
MoCCA: A Mobile Cellular Cloud
Architecture

Amitabh Mishra and Gerald Masson

Johns Hopkins University Information Security Institute, Baltimore, MD, USA;

e-mail: amitabh@cs.jhu.edu, masson@jhu.edu

Received 31 May 2013; Accepted 15 July 2013

Abstract

This paper presents MoCCA – a cellular cloud architecture for building

mobile clouds using small-footprint micro-servers running on cell phones.

We provide details of this architecture which is based on GSM standard,

discuss several challenges, and include performance results to validate the

assumptions that a mobile cellular cloud can indeed be in the realm of
possibilities.

Keywords: Mobile cellular networks, cloud computing, performance.

1 Introduction

Cloud computing is a new computing paradigm, involving data and/or com-

putation outsourcing, with infinite and elastic resource scalability. The NIST

defines cloud computing as: “a model for enabling convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction” [15].

Cloud computing service providers typically possess large data centers

consisting of a large number of servers. The resources of these servers are

provisioned to the clients on demand. The cloud service providers typically

Journal of Cyber Security and Mobility, Vol. 2, 105–125.

c© 2013 River Publishers. All rights reserved.

doi 10.13052/jcsm2245-1439.221

106 A. Mishra and G. Masson

provide one or more of the following services: Software-as-a-service (SaaS),

Platform-as-a-service (PaaS), or Infrastructure-as-a-service (IaaS). In SaaS,

the cloud provider runs applications on the cloud platform, and clients usually

access these applications via a web-browser interface. Examples of SaaS are

Google Docs, Microsoft Live, etc. In PaaS, clients get more access to the

cloud, by deploying or configuring applications or code that runs on the cloud

providers software and operating system platform. In IaaS, clients get the

greatest control over the cloud. In this model, the clients can deploy operating

system on virtual machines running on the cloud servers, provision resources,

and run arbitrary software. Data Flow programming has gained popularity

for data processing in Clouds. A widely used programming framework in

this model is Google’s MapReduce [5]. Given the operational advantage of
using a cloud for computing, they have become widely popular in the de-

veloped world. However, if we want to bring cloud computing across the

digital divide, to developing nations, we face a big obstacle. As of now, setting

up a moderate sized cloud requires significant investment in the data center

infrastructure. A high-density data center with 10000 servers can cost up to

$4 million or more [20]. Larger scale facilities such as Microsoft Azure’s

Chicago data center cost $500 million [12, 16]. A large part of this cost goes

towards setting up the physical infrastructure for cooling, racks etc., making

it prohibitively costly for a new player to enter the cloud computing business.

To solve this problem, we propose using the widely deployed mobile

phones (MS) as the building blocks for clouds. We define a mobile cloud

as a cloud composed of mobile phones and the associated networking com-

ponents. In contrast with traditional clouds, a mobile cloud is formed using

loosely connected servers. A mobile cloud provides a lot of business advant-
ages over traditional clouds. It can allow base station owners or cell phone

operators to enter the market with little establishment cost. Base stations

which are integral part of the mobile cloud architecture are already deployed

in most places. To build a mobile cloud, a provider only needs to deploy

additional software and minimal amount of additional hardware to the base

stations. Running a mobile cloud microserver on a cell phone uses up energy

and phone resources, so the clients must have some incentives to participate

in such a cloud.

Unlike a traditional data center, the mobile cloud does not require extens-

ive cooling systems, a large building for servers, wiring, and that it being

close to power utilities. A mobile cloud is also self-balancing when used to

serve local computing needs. For example, in a building with few cell phone

users, the resources required to run a local service is low. So, a base station

MoCCA: A Mobile Cellular Cloud Architecture 107

can run local services on the few cell phones present in the building. If more

cell phones enter the base station’s service area, the resource requirements

increase accordingly, but at the same time, the base station has access to more

cell phones to scale its services.

In this paper, we propose a Mobile Cellular Cloud Architecture (MoCCA)

– that aims at building cloud computing systems using smart mobile phones.

