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Abstract

Many optimization problems arising in high-dimensional statistics decompose naturally into
a sum of several terms, where the individual terms are relatively simple but the composite
objective function can only be optimized with iterative algorithms. In this paper, we are
interested in optimization problems of the form F(Kx) + G(x), where K is a fixed linear
transformation, while F and G are functions that may be nonconvex and/or nondifferen-
tiable. In particular, if either of the terms are nonconvex, existing alternating minimization
techniques may fail to converge; other types of existing approaches may instead be unable to
handle nondifferentiability. We propose the mocca (mirrored convex/concave) algorithm,
a primal/dual optimization approach that takes a local convex approximation to each term
at every iteration. Inspired by optimization problems arising in computed tomography
(CT) imaging, this algorithm can handle a range of nonconvex composite optimization
problems, and offers theoretical guarantees for convergence when the overall problem is
approximately convex (that is, any concavity in one term is balanced out by convexity
in the other term). Empirical results show fast convergence for several structured signal
recovery problems.

Keywords: MOCCA, ADMM, nonconvex, penalized likelihood, total variation, com-
puted tomography

1. Introduction

We consider the problem of minimizing a composite objective function of the form

F(Kx) + G(x) (1)

over x ∈ R
d, where K ∈ R

m×d is a fixed linear operator, and F and G are functions which are
potentially nonconvex and/or nondifferentiable. Optimization problems of this form arise
in many applications, and in particular, the algorithm developed here was motivated by an
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image reconstruction problem for computed tomography (CT), an imaging technology used
often in medicine and in other domains.

When F and G are both convex, many existing methods are well-equipped to handle
this optimization problem, even in high dimensions. For example, the Alternating Direction
Method of Multipliers (ADMM) (Boyd et al., 2011) and related primal/dual methods yield
effective algorithms when the functions F and G both have inexpensive proximal maps,
defined as

ProxF(u) = argmin
w

{
1

2
‖w − u‖2 + F(w)

}

for any u ∈ R
m, and same for ProxG defined on R

d. Methods such as ADMM are especially
effective if F has an inexpensive proximal map but the linear transformation of the same
function, i.e. the function x 7→ F(Kx), does not. If F does not offer an inexpensive proximal
map but is instead smoothly differentiable (even if nonconvex), while G does have a fast
proximal map, then methods such as proximal gradient descent (see e.g. Nesterov, 2013;
Beck and Teboulle, 2009) can be applied instead of a primal/dual method.

In this paper, we consider a more challenging setting where F and G may both be
nonconvex and nondifferentiable. For instance, we can consider working with functions that
can be decomposed as F = Fcvx + Fdiff and G = Gcvx +Gdiff , where we assume that Fcvx,Gcvx

are convex but do not need to be differentiable, while Fdiff ,Gdiff are potentially nonconvex
but are differentiable. (If Fdiff and Gdiff are concave, then this type of optimization problem
is often referred to as “convex/concave”.) As we will see, this formulation arises naturally
in a range of applications, but in general, cannot be handled by existing methods that are
designed with convexity in mind. In this work, we generalize to a more flexible framework
where F and G can each be locally approximated at any point with a convex function.

A special case is the setting where G is convex while F is nonconvex, but x 7→ F(Kx) is
convex (i.e. if F is twice differentiable, then this is equivalent to assuming thatK⊤(∇2F)K �
0 but∇2F 6� 0). In this case, the overall optimization problem, i.e. minimizing F(Kx)+G(x),
is a convex problem, that is, any local minimum is guaranteed to be a global minimum, and
thus we might expect that this problem would be simple to optimize. Surprisingly, this may
not be the case—if F is nondifferentiable, then we cannot use gradient descent on F, while
the nonconvexity of F means that existing primal/dual optimization techniques might not
be applicable.

In the nonconvex, or more specifically, convex/concave setting, one of the most common
techniques used in place of convex methods is the majorization/minimization approach
(Ortega and Rheinboldt, 1970; Hunter and Lange, 2000), where at each iteration, we work
with a convex upper bound on the nonconvex objective function. Specifically, for the setting
considered here, at iteration t we would choose some convex functions F(t),G(t) satisfying
F(t) ≥ F and G(t) ≥ G, then solve the modified optimization problem minx{F(t)(Kx) +
G(t)(x)}. However, the modified optimization problem may itself be very challenging to
solve in this setting, so we often cannot apply the majorization/minimization technique in
a straightforward way. Our work combines the ideas of majorization/minimization with
primal/dual techniques to handle this composite optimization problem.

2



MOCCA: Mirrored Convex/Concave Optimization for Nonconvex Composite Functions

1.1 The MOCCA Algorithm

In this work, we propose the mirrored convex/concave (mocca) algorithm, which offers
an approach that combines some of the techniques described above. We work with a pri-
mal/dual formulation of the problem, and incorporate a majorization/minimization type
step at each iteration. To motivate our method, we first present an existing method for the
case where F and G are both convex, the Chambolle-Pock (CP) algorithm (Chambolle and
Pock, 2011) (this method is closely related to other existing algorithms, which we discuss
later on).

The CP algorithm is derived by considering the problem in a different form. From this
point on, for clarity, we will use variables x, y, z to denote points in R

d and u, v, w to denote
points in R

m. Since we are considering the setting where F is convex, by duality we can
write

min
x

{F(Kx) + G(x)} = min
x

max
w

{〈Kx,w〉 − F∗(w) + G(x)} .

where F∗ is the conjugate to F (Rockafellar, 1997), also known as the Legendre-Fenchel
transform of F, and is defined as

F∗(w) = max
v

{〈w, v〉 − F(v)}. (2)

The primal variable x and dual variable w define a saddle-point problem. Given step sizes
Σ,T which are positive diagonal matrices, the (preconditioned) CP algorithm (Chambolle
and Pock, 2011; Pock and Chambolle, 2011) iterates the following steps:




xt+1 = argminx

{
〈Kx,wt〉+ G(x) + 1

2 ‖x− xt‖2T−1

}
,

wt+1 = argminw

{
−〈Kx̄t+1, w〉+ F∗(w) + 1

2 ‖w − wt‖2Σ−1

}
,

(3)

where x̄t+1 = xt+1 + θ(xt+1 − xt) is an extrapolation term for some parameter θ ∈ [0, 1]
(generally θ = 1). Here the two norms are calculated via the definition ‖x‖A :=

√
x⊤Ax (for

any positive semidefinite matrix A � 0). When
∥∥Σ1/2KT1/2

∥∥ < 1, convergence properties
for this algorithm have been proved, e.g. Chambolle and Pock (2011); Pock and Chambolle
(2011); He and Yuan (2012).1 Setting θ = 0 reduces to an earlier approach, the Primal-Dual
Hybrid Gradient algorithm (Esser et al., 2009); with θ = 1, the CP algorithm is equivalent
to a modification of ADMM (discussed later in Section 3.1).

We now ask how we could modify the discussed methods to handle nonconvexity of F
and/or G. One approach would be to approximate the problem with a convex optimization
problem, that is, to take some approximation to F and G that are chosen to be a convex
function. Of course, in general, there may not be a convex function that will provide a
globally accurate approximation to a nonconvex function, but local convex approximations
may be possible.

Consider a family of approximations to the functions F and G, indexed by (z, v) ∈
R
d × R

m, the (primal) points at which the local approximations are taken. We write

1. The original form of the Chambolle-Pock algorithm (Chambolle and Pock, 2011), without precondition-
ing, can be obtained from (3) by replacing Σ,T with σI, τI for scalar step size parameters σ, τ > 0, with
convergence results proved if στ ‖K‖2 < 1; however, in general the preconditioned form gives better
performance and we only consider the preconditioned version here.
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Fv : R
m → R and Gz : R

d → R for these approximations, and from this point on, we
implicitly assume that the approximations satisfy, for any points (z, v) ∈ dom(G)× dom(F),





dom(Fv) = dom(F) and dom(Gz) = dom(G);

Fv and Gz are convex and continuous functions;

Fv and Gz are accurate up to first order: F− Fv and G− Gz are differentiable,

with (F− Fv)(v) = 0, ∇(F− Fv)(v) = 0, (G− Gz)(z) = 0, ∇(G− Gz)(z) = 0.

(4)

(Here dom(·) denotes the domain of a function, i.e. all points at which the function takes
a finite value.) In particular this assumption implicitly requires that F and G both have
convex domains.

As a special case, in some settings we can consider decomposing each function into the
sum of a convex and a differentiable term, F = Fcvx+Fdiff and G = Gcvx+Gdiff , as mentioned
before; we can then take linear approximations to Fdiff and to Gdiff at the points v and z,
respectively, to obtain

{
Fv(w) := Fcvx(w) + [Fdiff(v) + 〈w − v,∇Fdiff(v)〉] ,
Gz(x) := Gcvx(x) + [Gdiff(z) + 〈x− z,∇Gdiff(z)〉] .

(5)

In particular, if Fdiff and Gdiff are both concave (and thus F and G are each convex/concave),
these two approximations are standard convex majorizations to F and G taken at points v
and z (as might be used in a majorization/minimization algorithm in some settings).

Since Fv,Gz are convex, we can substitute them in place of F,G in the iterations of the
CP algorithm (3):




xt+1 = argminx

{
〈Kx,wt〉+ Gz(x) +

1
2 ‖x− xt‖2T−1

}
,

wt+1 = argminw

{
−〈Kx̄t+1, w〉+ F∗v(w) +

1
2 ‖w − wt‖2Σ−1

}
.

(6)

We will see later on (in Section 3.3) that this formulation is closely related to the ADMM
algorithm, and in fact in the special case given in (5), if Fdiff and Gdiff are concave, then
mocca can be viewed as a special case of Bregman ADMM (Wang and Banerjee, 2014;
Wang et al., 2014a).

Of course, a key question remains: which primal points (z, v) should we use for con-
structing the convex approximations to F and to G, at iteration t of the algorithm? We find
that, before solving for (xt+1, wt+1), we should use expansion points

(z, v) =
(
xt,Σ

−1(wt−1 − wt) +Kx̄t
)
.

We will return shortly to the question of how these values were chosen; with this choice in
place, the mocca algorithm is defined in Algorithm 1.

For reasons of stability, it may sometimes be desirable to update the expansion points
(z, v) only periodically, and we will incorporate this option into a more general version of
mocca, given in Algorithm 2. Specifically, at the tth stage, we repeat the (x,w) updates Lt

many times; we refer to these repeated updates as the “inner loop”. In fact, the tth “inner
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Algorithm 1 mocca algorithm

Input: Functions F,G with local convex approximations Fv,Gz, linear operator K, posi-
tive diagonal step size matrices Σ,T, extrapolation parameter θ ∈ [0, 1].
Initialize: Primal point x0 ∈ R

d, dual point w0 ∈ R
m, expansion points (z0, v0) ∈

R
d × R

m.
for t = 0, 1, 2, . . . do

Update x and w variables: writing x̄t+1 = xt+1 + θ(xt+1 − xt), define




xt+1 = argminx

{
〈Kx,wt〉+ Gzt(x) +

1
2 ‖x− xt‖2T−1

}
,

wt+1 = argminw

{
−〈Kx̄t+1, w〉+ F∗vt(w) +

1
2 ‖w − wt‖2Σ−1

}
.

Update expansion points: define

{
zt+1 = xt+1,

vt+1 = Σ−1(wt − wt+1) +Kx̄t+1 ∈ ∂F∗vt(wt+1).

until some convergence criterion is reached.

Algorithm 2 mocca algorithm (stable version with “inner loop”)

Input / Initialize: Same as for Algorithm 1, along with inner loop lengths L1, L2, . . .
for t = 0, 1, 2, . . . do

Define (xt+1;0, wt+1;0) = (xt, wt).
for ℓ = 1, 2, . . . , Lt+1 do

Update x and w variables: writing x̄t+1;ℓ = xt+1;ℓ + θ(xt+1;ℓ − xt+1;ℓ−1), define




xt+1;ℓ = argminx

{
〈Kx,wt+1;ℓ−1〉+ Gzt(x) +

1
2 ‖x− xt+1;ℓ−1‖2T−1

}
,

wt+1;ℓ = argminw

{
−〈Kx̄t+1;ℓ, w〉+ F∗vt(w) +

1
2 ‖w − wt+1;ℓ−1‖2Σ−1

}
.

end for
Define (xt+1, wt+1) =

1
Lt+1

∑Lt+1

ℓ=1 (xt+1;ℓ, wt+1;ℓ).
Update expansion points: define

{
zt+1 =

1
Lt+1

∑Lt+1

ℓ=1 xt+1;ℓ,

vt+1 =
1

Lt+1

∑Lt+1

ℓ=1

(
Σ−1(wt+1;ℓ−1 − wt+1;ℓ) +Kx̄t+1;ℓ

)
.

until some convergence criterion is reached.

loop” is simply running the CP algorithm for the convex problem minx{Fvt(Kx)+Gzt(x)}.
Then, we average over the inner loop and calculate a single update of the expansion points
(z, v). Observe that, if we set Lt = 1 for all t, we do only a single (x,w) update in each
“inner loop” and thus have reduced to the basic form of mocca. In practice, the basic
form (Algorithm 1) performs well, and the more stable version (Algorithm 2) is primarily
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proposed here for theoretical purposes, as some of our convergence guarantees do not hold
for the basic version. However, in some settings the added stability does help empirically.

We remark that F,G (and their approximations Fv,Gz) are allowed to take the value
+∞, for instance, to reflect a constraint. For example we might have G(x) = δ{‖x‖2 ≤ 1},
the convex indicator function taking the value +∞ if the constraint ‖x‖2 ≤ 1 is violated
and zero otherwise; this has the effect of imposing a constraint on the x update step of our
algorithm. Furthermore, in settings where Fv may not be strongly convex, its conjugate
F∗v may not be finitely valued; we would have F∗v(w) = +∞ (for some, but not all, w).
For instance if Fv(w) = ‖w‖1 then F∗v = δ{‖w‖∞ ≤ 1}, which has the effect of imposing a
constraint on w in the w update step of our algorithm. Our theoretical results in this paper
hold across all these settings, i.e. we do not assume that any of the functions F,G,Fv,Gz,F

∗
v

are everywhere finite, but instead work in the domains of these functions.

1.1.1 Simple Special Cases

Before discussing the implementation and behavior of mocca for general nonconvex and/or
nonsmooth problems, we pause to illustrate that mocca can be viewed as a generalization
of many existing techniques.

• If F,G are both convex with easy proximal maps, then we can of course choose the
trivial convex families Fv = F and Gz = G; the mocca algorithm then reduces to the
Chambolle-Pock (Chambolle and Pock, 2011) or Primal-Dual Hybrid Gradient (Esser
et al., 2009) algorithm (depending on our choice of the extrapolation parameter θ).
These methods can handle composite objective functions with convex terms; mocca
extends these methods to a setting with nonconvex terms.

• In the setting where we want to minimize a function G(x) which is a sum of a convex
term and a differentiable term, G(x) = g(x)+h(x), we can show that mocca reduces
to proximal gradient descent (Nesterov, 2013; Beck and Teboulle, 2009) as a special
case. Specifically, we define the approximations Gz(x) = g(x)+h(z)+ 〈∇h(z), x− z〉.
In this setting there is no F function, and hence no w variable; taking T = τ · Id, the
steps of Algorithm 1 become





xt+1 = argminx

{
Gzt(x) +

1
2τ ‖x− xt‖22

}

= argminx

{
g(x) + 〈∇h(zt), x〉+ 1

2τ ‖x− xt‖22
}
,

zt+1 = xt+1,

which simplifies to the update scheme

xt+1 = Proxτ ·g (xt − τ · ∇h(xt)) . (7)

This is exactly the proximal gradient descent algorithm with step size τ .

