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Abstract. It is proved that, for a number field K and a prime number p,
there exist only finitely many isomorphism classes of continuous semisimple
Galois representations of K into GLd(Fp) of fixed dimension d and bounded
Artin conductor outside p which have solvable images. Some auxiliary results
are also proved.

0. Introduction

Let K be an algebraic number field of finite degree over Q, and let GK be its
absolute Galois group Gal(K/K). Let Fp be an algebraic closure of the finite field
Fp of p elements. In [9], one of the authors proposed to study the following:

Problem. Fix an integer d ≥ 1 and a nonzero integral ideal N of K. Then do
there exist only finitely many isomorphism classes of continuous semisimple rep-
resentations ρ : GK −→ GLd(Fp) whose Artin conductor N(ρ) outside p divides
N?

This problem has been motivated by a conjecture of Serre ([12]), which im-
plies the finiteness of isomorphism classes of odd and irreducible representations
ρ : GQ → GL2(Fp). Recent work of Ash and Sinnott ([2]) is also in favor of an
affirmative answer to the problem in certain cases for higher d and K = Q. For
more discussions on this problem, we refer the reader to §4 of [9].

In this paper, we give some further remarks concerning the problem. First, we
recall in §1 that the finiteness statement holds true for classical Artin representa-
tions ([1]), i.e., if we replace Fp by the complex number field C and N(ρ) by the
usual Artin conductor. Second, it is also true if we restrict to those ρ’s with solvable
images (§2). In these cases, keys in the proofs are the finiteness of ideal class groups
(or global class field theory) and the Hermite-Minkowski theorem. This suggests
us to view the above problem, if answered affirmatively, as a generalization of these
two. Third, we show in §3 that the problem is reduced to a special case in which the
image of ρ is a finite simple group of Lie type in characteristic p. This is based on
a theorem of Larsen and Pink ([8]) on the structure of finite subgroups of GLd(Fp).
Finally in §4, we explain that these results also hold for function fields K over a
finite field under a reasonable condition that there are no constant field extensions.

Thus in this paper, we use Artin conductors in three different contexts, which
are all denoted N(ρ); we hope this causes no confusion.
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1. The classical case

Let V be a d-dimensional C-vector space. For a continuous representation ρ :
GK −→ GLC(V ) ' GLd(C) (where GLC(V ) is endowed with the discrete topology),
we define its Artin conductor N(ρ) as follows (cf. [11], Chap. VI): choose a finite
Galois extension L/K such that ρ factors through Gal(L/K) and define

N(ρ) :=
∏
q

q
n(q,ρ),(*)

where q runs through the nonzero prime ideals of K and, for each q,

n(q, ρ) :=
∞∑
i=0

1
(G0 : Gi)

dimC(V/V Gi),

where V Gi is the fixed part of V by the ith ramification subgroup Gi of the decom-
position group of a prime of L lying above q. The exponent n(q, ρ) may be defined
also as the inner product of ρ with the Artin representation of G. It is an integer
which does not depend on our choice of L/K. We have n(q, ρ) > 0 if and only if ρ
ramifies at q.

Theorem 1. Given an integer d ≥ 1 and a nonzero integral ideal N of K, there ex-
ist only finitely many isomorphism classes of continuous representations ρ : GK −→
GLC(V ) with N(ρ) dividing N.

This is proved in [1] as a corollary to their finiteness theorem for representations
of the Weil group with bounded conductor (it is mentioned there that the above
Theorem had been obtained also by R. Greenberg). The proof consists in the
combination of Jordan’s theorem ([13], Chap. VI, §24, Th. 3) on the structure of
finite subgroups of GLd(C), the Hermite-Minkowski theorem on discriminants, and
class field theory (finiteness of abelian extensions of bounded conductor).

2. Solvable image case

Let p be a prime number. In this section, we consider Galois representations into
GLd(Fp). For a continuous representation ρ : GK −→ GLd(Fp), we define its Artin
conductor outside p, called also N(ρ), by the same formula as in (*) but with the
product over only those q’s which do not divide p. It has similar properties as the
N(ρ) in §1 except that, in the positive characteristic case, the exponent n(q, ρ) may
not coincide with the inner product of ρ with the Artin representation (cf. [14]).

Theorem 2. Given an integer d ≥ 1 and a nonzero integral ideal N of K, there ex-
ist only finitely many isomorphism classes of continuous semisimple representations
ρ : GK −→ GLd(Fp) with solvable image and with N(ρ) dividing N.

Proof. By the assumption of semisimplicity together with Lemma 3.2 of [9], it is
enough to show that there are only finitely many possibilities of Galois extensions
L/K which may correspond to the kernel of a representation ρ as in the Theorem.
So suppose L/K is such a Galois extension.

By a theorem of Mal’cev and Kolchin ([13], Chap. V, §19, Th. 7), there exists an
integer J(d), depending only on d, such that any solvable subgroup G of GLd(Fp)
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contains a normal subgroup N with (G : N) ≤ J(d) which is conjugate to a
subgroup of the group of upper triangular matrices. Apply this to G = Gal(L/K).
Then the extension K ′/K corresponding to N is unramified outside Np and [K ′ :
K] ≤ J(d). By Hermite-Minkowski, there exist only finitely many such K ′/K.