Unlike traditional clouds that depend on co-located servers connected via

a local area network, we propose building a cloud using loosely-connected

micro-servers – small footprint code that runs on a cell phone – connected via

a wireless link to a base station. The contributions of this paper are as follows:

(1) Identification of challenges in building mobile clouds; (2) Introduction of

a churn tolerant cloud computing architecture that uses microservers running
on mobile phones as compute nodes and facilitates building an autonomic

cloud over wireless cellular networks. (3) Demonstration using an analytic

performance model that a cellular cloud is indeed feasible. The rest of this

paper is organized as follows: Section 2 presents issues and challenges in

building a cloud with mobile phones. The details of MoCCA are presented in

Section 3. Section 4 includes the performance of a set of numerical applic-

ations suitable for cloud computing. We discuss the state of the art/related

work in mobile cloud computing in Section 5 followed by the conclusions.

2 Challenges

A mobile cloud introduces a set of new challenges in terms of operation and

security of the cloud components, as well as the data objects. The challenges

mainly arise from the fundamental differences between the network topology

and node characteristics of a wired data center network and a cellular mo-

bile network. In this section, we discuss the operational and security related

challenges in designing a mobile cloud.

2.1 Operational Issues

Connectivity: The biggest issue facing a mobile cloud is connectivity. Data

centers are built using high-speed wired networks, operating under the

control of the cloud service provider. In contrast, mobile clouds, built using

small-footprint server code running on mobile phones, do not have fast and

high-bandwidth connectivity. Unlike a data center connected via a local

area network, mobile phones use the star topology where a large number

of phones are connected to a base station. The phones do not communicate

108 A. Mishra and G. Masson

among themselves directly rather they connect through the base station.

This difference in topology implies that we need solutions that allow cloud

protocols to deal with frequent network disruptions.

Computational limitation: Mobile phones do not possess powerful

computational capability. Unlike traditional cloud servers with multi-

core, high-speed processors, mobile phones may not be as resource rich.

Hence, mobile clouds must be designed with the computational limitations

in mind. The task assigned to each of the mobile cloud nodes should be such

that it is within its resource constraints such as CPU, memory, bandwidth

and the energy.

Churn: A mobile cloud needs to consider churn in a large scale. Since

mobile phone users are not limited to a single location and may move in and

out of range of a given cellular base station, there is a high chance that a

mobile cloud node will drop out, run out of power, or have the server process

interrupted or terminated. The mobile cloud architecture and protocols must

be designed with enough redundancy to handle such large scale churn.

Energy: Mobile phones are power limited devices. Computations and data

transfer will drain the battery. Hence, the amount of data assigned to each

mobile node needs to be small enough to be feasible to compute and transfer

efficiently.

User incentive: Since the nodes in the mobile cloud are mobile phones owned

by different people, we need to provide an incentive model for the users to
allow the use of their phones. Specifically, the users need to have a compens-

ation model where they will benefit from letting their unused phones be a

part of a mobile cloud. One possibility can be that the cell phone company

may provide a discount or monetary incentive in return of the use of phone

CPU cycles and data bandwidth. Since, cell phones are typically unused most

of the day, especially during off-peak hours. So, the cell phone owners can

benefit financially by letting the phone company utilize the unused cell CPU

cycles.

2.2 Security and Privacy Issues

We mention these issues here rather briefly to appraise readers to security

challenges that mobile cloud computing faces. But, security issues are

MoCCA: A Mobile Cellular Cloud Architecture 109

beyond the scope of this paper.

Confidentiality and privacy: Unlike traditional cloud servers, the individual

mobile phones in a mobile cloud are owned by different people, some of

whom may not be trustworthy. Hence, it is vital to ensure that attackers

cannot gather confidential information by pretending to be a legitimate user.

Even if the adversary takes over a phone, or infiltrates the cloud, she should

learn only small pieces of data (that was sent to her phone) and nothing

else about the whole computation. Also, the cloud server code running on

the phone should not gather sensitive personal information from the user’s

phone. Another challenge is to ensure the security of data in transit – in

mobile clouds, most of the data transfer will occur over wireless links, which
brings in the possibility of eavesdropping attacks.

Integrity: Mobile clouds need to ensure the integrity of data as well as

computations. Dishonest users can try to benefit by misreporting the result

of a computation (perhaps by sending random results without performing

the actual computation). We must also ensure that only the intended data

processing functions (either standard or user-defined) were applied to

produce the results.

Forensics: A mobile cloud must have strong support for digital forensics. As

the nodes are no longer owned by the service provider, the risk of attacks is

higher. Hence, we need schemes for logging, provenance management, and

forensics to identify misbehavior.