Proximal gradient descent can handle a function which combines a differentiable term
with a convex term as long as the convex term has an easy proximal map; mocca
extends this method to a setting where the convex terms lack an easy proximal map
due to linear transformations, leading to composite optimization problems.

We will discuss other existing methods in more detail later on in Section 3.
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1.1.2 Step Size Parameters Σ and T

We now turn to the question of choosing the diagonal step size matrices Σ and T. As we
will see later on, good convergence properties are attained when Σ,T are chosen sufficiently
small, to satisfy

∥∥Σ1/2KT1/2
∥∥ < 1—this condition on Σ and T is derived by Pock and

Chambolle (2011) for the preconditioned CP algorithm, and appears in our theory as well.
Here ‖·‖ is the matrix operator norm (i.e. the largest singular value). To choose matrices
that satisfy this requirement, Pock and Chambolle (2011) propose a parametrized family of
choices: after fixing some parameter λ > 0, define2

Σii =
λ∑

j |Kij |
and Tjj =

λ−1

∑
i |Kij |

. (8)

Empirically, we find that higher values of λ are more stable but lead to slower convergence;
it seems that the best choice is the smallest possible λ such that the algorithm does not
diverge. It may also be interesting to consider varying λ adaptively over the iterations of
the algorithm, but we do not study this extension here.

1.1.3 Understanding the Choice of Expansion Points

We now return to our choice of the expansion points (z, v) ∈ R
d × R

m. We will give an
intuition for the choices of these points in the mocca algorithm. To examine this question,
first consider the goal for optimization: we would like to find

x⋆ ∈ argmin
x

{F(Kx) + G(x)} ,

or if this problem is nonconvex then we may be satisfied to let x⋆ be a local minimizer or
critical point of this objective function. We then need to find primal points z ∈ R

d and
v ∈ R

m, such that replacing F with Fv and G with Gz still yields the same solution, i.e. so
that

x⋆ ∈ argmin
x

{Fv(Kx) + Gz(x)} . (9)

Examining the first-order optimality conditions for each of these problems, it follows that
we should set (z, v) = (x⋆,Kx⋆) to ensure that (9) holds.

Of course, x⋆ is unknown and so we cannot set (z, v) = (x⋆,Kx⋆). Instead, a logical
approach would be to set (zt, vt) = (xt,Kxt), before solving for (xt+1, wt+1). Then, hope-
fully, as xt converges to x⋆ we will also have (zt, vt) converging to (x⋆,Kx⋆). However, in
practice, we find that this approach does not always perform as well as expected. Specif-
ically, the problem lies with the choice vt = Kxt, relative to the primal/dual structure of
the algorithm.

To understand why, imagine that F and G are actually convex, but we nonetheless are
taking local approximations Fv and Gz (which are also convex), perhaps for computational
reasons. Then we would like our x and w update steps (6) to coincide with the updates (3)
of the original CP algorithm. Examining the optimality conditions, this will occur when

∂G(xt+1) = ∂Gzt(xt+1) and ∂F∗(wt+1) = ∂F∗vt(wt+1) . (10)

2. In fact these choices for Σ,T satisfy the matrix norm constraint more weakly, with
∥

∥

∥
Σ

1/2KT
1/2

∥

∥

∥
≤ 1

rather than a strict inequality, but this is sufficient in practice.
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(Here we are ignoring issues of multivalued subdifferentials since our aim is only to give
intuition.) Using the definitions of G and Gzt , for the x step our requirement in (10) is
equivalent to

∇(G− Gzt)(xt+1) = 0,

which will certainly hold if zt = xt+1 by our assumption (4) on the function Gzt . Since we
have not yet solved for xt+1, we instead choose the expansion point zt = xt for the function
G, as previously proposed.

For the w step, our outcome will be different. Subgradients satisfy a duality property,
namely, w ∈ ∂F(u) if and only if u ∈ ∂F∗(w) for any convex function F and its conjugate F∗.
The requirement ∂F∗(wt+1) = ∂F∗vt(wt+1) in (10) therefore yields wt+1 ∈ ∂F(∂F∗vt(wt+1)) by
this duality property, and so we have

wt+1 ∈ ∂F(∂F∗vt(wt+1))

= ∂Fvt(∂F
∗
vt(wt+1)) +∇(F− Fvt)(∂F

∗
vt(wt+1))

= wt+1 +∇(F− Fvt)(∂F
∗
vt(wt+1))

where the last step again holds from the duality property of subgradients. So, we see that
we would like

∇(F− Fvt)(∂F
∗
vt(wt+1)) = 0

which, according to our assumption (4) on the expansions Fvt , will hold if

vt ∈ ∂F∗vt(wt+1) .

In other words, we would like vt to be the primal point that corresponds to the dual point
wt+1—that is, the primal point that mirrors the dual point wt+1. Of course, this is not
possible since we have not yet computed wt+1, and furthermore vt appears on both sides
of this equation. Instead, we take vt ∈ ∂F∗vt−1

(wt). Looking at the first-order optimality
conditions for the update step for wt, we see that we can satisfy this expression by choosing

vt = Σ−1(wt−1 − wt) +Kx̄t ∈ ∂F∗vt−1
(wt) .

In fact, we will see in Section 3.3 that this choice for vt is very logical in light of the
connection between the CP algorithm and the Alternating Direction Method of Multipliers
(ADMM) (Boyd et al., 2011).

For the stable form of mocca, Algorithm 2, our choice for expansion points (z, v)
takes an average over each inner loop, which we will see gives sufficient stability for our
convergence results to hold.

1.1.4 Checking Convergence

Here we give a simple way to check whether the basic mocca algorithm, Algorithm 1, is
near a critical point (e.g. a local minimum). (We treat this question more formally, for
the more general Algorithm 2, in our theoretical results later on.) Due to the first-order
accuracy of the convex approximations to F and G as specified in (4), a critical point x ∈ R

d

for the objective function F(Kx) + G(x) is characterized by the first-order condition

0 ∈ K⊤∂FKx(Kx) + ∂Gx(x) . (11)

8
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Equivalently, we can search for a dual variable w ∈ R
m such that

−K⊤w ∈ ∂Gx(x) and w ∈ ∂FKx(Kx).

We can expand this condition to include additional variables (z, v) ∈ R
d × R

m:





−K⊤w ∈ ∂Gz(x),

w ∈ ∂Fv(Kx) ⇔ Kx ∈ ∂F∗v(w),

z = x,

v = Kx.

To check whether these conditions hold approximately, we can take the following “optimality
gap”:

OptimalityGap(x,w, z, v) =
∥∥∥−K⊤w − ∂Gz(x)

∥∥∥
2

2
+‖Kx− ∂F∗v(w)‖22+‖z − x‖22+‖v −Kx‖22 .

Here, if any of the subdifferentials are multivalued, we can interpret these norms as choosing
some element of the corresponding subdifferentials. Now we consider the value of this gap at
an iteration of the mocca algorithm (in its original form, Algorithm 1). By the definitions
of xt+1, wt+1, zt, vt, we can show that





0 ∈ K⊤wt + ∂Gzt(xt+1) + T−1(xt+1 − xt),

0 ∈ −Kx̄t+1 + ∂F∗vt(wt+1) + Σ−1(wt+1 − wt),

zt = xt,

vt = Σ−1(wt − wt−1) +Kx̄t.

Therefore, plugging these calculations in to the definition of the optimality gap, we see that

OptimalityGap(xt+1, wt+1, zt, vt)

=
∥∥−K(wt − wt+1) + T−1(xt − xt+1)

∥∥2
2
+
∥∥K(xt − xt+1) + Σ−1(wt − wt+1)

∥∥2
2

+ ‖xt − xt+1‖22 +
∥∥K(xt−1 − 2xt + xt+1) + Σ−1(wt−1 − wt)

∥∥2
2

= O
(∥∥∥∥
(

xt−1 − xt
wt−1 − wt

)∥∥∥∥
2

2

+

∥∥∥∥
(

xt − xt+1

wt − wt+1

)∥∥∥∥
2

2

)
.

In other words, if the change in the variables (xt, wt) converges to zero as t → ∞, then the
optimality gap is also converging to zero.

1.1.5 Preview of Theoretical Results

We present two theoretical results in this work. The first is fairly standard in the related
literature: in Theorem 1 we show that if the algorithm does converge to a point, then we
have reached a critical point of the original optimization problem. (Since the simple form,
Algorithm 1, is a special case of the stable form, Algorithm 2, we prove this result for the
stable algorithm only.)
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The novelty of our theory lies in our convergence guarantee, given in Theorem 2, where
we prove that the stable form of mocca, given in Algorithm 2, is guaranteed to converge
to a nearly-globally-optimal solution, under some assumptions on convexity and curvature.
Specifically, we consider a scenario where convexity and nonconvexity in F and G counter-
balance each other, so that the overall function

x 7→ F(Kx) + G(x) (12)

is itself either strongly convex or satisfies restricted strong convexity assumptions (which we
will discuss in detail in Section 4.2.1). It is important to note that even the globally convex
setting is by no means trivial—even if (12) is strongly convex, if F itself is nonconvex it
may be the case that ADMM and other primal/dual or alternating minimization algorithms
diverge or converge to the wrong solution, as we discuss later in Section 3.2. Crucially, our
results allow F and G to be nondifferentiable as well as nonconvex, a setting that is necessary
in practice but is not covered by existing theory.

1.1.6 Outline of Paper

The remainder of the paper is organized as follows. In Section 2, we present several im-
portant applications where the minimization problem considered here, with a nonconvex
composite objective function as in (1), arises naturally: regression problems with errors in
covariates, isotropic total variation penalties, nonconvex total variation penalties, and im-
age reconstruction problems in computed tomography (CT) imaging. In Section 3 we give
background on several types of existing algorithms for convex and nonconvex composite
objective functions, and compare a range of existing results to the work presented here.
Theoretical results on the convergence properties of our algorithm are given in Section 4.
We study the empirical performance of mocca in Section 5. Proofs are given in Section 6,
with technical details deferred to the Appendix. In Section 7 we discuss our findings and
outline directions for future research.

2. Applications

We now highlight several applications of the mocca algorithm, in high-dimensional statis-
tics and in imaging.

2.1 Regression with Errors in Variables

Recent work by Loh and Wainwright (2013) considers optimization for nonconvex statistical
problems, proving that under some special conditions, nonconvexity may not pose a chal-
lenge to recovering optimal parameters. In particular, they consider the following example
(Loh and Wainwright, 2011, 2013): suppose that we observe a response y ∈ R

n which is
generated with a Gaussian linear model,

b = Axtrue + ǫ with ǫ ∼ N(0, σ2In) ,

where A ∈ R
n×d is a design matrix and xtrue ∈ R

d is the unknown vector of coefficients.
In this case, we might seek to recover xtrue with the least squares estimator, perhaps with
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some penalty added to promote some desired structure in x,

x̂ = argmin
x

{
1

2n
‖b−Ax‖22 + Penalty(x)

}

= argmin
x

{
1

2
x⊤
(
A⊤A
n

)
x− x⊤

(
A⊤b
n

)
+ Penalty(x)

}
. (13)

In some settings, however, the design matrix A itself may not be known with perfect accu-
racy. Instead, suppose we observe

Z = A+W

where W ⊥⊥ A has independent mean-zero entries, with E

[
W 2

ij

]
= σ2

A for all i, j. In this

case, a naive approach might be to substitute Z for A in (13), before finding the minimizer.
However, unless σ2

A is negligible, this may not produce a good approximation to x̂ since,
when substituting Z⊤Z for A⊤A in the quadratic term in (13), we have

E

[
Z⊤Z

∣∣∣ A
]
= E

[
(A+W )⊤(A+W )

∣∣∣ A
]
= A⊤A+ E

[
W⊤W

]
= A⊤A+ nσ2

AId 6= A⊤A .

In contrast, for the linear term in (13), we have E
[
Z⊤b

∣∣ A
]
= A⊤b, as desired. To correct

for the bias in Z⊤Z, we should take

x̂noisy = argmin
x

{L(x) + Penalty(x)} ,

where

L(x) := 1

2
x⊤
(
Z⊤Z
n

− σ2
AId

)
x− x⊤

(
Z⊤b
n

)
.

Of course, this optimization problem is no longer convex due to the negative quadratic term,
and in particular, for a Lipschitz penalty and a high-dimensional setting (n < d), the value
tends to −∞ as x grows large in any direction in the null space of Z. Remarkably, Loh
and Wainwright (2013) show that, if xtrue is sparse and Penalty(x) is similar to the ℓ1 norm,
then as long as (Z⊤Z) satisfies a restricted strong convexity assumption (as is standard
in the sparse regression literature), then xtrue can be accurately recovered from any local
minimum or critical point of the constrainted optimization problem

x̂noisy = argmin
‖x‖

1
≤R

{L(x) + Penalty(x)} . (14)

The approach taken by Loh and Wainwright (2013) is to perform proximal gradient descent,
with steps taking the form

xt+1 = argmin
‖x‖

1
≤R

{
1

2

∥∥∥∥x−
(
xt −

1

η
∇L(xt)

)∥∥∥∥
2

2

+
1

η
Penalty(x)

}

where 1
η is a step size parameter. When Penalty(x) is (some multiple of) the ℓ1 norm,

or some other function with a simple proximal operator (that is, it is simple to compute
argminx{1

2 ‖x− z‖22 + Penalty(x)} for any z), this algorithm is very efficient.
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2.1.1 Total Variation and Generalized Convex ℓ1 Penalties

Consider a setting where the penalty term in (14) is given by a generalized ℓ1 norm,

Penalty(x) = ν · ‖Kx‖1
for some matrix K ∈ R

m×d. In particular, if K is the one-dimensional differences matrix
∇1d ∈ R

(d−1)×d, which has entries (∇1d)ii = 1 and (∇1d)i,i+1 = −1 for each i, then this
defines the (one-dimensional) total variation norm on x, ‖x‖TV = ‖∇1dx‖1; this method is
also known as the fused Lasso (Tibshirani et al., 2005). We can also consider a two- or
three-dimensional total variation norm, K = ∇2d or K = ∇3d, defined analogously as the
differences matrix for a two- or three-dimensional grid. Total variation type penalties are
commonly used in imaging applications and many other fields to obtain solutions that are
locally constant or locally smooth.

In this setting, proximal gradient descent is not practical except in some special cases,
such as when K is diagonal, because the proximal operator argminx{1

2 ‖z − x‖22+ν ·‖Kx‖1}
does not have a closed form solution for general K and would itself require an iterative
algorithm to be run to convergence. For a total variation penalty on a one-dimensional grid
of points, e.g. K = ∇1d, some fast algorithms do exist for the proximal map (Johnson, 2013).
Additional methods for convex problems with two-dimensional total variation and related
penalties such as total variation over a graph can be found in Chambolle and Darbon (2009);
Wang et al. (2014b, 2015b). We are not aware of a non-iterative algorithm for general K.
Here we apply mocca to allow for arbitrary K and for a nonconvex loss term L(x).

2.1.2 Applying the MOCCA Algorithm

We consider applying the mocca algorithm to this nonconvex optimization problem with
Penalty(x) = ν ‖Kx‖1. We define the convex function

F(w) = ν ‖w‖1
with the trivial convex approximations Fv(w) = F(w) at any expansion point v ∈ R

m. We
also let

G(x) =

{
L(x), if ‖x‖1 ≤ R,

+∞, if ‖x‖1 > R,

with convex approximations given by taking the linear approximation to the loss,

Gz(x) =

{
L(z) + 〈x− z,∇L(z)〉, if ‖x‖1 ≤ R,

+∞, if ‖x‖1 > R,

for any expansion point z ∈ R
d. Then the optimization problem (14) can be expressed as

x̂noisy = argmin
x

{F(Kx) + G(x)} .

