), which

corresponds to a physical displacement, l, given by

τνp = κνρl, (8)

where κν and ρ are the frequency-dependent absorption coefficients

and the density of the current cell respectively. The method then

consists of checking whether the displacement l is large enough to

carry the packet out of its current cell. If this is the case, the packet

is moved along its direction of travel, û, up to the boundary with the

adjacent cell, where a new value for U R is cast, giving a new τνp , and

any further movement of the packet in this new cell is to be followed.

Alternatively, if the displacement l is not large enough to carry the

energy packet across the next boundary, the packet will be absorbed

and then re-emitted at the end-point of the displacement. Lucy also

clarifies in his paper that the selection of a new value of τνp at the

crossing of a boundary does not introduce a bias since a photon

always has an expected path-length to its next event corresponding

to τ ν = 1, regardless of the distance it might already have travelled.

In this work both methods were implemented in the code, in

turn, in order to test their respective performances. The first method

proved to be much more computationally expensive than the second.

This is due to the fact that, in order to track down the position at

which an energy packet is absorbed, using our knowledge of τνp (l),

an array searching routine has to be used to locate the index of

τνp (l) within the array of optical depths calculated from the packet’s

source to the edge of the nebula. Although the searching procedure

employs a bisection technique, which makes it quite efficient, the

large number of calls to it, as a result of the large number of energy

packet interactions within a simulation, means that nearly 60 per

cent of the run time is spent carrying out these searches. The second

method does not require any calls to the array searching routine,

as the packets are followed step by step through the nebula, and

this results in the run time being considerably reduced. The current

version of MOCASSIN therefore uses Lucy’s approach to track the

energy packets throughout the nebula.

Finally, the direction of travel of the newly emitted diffuse energy

packets (i.e. those packets re-emitted immediately after an absorp-

tion event) needs to be determined. Since absorption and re-emission

are two independent events, the diffuse packets are emitted isotropi-

cally and therefore their direction of travel is chosen randomly using

equation (4).

2.5 The mean intensity

The success of a Monte Carlo model often relies on the careful

choice of appropriate estimators. Monte Carlo estimators provide

the means to relate the quantities we observe during our Monte Carlo

experiment to the physical quantities we want to determine. In a

photoionization model, a measure of the radiation field is needed,

namely the mean intensity, J ν .

In the work of Och et al. (1998), the Monte Carlo estimator of J ν

is constructed by using the definition of the specific intensity, I ν , in

spherical coordinates, (r , θ ), as a starting point:

�E = Iν(r, θ )�A|cos θ |�ν�ω�t, (9)

where �A is the reference surface element, θ is the angle between

the direction of light propagation and the normal to the surface �A,

and �ω is the solid angle. The mean intensity can then be obtained

from this by calculating the zero-order moment of I ν , which gives

4πJν(r ) =
∫

�

Iν dω =
�E

�t

Nk
∑

i=1

1

cos θi

1

�A

1

�ν
, (10)

by comparison with equation (9). The sum is over all packets N k with

frequency lying in the interval (ν, ν + dν), crossing �A at an angle

θ . As discussed above, �E/�t represents the energy carried by a

single packet in the time interval �t , since �E = ε0, which is given

by equation (2). Equation (10) then provides a relation between the

Monte Carlo observables, i.e. the number of energy packets with

frequency lying in the interval (ν, ν + dν), crossing �A at angle θ ,

and the mean intensity of the radiation field, which is the required

physical quantity.

The use of the Och et al. (1998) estimators for J ν , however,

becomes problematic in the non-spherically symmetric case, since

the reference surface for the volume elements in an arbitrary two-

or three-dimensional coordinate system might not be unique or as

obvious as in the one-dimensional case. In our work, a more general

expression for the estimator of J ν is sought. Therefore, following

Lucy’s argument (Lucy 1999), an estimator for J ν is constructed

starting from the result that the energy density of the radiation field

in the frequency interval (ν, ν+dν) is 4πJνdν/c. At any given time,

a packet contributes energy ε(ν) = ε0 to the volume element that

contains it. Let l be a packet’s path-length between successive events,

where the crossing of cell boundaries is also considered an event;

the contribution to the time-averaged energy content of a volume

element, due to the l fragments of trajectory, is ε0 δt/�t , where δ

t = l/c. From this argument it follows that the estimator for the

volume element’s energy density can be written as

4πJν dν

c
=

ε0

�t

1

V

∑

dν

l

c
, (11)

where V is the volume of the current grid cell and the summation

is over all the fragments of trajectory, l, in V , for packets with fre-

quencies lying in the interval (ν, ν + dν). Again, a relation between

Monte Carlo observables (i.e. the flight segments, l) and the mean

intensity of the radiation field, J ν , has been obtained. Moreover,

equation (11) is completely independent of the coordinate system

used and, indeed, of the shapes of the volume elements, V . An-

other important aspect of this approach is that all packets passing

through a given grid cell contribute to the local radiation field even

C© 2003 RAS, MNRAS 340, 1136–1152
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1140 B. Ercolano et al.

without being absorbed; this means that equation (11) returns es-

timators of the radiation field even in the extremely optically thin

case when all packets pass through the nebula without any absorp-

tion events. From this argument it follows that this technique allows

a much better sampling and, hence, in general, much less noisy re-

sults compared to other techniques based on estimators for which

only packets absorbed within a given volume element count.

2.6 Gas emissivity and the diffusion of energy packets

As we have already discussed in previous sections, after an energy

packet is absorbed, a new packet is re-emitted from the same loca-

tion in a random direction. The frequency of the re-emitted packet

is calculated by sampling the spectral distribution of the total lo-

cal emissivity, j tot
ν . In order to satisfy the thermal balance implied

by the Monte Carlo model, all major emission processes have to

be taken into account, including the complete non-ionizing nebu-

lar continuum and line emission, since they are part of the energy

budget. The non-ionizing radiation generated in the nebula is as-

sumed to escape without further interaction and constitutes the ob-

servable spectrum, which can then be compared with observations.

The following paragraphs are concerned with the description of the

individual contributions to the total emissivity.

The continuum emission due to H I, He I, He II and heavier ions

is included. The H I continuum can be divided into the Lyman con-

tinuum, which is capable of ionizing H, and the Balmer, Paschen,

etc., continua, which are not capable of ionizing H. The emissivity

in the Lyman continuum is calculated directly from a combination

of the Saha and Milne relations:

jν =
hν3

c2

ωi

ωi+1

(

h2

2πmkTe

)3/2

aν(Xi )e−h(ν−ν0)/kTe X i+1 Ne, (12)

where ωi and ωi+1 are the ground-state statistical weights of the

ions involved, X i+1 is the abundance of the recombining ion Xi+1,

aν(Xi ) is the photoionization cross-section and ν0 is the photoion-

ization threshold. The emissivity of the other series continua are

obtained by interpolation of published data (Ferland 1980). A sim-

ilar approach is used for the He I and the He II continua, where for

frequencies greater than 1.8 and 4.0 Ryd (where 1 Ryd = 2.180 ×
10−18 J), respectively, equation (12) is used, and the emissivities at

lower frequencies are obtained by interpolation of the data published

by Brown & Matthews (1970) for the He I series and by Ferland

(1980) for the He II series. The continuum emissivity of heavy ele-

ments is also calculated using equation (12). In the hydrogenic case

(i.e. H I and He II), the two-photon continuum is calculated using the

formalism described by Nussbaumer & Schmutz (1984); the data of

Drake, Victor & Dalgarno (1969) are used for He I. Recombination

lines between lower levels n = 2–8 and upper levels n = 3–15 for H

I, and lower levels n = 2–16 and upper levels n = 3–30 for He II, are

calculated as a function of temperature according to the case B data

published by Storey & Hummer (1995). The He I recombination

lines are calculated as a function of temperature using the data of

Benjamin, Skillman & Smits (1999). In general, He I singlet lines

follow case B whereas triplet lines follow case A (as there is no n =
1 level for the triplets). Transitions to the 11S ground state of He

I produce lines that are capable of ionizing H and low-ionization

stages of higher elements. In particular, the emissivities of the He I

Lyman lines from n = 2 to n = 5 (Brocklehurst 1972) and the in-

tercombination lines corresponding to the transitions 23S–11S and

23P–11S are estimated as a function of temperature using the data

of Robbins (1968). The contributions due to these lines to the total

energy distribution, from which the probability density functions

are derived, are added into the respective energy bins. Similarly,

He II Lyman lines can ionize both neutral hydrogen and neutral he-

lium, as well as some of the low ions of heavier elements. Therefore

the emissivities of He II Lyman lines with upper levels from n = 2

to n = 5 (fits to Storey & Hummer 1995) are also estimated as a

function of temperature and their contributions to the total energy

distribution added into the respective frequency bin, as for the He I

lines. This method is based on the fact that all emission profiles are

currently treated as δ functions and the line opacity is assumed to be

zero; and the absorption of energy packets is only due to the contin-

uum opacity. Finally, the emissivities of the collisional lines of the

heavier ions are calculated. This is done by using matrix inversion

procedures in order to calculate the level populations of the ions.