3 MOCCA: Mobile Cellular Cloud Architecture

To build clouds using mobile phones, we introduce the Mobile Cellular

Cloud Architecture (MoCCA). On a high-level, MoCCA is based on a small-
footprint microserver code running on mobile phones. These microservers

are co-ordinated by a management process running in the base station. In this

section, we present an overview of MoCCA which assumes GSM cellular

network as the basis for the mobile cloud. We begin by discussing background

information on GSM network topology.

110 A. Mishra and G. Masson

Figure 1 Architecure of a GSM cellular system [17].

3.1 Background

GSM is a widely used narrowband digital cellular system belonging to the

2nd generation (G) and has further evolved to GPRS (General Packet Radio

Service – 2.5G), and UMTS (Universal Mobile Telecommunications System

– 3G) systems. A functional architecture of GSM [17] is shown in Figure 1.

Here, each base station is shown as a hexagon which serves N number of

mobile stations (MS). A base station controller (BSC) controls multiple base

stations and interfaces to a mobiles switching center (MSC). For location and

mobility management of mobile devices Home Location (HLR) and Visitor

Location (VLR) Registers are used [17].

3.2 MoCCA Overview

In MoCCA, the mobile cloud comprises of smart phones, base stations (BS),

base station controllers (BSC), and mobile switching centers (MSC). A small

mobile cloud can be formed out of mobile stations served by a single base

station. A medium cloud can be constructed out of phones served by mul-

tiple base stations within the control of the same BSC. A larger cloud can

be formed out of coverage area supported by multiple BSCs that are under

the control of one MSC. A much larger cloud can still be constructed at the

PSTN (Public Switch Telephone Network) level that includes multiple MSCs.

Because of the hierarchical nature of cellular networks, MoCCA is inherently

scalable.

MoCCA: A Mobile Cellular Cloud Architecture 111

We make the following assumptions in order to develop MoCCA: (1) The

BSC has the ability to partition the client initiated workload into multiple

smaller chunks that can be processed by a multiple of smart phones. (2) The

BSC has a list of smart phones that are willing to participate in sharing the

workload assigned to the cloud. (3) Using the control plane (existing signal-

ing architecture), a BSC can allow a phone to join or leave the cloud as and

when necessary. However, for better performance, it is reasonable to expect

that a phone participates in a cloud for a minimum amount of time that is

agreed upon during the initialization. (4) Phones have required software to

compute the results, or it could be downloaded from the base station or any

other appropriate facility. (6) After completion of the assigned job, the mobile

phone informs the base station that the job is completed using a message on a
control channel and transmits the result on one of the data channels assigned

by the base station. (7) The BSC is responsible for verifying the correctness

of the results received from the multiple phones.

3.3 Operational Model

MoCCA uses a dataflow model of cloud computing, such as MapReduce [5].

In such data processing systems, each node performs a mapping or reducing

function. Results from one stage are fed into the next stage. We consider

data-parallel computations.

To submit a job to MoCCA, a cloud client contacts a BSC and sends

it the data and the specification of the code that should operate on the

data (e.g., map and reduce functions). The BSC then contacts the MoCCA

microservers running on the mobile phones, through the MoCCA manager

software running on the base stations.

MoCCA microserver: Each mobile phone runs a MoCCA microserver process

that handles communication with the base station and management of the

server function and data. A controller component in the microsever manages

the communication with the MoCCA manager, retrieval and deployment

of function code and data, maintenance of accounting information, and the

return of the results to the BS. The code is executed in a sandbox (similar

to Java Applets), and is prevented from accessing any resource outside the

sandbox. This ensures that any malicious code will not be able to read any

personal information stored on the phone.

112 A. Mishra and G. Masson

Figure 2 Operational model of MoCCA.

Operation: On a high level, the communication between a mobile phone and

the base station happens in three phases.

1. Initialization phase: When a mobile wants to join the MoCCA frame-

work, it sends a join request to the base station controller. The BSC then

initiates an authentication protocol that is based on challenge and re-

sponse methodology. To further strengthen this protocol, after the phone

is authenticated, the BS and the MS can perform a Diffie–Hellman key

exchange to establish a cryptographic session key. This key is used to

encrypt any future communication between the cell phone and the base

station. In this phase, the MS may also negotiate the type of service
it is willing to provide to the BSC including the amounts of data it

will process and the number of sessions for which it will remain active.