Applying Algorithm 1, the update steps take the form




xt+1 = argmin‖x‖
1
≤R

{∥∥x−
[
xt − T

(
∇L(xt) +K⊤wt

)]∥∥2
T−1

}
,

wt+1 = Truncateν (wt +ΣKx̄t+1) ,

zt+1 = xt+1,

(15)
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where Truncateν(w) truncates the entries of the vector w to the range [−ν, ν]. Note that the
x update step is a simple shrinkage step and therefore easy to solve (and ∇L(xt) is simple
to compute), while the w and z updates are computationally trivial.

As a second option, we can incorporate more convexity into our approximations Gz by
taking

Gz(x) =

{
L(x) + σ2

A
2 ‖x− z‖22 , if ‖x‖1 ≤ R,

+∞, if ‖x‖1 > R,

which is convex since L(x) has negative curvature bounded by
σ2
A
2 . In this case, after

simplifying, our update steps become





xt+1 = argmin‖x‖
1
≤R





∥∥∥∥x−
[
xt −

(
T−1 + Z⊤Z

n

)−1 (
∇L(xt) +K⊤wt

)]∥∥∥∥
2

(
T−1+Z⊤Z

n

)



 ,

wt+1 = Truncateν (wt +ΣKx̄t+1) ,

zt+1 = xt+1.

(16)
While the x update step may appear difficult due to the combination of the non-diagonal

matrix
(
T−1 + Z⊤Z

n

)
which scales the norm, combined with the ℓ1 constraint, in practice

the constraint R is chosen to be large so that it is inactive in all or most steps; the x update

step is then solved by xt+1 = xt −
(
T−1 + Z⊤Z

n

)−1 (
∇L(xt) +K⊤wt

)
.

An important point is that mocca can be applied to this problem for arbitrary K,
including a difference operator such as ∇2d or ∇3d; in contrast, proximal gradient descent
can only be performed approximately except for certain special cases, as mentioned above.
We explore this setting’s theoretical properties in Section 4.2.3, and give empirical results
for this problem in Section 5.

2.2 Isotropic Total Variation and Generalized ℓ1/ℓ2 Penalties

For locally constant images or signals in two dimensions, the form of the total variation
penalty given above is known as “anisotropic”, meaning that it imposes a sparsity pattern
which is specific to the alignment of the image onto a horizontal and vertical axis. In con-
trast, the isotropic total variation penalty (Rudin et al., 1992), on an image x parametrized
with values xi,j at grid location (i, j), is given by

‖x‖isoTV =
∑

(i,j)

√
(xi,j − xi,j+1)2 + (xi,j − xi+1,j)2.

Optimization methods for the denoising problem with an isotropic total variation penalty,

i.e. problems of the form minx

{
1
2 ‖b− x‖22 + ν · ‖x‖isoTV

}
, were studied in Chambolle and

Pock (2015). In practice the isotropic penalty is often preferred as it leads to smoother
contours, avoiding the artificial horizontal or vertical edges that may result from anistropic
total variation regularization.
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The isotropic total variation penalty can be generalized to penalties of the form

Penalty(x) = ν ·
L∑

ℓ=1

‖Kℓx‖2 ,

where each Kℓ ∈ R
mℓ×d is some fixed matrix. To see how this determines an isotropic total

variation penalty in two dimensions, we let ℓ index all locations (i, j); then the corresponding
matrix Kℓ has two rows, which when multiplying the image x, extracts the differences
xi,j −xi,j+1 and xi,j −xi+1,j . To see how this specializes to the usual generalized ℓ1 penalty,
‖Kx‖1 for some fixed matrix K ∈ R

m×d, simply take Kℓ to be the ℓth row of the matrix K
for each ℓ = 1, . . . ,m.

2.2.1 Applying the MOCCA Algorithm

We now show the steps of the mocca algorithm to the problem of minimizing

L(x) + ν ·
L∑

ℓ=1

‖Kℓx‖2 , (17)

where L(x) is a differentiable likelihood term (such the nonconvex likelihood for regression
with errors in variables as above). We define the matrix K by vertically stacking the Kℓ’s,
and define the convex function

F(w) = ν ·
L∑

ℓ=1

‖wBℓ
‖2 ,

where wBℓ
is understood to be the ℓth block of the vector w, i.e.

wBℓ
= (wm1+···+mℓ−1+1, . . . , wm1+···+mℓ

).

We take the trivial convex approximations Fv(w) = F(w) at any expansion point v ∈ R
m,

and define G(x) and Gz(x) exactly as before (as for the previous application, we allow the
option of restricting to ‖x‖1 ≤ R if desired). Then the objective function (17) is equivalent
to minimizing F(Kx) + G(x).

Applying Algorithm 1, the update steps take the form




xt+1 = argmin‖x‖
1
≤R

{∥∥x−
[
xt − T

(
∇L(xt) +K⊤wt

)]∥∥2
T−1

}
,

wt+1 = Truncateν·(Bm1
×···×BmL

) (wt +ΣKx̄t+1) ,

zt+1 = xt+1,

where Truncateν·(Bm1
×···×BmL

)(w) projects each block wBℓ
∈ R

mℓ of the vector w to the ball
of radius ν, ν · Bmℓ

⊆ R
mℓ (here Bmℓ

is the unit ball of dimension mℓ in the ℓ2 norm).
Specifically, the w update step can be computed for each block as

(wt+1)Bℓ
= (wt +ΣKx̄t+1)Bℓ

·min



1,

ν∥∥∥(wt +ΣKx̄t+1)Bℓ

∥∥∥
2





for each ℓ = 1, . . . , L, and is therefore trivial to compute.
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2.3 Nonconvex Total Variation Penalties

As discussed in Section 2.1, total variation penalties are common in many applications where
the underlying signal exhibits smooth or locally constant spatial structure (in one, two, or
more dimensions). In convex optimization, we are faced with a well-known tradeoff between
sparsity and bias—using ν · ‖x‖TV as our penalty function for some parameter ν > 0, we
want to be sure to choose ν large enough that the resulting solution is total-variation-sparse,
to avoid overfitting when the sample size is small relative to the dimension of the image;
however, larger ν leads to increased shrinkage of the signal, leading to an estimate that is
biased towards zero. One way to avoid this tradeoff is to use a nonconvex penalty, which
should behave like the total variation norm in terms of promoting sparsity, but reduce the
amount of shrinkage for larger signal strength. In this section, we will use ∇TV to denote
the differences matrix in the appropriate space (e.g. ∇TV = ∇2d in two dimensions), so that
‖x‖TV = ‖∇TVx‖1.

For sparse regression problems (i.e. where the signal x is itself sparse, rather than sparsity
in ∇TVx), many nonconvex alternatives to the ℓ1 norm penalty ‖x‖1 have been studied,
demonstrating more accurate signal recovery empirically as well as theoretical properties
of reduced bias, such as the Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan
and Li, 2001), the ℓq penalty which penalizing

∑
i |xi|q for some q ∈ (0, 1) (Knight and Fu,

2000; Chartrand, 2007), and the Minimax Concave Penalty (MCP) which seeks to minimize
concavity while avoiding bias (Zhang, 2010). Another option is to use a reweighted ℓ1 norm
(Candès et al., 2008), where signals estimated to be large at the first pass are then penalized
less in the next pass to reduce bias in their estimates; in fact, Candès et al. (2008) show
that this procedure is related to a nonconvex log-sum penalty, given by penalizing each
component of xi as log(|xi| + ǫ) for some fixed ǫ > 0. For the problem of total variation
sparsity, a variety of nonconvex approaches have also been studied, including applying
SCAD (Chopra and Lian, 2010), an ℓq norm penalty for 0 < q < 1 (Sidky et al., 2014; Lu
and Huang, 2014), or a log-sum total variation penalty (Selesnick et al., 2015; Parekh and
Selesnick, 2015) to the total variation sparsity setting.

We now consider the problem applying a log-sum penalty to the problem of total vari-
ation sparsity. Here we consider the form of this penalty given by

logTVβ(x) = logL1β(∇TVx) where logL1β(w) =
∑

i

β log (1 + |wi|/β) ,

where β > 0 is a nonconvexity parameter. (We can also consider applying this noncon-
vex penalty to the isotropic version of total variation, as discussed in Section 2.2, but for
simplicity we do not give that version explicitly here.)

To understand this function, observe that for any t, the function

t 7→ β log(1 + |t|/β)

is approximately equal to |t| when t ≈ 0 (that is, near zero it behaves like the ℓ1 norm),
but is nonconvex and penalizes large values of t much less heavily than an absolute value
penalty of |t|. The parameter β controls the amount of nonconvexity: small β gives a highly
nonconvex penalty, while for large β the penalty is nearly convex, with logTVβ(x) ≈ ‖x‖TV;
see Figure 1 for an illustration.
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Figure 1: Illustration of the nonconvex sparsity-promoting penalty discussed in Section 2.3.
The figure plots the function t 7→ β · log(1 + |t|/β) across a range of values of t,
for β ∈ {1, 2, 10,∞}; for β = ∞, we should interpret this as the absolute value
function, t 7→ |t|. We see that all the functions appear similar for t ≈ 0, with
a nondifferentiable point at t = 0 which ensures sparsity when this function is
used as a penalty. For larger values of t, smaller values of β correspond to greater
nonconvexity.

Consider the problem of minimizing an objective function

L(x) + ν · logTVβ(x) , (18)

where L(x) is some likelihood or loss term. In the image denoising setting, where L(x) =
1
2 ‖y − x‖22 (i.e. when y is a noisy observation of the signal x), Parekh and Selesnick (2015)
approach this optimization problem with a majorization/minimization algorithm, iterat-
ing the steps: (1) find a majorization of logTVβ(x) at the current estimate xt, which
takes the form of a reweighted TV norm, (2) compute xt+1 as the minimizer of L(x) +
ν · (the majorized penalty). In other settings, however, for a general loss L(x), step (2) may
not be possible.

We now show how the mocca algorithm can be used to optimize objective functions of
the form (18). For simplicity we show the steps for the case that L(x) is convex and has a
simple proximal operator, but this can be generalized as needed.

First, we define a new function

hβ(w) = logL1β(w)− ‖w‖1 =
∑

i

β log (1 + |wi|/β)− ‖w‖1 .

We note an important property of this function: hβ(w) is differentiable with (∇hβ(w))i =
− wi

β+|wi| .
For a first approach, we will take

F(w) = ν · logL1β(w) and G(x) = L(x).

Now we define a local convex approximation to F by writing F(w) = ν (‖w‖1 + hβ(w)) and
taking the linear approximation to hβ , namely,

Fv(w) = ν · ‖w‖1 + ν [hβ(v) + 〈w − v,∇hβ(v)〉] .
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And, since by assumption L(x) is convex and has a simple proximal operator, we can simply
define

Gz(x) = G(x) = L(x).

Then the objective function (18) is equal to F(∇TVx) + G(x), and can be minimized with
mocca. Applying Algorithm 1, the update steps take the form





xt+1 = argminx

{
L(x) + 1

2

∥∥x−
[
xt − T∇⊤

TVwt

]∥∥2
T−1

}
,

wt+1 = Truncateν (wt +Σ∇TVx̄t+1 − ν∇hβ(vt)) + ν∇hβ(vt),

vt+1 = Σ−1(wt − wt+1) +Kx̄t+1.

Of course, we have the flexibility to arrange the functions differently if we wish—for
example, we could instead define

F(w) = ν · ‖w‖1 and G(x) = L(x) + ν · hβ(∇TVx).

In this case, we will define the local approximations as

Fv(w) = F(w) = ν · ‖w‖1

and

Gz(w) = L(x) + ν [hβ(∇TVz) + 〈∇TV(x− z),∇hβ(∇TVz)〉] .

In this case the objective function (18) is equal to F(∇TVx) + G(x) as before. In this case,
the update steps are





xt+1 = argminx

{
L(x) + 1

2

∥∥x−
[
xt − T∇⊤

TV(ν∇hβ(∇TVzt) + wt)
]∥∥2

T−1

}
,

wt+1 = Truncateν (wt +Σ∇TVx̄t+1) ,

zt+1 = xt+1.

However, in a sense this decomposition is less natural as it splits the penalty logTVβ(x)
across F and G, and in fact in our experiments in Section 5, we will see that this second
formulation gives poorer convergence results when the mocca algorithm is applied.

2.4 Application to CT Image Reconstruction

The initial motivation for developing the algorithm presented here, is a problem arising
in computed tomography (CT) imaging. Here we briefly summarize the problem and our
approach via the mocca algorithm; we describe this setting fully, and give detailed results,
in Barber et al. (2016).

In CT imaging, an X-ray beam is sent along many rays through the object of interest.
Typically, the measurement is the total energy that has passed through the object, along
each ray; comparing the energy retrieved against the energy of the entering X-ray beam,
gives information about the materials inside the object, since different materials have differ-
ent beam attenuation properties. A recent technological development is the photon counting
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detector, which measures the raw number of photons that successfully pass through the ob-
ject rather than the total integrated energy. As a first pass, this transmission model can be
written as follows, where the location ~rℓ(t) inside the object parametrizes the ray ℓ:

Countℓ ∼ Poisson



∫

energy E




beam
intensity at
energy E


 ·




detector
sensitivity
to energy E


 · exp

{
−
∫

t
µ(E,~rℓ(t)) dt

}
dE


 ,

(19)
where the only unknowns are the coefficients µ = (µ(E,~r)), indexed over energy level E
and location ~r inside the object. Here µ(E,~r) is the attenuation for photons at energy E
at the location ~r—higher values of µ(E,~r) indicate that a photon (at energy E) is more
likely to be absorbed (at location ~r). The expression exp{−

∫
t µ(E,~rℓ(t)) dt} determines,

for a photon at energy E that enters the object along the trajectory defined by ray ℓ, the
probability that the photon will not be absorbed by the object (i.e. will pass through the
object). These coefficients µ(E,~r) can be further decomposed as

µ(E,~r) =
∑

materials m

µm(E) · xm(~r) (20)

where µm(E) is a known quantity determining the absorption properties of material m at
energy E, while xm(~r) is unknown, representing the amount of material m that is present
at location ~r. In practice, the object space is discretized into pixels, so that x is finite-
dimensional.

In this application, the optimization problem is then given by

x̂ = argmin
x

{
L(x) +

∑

materials m

(total variation constraint on material map xm)

}
,

perhaps with other constraints added as well (e.g. nonnegativity of the material maps). Here
L(x) is the negative log-likelihood of x given the Poisson model for the observed photon
counts as a function of x, given by (19) and (20). L(x) is a nonconvex function due to the
integration across energy levels. Both L(x) and the total variation constraints are better
represented as functions of linear transformations of x; the presence of these multiple terms,
including nonconvexity (from L) and nondifferentiability (from total variation), mean that
existing methods cannot be applied to solve this optimization problems.

The mocca algorithm, applied to this problem, gives strong performance in terms of
fast convergence and accurate image reconstruction on simulated and real imaging data.
We do not give the details of the algorithm implementation or any empirical results in this
paper, but instead refer the reader to our work in Barber et al. (2016) for more details on
the method and for empirical results on simulated CT image data (results on real data are
forthcoming).

3. Background: Optimizing Convex and Nonconvex Composite Functions

In this sections, we give background on several related algorithms for solving the minimiza-
tion problem in the simpler setting where F and G are convex, and in the more challenging
nonconvex setting.
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3.1 Optimization When F is Convex

When F is convex, a variety of existing methods are available to recover the (possibly
non-unique) minimizer

x⋆ = argmin{F(Kx) + G(x)} .