Appendix 1 contains references for the atomic data used for each

ion.

The energy distribution is derived from the total emissivity, sum-

ming over all the contributions in a particular frequency interval.

The non-ionizing line emission is treated separately, since, when-

ever such line packets are created, they escape without further in-

teraction.1

Once the line and continuum emissivities have been calculated,

the probability that the absorption of an ionizing energy packet will

be followed by the emission of a non-ionizing packet is given by

Pesc =
∑

i
j l

Xi +
∫ νH

0
j c
ν dν

∑

i
j l

Xi +
∑

j l
HeI +

∑

j l
HeII +

∫ νmax

0
j c
ν dν

, (13)

where νmax is the higher limit of the frequency grid, the j l

Xi are the

emissivities of the non-ionizing recombination lines of all species

considered, j c
ν is the frequency-dependent continuum emissivity,

and j l
He I and j l

He II are the contributions due to those recombination

lines of He I and He II which are capable of ionizing neutral hydro-

gen and neutral helium. The choice between the re-emission of an

ionizing photon or a non-ionizing one is made at this point in the

code.

If an ionizing energy packet is to be re-emitted, then the new

frequency will be calculated according to the normalized cumulative

probability density function for the ionizing radiation, given by

p(ν) =

∫ ν

νH
j c
ν′ dν ′ +

∑

jl
HeI +

∑

jl
HeII

∫ νmax

νH
j c
ν′ dν ′ +

∑

jl
HeI +

∑

jl
HeII

, (14)

where, as usual, the contributions due to the He I and He II lines are

added in the corresponding frequency bins. If a non-ionizing energy

packet is to be re-emitted, then its frequency must be determined

from the probability density function for non-ionizing radiative en-

ergy, which is analogous to equation (14).

2.7 The iterative procedure

An initial guess of the physical conditions in the nebular cells, such

as the ionization structure, electron temperature and electron density,

needs to be specified before the simulation can begin. Procedures

in MOCASSIN have been constructed such that only an initial guess

at the electron temperature (which is initially set to a constant value

throughout the nebula) must be included in the input file. MOCASSIN

can then guess an initial ionization structure and, hence, the elec-

tron density. However, if the output of a one-dimensional model

1 Resonance lines longward of 912 Å (e.g. C IV λλ1548,1550) may, in fact,

diffuse out of the nebula via resonant scattering and may also be absorbed

by dust during such diffusion. A treatment of dust grains will be included

in future developments of the MOCASSIN code, and such effects may then be

accounted for.
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MOCASSIN: a 3D MC photoionization code 1141

(or a combination of more than one of them) is available, there are

also procedures built into MOCASSIN to map these on to the three-

dimensional Cartesian grid, by using simple interpolation routines.

A one-dimensional mode option was implemented in MOCASSIN for

this purpose. Several tests have shown that, while the choice of the

initial conditions has, of course, no influence on the final result of

the simulation, it can, however, have an impact on the number of

iterations required to reach convergence. It is hard to quantify the

number of iterations required for convergence by each method. In

particular, it depends strongly on the initial temperature input used

in the first method, and, when applying the second method, on the

deviation of the actual three-dimensional geometry from the simpli-

fied one-dimensional model used. However, with sufficient energy

packets, the benchmark models described here should be fully con-

verged in approximately 15–20 iterations. A strategy to speed up

the simulations is described in Section 3.1.

Once the initial conditions are specified, the frequency-dependent

total emissivities are calculated in each grid cell in order to set up

the probability density functions for re-emitted radiation, which are

used for the determination of the frequency distribution of the re-

emitted energy packets during the Monte Carlo simulation. The

energy packets are then fired through the grid and their trajecto-

ries computed. Once all the energy packet trajectories have been

computed, the Monte Carlo estimators for the mean intensity of the

stellar and the diffuse radiation fields can be obtained, as described

in Section 2.5. The ionization fraction and the electron tempera-

tures and densities must now be updated to be self-consistent with

the current estimates of the radiation field at each grid point. This

means solving the local ionization balance and thermal equilibrium

equations simultaneously. The entire procedure is repeated until

convergence is achieved. The convergence criterion that is used in

this work is based on the change of the local hydrogen ionization

structure between successive iterations. In some cases, however, this

is not a suitable convergence criterion (e.g. in hydrogen-deficient en-

vironments). For this reason, other criteria are also implemented in

the code (e.g. based on the change of the local helium ionization

structure, or of the local electron temperature between successive

iterations), and these can be easily selected by using the appropriate

switches in the input file.

2.8 Comparison of the model with observations

When the model has converged to its final solution, the output spec-

trum can be computed and compared with the results obtained from

other models or with observational data. The total luminosity of

the nebula emitted in various emission lines longward of the Lyman

limit can be obtained by using two methods. The first method, which

is only available to Monte Carlo codes, consists of summing up the

number of energy packets in the given line, N line, over the grid cells.

Hence, the power emitted in the line is given by

L line =
ε0

�t

imax
∑

i=1

jmax
∑

j=1

kmax
∑

k=1

Nline(xi , y j , zk), (15)

where ε0/�t is given by equation (2). The second method consists

of using the values of the local electron temperature and ionic abun-

dances given by the final converged model solution to obtain the line

emissivities for each grid cell. The luminosity of the nebula in any

given line can then be calculated easily by summing the emissivity

of the required line over the volume of the nebula.

A comparison of the results obtained using the two methods

described above provides an indication of the level of accuracy

achieved during the simulation, as the two methods will give con-

sistent results only if enough energy packets have been used to yield

good statistics for every line. In general, the second method (for-

mal solution) yields the most accurate results, particularly for weak

lines, which may emit relatively few photons. For the benchmark

cases presented here, reasonable accuracy was deemed to have been

achieved when the fluxes of the strongest transitions obtained us-

ing the pure Monte Carlo method were within 10 per cent of those

obtained using the formal solution. Both methods can also be used

to calculate line-of-sight results and to simulate long-slit observa-

tions. However, just as for the calculation of the integrated spectrum,

the formal solution method is to be preferred, as it yields the most

accurate results, particularly for the weaker lines.

In addition to the integrated emergent spectrum, other useful com-

parisons with the observations can be carried out, e.g. projected

images of the final model nebula in a given line or at a given con-

tinuum frequency can be produced for arbitrary viewing angles.

These can be compared directly with nebular images obtained in an

appropriate filter. MOCASSIN computes and stores the physical prop-

erties of the nebula, as well as the emissivities of the gas at each

grid point; these can be fed into Interactive Data Language (IDL)

plotting routines in order to produce maps (Morisset, Gruenwald &

Viegas 2000). Also, by assuming a velocity field, line spectral pro-

files can be produced, together with position–velocity diagrams.

These can be compared with observations, if available, to deduce

spatio-kinematic information about the object being studied. More

information about the original IDL routines is given by Morisset

et al. (2000) and Monteiro et al. (2000). Details of the actual appli-

cation to MOCASSIN’s grid files are available in a companion paper

on the modelling of the planetary nebula NGC 3918 (Ercolano et al.

2003, hereafter Paper II).

At the end of each Monte Carlo iteration the physical quantities

that characterize the grid are written out to disk into three files,

namely grid1.out, grid2.out and grid3.out. The first file contains the

local electron temperature and density as well as the gas density at

each grid cell, the second the ionization structure of the nebula, and

the third a number of model parameters, including the number of

energy packets to be used in the simulation. These files are used in

conjunction with a warm start driver, which allows an interrupted

simulation to be resumed from the end of the last Monte Carlo sim-

ulation. This means that, once a simulation has been interrupted, the

number of energy packets used (and indeed other model parameters,

if required) can be adjusted, before the simulation is restarted, by

modifying the file grid3.out. This feature can be used to speed up

the simulations by using the following approach. The first few iter-

ations are run using a lower number of energy packets than actually

needed; so, for example, if the optimum number of energy packets

for a given model is 106, then the first few iterations can be carried

out using only 105 packets, hence reducing the run time for these

by a factor of 10. This will result in about 50–60 per cent of the grid

cells converging; in general, the inner cells converge more quickly,

due to the larger number of sampling units available there (mainly

as a result of geometrical dilution and reprocessing of energy pack-

ets to non-ionizing energy packets). At this point the simulation is

interrupted and then resumed, after having adjusted the number of

energy packets to the final required value (i.e. 106 in the previous

example). Final convergence will then be achieved, in most cases,

within four or five further iterations. The actual number of iterations

required depends on the number of energy packets used: the larger

the number of sampling quanta available at each cell, the quicker the

cells will converge to a solution. The numbers quoted above, how-

ever, also depend on each particular model’s geometry and optical

thickness.
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1142 B. Ercolano et al.