Accounting for the service is also initiated in this phase.

2. Function load phase: In this phase, the MoCCA manager in the BS

sends function code to the phone. The code is placed in the microserver

sandbox.

3. Data processing phase: In this phase, the BSC sends one or more sets

of data to the phone via BS. On receiving a data object, the MoCCA

microserver places the data object in the sandbox, and invokes the

previously loaded function to operate on the data object.

MoCCA: A Mobile Cellular Cloud Architecture 113

After the end of each computation, the microserver controller sends the

result and accounting information back to the base station. The operational

model of MoCCA is shown in Figure 2.

3.4 Data and Control Plane Operations

In MoCCA, all cloud computing messages whether related to control or data

plane are handled on designated control and data channels thereby suggesting

minimum or no modifications to existing GSM system.

3.5 Performance and Reliability

Bandwidth: The bandwidth provided by emerging cellular systems for data

applications has been increasing over the years due to the emergence of

bandwidth hungry mobile applications such as mobile web-surfing and

multimedia. At the present time GSM/Edge systems provide a bandwidth of
384 Kbps which increases to 2 Mbps for UMTS/DECT systems. Emerging

4 G systems such as LTE are planned to have downlink bandwidth of

84–168 Mbps [24].

Energy: For cloud applications running on mobile phones, energy consump-

tion in computation and communication (transmission and reception) is of

paramount importance. For example, in GSM based applications running

on Android G1 smart phones, the cost of transmission of a 200 byte data

packet is 4.67 Joules while the cost of reception is 2.05 Joules [2]. The

energy cost of computation is several orders of magnitude less than wireless

communications. The average energy capacity of Android G1 battery is

approximately 15000–20000 Joules. These results justify our hypothesis

that mobile phones can indeed be appropriate platforms to act as servers for

mobile clouds.

it Frequent Connection/Disconnection: In cellular communication, the prob-

ability of connection impairments leading to eventual disconnection is very

high when a cloud server node is mobile. Also there is another important dif-

ference that is related to mobile cloud. In a cellular voice or data applications

at the termination of the session, no data transmission takes place. But in the

case of mobile cloud, the phone is responsible for sending back the computed

results to the original BSC completing the task. There are several issues that

arise in this context such as:

114 A. Mishra and G. Masson

1. A MS acting as a cloud server is mobile within the coverage area of the

serving base station and does not cross the cell boundary; so no handoffs

take place. If there is a disconnection while computed results are being

transferred to the base station, or software is being downloaded from

the base station, or input data is being transmitted by the base station,

then these items (text and/or data) need to be retransmitted by the base

station or phone using the existing mechanisms in place for cellular data

communications or as specified in standards.

2. The second scenario arises when a phone acting as a cloud server moves

to a different cell resulting in a handoff or series of handoffs. We assume

computed results will reach the originating base station following the

handoff trail.

3.6 Reassembly and Correctness

The base station controller will be assigned the task of reassembling the res-

ults from different smart phones and ensuring that the transmission errors on

the wireless channels have not introduced any errors in the computed results.

The assumptions that we make in MoCCA is that cellular network archi-

tecture and governing specifications do not change to accommodate mobile

cloud computing. Cellular networks implement forward error correction to

deal with the channel errors and this will be first line of defence with regard

to transmission errors. In addition in MoCCA, we introduce another feature to
ensure correctness of the received results based on the theory of Triple Mod-

ular Redundancy (TMR) proposed by Von Neumann [18]. In TMR identical

computations are assigned to three smart phones outputs of which are com-

pared at the base station controller through a voter which chooses the correct

result. A TMR configuration is shown in Figure 3. Here the duplication with

output comparison is considered as an error detection technique.

The availability of the third copy of the computation provides enough

redundant information to allow error masking in any one of the three copies.

This is accomplished by means of a majority (two-out-of-three) vote on the

three copies of the computed results. The reliability of the results of this

configuration can be given as

R = Rv × (R2
m + 3R2

m(1 − Rm)), (1)

where Rv and Rm are the reliabilities of the voter and a single copy of

triplicated computations. The concept of triple modular redundancy can be

extended to include N copies with majority voting at the base station con-

MoCCA: A Mobile Cellular Cloud Architecture 115

Figure 3 Reassembly and correctness in MoCCA.

troller. Equation (1) can be extended to N modular redundancy scheme to
Equation (2), if higher degree of reliability in computed results is required.