In many settings, the functions F and G may each have easily computable proximal opera-
tors, but the linear transformation inside x 7→ F(Kx) might make the function difficult to
optimize directly—for example, we might have F(w) = ‖w‖1 with K = ∇2d chosen so that
F(Kx) = ‖x‖TV, the two-dimensional total variation norm of x. For this type of setting,
the Alternating Direction Method of Multipliers (ADMM) reframes the problem as

(x⋆, u⋆) = argmin
x,u

{F(u) + G(x) : Kx = u}

and solves for (x⋆, u⋆) by working with the augmented Lagrangian

min
x,u

max
∆

L(x, u,∆) where L(x, u,∆) =
{
F(u) + G(x) + 〈∆,Kx− u〉+ ρ

2
‖Kx− u‖22

}
.

Here ∆ ∈ R
m is the dual variable whose role is to enforce the constraint Kx = u. The steps

of the algorithm are, for each t ≥ 1,





xt = argminx {L(x, ut−1,∆t−1)} ,
ut = argminu {L(xt, u,∆t−1)} ,
∆t = ∆t−1 + ρ(Kxt − ut).

Examining the update step for for u, we see that this step entails a single use of the proximal
map for F. However, the x update step is more complicated due to the linear operator K;
this step cannot be solved with one use of the proximal map for G, except in the special
case that K⊤K is a multiple of the identity matrix. To resolve this, we can add additional
curvature to the x update step:

xt = argmin
x

{
L(x, ut−1,∆t−1) +

1

2
(x− xt−1)

⊤(λI− ρK⊤K)(x− xt−1)

}
,

where λ ≥ ρ ‖K‖2. In this setting, the x update step now becomes solveable with the
proximal map for G. In fact, this preconditioned form of the ADMM algorithm is equivalent
to the CP algorithm (3); for details of the equivalence, see Chambolle and Pock (2011).

In addition to the ADMM and CP algorithms, and their variants, we mention one
other option here. If F is differentiable, then proximal gradient descent offers a simple
procedure, alternating between taking a gradient descent step on the term F(Kx) and a
proximal operator step on G. As we discussed in Section 1.1.1, the proximal gradient descent
algorithm can be viewed as a simple special case of mocca (in that section, the terms were
arranged slightly differently, with both differentiable and convex terms all included in G,
but the scenarios are equivalent). Of course, this type of method cannot handle scenarios
with a nondifferentiable F, which can arise through total variation penalties and in other
settings.
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3.2 The Issue of Nonconvexity

Next, we turn to the setting where F and/or G may be nonconvex.

To begin, we consider the following interesting scenario, introduced in Section 1: suppose
that G is itself convex, with trivial approximations Gz = G, and that x 7→ F(Kx) is strictly
convex even though F is nonconvex. Since x 7→ F(Kx) + G(x) is therefore strictly convex,
the optimization problem has a unique global minimizer x⋆ ∈ R

d. However, since F itself is
nonconvex, then the strategies for optimization described in Section 3.1 may not be directly
applicable for the task of finding x⋆.

Here we outline the difficulties faced by the main existing approaches outlined in Sec-
tion 3.1 for settings where F and/or G are nonconvex (including the scenario outlined above),
and summarize the most relevant results in the literature.

To see this, first consider the ADMM algorithm. Suppose that F is nonconvex, and
in particular, for some vector w ∈ R

m, the function s 7→ F(s · w) is strongly concave—
specifically,

F(s · w) ≤ C − c · s2 (21)

for some C < ∞, c > 0 and all s > 0. Then we see that the update step

ut = argmin
u

{L(xt, u,∆t−1)}

is not well-defined; the function u 7→ L(xt, u,∆t−1) diverges to −∞ when we set u = s · w
and let s → ∞. Therefore, for some types of nonconvex functions, the ADMM algorithm
will not be implementable due to this divergence.

In the literature, theoretical guarantees for the performance of ADMM on nonconvex
objective functions have been considered under several different settings. Broadly speaking,
we can summarize existing work as falling into one of two categories. First, there are settings
where the original form of the ADMM updates perform well. For instance, Magnússon et al.
(2015) proves convergence results (for a slightly different algorithm) when optimization is
over a bounded set, thus avoiding the issue of divergence arising from directions of strong
concavity in F as mentioned above; this paper also proves results guaranteeing optimality of
any limit point, if one exists, in the unbounded optimization setting, but does not guarantee
that a limit point is reached. In Li and Pong (2015), convergence results are proved assuming
that one of the two terms (i.e. F or G) is smooth; in contrast, for the applications considered
here, including total variation type penalties incorporated into F or hard constraints in G,
it is critical to allow for nondifferentiable F and G. The special case of applying ADMM
to nonconvex consensus problems is considered by Hong et al. (2016), with convergence
guarantees again in a bounded setting, in this case assuming that any nonconvex functions
must obey a lower bound.

Second, when the original ADMM updates cannot be expected to perform well—if for
instance F has directions of strong concavity—then the ADMM can be modified by adding
curvature to each update via a Bregman divergence term, as studied by Wang et al. (2014a)
(with extensions to multi-block ADMM, with more than two terms in the objective function
(Wang et al., 2015a)). This work proves convergence guarantees for the algorithm, but
requires that the function F (after converting to our notation) is differentiable and smooth,
in contrast to our work where allowing for nondifferentiable F is critical.
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Next, consider the CP algorithm. When F is nonconvex, it is no longer the case in general
that F(Kx) = maxw{〈Kx,w〉 − F∗(w)}. In fact, by definition of conjugate functions, this
maximum defines the “conjugate of the conjugate”, i.e.

F∗∗(Kx) = max
w

{〈Kx,w〉 − F∗(w)} .

It is known that any conjugate function must be convex, i.e. F∗∗ is convex. This implies
that F∗∗ 6= F. Therefore, the saddle-point problem does not correspond to the original
optimization problem: we have

min
x

max
w

{〈Kx,w〉 − F∗(w) + G(x)} = min
x

{F∗∗(Kx) + G(x)} ,

which is different from the original optimization problem since F∗∗ 6= F. If F∗(w) and F∗∗(w)
take finite values on some domain, then the CP algorithm can be expected to converge, but
it will converge to the solution of an optimization problem that is different from the one
intended due to the issue that F∗∗ 6= F. Problems also arise in a setting where F exhibits
negative curvature as in (21), in which case F∗(w) = ∞ for all w, so we do not have a
well-defined saddle point problem to begin with.

To our knowledge, no general results exist for the CP algorithm with nonconvex and
nondifferentiable F and/or G. Valkonen (2014) considers an interesting related problem,
namely, a variant of the CP algorithm, where the objective function is now F(K(x))+G(x),
for convex F,G but with a nonlinear map K(x) in place of the previous linear map Kx, as
the argument to F. In this case, convergence to a stationary point is proved, even when
the nonlinearity of K(x) may make the overall problem nonconvex. Relatedly, Ochs et al.
(2015) study the setting where F(K(x)) is a nonconvex elementwise penalty on the convex
transform K(x) while G is convex; their approach uses the CP algorithm as a subroutine
for solving convex approximations of the objective function, at each step.

Next, we consider the option of proximal gradient descent, in the case that G has a simple
proximal operator. Loh and Wainwright (2013) study penalized likelihood problems,

min
x

{L(x) + Penalty(x)} ,

where the likelihood term L(x) and/or the penalty term Penalty(x) may exhibit nonconvex-
ity. In many settings that arise in high-dimensional statistics, for instance, the likelihood
term L(x) may be strongly concave in some directions, but will be strongly convex in all
“plausible” directions, that is, all directions x that are not prohibited by the penalty term
Penalty(x). For instance, if Penalty(x) is a sparsity-promoting penalty, with low values
only at solutions x with many (near-)zero values, then L(x) might be strongly convex in
all sparse directions. This relates to the notion of restricted strong convexity, introduced
by Negahban et al. (2009), which we discuss in greater detail in Section 4.2.1. Under re-
stricted convexity and smoothness assumptions on the likelihood term, and with bounds on
the amount of nonconvexity allowed in the penalty term, Loh and Wainwright (2013) prove
convergence to a point that is near the global optimum, for a proximal gradient descent
method, with some additional details restricting steps to a bounded set to avoid diverging
towards directions of strong concavity. Ochs et al. (2014)’s iPiano method gives an inertial
(i.e. accelerated) proximal gradient descent method for this same setting where the loss is
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differentiable with the penalty has an easy proximal map. The (accelerated) proximal gra-
dient descent method for nonconvex problems is studied also by Ghadimi and Lan (2016);
Li and Lin (2015). Note that these algorithms are applicable only when the terms in the
objective function are all either differentiable (the likelihood) or have an easy-to-compute
proximal operator (the penalty), and therefore, cannot be applied to many of the problems
that that we have considered.

Finally, Bolte et al. (2014) propose an algorithm, Proximal Alternating Linearized Min-
imization (PALM), to solve a related problem of the form

min
x,w

{F(w) + G(x) + H(w, x)}, (22)

where H is differentiable while F,G each have easy to compute proximal maps (and may
be nonconvex); this formulation is related to the problem we study, but PALM cannot
be used to solve general problems of the form F(Kx) + G(x) where F is nondifferentiable
(since, if we add a variable w = Kx, the constraint w = Kx cannot be enforced with
any differentiable function H(w, x) unless we allow modifications such as a relaxation to a
penalty on ‖w −Kx‖22), and therefore again cannot be applied to some of the problems
considered here.

3.3 Connection Between MOCCA and ADMM

In the convex setting, the CP method with parameter θ = 1 is known to be equivalent to a
preconditioned ADMM algorithm (Chambolle and Pock, 2011). Specifically, reformulating
the original optimization problem in the ADMM form

min
x,u

{F(u) + G(x) : u = Kx} = min
x,u

max
∆

{
F(u) + G(x) + 〈∆,Kx− u〉+ 1

2
‖Kx− u‖2Σ

}
,

the CP iterations given in (3) are equivalent to the following preconditioned ADMM itera-
tions, where we choose a preconditioning matrix T−1 −K⊤ΣK � 0:





xt+1 = argminx

{
G(x) + 〈K⊤∆t, x〉+ 1

2 ‖Kx− ut‖2Σ + 1
2 ‖x− xt‖2T−1−K⊤ΣK

}
,

∆t+1 = ∆t +Σ(Kxt+1 − ut),

ut+1 = argminu

{
F(u)− 〈∆t+1, u〉+ 1

2 ‖Kxt+1 − u‖2Σ
}
,

(Here we use a slightly nonstandard indexing, writing the variable updates in the order
x,∆, u for later convenience.) We do not derive the equivalence here (see Chambolle and
Pock, 2011, for details), but remark that the variables (xt, wt) at iteration t of the CP
algorithm (3) can be recovered by taking (xt,Σ(Kxt−ut)+∆t) from the ADMM iterations.

Similarly, in the more general nonconvex setting considered here, we can equivalently
formulate the mocca method as a combination of the preconditioned ADMM iterations and
taking convex expansions to F and G. The steps are given in Algorithm 3. This algorithm is
exactly equivalent to the basic version of mocca, Algorithm 1, with extrapolation parameter
θ = 1, but is expressed as an ADMM type algorithm with preconditioning and with convex
approximations to F and G. (The stable “inner loop” version of mocca, Algorithm 2,
can also be interpreted as an extension of ADMM, but we do not give details here). The
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equivalence between Algorithms 1 and 3 is simply an extension of the connection between
the Chambolle-Pock algorithm and a preconditioned ADMM, as shown in Chambolle and
Pock (2011).

Algorithm 3 mocca algorithm: ADMM version

Input: Convex functions Fcvx,Gcvx, differentiable functions Fdiff ,Gdiff , linear operator K,
positive diagonal step size matrices Σ,T.
Initialize: Primal variables x0 ∈ R

d, u0 ∈ R
m, dual variable ∆0 ∈ R

m.
for t = 0, 1, 2, . . . do

Update all variables:





xt+1 = argminx

{
Gxt(x) + 〈x,K⊤∆t〉+ 1

2 ‖Kx− ut‖2Σ + 1
2 ‖x− xt‖2T−1−K⊤ΣK

}
,

∆t+1 = ∆t +Σ(Kxt+1 − ut),

ut+1 = argminu

{
Fut(u)− 〈∆t+1, u〉+ 1

2 ‖Kxt+1 − u‖2Σ
}
,

until some convergence criterion is reached.

This ADMM formulation of mocca gives us a clearer understanding of the choice of the
expansion points (z, v) in the mocca algorithm. Recalling the simpler form of the mocca
algorithm given in Algorithm 1 where the expansion points are updated at each iteration
(i.e. there is no “inner loop”), the expansion points were defined as

zt+1 = xt+1 and vt+1 = Σ−1(wt − wt+1) +Kx̄t+1 .

Using our conversion between the CP variables (x,w) and the ADMM variables (x,∆, u),
we see that

vt+1 = Σ−1(wt − wt+1) +K(2xt+1 − xt) since θ = 1 so x̄t+1 = 2xt+1 − xt

= Σ−1 (Σ(Kxt − ut) + ∆t − Σ(Kxt+1 − ut+1)−∆t+1) +K(2xt+1 − xt)

= Σ−1
(
Σ(Kxt − ut) + ∆t − Σ(Kxt+1 − ut+1)

− (∆t +Σ(Kxt+1 − ut))
)
+K(2xt+1 − xt)

= ut+1 ,

where the next-to-last step uses the definition of the update step for ∆t+1. In other words,
after the tth step, our estimated minimizers for {F(u) + G(x) : Kx = u} are given by ut+1

and xt+1, and our convex approximations to F and to G for the next step are consequently
taken at the values v = ut+1 and z = xt+1.

4. Theoretical Results

In this section we present our two main theoretical results.

4.1 Convergence to a Critical Point

First, we show that if the algorithm converges, then its limit point is a solution to our
original problem.
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Theorem 1 Assume that the families of approximations Fv and Gz satisfy (4), and fur-
thermore that

{
(v, w) 7→ ∇(F− Fv)(w) is continuous jointly in (v, w), and

(z, x) 7→ ∇(G− Gz)(x) is continuous jointly in (z, x).
(23)

Suppose that Algorithm 2 converges to a point, with

xt;ℓ → x̂ where the sequence (xt;ℓ) is interpreted as (x1;0, x1;1, . . . , x1;L1
, x2;0, . . . ),

wt;ℓ → ŵ where (wt;ℓ) is interpreted analogously,

zt → ẑ,

vt → v̂.

Then x̂ is a critical point of the original optimization problem, in the sense that

0 ∈ K⊤∂FKx̂(Kx̂) + ∂Gx̂(x̂) .

4.2 Guarantees of Convergence

We now turn to theoretical results proving that the algorithm converges (and proving rates
of convergence) under specific assumptions on F and G. In this section, we only consider
the “inner loop” form of mocca, given in Algorithm 2. We show that if our inner loop
length (i.e. Lt) tends to infinity, then we can bound the error of the algorithm.

We begin with an assumption on the step size parameters:

Assumption 1 The extrapolation parameter is set at θ = 1, and the diagonal matrices Σ
and T are chosen such that

M =

(
T−1 −K⊤

−K Σ−1

)
≻ 0 .

Pock and Chambolle (2011) introduce this assumption for the (convex) preconditioned
Chambolle-Pock algorithm, and give a simple construction for one choice of Σ,T to satisfy
this without calculating any matrix norms or other high-cost operations, specified in (8)
above.

Next, we turn to the convexity and smoothness assumptions required for our convergence
guarantee.

4.2.1 Restricted Convexity and Smoothness

In practice, F and/or G may each consist of multiple terms, combining characteristics of the
problem such as a likelihood calculation or a penalty or constraint on the underlying signal.
To accomodate a range of potential applications, in particular those arising in the regression
and imaging applications described in Section 2, we consider a broad setting where our main
assumptions involve the interplay between convexity and negative curvature in the functions
F,G.