Let N1 be the p-Sylow subgroup of N . Then N1 is normal in N , and the quotient
N/N1 is abelian of order prime to p. Let K ′′/K ′ be the extension which corresponds
to N1. It is an abelian extension unramified outside Np. More precisely, it is at
most tamely ramified at primes above p and, outside p, its conductor is bounded
by NOK′ . It follows from class field theory that there exist only finitely many such
K ′′/K ′.

As explained in §3 of [9], the p-group N1 has a filtration of finite length (≤
[log2(d−1)]+1) such that each of the successive quotients is elementary abelian. It is
enough to show, for each step, the finiteness of the possibilities of the corresponding
field extensions. By induction on the length, we may assume N1 = Gal(L/K ′′) itself
is elementary abelian. Then the exponent of the conductor of L/K ′′ at each prime
above p is bounded as in the proof of Lemma 2.1 of [9]. Outside p, the extension
L/K ′′ is at most tamely ramified. By class field theory, there are only finitely many
such extensions.

3. Reduction to a special case

In this section, we show that our problem can be reduced to a special case
in which Im(ρ) is a finite simple group of Lie type, by using a general theorem of
Larsen and Pink on finite subgroups of GLd(Fp). In what follows, we mean by finite
simple group of Lie type in characteristic p a group of the form (GF )der, where G
is an adjoint connected simple linear algebraic group over Fp, F is a Frobenius
endomorphism of G, GF is the subgroup of G(Fp) consisting of the points fixed
by F and, for any group G, we denote by Gder its derived group [G,G]. Such a
group is indeed simple (cf. [3, §11.1, §14.4], [4, §2.9] and [8, §3]). Also, for a finite
extension L/K, we denote by D̃L/K the prime-to-p part of the different of L/K.

Proposition 3. The following statements are equivalent, in which K is an alge-
braic number field of finite degree, d is an integer ≥ 1, and N is a nonzero integral
ideal of K:

(1) For any K, d and N, there exist only finitely many isomorphism classes of
continuous semisimple representations ρ : GK −→ GLd(Fp) such that N(ρ)|N.

(1)′ For any K, d and N, there exist only finitely many finite Galois exten-
sions L/K such that D̃L/K |NOL and Gal(L/K) can be embedded semisimply into
GLd(Fp).

(2) For any K, d and N, there exist only finitely many isomorphism classes of
continuous semisimple representations ρ : GK −→ GLd(Fp) such that N(ρ)|N and
Im(ρ) is a finite simple group of Lie type in characteristic p.

(2)′ For any K, N and an adjoint connected simple linear algebraic group G over
Fp, there exist only finitely many Galois extensions L/K such that D̃L/K |NOL and
Gal(L/K) is a finite simple group of Lie type arising from G.

Note that, in these statements, the finiteness is equivalent to the nonexistence
of such ρ (resp. L/K) with large enough | Im(ρ)| (resp. [L : K]).
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Proof. The implication (1)′ ⇒ (2)′ follows from the following:

Lemma 3.1. If G is as in (2)′, there exists an integer d ≥ 1 such that there exists
a semisimple embedding (GF )der ↪→ GLd(Fp) for any Frobenius endomorphism F
of G.

Proof. For some d ≥ 1, one can find a closed embedding G ↪→ GLd of algebraic
groups over Fp, which yields an injective homomorphism (GF )der ↪→ GLd(Fp) for
each F . Its semisimplification remains injective, since (GF )der is simple (and 6'
Z/pZ).

To show (1) ⇔ (1)′ and (2) ⇔ (2)′, we first consider the relation between the
different, conductor and upper break in the local case. Let F be a complete discrete
valuation field with perfect residue field of characteristic `, and let E/F be a finite
Galois extension with Galois group G. Let DE/F be the different of E/F . For a
representation ρ : G −→ GLFp(V ), define n(ρ) :=

∑
i≥0(G0 : Gi)−1 dimV/V Gi ,

where Gi is the ith ramification subgroup of G. We denote by υF the normalized
valuation of F .

Lemma 3.2. Assume E/F has ramification index e ≥ 2. Put c := min(`, e).
Then:

(i) n(ρ) ≤ (1− 1/c)−1 dim(ρ)υF (DE/F ).
(ii) If ρ is faithful, one has: υF (DE/F ) ≤ n(ρ).

Proof. In fact, we show more precisely the following: let uE/F be the largest real
number u such that Gu−1 6= 1, where Gu is the uth ramification group in the upper
numbering. Then one has:

(o) υF (DE/F ) ≤ uE/F ≤ (1− 1/c)−1υF (DE/F ),
(i)′ n(ρ) ≤ dim(ρ)uE/F ,
(ii)′ if ρ is faithful, one has uE/F ≤ n(ρ).
Indeed, if jE/F denotes the largest integer i such that Gi 6= 1, then one has

uE/F =
∑jE/F

i=0 (G0 : Gi)−1 (cf. [5], §1), from which (i)′ follows. If ρ is faithful, then
dimV/V Gi ≥ 1 as long as Gi 6= 1, whence (ii)′. To show (o), recall that (loc. cit.)