R = Rv

N/2
∑

i=0

(

N

i

)

R(N−1)
m + (1 − Rm)′. (2)

As part of the research agenda, we will examine what is the optimal

redundancy that is required to guarantee the correctness of the results and
its energy and transmission cost implications. This work is planned for the

future.

4 Performance Evaluation

MoCCA is a GSM based cloud whose performance we evaluate here but it

can act as a reference when cloud architectures based on 3G and 4G networks

that support application bandwidths in excess of 20 Mbps are evaluated. With

higher bandwidths such systems should perform better than GSM for cloud

applications.

We have computed the performance of a mobile cellular cloud under

the following scenarios consisting of different workloads, configurations,

probability of blocking, probability of handoffs under different vehicular

speeds, and energy consumptions.

Workloads: We have mainly chosen compute bound applications, such as:

(1) Common matrix computations e.g. inversion, eigenvalues and eigen-

vectors, determinant, Fast Fourier transform, and Cholesky decomposition.
(2) Sorting of large arrays and linear regression. (3) Fibonacci number

116 A. Mishra and G. Masson

calculations, etc.

Configurations: Same computations are performed under three configur-

ations: (i) a single mobile station (no redundancy), (b) Double modular

redundancy, (c) Triple modular redundancy.

Probability of blocking: Computations have been repeated for different

probabilities.

Mobility: We have also computed resultswith different handoff rates, the

probability of handoffs, and probability of handoff droppings under different

mobility models.

Energy: For all these scenarios, we have computed the energy consumption

for transmission, reception and computations to find the total energy ex-

penditure related to cloud computation. However, due to space limitation,

we are not able to include all the results in this paper.

For the analysis purpose, we consider one GSM cell that has 53 chan-

nels for uplink and 53 channels for downlink transmissions. A GSM frame

consists of 8 time slots each of which has duration of 577 micro-seconds

in which 114 bits of data can be carried. We assume a MS to be equipped

with a 500 MHz processor with 256 Mbytes of memory that runs a MS

windows operating system. Our main reason for choosing these parameters

is that several compute bound applications running on similar hardware have

been bench-marked [22] and quite a few commercial mobile phones available

on the market have specifications within the range.
In the analysis that we present here, we have assumed that a base station

keeps a fraction of channels for incoming voice traffic and the remaining

for cloud applications. In order to compute the capacity of the cloud for the

compute bound applications, we make use of the trunking theory [17]. We

define λ to be the average number of session request rate and µ the service

rate for each MS which gives us a traffic intensity of Au = λµ Erlangs, with

the probability of blocking, pm:

pm =

1
m!

(

λ
µ

)m

1 +
∑m

n=1
1
n!

(

λ
µ

)n . (3)

Here m is the number of channels and n is the number of MSs in the cov-

erage area. In the mobile cloud architecture the originator of the call is the

MoCCA: A Mobile Cellular Cloud Architecture 117

Figure 4 Cholesky decomposition.

base station and the call is terminated on mobile phones serving the agreed

upon application. In the next sections we describe the cloud performance for

several applications computed assuming no redundancy in the hardware.

4.1 Application 1 – Cholesky Decomposition

We assume a 100 by 100 matrix to be factorized on the mobile devices. Fig-

ure 4 plots the total number of such requests completed by the MSs when they
utilize 53 channels (Blue Curve), 42 channels (Red Curve), or 27 channels

(Green Curve) with respect to the request rates assigned to each MS by the

base station. For example with 53 channels, with probability of blocking of

0.005, a maximum number of Cholesky decomposition that can be completed

in one hour are 343,583 on participating mobile devices. In Figure 3, the x-

axis depicts request rates assigned to mobile devices per hour by the base

station. For example, when the base station assigns 1 request/hr to mobile

devices using 27 channels, the maximum number of requests completed is

147000 per hour. But this number changes to 14700 per hour when each

participating device is completing 10 requests per hour giving us the total

request completions of (10 × 14700 = 147000) which is still the same.

So in this case the number of participating devices becomes 14700. The

number of participating devices reduces to 1470 when each device is able to

complete 100 requests per hour. So depending upon the number of particip-
ating devices and the number of channels, the base station can distribute the

workload according to application needs.