The notion of restricted strong convexity (RSC), introduced by Negahban et al. (2009),
has often been used in high-dimensional statistics to express the idea that likelihood func-
tions and optimization problems, which may not have desirable strong convexity properties

24



MOCCA: Mirrored Convex/Concave Optimization for Nonconvex Composite Functions

globally, nonetheless exhibit strong convexity in “directions of interest”. For example, in
a least-squares regression problem with design matrix A ∈ R

n×d, with n ≪ d, the least
squares loss function L(x) = 1

2 ‖y −Ax‖22 is not strongly convex since A⊤A is rank de-
ficient, but can yield good statistical properties if A⊤A is strongly convex in all sparse
directions, that is, x⊤A⊤Ax ≥ c · ‖x‖22 for all sparse (or approximately sparse) vectors x. In
this case, the loss function is globally convex, but it is the RSC property that ensures high
accuracy for sparse regression problems. More recently, Loh and Wainwright (2013) proved
that the RSC property, along with an analogous restricted smoothness property, can in fact
be leveraged even in nonconvex optimization problems, such as the regression-with-errors-
in-variables scenario described in Section 2.1. Their work relies on optimizing the variable
x within some bounded set, to ensure that the RSC property will push x towards a good
(local) minimum rather than allowing x to diverge. For instance, if the loss function has
some directions of strong concavity—as is the case for regression-with-errors-in-variables
in (14)—then staying within a bounded set is critical. In theory, their work focuses on
problems that take the form of minimizing a penalized loss function over a bounded set
{x : ‖x‖1 ≤ R}, where we think of R as a large bound, requiring only a loose bound on
the ℓ1 norm of the true signal. In practice, if an optimization algorithm is initialized at
zero, then it is often the case that the iterations will never leave a bounded region, without
imposing any explicit constraint.

In general, results using the RSC condition take the following form: first, the loss
function or objective function L(x) is shown to satisfy a RSC property of the form

〈x− x′,∇L(x)−∇L(x′)〉 ≥ c
∥∥x− x′

∥∥2
2
− τ2

∥∥x− x′
∥∥2
restrict

,

for some structured norm ‖·‖restrict (for example, the ℓ1 norm). Here c > 0 is a constant

while τ is vanishingly small, for instance c ∼ 1 and τ ∼
√

log(d)
n in many high dimensional

regression applications with sample size n. The solution x̂ is then shown to converge to the
true signal x⋆ up to an error of size τR, where R is some bound on the signal complexity, for
instance R ∼

√
k where k is the true sparsity level of a sparse regression problem. In these

settings, it is assumed that τR = o(1), and that errors of this magnitude are negligible. We
will follow this general framework in our convergence guarantee as well. However, since we
consider settings where the signals may not have natural sparsity but would instead have a
different type of structure (such as total variation sparsity), we replace the ℓ1 norm with a
general measure of signal complexity, ‖·‖restrict, chosen with respect to the problem at hand
(for instance, a total variation norm).

We now specify our assumptions on convexity and smoothness for the functions involved
in the optimization, using the restricted strong convexity / restricted smoothness framework
from the literature. Roughly speaking, the following assumption requires that the errors of
the convex approximations F − Fv, G − Gz are counterbalanced by strong convexity in the
composite approximations Fv(Kx)+Gz(x). For the term G, we allow for some flexibility by
considering restricted strong convexity and restricted smoothness, relative to the structured
norm ‖x‖restrict.

Assumption 2 The approximations Fv and Gz satisfy the conditions (4), with additional
assumptions as follows. For the function F and its family of local approximations Fv, we
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assume that Fv is strongly convex, while F− Fv is smooth: for all u, v, w,3

{
Strong convexity of Fv: 〈u, ∂Fv(w + u)− ∂Fv(w)〉 ≥ ‖u‖2ΛF

,

Smoothness of F− Fv: |〈u,∇(F− Fv)(v + w)〉| ≤ 1
2

(
‖u‖2ΘF

+ ‖w‖2ΘF

)
,

for some ΛF,ΘF � 0.4 We also assume a gradient condition on Fv,{
Fv satisfies a gradient condition: ‖∂Fv(w)− ∂Fv(w

′)‖2 ≤ CLip + Cgrad ‖w − w′‖2,

for some CLip, Cgrad < ∞. (For example, this is satisfied if Fv can be written as the sum of
a Lipschitz function and a smooth function.)

For the function G and its family of local approximations Gz, we assume that Gz satisfies
restricted strong convexity, while G − Gz satisfies a restricted smoothness assumption: for
all x, y, z,




Restricted strong convexity of Gz: 〈y, ∂Gz(x+ y)− ∂Gz(x)〉 ≥ ‖y‖2ΛG
− τ2 ‖y‖2restrict ,

Restricted smoothness of G− Gz:

|〈y,∇(G− Gz)(z + x)〉| ≤ 1
2

(
‖x‖2ΘG

+ ‖y‖2ΘG

)
+ τ2

2

(
‖x‖2restrict + ‖y‖2restrict

)
,

for some ΛG,ΘG � 0 and τ < ∞.
Finally, the total convexity in the local approximations Fv and Gz must (approximately)

outweigh the total curvature of the differences F−Fv and G−Gz. Specifically, for all x ∈ R
d,

we require

x⊤(K⊤ΛFK + ΛG)x ≥ x⊤(K⊤ΘFK +ΘG)x+ Ccvx ‖x‖22 − τ2 ‖x‖2restrict ,

for some Ccvx > 0 and τ < ∞.

In general, greater convexity (i.e. ΛF,ΛG as strongly positive definite as possible) and tighter
bounds on smoothness (i.e. ΘF,ΘG as small as possible) allow for a better (i.e. larger)
constant Ccvx and, therefore, faster convergence of the algorithm. The value of τ is typically
of a very small order in many problems arising in high-dimensional statistics, as discussed
above for the sparse regression setting.

It is critical to note that this assumption does not require either Fv or Gz to be strictly
convex—if the matrices ΛF or ΛG are not full rank, then strict convexity has not been
assumed. Instead, Fv is strongly convex in any direction of Rm contained in the column
span of ΛF, and similarly for Gz and ΛG in R

d. Our assumption essentially requires that the
combination of these directions leads to overall (approximate) convexity, after accounting
for concavity that might be introduced by the errors F− Fv and G− Gz.

For simplicity in the statements and proofs of our results, we group the norms of all
matrices from Assumptions 1 and 2 into a single constant:

Cmatrix = max
{
‖ΛF‖ , ‖ΘF‖ , ‖ΛG‖ , ‖ΘG‖ , ‖M‖ ,

∥∥M−1
∥∥} .

Throughout, we will treat Cmatrix, Ccvx, CLip, and Cgrad as fixed finite positive constants, and
dependence on these values will not be given explicitly except in the proofs. On the other
hand, the role of the restricted convexity/smoothness parameter τ will be shown explicitly.

3. We implicitly restrict all variables to the domain of the appropriate function, throughout.
4. For a function F with a multivalued subdifferential, this notation is taken to mean that the statement

must hold for any elements of the subdifferentials, throughout the paper.
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4.2.2 Convergence Guarantee

Choose any point x⋆ ∈ R
d with ‖x⋆‖restrict ≤ R, which is a critical point for the optimization

problem
min

‖x‖restrict≤R
{F(Kx) + G(x)} .

For convenience, we will now absorb the constraint ‖x‖restrict ≤ R into the functions them-
selves, by replacing G with the function

x 7→
{
G(x), if ‖x‖restrict ≤ R,

+∞, if ‖x‖restrict > R,

and replacing Gz (for each z) with the function

x 7→
{
Gz(x), if ‖x‖restrict ≤ R,

+∞, if ‖x‖restrict > R,

In practice, as mentioned before, we typically do not need to explicitly incorporate this
constraint into the optimization algorithm, as we will generally only see updates that all lie
within a bounded region. However, in our statements and proofs of theoretical results from
this point onward, we will assume that G,Gz restrict the domain of the variable x, that is,

G(x) = Gz(x) = +∞ whenever ‖x‖restrict > R . (24)

We will also assume that τR is bounded by a constant without further comment; since our
results give convergence guarantees up to the accuracy level τR, the results are meaningful
only if τR is small.

We now state our convergence guarantee for the stable form of the mocca algorithm,
given in Algorithm 2:

Theorem 2 Assume that Assumptions 1 and 2, and that G,Gz satisfy (24). Then there
exists constants Cconverge, Lmin < ∞ and δ > 0, such that if mint≥1 Lt ≥ Lmin, then for all
t ≥ 1, the iterations of Algorithm 2 satisfy

‖xt − x⋆‖2 ≤ Cconverge

(
1√
L′
t

+ τR

)

where
L′
t = min

{
Lt, (1 + δ)Lt−1, . . . , (1 + δ)t−1L1

}
.

As an example, we can set Lt ∼ (1 + δ)t. Then after the tth inner loop, ‖xt − x⋆‖2 ∼
(1 + δ)−t/2 + τR, and the total number of iterations taken is L1 + · · · + Lt ∼ (1 + δ)t. In
other words, the error ‖x− x⋆‖2 scales as 1√

T
+ τR where T is the total number of update

steps, i.e. error is inversely proportional to the square root of computational cost, up to the
accuracy level τR.

We also remark that, if we were to assume additionally that F is differentiable and
smooth, the result would improve dramatically: we would obtain error decaying exponen-
tially in the number of update steps (up to the accuracy level τR). The resulting convergence
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guarantee would then be comparable to the results obtained in Loh and Wainwright (2013,
Theorem 3), which show a result with error at time t scaling as ct + τR (for a constant
c < 1). However, convergence in this setting is of limited interest for the applications we
have in mind, since total variation penalties, and many other natural penalties or losses
falling into the F term of the composite objective functions, are not differentiable.

4.2.3 Convexity and Smoothness Assumptions: an Example

To illustrate the many different matrices and constants appearing in Assumption 2 with a
concrete example, we return to the problem studied in Section 2.1, where a least squares
regression with errors in variables is combined with a total variation (or generalized ℓ1)
penalty. Recalling this setting, we seek to minimize L(x) + ν · ‖Kx‖1, and we set Fv(w) =
F(w) = ν · ‖w‖1, and

G(x) =

{
L(x), if ‖x‖1 ≤ R,

+∞, if ‖x‖restrict > R,

and

Gz(x) =

{
L(x) + σ2

A
2 ‖x− z‖22 , if ‖x‖restrict ≤ R,

+∞, if ‖x‖1 > R,

where

L(x) = 1

2
x⊤
(
Z⊤Z
n

− σ2
AId

)
x− x⊤

(
Z⊤b
n

)
.

Under the Gaussian noise model, the noisy design matrix given by entries Zij = Aij +
Normal(0, σ2

A) and the response is given by b = A · xtrue + Normal(0, σ2I). The mocca
update steps for this problem are given in (16).

In this setting, Assumption 2 is satisfied with the following parameters. First, since F

is convex but not strongly convex, we set ΛF = 0; we can also set ΘF = 0 as Fv = F for any
expansion point v. F is ν-Lipschitz so we can take CLip = 2ν, Cgrad = 0. Next, for G, we see
that

Gz(x) =
1

2
x⊤
(
Z⊤Z
n

)
x− x⊤

(
Z⊤b
n

+ σ2
Az

)

(on the domain ‖x‖restrict ≤ R), and so we can set ΛG = Z⊤Z
n . To check the smoothness

condition, we have

〈y,∇(G− Gz)(z + x)〉 = 〈y, σ2
Ax〉 ≤ σ2

A · 1
2
(‖x‖22 + ‖y‖22),

and so we can take ΘG = σ2
AId.

Finally, for the “total convexity” condition of Assumption 2, we need to check that
K⊤(ΛF−ΘF)K+(ΛG−ΘG) =

Z⊤Z
n −σ2

AId satisfies restricted strong convexity. In Loh and
Wainwright (2011, Corollary 1), it is shown that if the rows of the (original) design matrix
A are drawn i.i.d. from a subgaussian distribution with covariance ΣA then, assuming that
the sample size n satisfies n ≫ log(d), the matrix Z⊤Z

n −σ2
AId (which is an unbiased estimate

of the desired term A⊤A
n using the unknown original design matrix A) satisfies

x⊤
(
Z⊤Z
n

− σ2
AId

)
x ≥ 1

2
λmin(ΣA)·‖x‖22−(constant)· log(d)

n
·‖x‖2restrict for all x ∈ R

d (25)
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with high probability, when we choose ‖x‖restrict = ‖x‖1; similar results will hold for other
structured choices of ‖·‖restrict such as total variation norm or a generalized ℓ1 norm. There-

fore we can set Ccvx = 1
2λmin(ΣA) and τ ∼

√
log(d)

n to obtain the desired condition in
Assumption 2. Note that the guarantees of Theorem 2 give a meaningful convergence result
even if we choose a fairly large radius R.

5. Experiments

We now implement the mocca algorithm to examine its performance in practice. Through-
out this section, we work with the simpler formulation of mocca, given in Algorithm 1,
with no “inner loop”. All computations were performed in matlab (MATLAB, 2015).5

For all simulations, we choose not to place a bound on ‖x‖restrict, although technically
this is required by our convergence guarantees and those of the related results in Loh and
Wainwright (2013) (which we compare to, in Simulation 2). Empirically we observe good
convergence without imposing such a bound, but can easily add such a bound if desired.

We consider two examples: Simulation 1 studies nonconvex total variation regularization
with a least squares loss (as described in Section 2.3), and Simulation 2 considers convex
total variation regularization with a nonconvex loss arising from regression with errors in
variables (as described in Section 2.1). While other algorithms which are developed specifi-
cally for these problems are available—for example, denoising with total variation penalties
is studied by e.g. Chambolle and Darbon (2009); Wang et al. (2014b, 2015b), and could be
combined with a proximal gradient method for Simulation 2—here our purpose is simply
to illustrate applications of mocca to several concrete examples in order to demonstrate
its flexibility for a broad range of problems. Specific problems will often have specialized
algorithms which would far outperform our general-purpose method; however, slight modi-
fications to the optimization problem (for example, replacing total variation regularization
with a more general penalty ‖Kx‖1 for a generic dense matrix K, or with isotropic to-
tal variation) will often mean that specialized algorithms can no longer be applied, while
mocca can adapt easily to accomodate these changes.

5.1 Simulation 1: Nonconvex Total Variation Penalty

In the first simulation, we study the nonconvex total variation penalty considered in Sec-
tion 2.3, using a two-dimensional spatial structure. We generate data as follows: first,
we define the true signal xtrue ∈ R

d with dimension d = 625, obtained by vectorizing the
two-dimensional locally constant array




15×5 05×15 05×5

015×5 115×15 015×5

05×5 05×15 15×5


 ∈ R

25×25.

The two-dimensional total variation of the true signal is very low, because ∇2dxtrue is sparse.
We then take a linear regression model with n = 200 observations, with design matrix

5. Code for fully reproducing these simulations is available at http://www.stat.uchicago.edu/~rina/

mocca.html.
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A ∈ R
n×d with Aij

iid∼ Normal(0, 1) and b ∈ R
n with entries

bi = (A · xtrue)i + Normal(0, 1) .

We would then like to solve a penalized least-squares problem using the nonconvex total
variation penalty introduced in Section 2.3, namely,

x̂ = argmin
x

{Obj(x)} for Obj(x) =
1

2
‖b−Ax‖22 + ν · logTVβ(x) , (26)

where we choose penalty parameter ν = 20 and nonconvexity parameter β = 3 (recall that
a low value of β corresponds to greater nonconvexity), and where the logTVβ(·) penalty is
defined with respect to two-dimensional total variation—recall

logTVβ(x) = logL1β(∇2dx) =
∑

i

β log (1 + |(∇2dx)i|/β) .

