
Genes Genet. Syst. (2009) 84, p. 385 –395

MODA: An efficient algorithm for network motif

discovery in biological networks

Saeed Omidi1, Falk Schreiber 2,3 and Ali Masoudi-Nejad1*

1Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and

Biophysics and Center of Excellence in Biomathematics, University of Tehran, Iran
2Institute of Computer Science, Martin Luther University Halle-Wittenberg,

Halle, Germany
3Leibniz Institute of Plant Genetics and Crop Plant Research (IPK),

Gatersleben, Germany

(Received 20 August 2009, accepted 4 December 2009)

In recent years, interest has been growing in the study of complex networks.
Since Erdös and Rényi (1960) proposed their random graph model about 50 years
ago, many researchers have investigated and shaped this field. Many indicators
have been proposed to assess the global features of networks. Recently, an active
research area has developed in studying local features named motifs as the build-
ing blocks of networks. Unfortunately, network motif discovery is a computation-
ally hard problem and finding rather large motifs (larger than 8 nodes) by means
of current algorithms is impractical as it demands too much computational
effort. In this paper, we present a new algorithm (MODA) that incorporates tech-
niques such as a pattern growth approach for extracting larger motifs efficiently.
We have tested our algorithm and found it able to identify larger motifs with more
than 8 nodes more efficiently than most of the current state-of-the-art motif dis-
covery algorithms. While most of the algorithms rely on induced subgraphs as
motifs of the networks, MODA is able to extract both induced and non-induced
subgraphs simultaneously. The MODA source code is freely available at: http://
LBB.ut.ac.ir/Download/LBBsoft/MODA/

Key words: real-world complex networks, network motifs, subgraph isomor-
phism, induced and non-induced subgraphs, subgraph sampling, pattern growth
approach

INTRODUCTION

In the last few years there has been great interest in

the study of complex networks including the World Wide

Web (Faloutsos et al., 1999; Bornholdt and Schuster,

2003), biological networks (Middendorf et al., 2005), met-

abolic pathways (Ouzounis and Karp, 2000; Kanehisa et

al., 2008; Masoudi-Nejad et al., 2007), food webs (Dunne

et al., 2002) and many other kind of networks. Properties

such as small-world effect (Amaral et al., 2000; Watts and

Strogatz, 1998), long tailed decay or power-law degree

distribution (Barabási and Albert, 1999), clustering coef-

ficient, or degree correlation (Vázquez, 2002), that char-

acterize the large-scale features of complex networks

have been identified and widely investigated. Many

real-world networks obey a long-tailed degree sequence,

often described as a power-law distribution P (k)~ck–γ,

where γ is called the scaling exponent of the power-law

distribution. Networks that follow the power-law degree

distributions are called scale-free (Amaral et al., 2000).

One of the most interesting areas in investigation of

complex networks is exploring local structures of net-

works and finding mutual relations of these local to global

properties (Vázquez et al., 2004; Mangan and Alon,

2003). There are basic local interaction patterns or net-

work modules that recurring through different kinds of

networks more often than in randomized versions of such

networks. These patterns are known as network motifs

and were first proposed as simple building blocks of com-

plex networks by Milo et al. (2002). Network motifs

were originally defined as statistically significant over-

represented patterns of local interconnections in complex

networks (Alon, 2007). In the case of biological net-

works, these structures have often been shaped during

evolution.

Various aspects of network motifs have been analyzed

so far. Vázquez et al. (2004) showed that the global net-
Edited by Takashi Endo

* Corresponding author. E-mail: amasoudin@ibb.ut.ac.ir

386 S. OMIDI et al.

work features, for instance clustering coefficient, influ-

ence local features such as the abundance of certain

subgraphs. Itzkovitz et al. (2003) also demonstrated

that the topology of subgraphs affect the value of scaling

exponent in scale-free networks via the subgraph maxi-

mal degree. In this manner, long-tailed decay of degree

distribution indicates the existence of high degree nodes

or hubs in scale-free networks, and it has empirically

shown that many subgraphs aggregate around hubs

(Vázquez et al., 2004). Therefore, a network’s large scale

features and local structure mutually define and prede-

termine each other. As a result, for an empirical study

of theories about large scale features and local structures

such as network motifs, it is highly desirable to have effi-

cient tools.