118 A. Mishra and G. Masson

Figure 5 FFT computation – one iteration on 900,000 samples.

4.2 Application 2 – Fast Fourier Transform using S

The second compute bound application is related to the one iteration of Fast

Fourier Transform (FFT) computation of 900, 000 data samples using the S

[23] program package. We assume that S is running on the mobile. We use

the same set of channels for this experiment. Figure 4 depicts the request

completion rate. With 42 channels, 2905 instances of the applications can be

run in an hour with pm = 0.005.

This application requires a channel holding time of 36.5 seconds.

4.3 Application I Capacity

Figure 6 shows the capacity of application 1 with the probability of blocking
for different number of channels which increases with the increase in the

probability of blocking (Pm).

4.4 Handoff Performance

For the computation of the handoff probability, we make an assumption that

the cloud session originated in the cell with 1/µ as the duration of the session

which is represented by a random variable Tn that has exponential distribution

given by fn(t) = Prob(Tn ≤ t) = 1−µeµt . We assume the mobile is moving

within the cell with a constant velocity of V Kilo-meter/hr in a cell that has a

radius r.

MoCCA: A Mobile Cellular Cloud Architecture 119

Figure 6 Probability of blocking.

Figure 7 Handoff probability.

Assuming a circular cell for simplicity, we can write the rate of cell

crossing η = 2V/πr which implies that mobile is dwelling in the cell for

1/η duration. Assuming cell dwell time to be exponentially distributed, it can

be represented by the probability density function fh = ηe−ηTh , where Th is

the random variable representing the dwell time. With these parameters, we

can write the expression for the probability of handoffs:

Ph = Prob(Th > Th) =

∫ ∞

0

ηe−ηTh

[∫ ∞

Th

µe−µtdt

]

dTh =
η

(η + µ)
. (4)

120 A. Mishra and G. Masson

Figure 7 depicts the variation of handoff probability with respect to the

velocity of the mobile for a cell radius of 10 Kilometers for application 2.

The probability of handoff varies from 1.5% at velocity of 20 Km/hr to 4.5%

with velocity of 60 Km/hr. The handoff probability results suggest that for a

typical cloud application the probability of handoffs is quite low at modest

vehicular speeds.

4.5 Energy

A mobile phone participating in a cloud computing application expends en-

ergy in data computation, reception and transmission. Even after emergence

of hardware and software features that help conserve the energy expenditure

such as (a) turning the clock rate down when display is off, (b) dynamic

voltage scaling, and (c) dynamic frequency scaling etc. saving power in mo-
bile phones is still remains a major challenge. Recent power measurements

that have been made on a mobile phone running numerical linear algebraic

algorithms which are part of LINPACK benchmark [25] lead to the following

observations and conclusions: (a) The energy expenditure per byte reduces

with increasing packet sizes. For example a 64 byte packet may consume

31.25 milli-watts (mW) per byte when compared with a 512 byte packet

consuming 3.906 mW per byte. (b) The energy expenditure per byte reduces

when multiple packets are transmitted at the same time for example trans-

missions of 2, 8, 16, or 128 packets per second. The corresponding power

consumption varies from 31.25 mW per byte to 0.49 mW per byte.

As stated earlier in the paper that the energy cost of computations is

several order of magnitude less than the cost of transmissions or receptions,

we only include energy results for the transmission and the reception for a

few applications considered in the paper. Figure 8 depicts the variation of
energy consumption with respect to packet size when only one packet per

second is transmitted. The energy expenditure in Joules (J) varies from 770 J

for a 64 byte long packet to 48.20 J for a 1024 byte packet when a Cholesky

decomposition is performed on a 1000 × 1000 symmetric positive definite

matrix Figure 6 shows the results for the energy consumption for application I

with respect to number of packet size when different number of packets per

second (pps) are transmitted. As one can notice that the energy consumption

for a 128 byte packet is 12 J when 64 pps are transmitted and it reduces to 6.9 J

when 128 pps are transmitted. The percent reduction in energy consumption

is more than 50% which is significant. Figure 9 shows the energy expenditure

in data reception with respect to packet size for Cholesky decomposition.

MoCCA: A Mobile Cellular Cloud Architecture 121

Figure 8 Energy consumption in transmission.

Figure 9 Energy consumption in transmission.

Using a 64 byte packet size the total energy expended in reception is 270 J

when 2 pps are received and it reduces to 5.18 J for a 512 byte packet with a

reception of 16 pps.