2.9 General architecture

The MOCASSIN code was written using the FORTRAN 90 programming

language. The code was developed and run initially on a Compaq

(Dec) XP1000 with a 500-MHz CPU and 1 GB of memory, and a

preliminary serial version of the code still exists. A fully parallel

version of the code has since been developed using Multiple Pro-

cesses Interface (MPI) routines, and it currently runs on a Silicon

Graphics Origin 2000 machine with 24 processors and 6 GB of

memory, and on a SUN Microsystems Sunfire V880 machine with

16 processors and 64 GB of memory. Monte Carlo simulations are,

by their nature, very parallelizable problems and, indeed, MOCASSIN

can achieve a linear speed-up, i.e. a speed-up that is directly propor-

tional to the number of processors used. A detailed description of

all the MOCASSIN modules, input commands and output files is given

by (Ercolano 2002). A copy of the code is available from the author

(be@star.ucl.ac.uk) together with the relevant thesis chapters.

3 A P P L I C AT I O N TO B E N C H M A R K C A S E S

Numerical simulations of photoionized nebulae are very complex

and a number of factors, such as numerical approximations and

assumptions, and the complexity of the calculation itself, introduce

a degree of uncertainty into the results. For this reason, it is important

for modellers to have certain standards of comparison, in order to

identify problems in their codes and to reach an adequate degree of

accuracy in their calculation. A series of meetings have been held,

beginning in Meudon, France, in 1985 (Péquignot 1986) and taking

in Lexington, Kentucky, USA, first in 1995 (Ferland et al. 1995)

and again in 2000 (Péquignot et al. 2001), in order to define a set of

benchmark cases against which all photoionization modellers could

test their codes. The benchmarks that resulted from these meetings

include H II regions, planetary nebulae, narrow-line regions (NLRs)

of active galactic nuclei (AGNs) and X-ray slabs. MOCASSIN does

not have, at present, the capability to treat NLRs and X-ray slabs,

as some relevant physical processes, such as Compton heating and

inner-shell ionization, are not yet included. For this reason, only the

H II region and planetary nebula benchmarks are performed in this

work. The expansion of the code to include high-energy processes

is planned in the future.

Results from several other codes are available for comparison.

These are all one-dimensional codes and, apart from differences in

the atomic data used by each of them, their main differences lie

in the treatment of the diffuse radiation field transfer. A brief de-

scription of each of these codes is given by Ferland et al. (1995).

Although the majority of these codes have evolved somewhat since

the 1995 Lexington meeting, mostly via the updating of the atomic

data sets and the inclusion of more and specialized physical pro-

cesses, their basic structures have stayed the same. The seven codes

included for comparison are: G. Ferland’s CLOUDY (GF), J. P. Har-

rington’s code (PH), D. Péquignot’s NEBU (DP), T. Kallman’s XSTAR

(TK), H. Netzer’s ION (HN), R. Sutherland’s MAPPINGS (RS) and

R. Rubin’s NEBULA (RR). Only two of these codes, the Harrington

code and Rubin’s NEBULA, treat the diffuse radiative transfer exactly.

The others use some versions of the outward-only approximation

of varying sophistication. In this approximation, all diffuse radia-

tion is assumed to be emitted isotropically into the outward half of

space.

The predicted line fluxes from each code for each benchmark case

are listed in Tables 4–7, together with the volume-averaged mean

electron temperature weighted by the proton and electron densities

N p N e, 〈T [N p N e]〉, the electron temperature at the inner edge of

Table 1. Lexington 2000 benchmark model input parameters.a

Parameter HII40 HII20 PN150 PN75

L(BB)/1037 erg s−1 308.2 600.5 3.607 1.913

T(BB)/103 K 40 20 150 75

Rin/1017 cm 30 30 1 1.5

nH/cm−3 100 100 3000 500

He/H 0.10 0.10 0.10 0.10

C/H × 105 22 22 30 20

N/H × 105 4 4 10 6

O/H × 105 33 33 60 30

Ne/H × 105 5 5 15 6

Mg/H × 105 – – 3 1

Si/H × 105 – – 3 1

S/H × 105 0.9 0.9 1.5 1

aElemental abundances are by number with respect to H.

the nebula, T inner, and the mean ratio of fractional He+ to fractional

H+, 〈He+〉/〈H+〉, which represents the fraction of helium in the

H+ region that is singly ionized. 〈T [N p N e] 〉 and 〈He+〉/〈H+〉 are

calculated according to the following equations (Ferland et al. 1995)

〈T [Np Ne]〉 =
∫

Ne NpTe dV
∫

Ne Np dV
(16)

and

〈He+〉
〈H+〉

=
n(H)

n(He)

∫

Ne NHe+ dV
∫

Ne Np dV
, (17)

where N e and N p are the local electron and proton densities, re-

spectively, NHe+ is the density of He+, and n(H) and n(He) are the

total hydrogen and helium densities.

Table 1 lists the input parameters for all the benchmark models

discussed here. All the benchmark cases listed in Table 1 were cal-

culated using both the three-dimensional and the one-dimensional

mode of MOCASSIN, and both sets of results are included here for

comparison. It is clear from Tables 4–7 that the results of the three-

dimensional and one-dimensional modes of MOCASSIN are consistent

with each other. The small differences that do exist can be entirely at-

tributed to the coarseness of the grids used for the three-dimensional

calculations. The aim of the benchmarking described in this work

is to assess the reliability of MOCASSIN in its fully three-dimensional

mode. For this reason, the one-dimensional mode results will not be

included in the following performance analysis. Moreover, the in-

clusion of two sets of results from what is, essentially, the same

code would introduce a bias in the median and isolation factor

calculations described below. Finally, to avoid any confusion, any

mention of MOCASSIN throughout the rest of this paper refers to

the fully three-dimensional version of the code, unless otherwise

stated.

Figs 1 and 2 show the electron temperatures (top panels), and the

fractional ionic abundances of oxygen (middle panels) and carbon

(bottom panels) for the four benchmark cases analysed. The ionic

abundances in every cell in the ionized region are plotted against

radial distance from the star. These plots are interesting not only

because they provide a clear picture of the overall temperature and

ionization structure of each model, but also because from the scatter

of the data points one can estimate the accuracy of the final re-

sults. (Note that such plots are only meaningful in the spherically

symmetric case.)

Four benchmark model nebulae were computed, two H II regions

and two planetary nebulae. These benchmarks were designed to be
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MOCASSIN: a 3D MC photoionization code 1143

Figure 1. Electron temperature (top panels), and the fractional ionic abundances of oxygen (middle panels) and carbon (bottom panels), as a function of

nebular radius, for the H II region benchmark cases HII40 (left-hand panels) and HII20 (right-hand panels).

uncomplicated yet to test different aspects of the modelling (see

Ferland et al. 1995). The nebulae are homogeneous in density and,

for simplicity, blackbodies are used as the ionizing sources instead

of model stellar atmospheres.

Following the analysis of Péquignot (see Péquignot et al. 2001),

isolation factors, i f , were computed for each predicted quantity in

each case study. These are defined as the ratio of the largest to the

penultimate largest value of a given output quantity or the ratio of

the penultimate smallest value to the smallest value. These ratios

are computed with the intention to identify aberrant values. A large

i f can be attributed to a number of factors, but often these can be

attributed to a difference in the atomic data used by each modeller.

A list of the number of i f larger than 1.01, 1.03, 1.10, 1.30 and

2.00 is given in Table 8, for each benchmark. After analysing the

C© 2003 RAS, MNRAS 340, 1136–1152
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1144 B. Ercolano et al.