Network motifs have a range of applications: classifying

networks into superfamilies (Middendorf et al., 2005),

determining the most appropriate network model and

verifying parsimony models of phylogeny (Przytycka,

2006), and bringing about new insights in gene regulation

(Tsang et al., 2007) are just some cases. However, all of

these applications have been handicapped by the small

size of motifs of up to eight nodes (Baskerville and

Paczuski, 2006). In fact, finding motifs larger than eight

nodes is very difficult with existing tools and the size lim-

itation leaves many fundamental questions unanswered.

Some of these problems are: Do motifs appear indepen-

dently, or do they combine to form larger organized struc-

tures? How do these network motifs combine to form the

global structure of the networks? Are collections of

nodes that participate in motifs of larger sizes also more

likely to be related to function and/or be conserved

through evolutionary history?

Despite of the fact that the existing algorithms for

detecting network motifs are not scalable enough to find

large network motifs, it would be valuable to design effi-

cient tools for discovering motifs in arbitrary networks.

The underlying problem of enumerating subgraph

appearances within a network is computationally hard.

With growing subgraph size, the time and memory for

determining isomorphic subgraphs increase in an expo-

nential manner and the number of non-isomorphic candi-

date motifs increases exponentially with the size of the

motifs (Inokuchi et al., 2000; Kuramochi and Karypis,

2004). Secondly, it is possible to find multiple redundant

mappings from a symmetric query subgraph’s nodes to

the same network’s nodes (Grochow and Kellis, 2007); as

a result, one subgraph may be overcounted in a network

several times which wastes computational resources like

CPU time. Thirdly, motifs have to be computed not only

in the network itself but also in a sufficient number of

randomized networks with some identical properties to

the original network to yield a statistically meaningful

result, which imposes the extra computational cost for

evaluating subgraphs in each random network. Finally,

real world networks are often too large (around thousands

nodes or even more) and hence dealing with these huge

networks, as well as a number of huge random networks

of the same size, makes the task more difficult. In con-

sideration of the above challenges, designing an algo-

rithm to handle this diversity of problems is a formidable

task.

Here we present a new algorithm for network motif dis-

covery using pattern growth approach called MODA (net-

work MOtif Discovery Algorithm). MODA can compute

both induced and non-induced frequent subgraphs as

network motifs. The algorithm was implemented in C#.

Net. We have tested and compared our algorithm to

existing state-of-the-art motif discovery algorithms

(Grochow and Kellis, 2007; Milo et al., 2002; Schreiber

and Schwöbbermeyer, 2005a; Wernicke, 2006) and can

show here the advantages of this approach. In this

article, we aim to briefly elucidate the main idea and

design principles of the algorithm and therefore will not

go into details such as the Null-model, which has been

particularly discussed previously.

Previous work The first algorithm for network motif

discovery was an exhaustive enumeration of subgraphs in

a network (Milo et al., 2002), counting all appearances of

all subgraphs of a given size. This approach, however,

was not usable with subgraphs larger than five nodes.

Another method was introduced by Grochow and Kellis

(2007), incorporating an algebraic technique that pre-

vents overcounting for a given subgraph. Their method

called symmetry-breaking condition can be useful espe-

cially for large symmetric motifs, because some kinds of

graphs such as stars have many symmetries and compu-

tational cost increases drastically (for a star graph with

n nodes there are (n – 1)! symmetries). For large sub-

graphs, exhaustive enumerating needs a huge amount of

time. On the other hand, when a particular subgraph is

exhaustively enumerated we obtain the exact number of

occurrences of that subgraph in the network.

Kashtan et al. (2004) introduced a sampling approach

to extract network motifs faster than exhaustive search

algorithms. Computational time of this method is asymp-

totically independent of network size. Although their

algorithm leads to finding larger motifs in reasonable

time, it suffers from biased sampling; consequently, it is

unable to predict the exact number of motifs impartially.