122 A. Mishra and G. Masson

Figure 10 Energy consumption in receptiopn.

5 Related Work

In this section, we review the current research in the mobile cloud computing

area. Ideas which appear similar to MoCCA have been proposed for sensor

networks [25] and mobile grids [14]. But MoCCA is very different from

sensor network based grids, mobile grids, or any other peer-to-peer network

based grids. The important differences are: (1) Each MS belongs to a different

owner, (2) Each MS is battery powered, (3) MSs are mobile, and therefore

the nodes forming a cloud keep changing with respect to time, and as a
consequence have (4) Dynamic cloud topology. Since the mobile devices

do not directly communicate with each other i.e. there is no peer-to-peer

communication, the impact of dynamic topology is not an issue in MoCCA,

but this can be a major issue in clouds that rely on peer-to-peer networking.

Mobile grid [1, 4, 11, 19] studies different aspects of mobile grid computing

such as problem of multiple connects and disconnects, collaboration among

mobile devices that are heterogeneous in terms of resources, interworking

among mobile and stationery computers, integration of mobile phones to

infrastructure based wireless grid. Both the wireless grid and mobile grid

advocate some form of peer-to-peer networking.

WIPDroid [3] is a platform created for Droid phones [9] by integrating

WIP (Web Service Initiation Protocol) for real-time service oriented commu-

nication over IP which has been mentioned as it could provide SaaS type of

service as a client but not as a server which is the focus of this paper. Wireless

MoCCA: A Mobile Cellular Cloud Architecture 123

sensor networks can constitute a valid approach to mobile cloud computing

and in some ways this approach may resemble MoCCA, if we assume the sink

of a sensor network to be acting like a base station of cellular networks, and

the sensor field resembles the coverage area of the base station. But sensor

networks and cellular networks have many profound differences e.g. the data

transmission among sensor nodes is multi-hop whereas in cellular networks

its only one hop. Finally, somewhat related to MoCCA are mobile data shar-

ing systems which use distributed file systems and peer-to-peer systems such

as [6, 10, 15] and mobile computing platforms such as Hyrax [11].

6 Conclusion

This paper presented MoCCA – an architecture for building mobile clouds

that leverages cellular infrastructure, thus making it inexpensive and easy to

deploy. The performance analysis of single GSM base station suggests that

several numerical and statistical algorithms can run on large data sets in the
cellular environment even with a small number of mobile phones participat-

ing only for several minutes. With the deployment of LTE that provides larger

bandwidths and uses resource rich smart phones running at 1 GHz speed, mo-

bile clouds have potential to become popular. As part of the future work, we

are working on characterizing the overhead of MapReduce, additional control

signaling, and energy consumption in transmission and computation. We are

planning on to extend the current GSM model to a 4G LTE system that has

much larger bandwidth and several attractive features for data applications.

References

[1] S. Ahuja and J. Myers. A survey on wireless grid computing. The Journal of Supercom-

puting, 37:1, 2006.

[2] Z. Chen, Energy-efficient Information Collection and Dissemination in Wireless Sensor

Networks. PhD thesis, University of Michigan, 2009.

[3] W. Chou and L. Li. WIPdroid – A two-way web services and real-time communica-

tion enabled mobile computing platform for distributed services computing. In IEEE

International Conference on Services Computing, Vol. 2, pp. 205–212. IEEE, 2008.

[4] D. Chu and M. Humphrey. Mobile OGSI. NET: Grid Computing on Mobile Devices.

In 5th IEEE/ACM International Workshop on Grid Computing, pp. 182–191. IEEE

Computer Society, 2004.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

124 A. Mishra and G. Masson

[6] G. Ding and B. Bhargava. Peer-to-peer file-sharing over mobile ad hoc networks. In

Proceedings Second IEEE Annual Conference on Pervasive Computing and Communic-

ations, pp. 104–108. IEEE, 2004.

[7] Gartner Inc. Competitive Landscape: Mobile Devices, Worldwide, 1Q10. Online at

http://www.gartner.com, May 2010.

[8] International Telecommunication Union, ITU Corporate Annual Report. Online at

http://bit.ly/aJSfQs, 2009.

[9] O. Kharif. A warm welcome for Android. BusinessWeek, January 2008.