Figure 2. Electron temperature (top panels), and the fractional ionic abundances of oxygen (middle panels) and carbon (bottom panels), as a function of

nebular radius, for the planetary nebula benchmark cases PN150 (left-hand panels) and PN75 (right-hand panels).

benchmark results obtained by all the modellers who participated

in the Lexington workshop, Péquignot et al. (2001) suggested that

an isolation factor larger than 1.30 is indicative of a significant

departure and a possible problem. A large number of occurrences

of i f > 1.30 should either have an acceptable explanation or lead

to corrections to the code.

The number of results not predicted by any given code is listed in

the ‘No pred.’ rows of Table 8. Péquignot et al. (2001) also noted,

in the proceedings of the 2000 November Lexington meeting, that

the lack of a prediction for a particular observable may simply re-

flect a lack of interest by the modeller in it; on the other hand, a

frequent occurrence of ‘No pred.’ may also indicate limitations in

the predictive power of a given code.

As argued by Péquignot et al. (2001), a large error can be intro-

duced when the average over a small sample containing a number

of aberrant values is taken. In order to minimize this error, median

values are calculated instead of averages and these are given for

each observable listed in Tables 4–7, in the column labelled ‘Med’.
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MOCASSIN: a 3D MC photoionization code 1145

Table 2. Summary of the number of energy packets needed for >50 per

cent and >95 per cent convergence (see text for explanation) for each of the

benchmark cases.

Case τ edge nx × ny × nz N packets

H0 He0 He+ >50% >95%

HII40 4.79 1.15 177.8 13 × 13 × 13 5 × 105 5 × 106

HII20 2.95 1.13 91.2 13 × 13 × 13 5 × 106 5 × 107

PN150 34.0 6.87 57.9 13 × 13 × 13 3 × 105 3 × 106

PN75 1.16 0.24 31.5 13 × 13 × 13 4 × 105 4 × 106

The medians are calculated to the precision shown in Tables 4–7.

Table 9 lists the number of median values scored by each code for

each benchmark, i.e. the number of times the code was the clos-

est to the median value. When a median value is shared by two or

more codes, the score is given to each one; therefore, the sum of the

median values scored by all the codes is higher than the number of

observables (the column labelled ‘Total’ in Table 9).

3.1 Sampling requirements

Table 2 lists the optical depths at the ionization threshold frequencies

for H0, He0 and He+, at the outer edge of the grids, for the four

benchmark models analysed here. For each model, the number of

grid points is also given (column 5), together with the number of

energy packets used, N packets, according to the two-step strategy

described above, first to achieve convergence in 50–60 per cent of

the total number of grid cells (>50 per cent, column 6) and then to

achieve total convergence (>95 per cent, column 7). Table 2 shows

that the softer the ionizing radiation field, the larger the number of

energy packets required to achieve a given degree of convergence.

The reason for this effect is that in a softer radiation field case the

number of energy packets emitted at wavelengths shorter than the

Lyman limit will be less than in the case of a harder radiation field. A

larger total number of energy packets then needs to be used in order

to obtain a number of ionizing photons adequate to sample the nebula

properly. The aim of Table 2 is merely to provide some general

guidelines for selecting the appropriate number of energy packets

for a particular simulation; however, as stated before, the optimum

number should be determined for each given model, particularly in

non-spherically symmetric cases.

3.2 Benchmark results

The Lexington/Meudon Standard H II region model (HII40) was the

first benchmark to be run, and some very preliminary results have

already been presented, at the 2000 November Lexington meeting

(Ercolano 2001; Péquignot et al. 2001). However, those results were

produced when MOCASSIN was still under development and should

therefore only be considered as a snapshot of the code at that par-

ticular stage. The code has evolved considerably since the 2000

November Lexington meeting, and the newer results are presented

in this section (see Tables 4–7).

Table 3 shows the results of a comparison between the line fluxes

obtained by MOCASSIN using the formal solution method and those

obtained using the Monte Carlo method (see Section 2.8) for some of

the more significant lines in the benchmark cases. It is clear that the

results shown agree well; however, as expected, larger discrepancies

were found for the weaker lines, whose lower numbers of energy

packets yield lower-accuracy statistics.

Table 3. Deviation (per cent) of the Monte Carlo method from the formal

solution for the prediction of some significant line fluxes in the benchmark

models.

Line HII40 HII20 PN150 PN75

Hβ 2.7 9.5 5.8 2.8

He I 5876 Å 5.2 6.3 0.96 4.5

[N II] 6584 Å 7.6 4.9 8.5 4.8

[O II] 5007 Å 3.1 12.0 4.0 1.1

[S III] 9532 Å 5.8 5.0 2.0 2.0

3.2.1 The HII40 benchmark

These benchmark case results are shown in Table 4. MOCASSIN scored

eight i f > 1.01 for the HII40 benchmark model (Table 8); only three

of these, however, had values greater than 1.3. Amongst these, i f >

1.10 are obtained for [O III] 5007+4959 Å (i f = 1.18) and [O III]

4363 Å (i f = 1.45); the ratio of these lines is often used as a tempera-

ture diagnostic (see, for example, Osterbrock 1989 pages 119–125).

MOCASSIN predicts ( jλ4959 + jλ5007)/ jλ4363 = 745.4, which is higher

than the value obtained by the other codes. In fact the median value

obtained for the ratio of these line fluxes by the other codes is 589.2.

This is fully consistent with MOCASSIN predicting a slightly lower

temperature (i f = 1.027) for this benchmark than do the other codes.

Finally, the number of median values obtained for this benchmark

case is 10, which compares very well with the other codes’ median

scores, ranging from three to 10 (see Table 9).

3.2.2 The HII20 benchmark

These benchmark case results are shown in Table 5. MOCASSIN scored

seven i f for the low-excitation H II region (HII20) benchmark

model. None of these, however, has a value greater than 1.3. As

in the HII40 benchmark case, the mean temperature, weighted by

N p N e, predicted by MOCASSIN for this model is also slightly lower

(i f = 1.034) than the other models’ predictions.

Five median values were obtained by MOCASSIN for this bench-

mark case, while the other codes scored between three and 11 (see

Table 9).

3.2.3 The PN150 benchmark

These benchmark case results are shown in Table 6. The optically

thick high-excitation planetary nebula (PN150) is the most demand-

ing of the benchmark cases in terms of physical processes and

atomic data required. MOCASSIN’s score for this model was very good

(Table 8), obtaining only six i f , with none of those being higher than

1.3 and only one slightly higher than 1.1 (C II 1335 Å, i f = 1.13). As

has already been discussed by Péquignot et al. (2001), there seems

to be a dichotomy between the GF, HN and DP models (and, now,

also the BE model) on the one hand, and the TK, PH and RS models

on the other. The former group obtained very few i f larger than

1.1, indicative of a tighter agreement. This coherence can probably

be attributed to a more recent updating of atomic data and a more

careful treatment of the diffuse radiation field transfer. These four

codes also obtained a larger Hβ flux for this model, which can prob-

ably be ascribed to secondary photons from heavy ions. PH is the

only classical code here with a fully iterative spherically symmetric

radiative transfer treatment (since RR only computed H II regions);

this could also be the reason for the relatively larger number of i f

scored by the PH code for this model.

C© 2003 RAS, MNRAS 340, 1136–1152
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1146 B. Ercolano et al.