υF (DE/F ) = uE/F − iE/F ,

where iE/F := (jE/F + 1)/e. The two numbers iE/F and uE/F are related by
iE/F =

∫ uE/F
0 (Gex−1 : 1)−1dx (loc. cit.). Hence iE/F ≤ c−1uE/F , and we obtain

(o).

Now we turn to the global case to show (1) ⇔ (1)′ and (2) ⇔ (2)′. This is
basically because a fixed finite group has only finitely many semisimple represen-
tations (up to isomorphism) into GLd(Fp) (cf. Lemma 3.2 of [9]). Then the first
equivalence relation follows from Lemma 3.2 above. To show (2) ⇔ (2)′, we have
to be more careful; use Lemma 3.1 for (2) ⇒ (2)′ and, for the converse, note that
([9], §12, Proof of Th. 0.2) there exist a finite number of simple algebraic groups G
from which arise all finite simple subgroups of GLd(Fp) of Lie type in characteristic
p.

Finally, we shall show (2)′ ⇒ (1)′. Suppose we are given a finite Galois extension
L/K as in (1)′ and set G = Gal(L/K). According to Theorem 0.2 of [8], there exists
an integer J(d), depending only on d, such that any finite subgroup G of GLd(Fp)
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has a filtration G ⊃ G1 ⊃ G2 ⊃ G3 by normal subgroups Gi of G such that:
– (G : G1) ≤ J(d),
– G1/G2 is a direct product of finite simple groups of Lie type in characteristic

p, and the number of direct factors is bounded uniformly in d,
– G2/G3 is abelian of order prime to p,
– G3 is a p-group.
As in §2, the first step, G/G1, is taken care of by the Hermite-Minkowski theorem;

the third, G2/G3, by class field theory; the last, G3, by finding a filtration of
bounded length and applying class field theory to each of the steps. Thus the
finiteness in (1)′ is reduced to that in (2)′, since the different of L/K bounds that
of the extension K2/K1 corresponding to G1/G2.

To conclude this section, it is tempting to conjecture that the statement (2)′

could be strengthened somewhat; to have the finiteness as in (2)′, do we need only
to fix a finite set S of places of K outside which the extensions L/K are unramified?
Even stronger: do there exist only finitely many finite Galois extensions which are
unramified outside S and have simple Galois groups? In the function field case, the
last question is answered in the negative; there exists an algebraic function field
over a finite field which has an infinite unramified regular Galois extension with
Galois group of the form

∏
pi

PSL(d,Fpi), where pi runs through an infinite set of
prime numbers ([6], Cor. 4.11). Can one construct such an example in which the
Galois group is an infinite product of, say, PSL(d,Fq)’s with various powers q of a
fixed prime p?

4. Supplements for the function field case

In this section, we explain that, with suitable modifications, all the above holds
true also in the function field case. Let K be an algebraic function field in one
variable over a finite field, and let GK be its absolute Galois group. Let k be either
C or Fp, and consider continuous representations ρ : GK → GLd(k). For such a
ρ, define its Artin conductor N(ρ) by the same formula (*) in §1 (regardless of
char(k)):

N(ρ) :=
∏
q

q
n(q,ρ),

where q runs through all the prime divisors of K. We say that a finite extension
L/K is geometric if there is no constant field extension, and that a representation
ρ of GK is geometric if so is the extension L/K corresponding to Ker(ρ). Then we
have analogous results to those in the previous sections if we restrict ourselves to
geometric objects:

Theorem 4. Suppose we are given an integer d ≥ 1 and an effective divisor N of
K.

(i) There exist only finitely many isomorphism classes of continuous geometric
representations ρ : GK → GLd(C) with N(ρ)|N.

(ii) There exist only finitely many isomorphism classes of continuous semisimple
geometric representations ρ : GK → GLd(Fp) with solvable image and with N(ρ)|N.
(Here, char(K) may coincide with p.)

Furthermore, the “geometric version” of Proposition 3 for function fields is true.
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The proof is basically identical with the number field case; some points to be
noted are:

(a) We have the following analogue of the Hermite-Minkowski theorem (cf. [7],
Th. 8.23.5): For any n ≥ 1 and a divisor d of K, there exist only finitely many
extensions L/K with degree ≤ n and discriminant dL/K |d.

(b) The intermediate field extensions K ′/K which appeared in the proofs of
Theorems 1 and 2 have discriminants bounded in terms of N(ρ). This follows from
Lemma 3.2.

(c) By class field theory, there exist only finitely many geometric abelian ex-
tensions of bounded conductor (these are governed by a finite group of the form
K1
A/(K

× ·
∏
v U

nv
v ), where K1

A is the norm-one subgroup of the idele group of K
and Unvv is the group of local units at the place v which are congruent to 1 modulo
the nvth power of the maximal ideal at v; cf. also [10]).
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