Wernicke (2006) proposed a very fast algorithm called

FANMOD, which can be used to detect network motifs up

to a size of eight nodes in directed and undirected net-

works. This algorithm overcomes Kashtan et al. (2004)

sampling method’s shortcoming through a new method

for sampling that leads to unbiased sampling. Despite of

the fact that this algorithm only extracts induced sub-

graphs in the network, it disregards non-induced ones.

Another tool for network analysis such as network motif

387Network motif discovery for biological networks

discovery and network visualization is MAVisto

(Schreiber and Schwöbbermeyer, 2005a), which imple-

ments the FPF algorithm (Schreiber and Schwöbberm-

eyer, 2005b). A recently introduced algorithm that is

able to calculate exactly subgraph appearances of a given

size is Kavosh (Razaghi Moghadam Kashani et al.,

2009). Kavosh finds every subgraph of size k which a

particular node participates in. After that, it removes

that node and continues by selecting another node until

all of the nodes in the network are removed. Kavosh

uses a novel technique for counting subgraph appear-

ances that is based on discrete mathematics approach.

Data mining methods, which could be used for network

motif discovery, are Apriori-based and pattern growth

approaches. Apriori-based methods were originally used

for frequent pattern mining in a data mining context.

Frequent item set mining or market basket prediction

was proposed by Agrawal and Srikant (1994) in a trans-

actional database. The idea could be used for mining fre-

quent subgraphs in a database or collection of graphs.

Motif discovery and frequent subgraph mining have

common challenges. Subgraph isomorphism as an NP-

complete problem is the most important of these chal-

lenges as the computation cost for subgraph isomorphism

grows exponentially with increasing size of the subgraph.

In the frequent subgraph mining problem, the frequency

of a subgraph is determined by the number of global

graphs in the collection of graphs that the subgraph

appears in, regardless of whether the subgraph appears

many times within a particular graph. Although, this

problem differs from network motif discovery and is com-

putationally easier than motif discovery, both problems

are related.

Pattern growth methods are based on an extension

mechanism such as adding a new edge to a graph; the

extension mechanism refers to a general term of extend-

ing a pattern by size one that may lead to a new larger

pattern. SPIN (Huan et al., 2004) is a pattern growth

algorithm for mining maximal frequent subgraphs by

generating the frequent substructures hierarchically in

two steps: starting from trees, and then extending fre-

quent trees to graphs edge by edge. On the other hand,

Apriori-based methods (Agrawal and Srikant, 1994) rely

on a join operation that joins two (or more) patterns to

generate a new pattern. Chen et al. (2006) exploited the

Apriori property for network motif discovery (see also

Ciriello and Guerra, 2008). However, their method has

some shortcomings; for example, generating cousins is

ambiguous and it is possible to find redundant subgraphs

such as several isomorphic subgraphs. Their algorithm

is named NeMoFinder.

Here we present a new algorithm for network motif dis-

covery that utilizes the pattern growth approach by start-

ing from k-size trees (the simplest form of a connected

subgraph) and then extending these trees step by step

until a complete graph with k nodes is built. The pattern

growth approach helps us to systematically reduce a great

number of subgraph isomorphism instances during run-

ning time. In order to increase the efficiency of our algo-

rithm, we also exploit sampling throughout the network

through a probability distribution that is derived from the

degree distribution of the original network’s nodes, which

increases the speed of our algorithm more than ten times.

We also use symmetry-breaking conditions to avoid the

overcounting of subgraphs.