Here ∇2d ∈ R
m×d is the two-dimensional first differences matrix for the vectorized d1 × d2

grid, where d = d1 ·d2 is the total dimension of the signal while m = d1(d2−1)+d2(d1−1) is
the number of first-order differences measured; in our case, we have d1 = d2 = 25, d = 625,
and m = 1200.

Next, we implement the mocca algorithm with the two variants described in Section 2.3:
setting K = ∇2d, we consider the more natural form where the penalty term is contained
in F, given by
{
F(w) = ν · logL1β(w), with Fv(w) = ν · ‖w‖1 + ν [hβ(v) + 〈w − v,∇hβ(v)〉] ,
G(x) = Gz(x) =

1
2 ‖b−Ax‖22 ,

(27)

where hβ(w) = logL1β(w) − ‖w‖1 is a differentiable concave function as discussed in Sec-
tion 2.3. We also consider the less natural form where the penalty term is split across F

and G, given by




F(w) = Fv(w) = ν · ‖w‖1 ,
G(x) = 1

2 ‖b−Ax‖22 + ν · hβ(∇2dx),

with Gz(x) =
1
2 ‖b−Ax‖22 + ν [hβ(∇2dz) + 〈∇2d(x− z),∇hβ(∇2dz)〉] ,

(28)

We will refer to these two versions as mocca(natural) and mocca(split), respectively.
Finally, we choose step size parameters

Σ = λ · 1
2
Im and T = λ−1 · 1

4
Id ,

which ensures that the positive semidefinite assumption, Assumption 1, will hold (although
perhaps not strictly) as in Pock and Chambolle (2011). We test the algorithm across a
range of λ values, λ ∈ {4, 8, 16, 32, 64}.

The results are shown in Figure 2, which plots the log value of the objective function
Obj(x) at each iteration, and also plots the log of the change in each iteration,

Changet =

∥∥∥∥
(

xt−1 − xt
wt−1 − wt

)∥∥∥∥
2

. (29)
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Figure 2: Results from Simulation 1. The top row plots the log of the objective function
value defined in (26) against iteration number, while the bottom row plots the log
of the change in the (x,w) variables (29) at each iteration, for several step size
parameters λ. (Section 1.1.4 gives a direct correspondence between convergence of
the (x,w) variables, and the optimality of the x variable.) The plots show results
from the “natural” (left) and “split” (right) versions of the mocca algorithm,
defined in (27) and (28), respectively.

(Recall from Section 1.1.4 that, if Changet → 0, then the optimality gap of the solution
tends to zero; that is, the x variable is close to being a critical point for the optimization
problem.) Looking first at the results for mocca(natural), we see that smaller λ values tend
to lead to faster convergence at the very early stages, but poorer performance or instability
at later stages. (In fact, this suggests the possibility of varying λ as we run more iterations,
which we leave to future work.)

Turning to mocca(split), we see that the performance is worse at all λ values as com-
pared with mocca(natural); the difference is minor for the largest λ values, but the lower
λ values give far poorer results and far more instability for mocca(split) as compared to
mocca(natural). This highlights the importance of the “mirroring” step in our algorithm,
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which gives us the flexibility of placing the nonconvex terms into F, i.e. the function which
will be optimized via the dual variable. In other scenarios, of course, a different arrangement
of the terms may be preferable.

5.2 Simulation 2: Total Variation Penalty, with Errors in Variables

In the second simulation, we treat the errors-in-variables setting discussed in Section 2.1. We
generate the signal xtrue, the design matrix A, and the response vector b as in Simulation 1.
Next, suppose our measurement of A is itself noisy: define Z ∈ R

n×d with Zij = Aij +
Normal(0, σ2

A), where σA = 0.2. Finally, we would like to minimize the objective function

1

2
x⊤
(
Z⊤Z − n · σ2

AId

)
x− x⊤Z⊤b+ ν ‖x‖TV , (30)

with penalty parameter ν = 20, where again we use two-dimensional total variation,
‖x‖TV = ‖∇2dx‖1. (Here we use a different scaling of the likelihood term relative to Sec-
tion 2.1 for simpler implementation and tuning.) Of course, due to the negative quadratic
term, this objective function is strongly concave in some directions and so its global min-
imum is “at infinity”; within a bounded set, however, the penalty will ensure that the
objective function is approximately convex. In practice, initializing our algorithm at x = 0
does not lead to any problems, and we converge to a bounded solution that can be viewed
as a local minimum within a bounded set, e.g. {x : ‖x‖TV ≤ R} for some appropriate choice
of R, as discussed in the context of restricted strong convexity in Section 4.2.1.

A proximal gradient descent method, as proposed by Loh and Wainwright (2013) for
this type of nonconvex penalized likelihood, would in theory iterate the steps

{
x̃t+1 = xt − 1

η

((
Z⊤Z − nσ2

AId
)
xt − (Z⊤b)

)
,

xt+1 = argminx

{
1
2 ‖x− x̃t+1‖22 + ν

η ‖x‖TV
}
,

where 1
η is a step size parameter. However, the second step is a proximal operator for the

total variation norm ‖x‖TV = ‖∇2dx‖1, which cannot be calculated in closed form. Instead,
we could apply the CP algorithm to the convex (sub)problem of this proximity operator
with parameters Σ = λ · 12Im and T = λ−1 · 14Id, and could terminate this inner “prox loop”
after some convergence criterion is reached, e.g. after some fixed number nstep of steps, or
once the relative change in x is below ǫthresh. We do not show details of the derivation, but
the complete procedure iterates these steps (taking extrapolation parameter θ = 1):





Gradient step: x̃t+1 = xt − 1
η

((
Z⊤Z − nσ2

AId
)
xt − (Z⊤b)

)
,

Initialize prox loop: x′t+1;0 = xt, u
′
t+1;0 = ut.

Run prox loop: for ℓ = 1, 2, . . . , writing x̄′t+1;ℓ = 2x′t+1;ℓ − x′t+1;ℓ−1,



x′t+1;ℓ = (1 + 1
4λ)

−1
(
x′t+1;ℓ−1 +

1
4λ x̃t+1 − 1

4λ∇⊤
2du

′
t+1;ℓ−1

)
,

u′t+1;ℓ = Truncate[−ν/η,ν/η]

(
u′t+1;ℓ−1 +

λ
2∇2dx̄

′
t+1;ℓ

)
,

until a convergence criterion is reached

(i.e. ℓ = nstep or
∥∥∥x′t+1;ℓ − x′t+1;ℓ−1

∥∥∥
2
/
∥∥∥x′t+1;ℓ−1

∥∥∥
2
≤ ǫthresh).

Gather results from prox loop: xt+1 = x′t+1;ℓ, ut+1 = u′t+1;ℓ.

(31)
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We will refer to this method as the Approximate Proximal Gradient Descent (APGD)
algorithm, where “approximate” describes the fact that the proximal operator step is only
ever solved approximately via a finite number of steps in the inner loop.

In fact, if we examine this algorithm carefully, we can find that by taking a single step of
the inner “prox loop” (that is, setting nstep = 1), we arrive back at the steps of the mocca
algorithm. Specifically, as in the implementation (15) in Section 2.1, we choose K = ∇2d,
F(w) = Fv(w) = ν ‖w‖1, and

G(x) =
1

2
x⊤
(
Z⊤Z − nσ2

AId

)
x− x⊤(Z⊤b)

with local approximations given by linear expansions,

Gz(x) = G(z) + 〈x− z,∇G(x)〉
= 〈x, (Z⊤Z − nσ2

AId)z − Z⊤b〉+ (terms constant with respect to x).

The update steps of the mocca algorithm are then given by





xt+1 = argminx

{
〈∇2dx,wt〉+ Gzt(x) +

1
2 ‖x− xt‖2T−1

}
,

wt+1 = argminy

{
−〈∇2dx̄t+1, w〉+ F∗(w) + 1

2 ‖w − wt‖2Σ−1

}
,

zt+1 = xt+1 ,

which we can simplify to
{
xt+1 = xt − T

(
∇⊤
2dwt +

(
Z⊤Z − nσ2

AId
)
xt − (Z⊤b)

)
,

wt+1 = Truncate[−ν,ν] (wt +Σ∇2dx̄t+1) .

If we choose

Σ =
λη

2
· Id−1 and T =

1

(4λ+ 1)η
· Id ,

it can be shown that this is equivalent to the proximal gradient algorithm (31) with a single
inner loop step, i.e. with nstep = 1 (specifically, the iterates xt stay the same, while the
other variables are related as wt = η · ut).

Now we compare the performance of the approximate proximal gradient descent (APGD)
algorithm, with various stopping criteria for the inner “prox loop”, against the performance
of the mocca algorithm, which we can view as the APGD algorithm taking exactly one
step in each inner “prox loop”. For simplicity, we consider only a few values for the step
size parameters, setting η = λ = 100 or η = λ = 200. As for Simulation 1, we will see that
higher values for these parameters gives more stability at the cost of slower convergence.

We consider stopping rules for the inner loop as follows: either we run the inner loop
for a fixed number of steps, nstep ∈ {1, 5} (with nstep = 1 yielding mocca), or we use a
convergence criterion ǫthresh ∈ {0.1, 0.05, 0.01}. Figure 3 shows the results; for the figure on
the left, we see that running the inner loop longer does help to make our solutions more
accurate (i.e. the objective function is lower) over the range of iterations. However, each
iteration has greater computational cost when we increase the time spent running the inner
loop. Since we would like to see the performance as a function of computational cost, the
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Figure 3: Results from Simulation 2, plotting the value of the objective function (30) against
iteration number, counting either iterations of the “outer loop” (left) or of the “in-
ner loop” (right), for various stopping rules for the inner loop in (31). Parameters
are set as η = λ = 100 (top) or η = λ = 200 (bottom). Counting the number of
passes through the inner loop is an accurate reflection of the true computational
cost of (31), and so the right-hand plots give the correct interpretation of the
results, where the various versions of the algorithms perform nearly identically in
both settings (the lines are indistinguishable) except for the setting ǫthresh = 0.01
which diverges for the setting η = λ = 100. Setting nstep = 1 yields the mocca
algorithm as discussed in the text.

plot on the right-hand side of Figure 3 shows the same results plotted against the true
number of iterations, i.e. where we count each pass through the inner loop of (31) rather
than counting only passes through the outer loop of (31). In this setting, we see that in fact
the various versions of the algorithms perform nearly identically—in other words, a one-
step approximation to the proximal map performs just as well as a more conservative inner
loop that is run for longer—with the exception of setting ǫthresh = 0.01 and η = λ = 100,
in which case the algorithm diverges immediately. It is interesting to note that this small
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choice for ǫthresh is closest in spirit to proximal gradient descent (that is, the proximal step is
the most accurate), although of course there may be some effect of tuning parameters. The
choice ǫthresh does achieve convergence with the more conservative choice η = λ = 200, but
convergence is noticeably slower in this case. Thus, we can conclude that when the proximal
step does not have a closed form solution, it may be better to use a coarse approximation
(which, implicitly, is the strategy taken by mocca for this problem) rather than aiming for
near-convergence in the proximal step for each iteration.

6. Proofs

6.1 Critical Points (Theorem 1)

For this proof we will use two facts: for a continuous convex function h,

If at ∈ ∂h(bt) and at → a, bt → b then a ∈ ∂h(b), (32)

and

a ∈ ∂h(b) if and only if b ∈ ∂h∗(a). (33)

First, by definition of the wt+1;1 update step,

∂F∗vt(wt+1;1) ∋ Σ−1(wt+1;0 − wt+1;1) +Kx̄t+1;1 ,

and therefore by (33),

wt+1;1 ∈ ∂Fvt(Σ
−1(wt+1;0 − wt+1;1) +Kx̄t+1;1).

We can rewrite this as

wt+1;1∈ ∂Fv̂(Σ
−1(wt+1;0 − wt+1;1) +Kx̄t+1;1)︸ ︷︷ ︸

(Term 1)

+∇(Fvt − Fv̂)(Σ
−1(wt+1;0 − wt+1;1) +Kx̄t+1;1)︸ ︷︷ ︸

(Term 2)

.

(34)
Next, since the solution converges, we see that

wt+1;1 → ŵ, vt → v̂, Σ−1(wt+1;0 − wt+1;1) +Kx̄t+1;1 → Kx̂.

Our assumption (23) implies that

(v, w) 7→ ∇(Fv − Fv̂)(w) = −∇(F− Fv)(w) +∇(F− Fv̂)(w)

is jointly continuous in (v, w), and so

(Term 2) = ∇(Fvt − Fv̂)(Σ
−1(wt+1;0 − wt+1;1) +Kx̄t+1;1) → ∇(Fv̂ − Fv̂)(Kx̂) = 0.

Therefore, applying the property (32) to the expression in (34), we see that

ŵ ∈ ∂Fv̂(Kx̂). (35)
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Next, for each t, by definition,

vt+1 =
1

Lt+1

Lt+1∑

ℓ=1

(
Σ−1(wt+1;ℓ−1 − wt+1;ℓ) +Kx̄t+1;ℓ

)

=
1

Lt+1

(
Σ−1(wt+1;0 − wt+1;Lt+1

) +K(xt+1;Lt+1
− xt+1;0)

)
+Kxt+1 .

Taking limits on each side, we see that v̂ = Kx̂. Returning to (35) above this proves that

ŵ ∈ ∂FKx̂(Kx̂) .

Next, by definition of the xt+1;1 update step,

∂Gzt(xt+1;1) = T−1(xt+1;0 − xt+1;1)−K⊤wt+1;0 .

Taking limits on each side as t → ∞, and applying (32) as before,

∂Gẑ(x̂) ∋ −K⊤ŵ .

And, we know that zt+1 = xt+1 for each t, therefore ẑ = x̂, and so

∂Gx̂(x̂) ∋ −K⊤ŵ .

Combining the work above, then,

0 = K⊤ŵ −K⊤ŵ ∈ K⊤∂FKx̂(Kx̂) + ∂Gx̂(x̂) ,

as desired.

6.2 Convergence Guarantee (Theorem 2)

We first introduce some notation and supporting lemmas before turning to the main proof.

6.2.1 Notation

Fixing any expansion points (z, v) ∈ R
d × R

m, we define a primal-dual update step:

(x′, w′) = Stepz,v(x,w) ,

given by



x′ = argminx′′

{
〈Kx′′, w〉+ Gz(x

′′) + 1
2 ‖x′′ − x‖2T−1

}
,

w′ = argminw′′

{
−〈K(2x′ − x), w′′〉+ F∗v(w

′′) + 1
2 ‖w′′ − w‖2Σ−1

}
.

This is one step of the CP algorithm applied to the convex objective function

min
x

{Fv(Kx) + Gz(x)}

with extrapolation parameter θ = 1.
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Next, defining x⋆ to be any critical point of the original problem as before, let w⋆ ∈
∂FKx⋆(Kx⋆) be an element of the subdifferential such that

0 ∈ K⊤w⋆ + ∂Gx⋆(x⋆) .

Finally, for any expansion points (z, v), define the (not necessarily unique) solution for
the convex optimization problem when the we use approximations Fv,Gz:

x⋆z,v = argmin
x

{Fv(Kx) + Gz(x)} ,

and let w⋆
z,v ∈ ∂Fv(Kx⋆z,v) be an element of the subdifferential such that

0 ∈ K⊤w⋆ + ∂Gz(x
⋆
z,v) .

6.2.2 Lemmas

The proof of Theorem 2 can be split into several key results. First we state these lemmas
and explain their role, then we will formally prove the theorem. The lemmas are proved in
Appendix A.