Table 4. Lexington 2000 standard H II region (HII40) benchmark case results.a

Line Median GF HN DP TK PH RS RR BE

3D 1D

Hβ/1037 erg s−1 2.05 2.06 2.02 2.02 2.10 2.05 2.07 2.05 2.02 2.10

Hβ 4861 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

He I 5876 0.116 0.119 0.112 0.113 0.116 0.118 0.116 – 0.114 0.112

C II] 2325+ 0.144 0.157 0.141 0.139 0.110 0.166 0.096 0.178 0.148 0.126

C II 1335 0.082 0.100 0.078 0.094 0.004 0.085 0.010 – 0.082 0.084

C III] 1907+1909 0.070 0.071 0.076 0.069 0.091 0.060 0.066 0.074 0.041 0.041

[N II] 122 µm 0.034 0.027 0.037 0.034 – 0.032 0.035 0.030 0.036 0.034

[N II] 6584+6548 0.730 0.669 0.817 0.725 0.69 0.736 0.723 0.807 0.852 0.786

[N II] 5755 0.0054 0.0050 0.0054 0.0050 – 0.0064 0.0050 0.0068 0.0061 0.0054

[N III] 57.3 µm 0.292 0.306 0.261 0.311 – 0.292 0.273 0.301 0.223 0.229

[O I] 6300+6363 0.0086 0.0094 0.0086 0.0088 0.012 0.0059 0.0070 – 0.0065 0.0080

[O II] 7320+7330 0.029 0.029 0.030 0.031 0.023 0.032 0.024 0.036 0.025 0.022

[O II] 3726+3729 2.03 1.94 2.17 2.12 1.6 2.19 1.88 2.26 1.92 1.75

[O III] 51.8 µm 1.06 1.23 1.04 1.03 0.99 1.09 1.06 1.08 1.06 1.09

[O III] 88.3 µm 1.22 1.12 1.06 1.23 1.18 1.25 1.23 1.25 1.22 1.26

[O III] 5007+4959 2.18 2.21 2.38 2.20 3.27 1.93 2.17 2.08 1.64 1.70

[O III] 4363 0.0037 0.0035 0.0046 0.0041 0.0070 0.0032 0.0040 0.0035 0.0022 0.0023

[O IV] 25.9 µm 0.0010 0.0010 0.0010 0.0010 0.0013 0.0013 0.0010 – 0.0010 0.0010

[Ne II] 12.8 µm 0.195 0.177 0.195 0.192 – 0.181 0.217 0.196 0.212 0.209

[Ne III] 15.5 µm 0.322 0.294 0.264 0.270 0.35 0.429 0.350 0.417 0.267 0.269

[Ne III] 3869+3968 0.085 0.084 0.087 0.071 0.092 0.087 0.083 0.086 0.053 0.055

[S II] 6716+6731 0.147 0.137 0.166 0.153 0.315 0.155 0.133 0.130 0.141 0.138

[S II] 4068+4076 0.0080 0.0093 0.0090 0.0100 0.026 0.0070 0.005 0.0060 0.0060 0.0057

[S III] 18.7 µm 0.577 0.627 0.750 0.726 0.535 0.556 0.567 0.580 0.574 0.569

[S III] 33.6 µm 0.937 1.24 1.43 1.36 0.86 0.892 0.910 0.936 0.938 0.932

[S III] 9532+9069 1.22 1.13 1.19 1.16 1.25 1.23 1.25 1.28 1.21 1.19

[S IV] 10.5 µm 0.359 0.176 0.152 0.185 0.56 0.416 0.388 0.330 0.533 0.539

103�(BC 3645)/Å 5.00 4.88 – 4.95 – 5.00 5.70 – 5.47 5.45

T inner/K 7653 7719 7668 7663 8318 7440 7644 7399 7370 7480

〈T [N p N e]〉/K 8026 7940 7936 8082 8199 8030 8022 8060 7720 7722

Rout/1019 cm 1.46 1.46 1.46 1.46 1.45 1.46 1.47 1.46 1.46 1.49

〈He+〉/〈H+〉 0.767 0.787 0.727 0.754 0.77 0.764 0.804 0.829 0.715 0.686

aGF: G. Ferland’s cloudy; HN: H. Netzer’s ion; DP: D. Péquignot’s nebu; TK: T. Kallman’s xstar; PH: J. P. Harrington’s code; RS: R.

Sutherland’s mappings; RR: R. Rubin’s nebula; BE: B. Ercolano’s MOCASSIN.

The score for median values obtained by MOCASSIN for the PN150

optically thick planetary nebula is extremely good, obtaining the

highest value of 15 medians, above the other codes, which obtained

between two and 13 (see Table 9).

3.2.4 The PN75 benchmark

These benchmark case results are shown in Table 7. The optically

thin planetary nebula (PN75) benchmark model is not a radiation-

bounded case, but a matter-bounded one and, in fact, the outer radius

is given as an input parameter to all codes and fixed at 7.5 × 1019

cm. For this reason, for this particular model there is not a straight-

forward conservation law for the absolute flux of Hβ. This can be

used to explain, in part at least, the relatively poor scores of the

GF code for low i f (Table 8), since, for one reason or another, its

predicted Hβ flux deviated somewhat from the median value, thus

shifting all the other line intensities, given in Hβ units. The PH code

also obtained an Hβ flux which deviated from the median value; in

this case, however, the number of total i f stayed low (=5) and no

i f > 1.30 was obtained. MOCASSIN, however, obtained a low number

of i f for this relatively difficult case, scoring nine i f in total, with

none of those having a value greater than 1.30.

MOCASSIN obtained a score of 13 median values for this benchmark

case, which compares well with the scores obtained by the other

codes for this benchmark, ranging from eight to 19 median values

(see Table 9).

4 D I S C U S S I O N

The overall performance of MOCASSIN for the four benchmarks was

very satisfactory, as shown by Table 8. The results obtained from

the one-dimensional mode of MOCASSIN are, in general, in very good

agreement with those obtained using the fully three-dimensional

MOCASSIN models. One noticeable difference, common to all four

benchmarks, is that the kinetic temperature at the illuminated in-

ner edge of the nebula, T inner, is higher for the one-dimensional

MOCASSIN results and closer to the values obtained by the other one-

dimensional codes included in the comparison. This is an obvious

effect caused by the coarseness of the three-dimensional grid: since

all the physical properties of the gas are constant within each vol-

ume element, then the electron temperature of a given cell will be

mainly representative of the kinetic temperature at its centre. From

this, it naturally follows that the coarser the grid, and the larger the

cells, then the further the kinetic temperature at the centres of the

cells adjacent to the inner radius will be from the true value at the

inner radius.

The electron temperatures, 〈T [N p N e]〉 and T inner, predicted by

MOCASSIN for the Lexington benchmark models tend, in particular

C© 2003 RAS, MNRAS 340, 1136–1152
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MOCASSIN: a 3D MC photoionization code 1147

Table 5. Lexington 2000 low-excitation H II region (HII20) benchmark case results.a

Line Med GF HN DP TK PH RS RR BE

3D 1D

Hβ/1036 erg s−1 4.91 4.85 4.85 4.83 4.9 4.93 5.04 4.89 4.97 5.09

Hβ 4861 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

He I 5876 0.0074 0.0072 0.008 0.0073 0.008 0.0074 0.0110 – 0.0065 0.0074

C II] 2325+ 0.046 0.054 0.047 0.046 0.040 0.060 0.038 0.063 0.042 0.031

[N II] 122 µm 0.071 0.068 – 0.072 0.007 0.072 0.071 0.071 0.071 0.070

[N II] 6584+6548 0.823 0.745 0.786 0.785 0.925 0.843 0.803 0.915 0.846 0.771

[N II] 5755 0.0028 0.0028 0.0024 0.0023 0.0029 0.0033 0.0030 0.0033 0.0025 0.0021

[N III] 57.3 µm 0.0030 0.0040 0.0030 0.0032 0.0047 0.0031 0.0020 0.0022 0.0019 0.0032

[O I] 6300+6363 0.0060 0.0080 0.0060 0.0063 0.0059 0.0047 0.0050 – 0.0088 0.0015

[O II] 7320+7330 0.0086 0.0087 0.0085 0.0089 0.0037 0.0103 0.0080 0.0100 0.0064 0.0051

[O II] 3726+3729 1.09 1.01 1.13 1.10 1.04 1.22 1.08 1.17 0.909 0.801

[O III] 51.8 µm 0.0012 0.0014 0.0012 0.0012 0.0016 0.0013 0.0010 0.0008 0.0010 0.0011

[O III] 88.3 µm 0.0014 0.0016 0.0014 0.0014 0.0024 0.0014 0.0010 0.0009 0.0012 0.0013

[O III] 5007+4959 0.0014 0.0021 0.0016 0.0015 0.0024 0.0014 0.0010 0.0010 0.0011 0.0012

[Ne II] 12.8 µm 0.273 0.264 0.267 0.276 0.27 0.271 0.286 0.290 0.295 0.296

[S II] 6716+6731 0.489 0.499 0.473 0.459 1.02 0.555 0.435 0.492 0.486 0.345

[S II] 4068+4076 0.017 0.022 0.017 0.020 0.052 0.017 0.012 0.015 0.013 0.0082

[S III] 18.7 µm 0.386 0.445 0.460 0.441 0.34 0.365 0.398 0.374 0.371 0.413

[S III] 33.6 µm 0.658 0.912 0.928 0.845 0.58 0.601 0.655 0.622 0.630 0.702

[S III] 9532+9069 0.537 0.501 0.480 0.465 0.56 0.549 0.604 0.551 0.526 0.582

103�(BC 3645)/Å 5.57 5.54 – 5.62 – 5.57 5.50 – 6.18 6.15

T inner/K 6765 7224 6815 6789 6607 6742 6900 6708 6562 6662

〈T [N p N e]〉/K 6662 6680 6650 6626 6662 6749 6663 6679 6402 6287

Rout/1018 cm 8.89 8.89 8.88 8.88 8.7 8.95 9.01 8.92 8.89 8.92

〈He+〉/〈H+〉 0.048 0.048 0.051 0.049 0.048 0.044 0.077 0.034 0.041 0.048

aGF: G. Ferland’s cloudy; HN: H. Netzer’s ion; DP: D. Péquignot’s nebu; TK: T. Kallman’s xstar; PH: J. P. Harrington’s code; RS: R.