MATERIALS AND METODS

Definitions In this paper, G = (V, E) indicates an

undirected graph where V is a finite set of nodes (vertices),

|V|= n is the graph size and E is the edge set of the graph

which satisfies E ⊆ V × V. An edge e = 〈u, v〉 ∈ E is

incident to nodes u and v and we call u and v adjacent

nodes. Corresponding adjacency matrix A of G is a n ×

n matrix, with each entry ai, j = 1 if vertices vi and vj are

adjacent; otherwise ai, j = 0. Each node v ∈ V has degree

kv that indicates the number of edges that are incident to

v. A path between two nodes u, v ∈ V is a sequence of

nodes such that each node in the sequence is adjacent to

its immediately next and previous nodes in the sequence

and the sequence is started by u and ended by v. A

graph is called connected if there is a path between any

pair of nodes u, v ∈ V. A connected graph with n nodes

is a tree if and only if it has n – 1 edges. If all nodes of

G are pairwise adjacent, then G is called a complete

graph. A complete graph with n nodes has n(n – 1)/2

edges (Diestel, 2005).

Let G = (V, E) and G = (V, E) be two graphs. Graph

G is a subgraph of graph G if V ⊆ V and E ⊆ E ∩ (V ' ×

V '); accordingly, graph G is a supergraph of G '. We will

show the subgraph relationship by G ⊆ G. By this defi-

nition, each graph is also a subgraph of itself.

We call G ' and G isomorphic shown by G'~G, if there

exists a bijection (one-to-one and onto) f : V '→V with 〈u, v〉
∈ E' ⇔ 〈 f (u), f (v)〉 ∈ E for all u, v ∈ V '. Such a mapping

f is called a graph isomorphism. Note that an isomor-

phic relation between two graphs G and G' implies |V|=

|V '|. An automorphism of a graph is a graph isomor-

phism relationship from the graph to itself.

If there exists an injective (one-to-one only) h: V '→V

and both V ' ⊆ V and 〈u, v〉 ∈ E ⇔ 〈h(u), h(v)〉 ∈ E are held,

this mapping represents an appearance (or occurrence) of

G' in G. Such a mapping h is called subgraph

isomorphism from G' into G. In other words, mapping h

represents an isomorphic relation between G' and a sub-

graph of G.

The number of appearances of graph G' in G is called

frequency of G' in G and is the total number of distinct

subgraph isomorphism mappings from G' to G. Note

that there are three different concepts F1, F2 and F3 of fre-

388 S. OMIDI et al.

quency (Schreiber and Schwöbbermeyer, 2005b). The

first frequency concept F1 relates to all mappings of a sub-

graph in the original network; this definition is similar to

the one we have discussed and here we only refer to this

frequency concept. The second concept F2 consists of all

mappings which are edge disjoint (two sets A and B are

called disjoint whenever A ∩ B = ø). Finally, the fre-

quency concept F3 entails all mappings that are edge and

node disjoint. Therefore, as Fig. 1 shows two frequency

concepts F2 and F3 restrict the usage of elements of the

graph. Here, a graph is called frequent in G, when its

frequency (frequency concept F1) is higher than a pre-

defined threshold value Δ.

A randomized version R of graph G as Null-model is a

random graph with some similar properties to G, e.g.,

same degree distribution of the nodes in G (Ciriello and

Guerra, 2008). There is an ensemble Ω(G) of random

graphs corresponding to G. We should choose N (a pre-

defined value) random graphs uniformly from Ω(G) and

calculate the frequency for a particular frequent subgraph

G in G. If the frequency of G in G is higher than its aver-

age frequency in the N random graphs Ri (Vi , Ei), where

1 ≤ i ≤ N, then we treat G as a network motif for G.

The algorithm Our algorithm uses a pattern growth

approach (Schreiber and Schwöbbermeyer, 2005b). At

each step, the algorithm takes one graph as a query graph

and tries to find the frequency (number of appearances)

of the query graph in the given network. To calculate

the frequency of a particular query graph, we should take

into account the structure of the query graph. If the cur-

rent query graph is a supergraph of a previous query

graph, we can exploit information about the mappings of

the previous query graph. As a result, as long as exist-

ing information from formerly found mappings is main-

tained we can easily calculate the frequency of each graph

(with the exception of trees as we will show), and hence

reduce computation time. Therefore, we should incorpo-

rate an appropriate hierarchical organization into the

algorithm for each graph size. We use a concept named

expansion trees Tk for each 9 ≥ k ≥ 3 that prepares, to pre-

pare a hierarchical structure in the algorithm. Note that

this concept is slightly similar to the pattern tree intro-

duced by Schreiber and Schwöbbermeyer (2005b) in that

they used this concept for all graph sizes. Contrary to

the pattern tree which works well for frequency concepts

F2 and F3, the expansion tree is applicable to the fre-

quency concept F1.