The first lemma shows that, if we use expansion points (z, v) close to the true solution,
i.e. (z, v) ≈ (x⋆,Kx⋆), then the minimizer x⋆z,v for the convex approximation will be close
to x⋆.

Lemma 3 Suppose that Assumptions 1 and 2 hold. Define

Θ =

(
ΘG 0
0 ΘF

)
+

Ccvx

(Cmatrix)2
I ≻ 0 .

Then there exist constants Ccontr > 0, Cexcess < ∞, which depend only on Cmatrix, Ccvx, CLip,
Cgrad, such that for any (z, v) ∈ dom(G)× dom(F),

∥∥∥∥
(

x⋆z,v − x⋆

Kx⋆z,v −Kx⋆

)∥∥∥∥
Θ

≤ (1− Ccontr)

∥∥∥∥
(

z − x⋆

v −Kx⋆

)∥∥∥∥
Θ

+ Cexcess · τR

and ∥∥∥∥
(

x⋆z,v − x⋆

w⋆
z,v − w⋆

)∥∥∥∥
2

≤ CLip + Cexcess

(∥∥∥∥
(

z − x⋆

v −Kx⋆

)∥∥∥∥
Θ

+ τR

)
.

The second lemma shows that, after running an “inner loop”, the (x,w) variables are
nearly optimal for the current convex approximation, and the next expansion points are
also near this optimum.

Lemma 4 Suppose that Assumptions 1 and 2 hold. For any L ≥ 1, and any points
(x(0), w(0)), (z, v) ∈ dom(G)× dom(F), suppose we iterate Stepz,v(·) for L times,

(x(1), w(1)) = Stepz,v(x
(0), w(0)), (x(2), w(2)) = Stepz,v(x

(1), w(1)), . . . ,

(x(L), w(L)) = Stepz,v(x
(L−1), w(L−1)) ,
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and then define the averages (x̃, w̃) = 1
L

∑L
ℓ=1(x

(ℓ), w(ℓ)) and averaged expansion points
(z̃, ṽ) as

z̃ =
1

L

L∑

ℓ=1

x(ℓ) and ṽ =
1

L

L∑

ℓ=1

(
Σ−1(w(ℓ−1) − w(ℓ)) +K(2x(ℓ) − x(ℓ−1))

)
.

Then there exists a constant Citer < ∞, depending only on Cmatrix, Ccvx, CLip, Cgrad (and in
particular, not dependent on L), such that

∥∥∥∥
(

z̃ − x⋆z,v
ṽ −Kx⋆z,v

)∥∥∥∥
Θ

≤ Citer

(
1√
L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

+ τR

)
.

and ∥∥∥∥
(

x̃− x⋆z,v
w̃ − w⋆

z,v

)∥∥∥∥
2

≤ CLip + Citer

(
1√
L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

+ τR

)

6.2.3 Proof of Theorem 2

We will assume for simplicity that the expansion point is initialized with some z0 satisfying
‖z0‖restrict ≤ R; if this is not the case at step t = 0, then our results can be easily adjusted
since we will have z1 = x1 ∈ dom(Gz0) and therefore ‖z1‖restrict ≤ R, so we can simply shift
our calculations by one time point.

First, choose any δ such that 0 < δ < (1− Ccontr)
−2 − 1. Define constants

C1 = max

{∥∥∥∥
(

x1 − x⋆z1,v1
w1 − w⋆

z1,v1

)∥∥∥∥
2

,

6CLip + 4Cexcess + 2

(
Citer + 2Cexcess

(
Citer + Cexcess

Ccontr

+ 1

))
τR

}
,

C2 = max

{√
L′
1 ·
∥∥∥∥
(

z1 − x⋆

v1 −Kx⋆

)∥∥∥∥
Θ

,
CiterC1

1− (1− Ccontr)
√
1 + δ

}
,

C3 =
Citer + Cexcess

Ccontr

,

and define

Lmin = max{4(Citer)
2, (C2)

2}.

To prove the desired result, we will prove that

∥∥∥∥
(

xt+1 − x⋆zt+1,vt+1

wt+1 − w⋆
zt+1,vt+1

)∥∥∥∥
2

≤ C1 (36)

and ∥∥∥∥
(

zt+1 − x⋆

vt+1 −Kx⋆

)∥∥∥∥
Θ

≤ C2√
L′
t+1

+ C3τR (37)

for all t ≥ 0.
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Assuming that these bounds hold, we then have

‖xt+1 − x⋆‖2 = ‖zt+1 − x⋆‖2 ≤
∥∥Θ−1

∥∥ ·


 C2√

L′
t+1

+ C3τR


 ,

where the first step holds by definition of zt+1; this proves the desired theorem with
Cconverge :=

∥∥Θ−1
∥∥ ·max{C2, C3}.

Now we prove (36) and (37) by induction. For t = 0, both statements are true trivially
by our definitions of C1 and C2. Now we will assume that the statements are true for all
t = 0, . . . ,m− 1 and will prove that they hold for t = m. First, for (37), we have

∥∥∥∥
(

zm+1 − x⋆

vm+1 −Kx⋆

)∥∥∥∥
Θ

≤
∥∥∥∥
(

zm+1 − x⋆zm,vm

vm+1 −Kx⋆zm,vm

)∥∥∥∥
Θ

+

∥∥∥∥
(

x⋆zm,vm − x⋆

Kx⋆zm,vm −Kx⋆

)∥∥∥∥
Θ

by the triangle inequality

≤
∥∥∥∥
(

zm+1 − x⋆zm,vm

vm+1 −Kx⋆zm,vm

)∥∥∥∥
Θ

+ (1− Ccontr) ·
∥∥∥∥
(

zm − x⋆

vm −Kx⋆

)∥∥∥∥
Θ

+ CexcessτR by Lemma 3

≤ Citer

(
1√

Lm+1

∥∥∥∥
(

xm − x⋆zm,vm

wm − w⋆
zm,vm

)∥∥∥∥
2

+ τR

)

+ (1− Ccontr) ·
∥∥∥∥
(

zm − x⋆

vm −Kx⋆

)∥∥∥∥
Θ

+ CexcessτR by Lemma 4

≤ Citer

(
1√

Lm+1
C1 + τR

)
+ (1− Ccontr) ·

(
C2√
L′
m

+ C3τR

)

+ CexcessτR by (36) and (37) applied with t = m− 1

≤ Citer


 1√

L′
m+1

C1 + τR


+ (1− Ccontr) ·


C2

√
1 + δ√

L′
m+1

+ C3τR




+ CexcessτR since L′
m+1 ≤ Lm+1, (1 + δ)L′

m

≤ C2√
L′
m+1

+ C3τR ,

where the last step holds by our definition of the constants C2, C3. This concludes the proof
of (37) for t = m.
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Next, we turn to the proof of (36). For both t = m− 1 and t = m,

∥∥∥∥
(

x⋆zt+1,vt+1
− x⋆

w⋆
zt+1,vt+1

− w⋆

)∥∥∥∥
2

≤ CLip + Cexcess

(∥∥∥∥
(

zt+1 − x⋆

vt+1 −Kx⋆

)∥∥∥∥
Θ

+ τR

)
by Lemma 3

= CLip + Cexcess


 C2√

L′
t+1

+ (C3 + 1)τR


 by (37) at step t

≤ CLip + Cexcess

(
C2√
Lmin

+ (C3 + 1)τR

)
since L′

t+1 ≥ Lmin ,

and also, we have

∥∥∥∥
(

xm+1 − x⋆zm,vm

wm+1 − w⋆
zm,vm

)∥∥∥∥
2

≤ CLip + Citer

(
1√

Lm+1

∥∥∥∥
(

xm − x⋆zm,vm

wm − w⋆
zm,vm

)∥∥∥∥
2

+ τR

)
by Lemma 4

≤ CLip + Citer

(
1√

Lm+1
C1 + τR

)
by (36) applied with t = m− 1

≤ CLip + Citer

(
1√
Lmin

C1 + τR

)
since Lm+1 ≥ Lmin.

Therefore, combining these calculations,

∥∥∥∥
(

xm+1 − x⋆zm+1,vm+1

wm+1 − w⋆
zm+1,vm+1

)∥∥∥∥
2

≤
∥∥∥∥
(

xm+1 − x⋆zm,vm

wm+1 − w⋆
zm,vm

)∥∥∥∥
2

+

∥∥∥∥
(

x⋆zm,vm − x⋆

w⋆
zm,vm − w⋆

)∥∥∥∥
2

+

∥∥∥∥
(

x⋆zm+1,vm+1
− x⋆

w⋆
zm+1,vm+1

− w⋆

)∥∥∥∥
2

≤ 3CLip + Citer

(
1√
Lmin

C1 + τR

)
+ 2Cexcess

(
C2√
Lmin

+ (C3 + 1)τR

)

≤ 3CLip + Citer

(
1√

4(Citer)2
C1 + τR

)

+ 2Cexcess

(
C2√
(C2)2

+

(
Citer + Cexcess

Ccontr

+ 1

)
τR

)
by definition of C3 and of Lmin

≤ C1 ,

by definition of C1. This proves the desired bound (36) for t = m, and thus we have proved
the theorem.

7. Discussion

We have developed a primal/dual algorithm for minimizing composite objective functions
of the form F(Kx) + G(x), which is able to handle nondifferentiability and nonconvexity
(even strong concavity) in each individual term, beyond what is possible with many existing
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approaches based on alternating minimization or proximal gradient methods. The key step
of the mocca algorithm is the careful choice of local convex approximations to F and
G at each step, which respects the mirroring between the primal and dual variables of
the algorithm. Our method allows for accurate and efficient optimization for a range of
problems arising in high-dimensional statistics, such as nonconvex total variation penalties
(which reduce the bias caused by shrinkage, when compared to using a convex total variation
norm), as well as inverse problems in computed tomography (CT) imaging.

Our present theoretical results give a convergence guarantee, in the case that the overall
objective function is approximately convex, for a more stable form of the mocca algorithm.
In future work, we hope to better understand the relative performance of the various forms
of the algorithm, and to find a tighter characterization of the convergence behavior of the
algorithm. It would also be interesting to consider a more general form of objective function,
F(w)+G(x) where F,G are nonconvex and nondifferentiable, and where instead of the linear
constraint w = Kx, the variables w and x are linked via a nonlinear map; such an extension
would greatly increase the range of applications of the method.
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Appendix A. Proofs of Lemmas

A.1 Proof of Lemma 3

By definition of x⋆z,v,

0 ∈ K⊤∂Fv(Kx⋆z,v) + ∂Gz(x
⋆
z,v) (38)

and since x⋆ is a critical point of the original objective function,

0 ∈ K⊤∂FKx⋆(Kx⋆) + ∂Gx⋆(x⋆) . (39)

Since (Fv − FKx⋆) = (F − FKx⋆) − (F − Fv) and (Gz − Gx⋆) = (G − Gx⋆) − (G − Gz) are
differentiable, we can rewrite (39) as

0 ∈ K⊤∂Fv(Kx⋆) +K⊤∇(F− Fv)(Kx⋆)−K⊤∇(F− FKx⋆)(Kx⋆)

+ ∂Gz(x
⋆) +∇(G− Gz)(x

⋆)−∇(G− Gx⋆)(x⋆).

By the first-order conditions (4), we know that∇(F−FKx⋆)(Kx⋆) = 0 and∇(G−Gx⋆)(x⋆) =
0, so this reduces to

0 ∈ K⊤∂Fv(Kx⋆) +K⊤∇(F− Fv)(Kx⋆) + ∂Gz(x
⋆) +∇(G− Gz)(x

⋆). (40)

We also see that ‖x⋆‖restrict ,
∥∥x⋆z,v

∥∥
restrict

≤ R, since x⋆, x⋆z,v must lie in dom(G) = dom(Gz).
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Then we have
∥∥x⋆z,v − x⋆

∥∥2
ΘG

+
∥∥Kx⋆z,v −Kx⋆

∥∥2
ΘF

+ Ccvx

∥∥x⋆z,v − x⋆
∥∥2
2
− 2τ2 ·

∥∥x⋆z,v − x⋆
∥∥2
restrict

≤
∥∥Kx⋆z,v −Kx⋆

∥∥2
ΛF

+
∥∥x⋆z,v − x⋆

∥∥2
ΛG

− τ2 ·
∥∥x⋆z,v − x⋆

∥∥2
restrict

by Assumption 2

≤ 〈Kx⋆z,v −Kx⋆, ∂Fv(Kx⋆z,v)− ∂Fv(Kx⋆)〉
+ 〈x⋆z,v − x⋆, ∂Gz(x

⋆
z,v)− ∂Gz(x

⋆)〉 by Assumption 2

= 〈Kx⋆z,v −Kx⋆,∇(F− Fv)(Kx⋆)〉+ 〈x⋆z,v − x⋆,∇(G− Gz)(x
⋆)〉 by (38) and (40)

≤ 1

2

∥∥Kx⋆z,v −Kx⋆
∥∥2
ΘF

+
1

2
‖v −Kx⋆‖2ΘF

+
1

2

∥∥x⋆z,v − x⋆
∥∥2
ΘG

+
1

2
‖z − x⋆‖2ΘG

+
τ2

2

(∥∥x⋆z,v − x⋆
∥∥2
restrict

+ ‖z − x⋆‖2restrict
)

by Assumption 2 .

Next, recall that
∥∥x⋆z,v

∥∥
restrict

, ‖x⋆‖restrict ≤ R from before and ‖z‖restrict ≤ R by assumption.
After rearranging terms and multiplying by 2, this gives

∥∥x⋆z,v − x⋆
∥∥2
ΘG

+
∥∥Kx⋆z,v −Kx⋆

∥∥2
ΘF

+ 2Ccvx

∥∥x⋆z,v − x⋆
∥∥2
2

≤ ‖z − x⋆‖2ΘG
+ ‖v −Kx⋆‖2ΘF

+ 24τ2R2 . (41)

Now, using the definition of Θ, we see that
(

ΘG 0
0 ΘF

)
� (1− Ccontr)

2 ·Θ

where

Ccontr :=

Ccvx

(Cmatrix)3

2
(
1 + Ccvx

(Cmatrix)3

) > 0 .

We then get

(1− Ccontr)
2

∥∥∥∥
(

z − x⋆

v −Kx⋆

)∥∥∥∥
2

Θ

+ 24τ2R2

≥ ‖z − x⋆‖2ΘG
+ ‖v −Kx⋆‖2ΘF

+ 24τ2R2

≥
∥∥x⋆z,v − x⋆

∥∥2
ΘG

+
∥∥Kx⋆z,v −Kx⋆

∥∥2
ΘF

+ 2Ccvx

∥∥x⋆z,v − x⋆
∥∥2
2

from (41)

≥
∥∥x⋆z,v − x⋆

∥∥2
ΘG

+
∥∥Kx⋆z,v −Kx⋆

∥∥2
ΘF

+ Ccvx

∥∥x⋆z,v − x⋆
∥∥2
2
+

Ccvx

(Cmatrix)2
∥∥Kx⋆z,v −Kx⋆

∥∥2
2

since ‖K‖ ≤ Cmatrix

≥
∥∥x⋆z,v − x⋆

∥∥2
ΘG+Ccvx/(Cmatrix)2·I

+
∥∥Kx⋆z,v −Kx⋆

∥∥2
ΘF+Ccvx/(Cmatrix)2·I

since Cmatrix ≥ 1

=

∥∥∥∥
(

x⋆z,v − x⋆

Kx⋆z,v −Kx⋆

)∥∥∥∥
2

Θ

.