Sutherland’s mappings; RR: R. Rubin’s nebula; BE: B. Ercolano’s MOCASSIN.

in the H II region cases, towards the lower limit of the scatter. In the

case of T inner, this seems to be a characteristic of all codes using

an exact treatment for the radiative transfer. As noted by Péquignot

et al. (2001), the kinetic temperatures calculated by codes with ex-

act transfer tend to be lower in the innermost layers of the neb-

ula, as the ionizing radiation field there is softer. Only two codes

in the Lexington benchmarks treated the radiative transfer exactly,

namely Rubin’s NEBULA (RR) and the Harrington code (PH) and,

in fact, MOCASSIN’s results for the kinetic temperatures generally

agree better with those two codes’ predictions. For the standard

H II region benchmark (HII40), MOCASSIN’s kinetic temperature at

the inner edge of the nebula, T inner, agrees extremely well with the

predictions of the RR and PH codes. Similar results are obtained

for the low-excitation H II region benchmark (HII20), where, again,

MOCASSIN’s T inner agrees with the results of PH and RR. In both H II

regions benchmark cases, however, MOCASSIN predicted a value that

was about 250 K lower than the median for 〈T [N p N e]〉, obtaining

an i f = 1.027 for the HII40 case and i f = 1.034 for the HII20 case.

The cause of this small discrepancy is not clear to us.

Unfortunately, Rubin’s code NEBULA was not designed to treat

planetary nebulae and, therefore, the only exact one-dimensional

radiative transfer code available for the optically thick planetary neb-

ula (PN150) and the optically thin planetary nebula (PN75) bench-

marks is the Harrington code (PH). For PN150, MOCASSIN’s T inner

is in reasonable agreement with PH’s prediction, particularly if the

prediction from the one-dimensional MOCASSIN run is considered,

since, as discussed earlier, this represents a measurement of the tem-

perature taken closer to the inner edge of the nebula. The MOCASSIN

result for 〈T [N p N e]〉 is within the scatter and, in particular, BE and

PH agree very well for this observable. Note that only HN and TK

obtain higher temperatures for this model; moreover, the TK com-

putation was carried out with a new code, still under development,

primarily designed for X-ray studies. That code could not treat the

diffuse radiation field, leading to problems for the hard radiation

field cases, such as PN150. Finally, for the PN75 benchmark plan-

etary nebula, MOCASSIN’s T inner is within the scatter (the prediction

from the one-dimensional model is actually at the higher limit of

it) and in reasonable agreement with PH’s prediction; the result for

〈T [N p N e]〉 is also within the scatter and is in very good agreement

with the prediction of the PH code. Once again, only HN predicts a

higher value for this quantity, while TK’s results for this model are

not available.

The models presented in this chapter were all run using a 13 ×
13 × 13 grid and, since they are all spherically symmetric, the ioniz-

ing source was placed in a corner of the grid. The number of energy

packets used to sample the grids and bring them to convergence

varied from three to five million. As has already been discussed, the

accuracy of the results depends both on the spatial sampling (i.e.

the number of grid cells) and on the number of energy packets used.

It is clear, however, that the latter also depends on the number of

points to be sampled. So if, for example, in a given simulation the

number of grid cells is increased from nx × ny × nz to n′
x × n′

y ×
n′

z , then the number of energy packets used must also be increased

from N packets to

N ′
packets =

n′
x × n′

y × n′
z

nx × ny × nz

Npackets.

However, for these relatively simple cases, the three-dimensional

grid specified above was found to be sufficient to produce accept-

able results. In fact, since the benchmark models are spherically

C© 2003 RAS, MNRAS 340, 1136–1152

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
4
0
/4

/1
1
3
6
/1

3
2
2
4
7
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1148 B. Ercolano et al.