Tk is like an atlas to steer the running process of the

algorithm. The expansion tree plays an important role

in our algorithm by providing us with query graphs

systematically from minimally k-sized connected query

graphs (trees) to complete query graph.

The expansion tree We use information about previ-

ous (same size) query graphs which are subgraphs of

current query graphs. We start the algorithm from min-

imally connected query graphs, because we can consider

other size k graphs by expanding these minimally con-

nected graphs through adding edges and exploit hitherto

found mappings of these graphs for computing the

existence of expanded graphs without using subgraph

isomorphism. The simplest connected graphs with the

minimum number of edges are namely trees. Therefore,

we first calculate the frequency of trees of a given size in

a network and then expand these trees edge by edge until

we get a complete graph such that there is no room for

new edges. To organize this bottom-up idea, we intro-

Fig. 1. Illustration of different frequency concepts by finding all mappings (M1–M4) of graph (b) into

graph (a). For frequency concept F1, the set {M1, M2, M3, M4} of matchings (mappings) is admissible,

so F1 = 4. For F2 , one of two set {M1, M4} and {M2, M3} are acceptable and so F2 = 2. Finally for

frequency concept F3, merely one of the matchings (M1–M4) is admissible; therefore, F3 = 1.

389Network motif discovery for biological networks

duce the concept of expansion trees. Each node of the

expansion tree is a graph that the algorithm uses as a

query graph. The first level of expansion trees consist of

trees (the root is in level 0, see Fig. 1). The query graphs

become more complete by each step as the expansion tree

is traversed in depth. Formally, the expansion tree Tk is

a tree whose root is number k which indicates the graph

size existing in the expansion tree, and has the following

properties:

• Level of root assumed to be zero.

• Each node (except the root) consists of a graph of size k.

• At ith level, each node includes a graph size k with (k –

2 + i) edges.

• Number of nodes at the first level is equal to the num-

ber of non-isomorphic trees of size k.

• Each graph represented by a node is non-isomorphic to

all other graphs in Tk.

• Each node (except the root) is a subgraph of its child.

• There is only one leaf at level (the graph Kk a,

complete graph with k (nodes).

• Longest path from root to leaf includes edges.

Each node in the expansion tree stores an adjacency

matrix that corresponds to a graph. Because we have

here only considered simple undirected graphs, the corre-

sponding adjacency matrices are symmetric, so we can

only take into account entries either above or below the

main diagonal of the adjacency matrix. Here, we adapt

a slightly different definition of the adjacency code in the

manner that is defined in Chen et al. (2006). The adja-

cency code of a symmetric matrix A, CAD(A) is a sequence

formed from entries below the main diagonal of A by plac-

ing them in the following order:

α2.1 α3.1 α3.2 α4.1 α4.2 α4.3 α5.1 … α n.(n – 1)

In order to generate the expansion tree of a set of k-size

non-isomorphic trees we follow a simple procedure.

First, locate these distinct trees at the first level of the

expansion tree. After that, expand the trees (or later the

graphs) in subsequent levels by replacing a 0 entry by a

1 entry in the adjacency code. One can replace any 0 in

the sequence of adjacency code by a 1 in each stage, which

will yield to expanded graphs in which some are isomor-

phic. Note that the expanded graphs differ in merely one

edge. If the expanded graphs are different then they

represent different child nodes and if they are isomorphic,

they represent the same child node. The expansion will

finish when it obtains a complete graph in which the adja-

cency code is a sequence of 1s. At this stage, the con-

structed expansion tree from data structures point of view

is in fact a directed acyclic graph, or a DAG. Afterwards,

by running Depth-First Search algorithm on this graph,

we obtain a tree in θ (V + E) which generally is called

Topological Sort of the DAG or in MODA’s terminology

the Expansion Tree (Cormen et al., 2004).