Using the fact that
√
a+ b ≤ √

a+
√
b, we obtain

∥∥∥∥
(

x⋆z,v − x⋆

Kx⋆z,v −Kx⋆

)∥∥∥∥
Θ

≤ (1− Ccontr)

∥∥∥∥
(

z − x⋆

v −Kx⋆

)∥∥∥∥
Θ

+
√
24τR . (42)
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Next, by definition, we also have

w⋆
z,v ∈ ∂Fv(Kx⋆z,v) and w⋆ ∈ ∂FKx⋆(Kx⋆) .

This second expression can be rewritten as

w⋆ ∈ ∂Fv(Kx⋆) +∇(F− Fv)(Kx⋆)−∇(F− FKx⋆)(Kx⋆) = ∂Fv(Kx⋆) +∇(F− Fv)(Kx⋆) ,

where the last step uses the first-order condition (4) to see that ∇(F − FKx⋆)(Kx⋆) = 0.
Therefore,
∥∥w⋆

z,v − w⋆
∥∥
2
≤
∥∥∂Fv(Kx⋆)− ∂Fv(Kx⋆z,v)

∥∥
2
+ ‖∇(F− Fv)(Kx⋆)‖2

≤ CLip + Cgrad

∥∥Kx⋆z,v −Kx⋆
∥∥
2
+
√
‖ΘF‖ ‖v −Kx⋆‖ΘF

by Assumption 2

≤ CLip + CgradCmatrix

∥∥x⋆z,v − x⋆
∥∥
2
+
√

Cmatrix ‖v −Kx⋆‖ΘF
,

and so
∥∥∥∥
(

x⋆z,v − x⋆

w⋆
z,v − w⋆

)∥∥∥∥
2

≤ CLip + (1 + CgradCmatrix)
∥∥x⋆z,v − x⋆

∥∥
2
+
√

Cmatrix ‖v −Kx⋆‖ΘF

≤ CLip +
1 + CgradCmatrix√

Ccvx/Cmatrix

∥∥∥∥
(

x⋆z,v − x⋆

Kx⋆z,v −Kx⋆

)∥∥∥∥
Θ

+
√

Cmatrix ‖v −Kx⋆‖ΘF
since Θ � Ccvx

(Cmatrix)2
I

≤ CLip +
1 + CgradCmatrix√

Ccvx/Cmatrix

(
(1− Ccontr)

∥∥∥∥
(

z − x⋆

v −Kx⋆

)∥∥∥∥
Θ

+
√
24τR

)

+
√
Cmatrix

∥∥∥∥
(

z − x⋆

v −Kx⋆

)∥∥∥∥
Θ

,

where the last step applies (42) from above. Setting

Cexcess = max

{√
24,
√
Cmatrix + (1− Ccontr) ·

1 + CgradCmatrix√
Ccvx/Cmatrix

,
√
24 · 1 + CgradCmatrix√

Ccvx/Cmatrix

}
,

this is sufficient to prove the lemma.

A.2 Proof of Lemma 4

First we state and prove a supporting lemma which considers only a single step of the “inner
loop”.

Lemma 5 There exists a constant Cmonotone > 0, which depends only on Cmatrix, Ccvx, CLip,
Cgrad, such that, for any x, y, z with ‖x‖restrict ≤ R, if (x′, w′) = Stepz,v(x,w), then

Cmonotone

(
∥∥x′ − x⋆z,v

∥∥2
2
+

∥∥∥∥
(

x− x′

w − w′

)∥∥∥∥
2

2

)

≤
∥∥∥∥
(

x− x⋆z,v
w − w⋆

z,v

)∥∥∥∥
2

M

−
∥∥∥∥
(

x′ − x⋆z,v
w′ − w⋆

z,v

)∥∥∥∥
2

M

+ τ2R2 .
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Proof By definition of the (x,w) update step, we have

T−1(x− x′)−K⊤w ∈ ∂Gz(x
′) (43)

and

Σ−1(w − w′) +K(2x′ − x) ∈ ∂F∗v(w
′) ,

and from (33) we know that this last expression implies

w′ ∈ ∂Fv
(
Σ−1(w − w′) +K(2x′ − x)

)
. (44)

Similarly, by definition of (x⋆z,v, w
⋆
z,v), we also have

−K⊤w⋆
z,v ∈ ∂Gz(x

⋆
z,v) (45)

and

w⋆
z,v ∈ ∂Fv(Kx⋆z,v) . (46)

Therefore, combining these expressions, we have

〈( x′ − x⋆z,v
Σ−1(w − w′) +K(2x′ − x)−Kx⋆z,v

)
,

(
∂Gz(x

′)− ∂Gz(x
⋆
z,v)

∂Fv
(
K(2x′ − x) + Σ−1(w − w′)

)
− ∂Fv(Kx⋆z,v)

)〉

∋
〈( x′ − x⋆z,v

Σ−1(w − w′) +K(2x′ − x)−Kx⋆z,v

)
,

(
T−1(x− x′)−K⊤(w − w⋆

z,v)

w′ − w⋆
z,v

)〉

=
〈( x′ − x⋆z,v

w′ − w⋆
z,v

)
,

(
T−1(x− x′)−K⊤(w − w′)
Σ−1(w − w′)−K(x− x′)

)〉
by reorganizing terms

=

(
x′ − x⋆z,v
w′ − w⋆

z,v

)⊤
M

(
x− x′

w − w′

)
. (47)

As in Chambolle and Pock (2011) we can calculate

∣∣∣∣∣

(
x′ − x⋆z,v
w′ − w⋆

z,v

)⊤
M

(
x− x′

w − w′

)∣∣∣∣∣

=
1

2

∥∥∥∥
(

x− x⋆z,v
w − w⋆

z,v

)∥∥∥∥
2

M

− 1

2

∥∥∥∥
(

x′ − x⋆z,v
w′ − w⋆

z,v

)∥∥∥∥
2

M

− 1

2

∥∥∥∥
(

x− x′

w − w′

)∥∥∥∥
2

M

.
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On the other hand, by the convexity of Fv and Gz as stated in Assumption 2, we have

〈( x′ − x⋆z,v
Σ−1(w − w′) +K(2x′ − x)−Kx⋆z,v

)
,

(
∂Gz(x

′)− ∂Gz(x
⋆
z,v)

∂Fv
(
K(2x′ − x) + Σ−1(w − w′)

)
− ∂Fv(Kx⋆z,v)

)〉

≥
∥∥x′ − x⋆z,v

∥∥2
ΛG

+
∥∥Σ−1(w − w′) +K(2x′ − x)−Kx⋆z,v

∥∥2
ΛF

− τ2
∥∥x′ − x⋆z,v

∥∥2
restrict

≥
∥∥x′ − x⋆z,v

∥∥2
ΛG

+
1

2

∥∥Kx′ −Kx⋆z,v
∥∥2
ΛF

−
∥∥Σ−1(w − w′)−K(x− x′)

∥∥2
ΛF

− τ2
∥∥x′ − x⋆z,v

∥∥2
restrict

using the fact that (a+ b)2 ≥ 1

2
a2 − b2 for all a, b

≥ Ccvx

2

∥∥x′ − x⋆z,v
∥∥2
2
− 3τ2

2

∥∥x′ − x⋆z,v
∥∥2
restrict

−
∥∥Σ−1(w − w′)−K(x− x′)

∥∥2
ΛF

by Assumption 2

≥ Ccvx

2

∥∥x′ − x⋆z,v
∥∥2
2
− 3τ2

2

∥∥x′ − x⋆z,v
∥∥2
restrict

−
∥∥∥∥
(

x− x′

w − w′

)∥∥∥∥
2

M

·
∥∥M−1

∥∥ ‖ΛF‖ (
∥∥Σ−1

∥∥+ ‖K‖)

≥ Ccvx

2

∥∥x′ − x⋆z,v
∥∥2
2
− 6τ2R2 −

∥∥∥∥
(

x− x′

w − w′

)∥∥∥∥
2

M

· 2(Cmatrix)
3 ,

where the last step holds because ‖x′‖restrict ,
∥∥x⋆z,v

∥∥
restrict

≤ R, since x′ and x⋆z,v must both
lie in dom(G) = dom(Gz) by their definitions. Now, examining these calculations, we see
that the left-hand side must be nonnegative, so we can also write

〈( x′ − x⋆z,v
Σ−1(w − w′) +K(2x′ − x)−Kx⋆z,v

)
,

(
∂Gz(x

′)− ∂Gz(x
⋆
z,v)

∂Fv
(
K(2x′ − x) + Σ−1(w − w′)

)
− ∂Fv(Kx⋆z,v)

)〉

≥ c

(
Ccvx

2

∥∥x′ − x⋆z,v
∥∥2
2
− 6τ2R2 −

∥∥∥∥
(

x− x′

w − w′

)∥∥∥∥
2

M

· 2(Cmatrix)
3

)

for any c ∈ [0, 1]. Choosing c = 1
max{12,8Cmatrix} , we obtain

〈( x′ − x⋆z,v
Σ−1(w − w′) +K(2x′ − x)−Kx⋆z,v

)
,

(
∂Gz(x

′)− ∂Gz(x
⋆
z,v)

∂Fv
(
K(2x′ − x) + Σ−1(w − w′)

)
− ∂Fv(Kx⋆z,v)

)〉

≥ Ccvx

2max{12, 8Cmatrix}
∥∥x′ − x⋆z,v

∥∥2
2
− 1

2
τ2R2 − 1

4

∥∥∥∥
(

x− x′

w − w′

)∥∥∥∥
2

M

Combining all our work, then,

Ccvx

4max{12, 8Cmatrix}
∥∥x′ − x⋆z,v

∥∥2
2

≤
∥∥∥∥
(

x− x⋆z,v
w − w⋆

z,v

)∥∥∥∥
2

M

−
∥∥∥∥
(

x′ − x⋆z,v
w′ − w⋆

z,v

)∥∥∥∥
2

M

− 1

2

∥∥∥∥
(

x− x′

w − w′

)∥∥∥∥
2

M

+ τ2R2 .

Setting Cmonotone = min
{

1
2Cmatrix

, Ccvx

4max{12,8Cmatrix}

}
, we have proved the lemma.

45



Barber and Sidky

Now we turn to the proof of Lemma 4. By Lemma 5, for each ℓ = 1, . . . , L, we have

Cmonotone

(∥∥∥x(ℓ) − x⋆z,v

∥∥∥
2

2
+

∥∥∥∥
(

x(ℓ−1) − x(ℓ)

w(ℓ−1) − w(ℓ)

)∥∥∥∥
2

2

)

≤
∥∥∥∥
(

x(ℓ−1) − x⋆z,v
w(ℓ−1) − w⋆

z,v

)∥∥∥∥
2

M

−
∥∥∥∥
(

x(ℓ) − x⋆z,v
w(ℓ) − w⋆

z,v

)∥∥∥∥
2

M

+ τ2R2 .

Summing this inequality over ℓ = 1, . . . , L, taking a telescoping sum on the right-hand side,
and dividing by L, we have

Cmonotone

L

L∑

ℓ=1

(∥∥∥x(ℓ) − x⋆z,v

∥∥∥
2

2
+

∥∥∥∥
(

x(ℓ−1) − x(ℓ)

w(ℓ−1) − w(ℓ)

)∥∥∥∥
2

2

)
≤ 1

L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

M

+ τ2R2 .

Next, by convexity of w 7→ ‖w‖22, we have

∥∥x̃− x⋆z,v
∥∥2
2
≤ 1

L

L∑

ℓ=1

∥∥∥x(ℓ) − x⋆z,v

∥∥∥
2

2

and ∥∥∥∥
1

L

(
x(0) − x(L)

w(0) − w(L)

)∥∥∥∥
2

2

≤ 1

L

L∑

ℓ=1

∥∥∥∥
(

x(ℓ−1) − x(ℓ)

w(ℓ−1) − w(ℓ)

)∥∥∥∥
2

2

.

So,

Cmonotone

(
∥∥x̃− x⋆z,v

∥∥2
2
+

∥∥∥∥
1

L

(
x(0) − x(L)

w(0) − w(L)

)∥∥∥∥
2

2

)
≤ 1

L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

M

+ τ2R2 .

Next, by definition of z̃, ṽ, we can write

∥∥∥∥
(

z̃ − x⋆z,v
ṽ −Kx⋆z,v

)∥∥∥∥
Θ

≤
∥∥∥∥
(

x̃− x⋆z,v
Kx̃−Kx⋆z,v

)∥∥∥∥
Θ

+

∥∥∥∥
1

L

(
0

Σ−1(w(0) − w(L)) +K(x(L) − x(0))

)∥∥∥∥
Θ

and so,

∥∥∥∥
(

z̃ − x⋆z,v
ṽ −Kx⋆z,v

)∥∥∥∥
2

Θ

≤ ‖Θ‖ (1 + 2 ‖K‖+
∥∥Σ−1

∥∥)2
(
∥∥x̃− x⋆z,v

∥∥2
2
+

∥∥∥∥
1

L

(
x(0) − x(L)

w(0) − w(L)

)∥∥∥∥
2

2

)

≤ ‖Θ‖ (1 + 2 ‖K‖+
∥∥Σ−1

∥∥)2
Cmonotone

(
1

L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

M

+ τ2R2

)

≤ Cmatrix(1 + 3Cmatrix)
2

Cmonotone

(
1

L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

M

+ τ2R2

)
.
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Finally, for each ℓ, by definition of the step,

w(ℓ) ∈ ∂Fv

(
Σ−1(w(ℓ−1) − w(ℓ)) +Kx̄(ℓ)

)

while

w⋆
z,v ∈ ∂Fv(Kx⋆z,v) .

Therefore, by Assumption 2,

∥∥∥w(ℓ) − w⋆
z,v

∥∥∥
2
≤ CLip + Cgrad

∥∥∥Σ−1(w(ℓ−1) − w(ℓ)) +Kx̄(ℓ) −Kx⋆z,v

∥∥∥
2
.

By convexity, then,

∥∥w̃ − w⋆
z,v

∥∥
2

≤ 1

L

L∑

ℓ=1

(
CLip + Cgrad

∥∥∥Σ−1(w(ℓ−1) − w(ℓ)) +Kx̄(ℓ) −Kx⋆z,v

∥∥∥
2

)

≤ CLip + Cgrad(‖K‖+
∥∥Σ−1

∥∥)

√√√√ 1

L

L∑

ℓ=1

∥∥x(ℓ) − x⋆z,v
∥∥2
2
+

∥∥∥∥
(

x(ℓ−1) − x(ℓ)

w(ℓ−1) − w(ℓ)

)∥∥∥∥
2

2

≤ CLip + Cgrad(‖K‖+
∥∥Σ−1

∥∥)

√√√√ 1

Cmonotone

(
1

L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

M

+ τ2R2

)

≤ CLip +
Cgrad(‖K‖+

∥∥Σ−1
∥∥)

Cmonotone

(
1√
L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
M

+ τR

)
.

Combining everything, this proves that

∥∥∥∥
(

x̃− x⋆z,v
w̃ − w⋆

z,v

)∥∥∥∥
2

≤ CLip +
1 + Cgrad(‖K‖+

∥∥Σ−1
∥∥)

Cmonotone

(
1√
L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
M

+ τR

)

≤ CLip +max{1,
√
‖M‖}1 + Cgrad(‖K‖+

∥∥Σ−1
∥∥)

Cmonotone

(
1√
L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

+ τR

)

≤ CLip +max{1,
√

Cmatrix}
1 + 2CgradCmatrix

Cmonotone

(
1√
L

∥∥∥∥
(

x(0) − x⋆z,v
w(0) − w⋆

z,v

)∥∥∥∥
2

+ τR

)
.

Finally, defining

Citer = max





√
Cmatrix(1 + 3Cmatrix)2

Cmonotone

,max{1,
√

Cmatrix}
1 + 2CgradCmatrix

Cmonotone



 ,

we have proved the lemma.
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