Table 6. Lexington 2000 thick planetary nebula (PN150) benchmark case results.a

Line Med GF HN DP TK PH RS BE

3D 1D

Hβ/1035 erg s−1 2.79 2.86 2.83 2.84 2.47 2.68 2.64 2.79 2.89

Hβ 4861 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

He I 5876 0.104 0.110 0.129 0.118 0.096 0.096 0.095 0.104 1.06

He II 4686 0.328 0.324 0.304 0.305 0.341 0.333 – 0.333 0.320

C II] 2325+ 0.293 0.277 0.277 0.293 0.346 0.450 0.141 0.339 0.330

C II 1335 0.119 0.121 0.116 0.130 – 0.119 – 0.103 0.104

C III] 1907+1909 0.174 1.68 1.74 1.86 1.69 1.74 1.89 1.72 1.71

C IV 1549+ 2.16 2.14 2.43 2.16 0.154 2.09 3.12 2.71 2.65

[N I] 5200+5198 0.012 0.013 0.022 0.010 – 0.020 0.005 0.0067 0.012

[N II] 6584+6548 1.17 1.15 1.16 1.18 1.01 1.35 1.17 1.43 1.37

[N II] 5755 0.017 0.017 0.016 0.017 0.020 0.023 0.016 0.022 0.0021

N III] 1749+ 0.111 0.106 0.109 0.132 0.184 0.139 0.091 0.111 0.110

[N III] 57.3 µm 0.129 0.129 0.133 0.134 0.12 0.135 0.126 0.120 0.122

N IV] 1487+ 0.168 0.199 0.178 0.192 0.154 0.141 0.168 0.162 0.159

N V 1240+ 0.147 0.147 0.159 0.154 0.055 0.107 0.248 0.147 0.145

[O I] 63.1 µm 0.020 0.024 0.017 0.025 – 0.0072 0.049 0.010 0.011

[O I] 6300+6363 0.135 0.144 0.126 0.135 0.245 0.104 0.101 0.163 0.153

[O II] 3726+3729 2.11 2.03 1.96 2.32 2.11 2.66 1.75 2.24 2.25

[O III] 51.8 µm 1.39 1.30 1.45 1.42 0.954 1.39 1.28 1.50 1.52

[O III] 88.3 µm 0.274 0.261 0.292 0.291 0.27 0.274 0.252 0.296 0.299

[O III] 5007+4959 21.4 21.4 22.2 21.1 26.0 20.8 16.8 22.63 22.52

[O III] 4363 0.155 0.152 0.151 0.156 0.249 0.155 0.109 0.169 0.166

[O IV] 25.9 µm 3.78 3.45 3.16 3.78 3.95 4.20 4.05 3.68 3.60

O IV] 1403+ 2.30 0.183 0.236 0.324 0.357 0.225 – 0.203 0.201

O V] 1218+ 0.169 0.165 0.189 0.170 0.142 0.097 0.213 0.169 0.168

O VI 1034+ 0.025 0.028 0.026 0.022 0.026 0.014 – 0.025 0.026

[Ne II] 12.8 µm 0.030 0.028 0.032 0.030 0.020 0.027 0.043 0.030 0.031

[Ne III] 15.5 µm 1.97 1.88 1.97 1.92 1.73 2.76 2.71 2.02 2.03

[Ne III] 3869+3968 2.63 2.64 2.32 2.25 2.86 3.04 2.56 2.63 2.61

[Ne IV] 2423+ 0.723 0.707 0.712 0.785 1.13 0.723 0.832 0.749 0.741

[Ne V] 3426+3346 0.692 0.721 0.706 0.661 1.07 0.583 0.591 0.692 0.687

[Ne V] 24.2 µm 0.980 0.997 0.98 0.928 1.96 0.936 0.195 1.007 0.997

[Ne VI] 7.63 µm 0.076 0.107 0.075 0.077 0.692 0.011 – 0.050 0.051

Mg II 2798+ 1.22 2.22 2.10 1.22 0.023 0.555 0.863 2.32 2.32

[Mg IV] 4.49 µm 0.111 0.121 0.111 0.107 0.13 0.042 0.115 0.111 0.109

[Mg V] 5.61 µm 0.144 0.070 0.132 0.162 0.18 0.066 – 0.156 0.156

[Si II] 34.8 µm 0.168 0.155 0.168 0.159 0.263 0.253 0.130 0.250 0.263

Si II] 2335+ 0.159 0.160 0.155 0.158 0.20 – 0.127 0.160 0.164

Si III] 1892+ 0.382 0.446 0.547 0.475 0.321 0.382 0.083 0.325 0.316

Si IV 1397+ 0.172 0.183 0.218 0.169 0.015 0.172 0.122 0.214 0.207

[S II] 6716+6731 0.370 0.359 0.37 0.399 0.415 0.451 0.322 0.357 0.370

[S II] 4069+4076 0.077 0.073 0.078 0.086 0.19 0.077 0.050 0.064 0.063

[S III] 18.7 µm 0.578 0.713 0.788 0.728 0.15 0.488 0.578 0.495 0.505

[S III] 33.6 µm 0.240 0.281 0.289 0.268 0.06 0.206 0.240 0.210 0.214

[S III] 9532+9069 1.96 2.07 2.07 1.96 0.61 1.90 2.04 1.89 1.92

[S IV] 10.5 µm 2.22 2.09 1.65 1.76 2.59 2.22 2.25 2.25 2.22

T inner/K 18100 18120 17950 18100 19050 17360 19100 16670 17703

〈T [N p N e]〉/K 12110 12080 13410 12060 13420 12110 11890 12150 12108

Rout/1017 cm 4.04 4.04 3.90 4.11 4.07 4.04 3.98 4.11 4.19

〈He+〉/〈H+〉 0.704 0.702 0.726 0.714 0.79 0.696 0.652 0.702 0.711

aGF: G. Ferland’s cloudy; HN: H. Netzer’s ion; DP: D. Péquignot’s nebu; TK: T. Kallman’s xstar; PH: J. P. Harrington’s code; RS: R.

Sutherland’s mappings; BE: B. Ercolano’s MOCASSIN.

symmetric, then, although the number of sampling points along

each orthogonal axis is only 13, this is the equivalent of a one-

dimensional code with 273 radial points, which is the number of

different values of r given by all the (x , y, z) combinations. This

is clearly demonstrated in Figs 1 and 2, where the number of data

points and the spacing between them shows that the spatial sampling

is indeed appropriate. The plots also show that the number of energy

packets used in the simulations was sufficient, since the scatter of

the ordinate values for a given r, which is essentially a measure of

the error bars, is very small. The largest scatter was obtained in the

plots for the HII20 benchmark (Fig. 1); this is a very soft ionizing

radiation field case and a larger number of energy packets is prob-

ably required in order to reduce the scatter shown and increase the

accuracy of the results. For the purpose of this benchmark exercise,

however, the accuracy achieved for HII20 is sufficient to produce

satisfactory results.
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MOCASSIN: a 3D MC photoionization code 1149

Table 7. Lexington 2000 optically thin planetary nebula (PN75) benchmark case results.

Line Med GF HN DP PH RS BE

3D 1D

Hβ/1034 erg s−1 5.71 6.08 5.56 5.74 5.96 5.69 5.65 5.63

Hβ 4861 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00

He I 5876 0.131 0.130 0.144 0.132 0.126 0.125 0.132 0.132

He II 4686 0.087 0.085 0.089 0.087 0.087 – 0.093 0.094

C II] 2325+ 0.039 0.023 0.047 0.040 0.044 0.034 0.038 0.043

C II 1335 0.089 0.096 0.089 0.101 0.085 – 0.086 0.085

C III] 1907+1909 0.790 0.584 0.96 0.882 0.602 1.00 0.698 0.709

C IV 1549+ 0.354 0.298 0.480 0.393 0.291 0.315 0.414 0.463

[N II] 6584+6548 0.098 0.069 0.097 0.089 0.108 0.119 0.100 0.087

[N II] 5755 0.0012 – 0.0011 0.0012 0.0013 0.0020 0.0011 0.0010

N III] 1749+ 0.043 0.029 0.059 0.056 0.038 0.048 0.038 0.039

[N III] 57.3 µm 0.397 0.371 0.405 0.404 0.390 0.405 0.336 0.334

N IV] 1487+ 0.018 0.019 0.024 0.020 0.012 0.011 0.017 0.020

[O II] 3726+3729 0.262 0.178 0.262 0.266 0.262 0.311 0.234 0.205

[O III] 5007+4959 11.35 10.1 13.2 11.7 10.1 11.8 11.0 11.1

[O III] 4363 0.060 0.046 0.077 0.066 0.048 0.065 0.056 0.057

[O III] 51.8 µm 1.98 1.94 2.09 1.94 1.95 2.02 2.07 2.07

[O III] 88.3 µm 1.12 0.986 1.13 1.12 1.07 1.12 1.14 1.14

[O IV] 25.9 µm 0.814 0.767 0.741 0.859 0.821 0.807 0.894 0.942

O IV] 1403+ 0.013 0.009 0.015 0.014 0.093 – 0.013 0.015

[Ne II] 12.8 µm 0.012 0.012 0.012 0.012 0.012 0.017 0.013 0.012

[Ne III] 15.5 µm 0.948 0.883 0.95 0.902 1.32 1.35 0.946 0.949

[Ne III] 3869+3968 0.872 0.784 0.948 0.818 0.919 1.10 0.826 0.838

[Ne IV] 2423+ 0.030 0.028 0.032 0.036 0.027 0.020 0.034 0.039

Mg II 2798+ 0.102 0.086 0.14 0.111 0.071 0.093 0.114 0.106

[Mg IV] 4.49 µm 0.0062 0.0021 0.006 0.0075 0.0065 0.0050 0.0068 0.0072

[Si II] 34.8 µm 0.029 0.025 0.034 0.025 0.060 0.004 0.061 0.052

Si II] 2335+ 0.0057 0.0037 0.0078 0.0054 – 0.0010 0.0062 0.0052

Si III] 1892+ 0.104 0.087 0.16 0.136 0.101 0.019 0.107 0.110

Si IV 1397+ 0.017 0.017 0.023 0.018 0.013 0.023 0.016 0.018

[S II] 6716+6731 0.0020 0.023 0.036 0.029 0.013 0.016 0.017 0.013

[S II] 4069+4076 0.0017 0.0022 0.0034 0.0030 0.0013 0.0010 0.0012 0.0010

[S III] 18.7 µm 0.486 0.619 0.715 0.631 0.316 0.357 0.285 0.266

[S III] 33.6 µm 0.533 0.702 0.768 0.684 0.339 0.383 0.306 0.285

[S III] 9532+9069 1.20 1.31 1.51 1.33 0.915 1.09 0.831 0.777

[S IV] 10.5 µm 1.94 1.71 1.57 1.72 2.17 2.33 2.79 2.87

103�(BC 3645)/Å 4.35 4.25 – 4.25 4.35 4.90 4.54 4.56

T inner/K 14300 14450 14640 14680 14150 13620 14100 14990

〈T [N p N e]〉/K 10425 9885 11260 10510 10340 10510 10220 10263

Rout/1017 cm – 7.50 7.50 7.50 7.50 7.50 7.50 7.50

〈He+〉/〈H+〉 0.913 0.912 0.92 0.914 0.920 0.913 0.911 0.908

τ (1 Ryd) 1.47 1.35 1.64 1.61 1.47 – 1.15 1.29

aGF: G. Ferland’s cloudy; HN: H. Netzer’s ion; DP: D. Péquignot’s nebu; PH: J. P. Harrington’s code; RS: R. Sutherland’s mappings; BE: B.

Ercolano’s MOCASSIN.

5 C O N C L U S I O N S

A fully three-dimensional photoionization code, MOCASSIN, has been

developed for the modelling of photoionized nebulae, using Monte

Carlo techniques. The stellar and diffuse radiation fields are treated

self-consistently; moreover, MOCASSIN is completely independent of

the assumed nebular geometry and is therefore ideal for the study of

aspherical and/or inhomogeneous nebulae, or nebulae having one

or more exciting stars at non-central locations.

The code has been successfully benchmarked against established

one-dimensional photoionization codes for standard spherically

symmetric model nebulae (see Péquignot 1986; Ferland et al. 1995;

Péquignot et al. 2001).

MOCASSIN is now ready for the application to real astronomical

nebulae and it should provide an important tool for the construction

of realistic nebular models. Paper II will present detailed results

from the modelling of the non-spherically symmetric PN NGC 3918.

Resources permitting, it is intended to make the MOCASSIN source

code publicly available in the near future.
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Table 8. Summary of isolation factors, i f , for the benchmark cases.