As a final point, the expansion trees are constructed for

every graph size just once and can be used in each run;

subsequently, they can be stored and retrieved whenever

the algorithm needs. In other words, expansion tree is a

static data structure and the algorithm does not have to

generate during every run.

Calculating subgraph frequency To calculate the fre-

quencies of k-size subgraphs, the algorithm employs Tk to

direct the running progress in a bottom-up fashion, and

as we will show in this section our algorithm calculates

the frequency of each graph by two different methods,

mapping and enumerating. In this manner, Tk provides

query graphs hierarchically. Based on the level of Tk

that the query graph is chosen from, the algorithm will

decide how to determine the frequency of the query

graphs. The algorithm traverses Tk in breadth-first

manner; however, other methods (i.e. depth-first) may

also be used. At first, the algorithm fetches the query

graphs at the first level of Tk, (which are trees), then finds

all mappings from these trees to the network using the

k k2 3 4

2

− +

k k2 3 4

2

− +
Fig. 2. The expansion tree T4 for 4-node graphs. At the first

level, there are non-isomorphic k-size trees and at each level an

edge is added to the parent graph to form a child graph. All

graphs in each level are non-isomorphic to prevent redundancy.

In the second level, there is a graph with two alternative edges

that is shown by a dashed red edge. In fact, this node repre-

sents two expanded graphs, let G be the graph with edge 〈0, 2〉
and G' the graph with 〈1, 3〉 , such that the relation G~G' is held

between them and they differ only by a single edge. The depth

of Tk is determined by a node that holds a complete graph of k
nodes.

390 S. OMIDI et al.

mapping module (Mapping Module Section) and holds

these calculated mappings in memory space for future

use. Therefore, the frequencies of these trees in the net-

work are calculated exactly; as we will show in the Sam-

pling Throughout the Network section. After that, the

query graphs at the second level of Tk are fetched and the

appearance number of each of these query graphs, with

respect to the stored mappings of their parent nodes in Tk,

is computed by means of an enumerating module

(Enumeration Module Section). Performing this part of

the enumeration is much easier than enumerating the

appearances of trees. Fortunately, the number of non-

isomorphic k-size trees occupies a small portion of non-iso-

morphic k-size graphs when k is more than five (Fig. 3).

Pseudo-code of the algorithm for calculating frequency

of k-size subgraphs is as follows

In Algorithm 1, the function Get-Next-BFS(Tk) traverses

Tk in a breadth-first manner and successively returns

nodes. The two functions Mapping-Module and Enumer-

ating-Module are the functions that actually enumerate

the number of appearances of a query graph in the

network. We will discuss these functions in the follow-

ing sections. By definition, each subgraph that appears

more often than a predefined threshold value is treated

as a frequent subgraph; lines 10–12 perform this task.

Line 13 checks the termination condition of the loop by

considering the structure of query graph G. If G is a

complete graph of order k then the loop terminates.

The mapping module For a query graph, there is a

set of mappings denoted by FG' which contains different

mappings from G' to the network or nothing if there is

no mapping from G' to the network. Each mapping for

G' to the network with node set V, is a function

 where 1 ≤ i ≤ |FG'|. The frequency of query

graph G' is determined by |FG'|. From a computational

complexity point of view, finding a mapping from G' to

graph G is called the subgraph isomorphism problem and

is NP-complete (Garey and Johnson, 1979). For that rea-

son, finding all possible mappings from G' to G is a count-

ing problem and is in #P-complete (Papadimitriou, 1994).

Hence, there is no known algorithm to solve this problem

in polynomial time. We use a well-known algorithm that

tries to find mappings in a branch and bound manner.