[10] C. Lindemann and O. Waldhorst. A distributed search service for peer-to-peer file sharing

in mobile applications. In Proceedings 2nd IEEE International Conference on Peer-to-

Peer Computing, pp. 73–80, 2002.

[11] E. Marinelli. Hyrax: Cloud Computing in Mobile Devices using MapReduce. Master’s

thesis, Carnegie Mellon University, 2009.

[12] J. McKenderick. The $80 data center: Cheap computing or head in the cloud? Online at

http://zd.net.bBooxt, November 2007.

[13] L. McKnight, J. Howison, and S. Bradner. Wireless grids – Distributed resource sharing

by mobile, nomadic, and fixed devices. IEEE Internet Computing 8(4):24–31, 2004.

[14] P. Mell and T. Grance. The NIST Definition of Cloud Computing. Version 15, 10-7-09,

National Institute of Standards and Technology, 2009.

[15] N. Michalakis and D. Kalofonos. Designing an NFS-based mobile distributed file sys-

tem for ephemeral sharing in proximity networks. In Proceedings 4th Workshop on

Applications and Services in Wireless Networks (ASWN), pp. 225–231. IEEE, 2005.

[16] R. Miller. Microsoft’s Windows Azure Cloud Container. Online at http://bit.ly/cenSFw,

November 2009.

[17] M. Mouly and M. Pautet. The GSM system for mobile communications. Telecom

Publishing, 1992.

[18] J. Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable

components. Automata studies (1956), 43–98.

[19] N. Palmer, R. Kemp, T. Kielmann, and H. Bal. Ibis for mobility: Solving challenges

of mobile computing using grid techniques. In Proceedings 10th Workshop on Mobile

Computing Systems and Applications, p. 17. ACM, 2009.

[20] M. Patterson, D. Costello, P. Grimm, and M. Loeffler. Data center TCO. A comparison

of high-density and low-density spaces. Thermes, 2007.

[21] A. Mishra. Security and Quality of Service in Ad hoc Wireless Networks. Cambridge

University Press, 2008.

[22] Stephen Stenhouse’s benchmark, version 2, www.sciviews.org/benchmark/benchmark1.html

[23] Richard Becker et al. The New S Language. Wadsworth & Brooks/Cole, 1988.

[24] Erik Dahlman et al. 4GLTE/LTE Advanced for Mobile Broadband. Academic Press,

2011.

Biographies

Amitabh Mishra is a faculty in the Information Security Institute of Johns

Hopkins University in Baltimore, Maryland. His current research is in the

MoCCA: A Mobile Cellular Cloud Architecture 125

area of cloud computing, data analytics, dynamic spectrum management,

and data network security and forensics. In the past he has worked on

the cross-layer design optimization of sensor networking protocols, media

access control algorithms for cellular-ad hoc inter-working, systems for

critical infrastructure protection, and intrusion detection in mobile ad hoc

networks. His research has been sponsored by NSA, DARPA, NSF, NASA,

Raytheon, BAE, APL, and US Army. In the past, he was associate professor

of computer engineering at Virginia Tech and a member of technical staff

with Lucent Technologies – Bell Laboratories in Naperville, Illinois. His

has worked on architecture and performance of communication applications

running on 5ESS switch. GPRS, CDMA2000 and UMTS were a few of the

areas he worked on while with Bell Laboratories. He received his B. Eng. and
M. Tech. degrees in Electrical Engineering from Government Engineering

College, Jabalpur and Indian Institute of Technology, Kharagpur in 1973,

and 1975 respectively. He obtained his M. Eng. and Ph. D. in 1982, and

1985 respectively also in Electrical Engineering from McGill University,

and a MS in Computer Science in 1996 from the University of Illinois at

Urbana-Champaign. Dr. Mishra is a senior member of IEEE, a member of

ACM, and SIAM. He is author of the book Security and Quality of Service in

Wireless Ad hoc Networks, published by Cambridge University Press (2007).

He is a technical editor of IEEE Communications Magazine.

Gerald Masson is a Professor (Emeritus) of Computer Science at Johns

Hopkins University, Baltimore, Maryland. He was the founding director of

Johns Hopkins University Information Security Institute and chair of the

computer science department. His research interests are in fault tolerant com-
puting, real-time error monitoring of hardware and software, inter-connection

networks, and computer-communications. He is a Fellow of IEEE.