Case GF HN DP TK PH RS RR BE

HII40

>1.01 8 5 1 17 2 4 7 8

>1.03 5 3 0 15 1 3 5 6

>1.10 3 0 0 8 0 2 1 5

>1.30 0 0 0 5 0 0 0 3

>2.00 0 0 0 2 0 0 0 0

No pred. 0 1 0 5 0 0 5 0

HII20

>1.01 3 2 2 12 4 7 4 7

>1.03 2 1 2 10 3 6 4 6

>1.10 0 0 0 8 0 2 3 3

>1.30 0 0 0 5 0 2 0 0

>2.00 0 0 0 2 0 0 0 0

No pred. 0 2 0 1 0 0 3 0

PN150

>1.01 4 8 2 27 15 23 – 6

>1.03 4 6 2 26 13 19 – 5

>1.10 1 2 0 22 7 16 – 1

>1.30 0 0 0 17 6 7 – 0

>2.00 0 0 0 7 2 2 – 0

No pred. 0 0 0 3 1 6 – 0

PN75

>1.01 14 20 4 – 5 14 – 9

>1.03 11 18 4 – 4 13 – 8

>1.10 5 10 2 – 4 10 – 6

>1.30 4 1 0 – 0 3 – 0

>2.00 1 0 0 – 0 3 – 0

No pred. 1 1 0 – 1 4 – 0

Table 9. Summary of median values for the benchmark cases.

Case Total GF HN DP TK PH RS RR BE

HII40 31 8 8 10 3 9 9 5 10

HII20 24 4 7 7 3 11 6 4 5
Subtot H II 12 15 17 6 20 15 9 15

PN150 49 9 11 12 2 13 4 – 15

PN75 40 10 8 19 – 16 13 – 13
Subtot PN 19 19 31 (2) 29 17 – 28
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Boissé P., 1990, A&A, 228, 483

Brocklehurst M., 1972, MNRAS, 157, 211

Brown R. L., Matthews W. G., 1970, ApJ, 160, 939

Butler S. E., Zeippen C. J., 1994, A&AS, 108, 1

Castor J. I., 1974, ApJ, 189, 273

Corradi R. L. M., Perinotto M., Villaver E., Mampaso A., Gonçalves D. R.,
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A P P E N D I X A : ATO M I C DATA R E F E R E N C E S

Free–bound emission for hydrogenic ions (H I and He II): Ferland

(1980)

Free–bound emission for He I: Brown & Matthews (1970)

Two-photon emission for hydrogenic ions (H I and He II): Nuss-

baumer & Schmutz (1984)

Two-photon emission for He I: Drake et al. (1969)

Free–free emission for interaction between ions of nucleus Z and

electrons: Allen (1973)

Effective recombination coefficient to H I 22S: Pengelly (1964)

Effective recombination coefficient to He I 21S: Almog & Netzer

(1989)

H I and He II recombination line emissivities: Storey & Hummer

(1995)

He I recombination line emissivities: Benjamin et al. (1999)

Collision transition rates for H I 22S – 22P: (page 94 Osterbrock

1989 page 94)

Cooling due to free–free radiation from hydrogenic ions (H I and

He II): Hummer (1994)

Cooling due to free–free radiation from He I: Hummer & Storey

(1998)

Cooling due to recombination of hydrogenic ions (H I and He II):

Hummer (1994)

Cooling due to He I recombination: Hummer & Storey (1998)

Collisional ionization of hydrogen: Drake & Ulrich (1980)

Charge exchange with hydrogen: Kingdon & Ferland (1996)

Fits to calculate rates of radiative recombination for – H-, He-,

Li- and Ne-like ions: Verner et al. (1996)

other ions of C, N, O and Ne: Péquignot, Petitjean & Boisson

(1991)

Fe XVII–XXIII: Arnaud & Raymond (1992)

other ions of Mg, Si, S, Ar, Ca, Fe and Ni: Shull & van Steenberg

(1982)

other ions of Na and Al: Landini & Monsignori Fossi (1990)

other ions of F, P, Cl, K, Ti, Cr, Mn and Co (excluding Ti I– II and

Cr I–IV): Landini & Monsignori Fossi (1991)

Dielectronic recombination coefficients: Nussbaumer & Storey

(1983); Nussbaumer & Storey (1986); Nussbaumer & Storey (1987)

Non relativistic free–free Gaunt factor for hydrogenic ions: Hum-

mer (1988)

Fits to Opacity Project data for the photoionization cross-sections

(outer shell): Verner et al. (1996)

Collision strengths and transition probabilities to calculate colli-

sionally excited line strengths from ions:

CI Collision strengths from Péquignot & Aldrovandi (1976); 5S–
3P from Thomas & Nesbit (1975). Transition probabilities from

Nussbaumer & Rusca (1979).

CII Collision strengths from Hayes & Nussbaumer (1984). Tran-

sition probabilities from Nussbaumer & Storey (1981).

CIII Collision strengths and transition probabilities from Keenan,

Feibelman & Berrington (1992) and Fleming et al. (1996).

CIV Collision strengths from Gau & Henry (1977). Transition

probabilities from Wiese, Smith & Glennon (1966).

MgI Collision strengths from Saraph & Storey (1996) JAJOM

calculations. Transition probabilities from Mendoza (1983).

MgII Collision strengths and transition probabilities from Men-

doza (1983).

MgIV Collision strengths from Butler & Zeippen (1994). Transi-

tion probabilities from Mendoza & Zeippen (1983).

MgV Collision strengths from Butler & Zeippen (1994). Transi-

tion probabilities from Mendoza (1983).

MgVI Collision strengths from Bhatia & Mason (1980). Transition

probabilities from Eidelsberg et al. (1981).

MgVII Collision strengths from Aggarwal (1984a) and Aggar-

wal (1984b). Transition probabilities from Nussbaumer & Rusca

(1979).

NeII Collision strengths from Bayes et al. (1985). Transition prob-

abilities from Mendoza & Zeippen (1983).

MgIII Collision strengths from Butler & Zeippen (1994). Transi-

tion probabilities from Mendoza & Zeippen (1983).

NeIV Collision strengths from Giles (1981). Transition probabil-

ities from Zeippen (1982).

NeV Collision strengths from Lennon & Burke (1991). Transition

probabilities from Nussbaumer & Rusca (1979).

NeVI Collision strengths from Butler & Storey (unpublished).

Transition probabilities from Wiese et al. (1966).

NI Collision strengths from Berrington et al. (1981). Transition

probabilities from Zeippen (1982).
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NII Collision strengths from Stafford et al. (1994). Transition

probabilities from Nussbaumer & Rusca (1979).

NIII Collision strengths from Nussbaumer & Rusca (1979),

rescaled to Nussbaumer & Storey (1982); fine-structure terms from

Butler & Storey (unpublished). Transition probabilities from Fang

et al. (1993).

NVI Collision strengths from Mendoza & Zeippen (1983). Tran-

sition probabilities from Nussbaumer & Rusca (1979) and Fleming

et al. (1995).

NV Collision strengths from Osterbrock & Wallace (1977). Tran-

sition probabilities from Wiese et al. (1966).

OI Collision strengths from Berrington et al. (1981) and Berring-

ton (1988). Transition probabilities from Balujia & Zeippen

(1988).

OII Collision strengths from Pradhan (1976). Transition proba-

bilities from Zeippen (1982).

OIII Collision strengths from Aggarwal (1983). Transition prob-

abilities from Nussbaumer & Storey (1981).

OIV Collision strengths from Zhang, Graziani & Pradhan (1994)

and from Hayes & Nussbaumer (1984). Transition probabilities

from Nussbaumer & Storey (1982).

OV Collision strengths and transition probabilities from Mendoza

(1983).

OVI Collision strengths and transition probabilities from Mendoza

(1983).

SiII Collision strengths from Dufton & Kingston (1991). Transi-

tion probabilities from Mendoza & Zeippen (1983) and from Dufton

et al. (1991).

SiIII Collision strengths from Dufton & Kingston (1989). Transi-

tion probabilities from Mendoza & Zeippen (1983)

SiIV Collision strengths and transition probabilities from Men-

doza (1983).

SiVII Fine-structure collision strengths from Butler (unpublished).

Transition probabilities from Bhatia et al. (1979).

SII Collision strengths from Mendoza & Zeippen (1983). Transi-

tion probabilities from Mendoza (1983).

SIII Collision strengths from Mendoza & Zeippen (1983). Tran-

sition probabilities from Mendoza (1983)

SIV Collision strengths from Saraph & Storey (1996). Transition

probabilities from Storey (unpublished)
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