To speed up the algorithm, we exploited symmetry-

breaking conditions as a heuristic. Using symmetry-

breaking conditions, the overcounting problem is solved

because it causes the enumeration of only one of the

several possible mappings that may exist from the query

to a subset of nodes in the network and leaves out all

other extras. This module is the one that is used in the

Grochow-Kellis algorithm (Grochow and Kellis, 2007) and

exhaustively counts all mappings for a given query

graph. We incorporated a graph invariant that is used

in Grochow-Kellis, which can be evaluated for each node

efficiently and is consequently beneficial in practice.

Some other invariants (e.g., neighbors’ degrees for each

node) were tested, and most of them resulted in overhead

and imposed extra computational costs.

The pseudo-code of the mapping-module is as follows,

Algorithm 1 Find Subgraph Frequency (G, k, Δ)

Input: G: Input graph, k: subgraph size, Δ: threshold value

Output: Frequent Subgraph List: List of all frequent k-

Note: FG: set of mappings from G in the input graph G

 1: fetch Tk

 2: do

 3: G' = Get-Next-BFS(Tk) // G' is a query graph

 4: if |E(G')|= (k – 1)

 5: call Mapping-Module (G', G)

 6: else

 7: call Enumerating-Module (G', G, Tk)

 8: end if

 9: save F2

10: if |FG|> Δ then

11: add G' into Frequent Subgraph List

12: end if

13: Until (|E(G')|= (k – 1)/2))

14: return Frequent Subgraph List

Fig. 3. The diagram shows the percentage of trees (blue) in k-

size connected graphs for 2 ≤ k ≤ 10, with non-tree graphs shown

in red color. The table below the diagram shows how many of

the total k-size graphs are trees in different sizes of k (shown by

blue). By increasing k, the number of trees increases more

slowly in comparison with exponential growth in the number of

non-tree graphs. (Junker and Schreiber, 2008).

Algorithm 2 Mapping-Module (G', G)

Input: G: Input graph, G': Query graph

Output: FG: List of all mappings from G' to G

 1: FG = ø

f V' VG'

i : → ,

391Network motif discovery for biological networks

In Algorithm 2, the module returns a list of all map-

pings from G to G. In line 2, the predefined-value indi-

cates the number of samples of the network. For an

exact enumeration of all appearances of a query graph

one can simply set predefined-value equal to the network

size or |V(G)|. We set predefined-value to |V(G)|/ 3 for

all of tests in the Runtime Analysis section. In line 3,

the algorithm chooses a node with probability equal to Eq.

1 (Sampling Throughout the Network Section). In lines

4 –10, the algorithm tries to compute all possible map-

pings from G to G that contain the chosen node (in line

3) in their range. In line 5, the algorithm uses a simple

form of invariant as a heuristic to stop the search for a

mapping when no mapping exixts. One can include

other efficient invariants into this step to enhance the

performance of the algorithm. In Grochow and Kellis

(2007) more information is provided about line 7 that

leads to the determination of all mappings from the query

graph to the network by means of a branch and bound

algorithm. Removing the chosen node v in line 11 helps

to prevent finding redundant mappings that have been

found in previous steps.

We use this module for query subgraphs at the first

level (trees) of Tk. For this, we hold any mapping set FG

corresponding to each G at the first level of Tk in prede-

termined memory space. Afterward, for any other query

graphs in Tk we will not call this module and therefore

will not calculate the frequency of these graphs. As a

result of calling the mapping module solely for trees some

improvements can be made in the algorithm.

The enumeration module In Fig. 2 it is clear that

after the first level of Tk each node only adds a single edge

to its parent to create a new graph that is a supergraph

of its parent and non-isomorphic to its counterparts (same

level nodes in Tk). Up to this point, we have computed

all mappings for trees in the first level of Tk and kept this

information. Now, we exploit this information with

respect to the following fact:

If there was a mapping fG from G = (V, E) to the network

then fG also maps G' = (V ’,E’) to the network, whenever

G' ⊆ G ∧ |V| = |V '|holds

Note that the reverse of the above fact does not neces-

sarily hold and the condition |V | = |V '| is essential.

Therefore, it would be helpful to give queries to the net-

work hierarchically, and Tk serves this idea for us by tra-

versing the expansion tree in breadth-first order.

Suppose we want to calculate the frequency of a query

graph G that is located at the second level of Tk, we can

extract the mapping set FG corresponding to its parent

node, then enumerate all mappings in FG that can sup-

port G and import them into FG. What criteria must be

met by the mapping to support G ? Without loss of gen-

erality, let 〈u, v〉 be the new edge in G. If there exists

an edge in the network, which does not lead

to the violation of the symmetry-breaking conditions of G

as well, then can support G, consequently As

a result, we have in this case exchanged the subgraph iso-

morphism problem with a simple criterion, which can be

examined in O(1).

It is possible to have multiple candidate edges for mak-

ing a particular graph from another graph. For instance,

in Fig. 2 we have two edges (dashed red and black ones),

so we have two choices for each mapping. We consider

each candidate edge separately. In this case, when a sin-

gle mapping can fulfill n conditions as well as the sym-

metry-breaking conditions for each new edge, the

algorithm enumerates that mapping n times and adds n

number of this mapping to FG'. Yet this approach is bet-

ter than an exhaustive search. For instance, when we

would like to find the frequencies of graphs with G nodes,

we have to find six non-isomorphic trees exhaustively and

112 dissimilar graphs via this new approach (Fig. 3),

which brings significant savings in running time in com-

parison with a straight forward solution that enumerates

all 6-node subgraphs.

 2: for i = 1 to predefined-value do

 3: select node v from G with a

 probability proportional

 4: foreach node u of G' do

 5: if kv ≥ ku then

 6: set f (u) = v

 7: find all of isomorphism mappings

 8: add mappings into FG

 9: end if

10: end for

11: remove v from G

12: end for

13: return and save FG

Algorithm 3 Enumerating-Module (G', G, Tk)

Input: G: Input graph, G': Query graph, Tk:

expansion tree

Output: FG: List of all mappings from G' to G

 1: FG = ø

 2: H = Get-Parent (G', Tk)

 3: load FH // FH was stored in the memory

 4: let 〈u, v〉 = Ε (G')–E(H)

 5: foreach f ∈ FH　do

 6: if (〈 f (u), f (v)〉 ∈ G) AND 〈 f (u), f (v)〉

 violates the corresponding

 conditions then

 7: add f into FG'

 8: end if

fG

i

〈 〉f u) f (vG

i

G

i(,)

fG

i f FG

i

G∈ ' .

392 S. OMIDI et al.

As in Algorithm 2, Algorithm 3 returns a list of all map-

pings from G to G In line 2, the algorithm simply finds

the parent node of G and loads its mapping set that was

found in previous steps. Line 4 determines the new edge

that has been added by G to its parent. Lines 5–9 decide

which mapping can support defined criteria.

In order to count only induced subgraphs, for each map-

ping the algorithm tries to expand the mapping as deep

as possible in the expansion tree. Then, for each specific

mapping, the algorithm simply counts the appearance of

the latest node in the expansion tree that the mappings

reached and discards all other nodes before that node of

the tree. By this approach, the algorithm does not con-

sider subgraphs of an induced subgraph in the network

and only counts induced subgraphs.

Sampling throughout the network Despite the fact

that the mapping module is used for a small portion

(trees) of k-size non-isomorphic graphs (Fig. 3), it still

takes a lot of time. To speed up this part of the algo-

rithm, we ought to incorporate an appropriate sampling

method within the mapping module (Mapping Module

Section).

By sampling throughout the network, we do not have

to find all of the mappings in which a whole set of nodes

participate. Instead, we select only a subset of nodes in

the network in the mapping module. However, the selec-

tion method must ensure reliable results. This means

the number of mappings that we find for a given query

graph must be similar in different runs of the algorithm.

Therefore, we propose a probability distribution on V that

leads to reliable results for every run of the algorithm.

Empirically, uniform distribution on V does not fulfill the

condition about reliability and exhibits large fluctuations

(blue line in Fig. 4).

However, Vázquez et al. (2004) have shown the power-

law degree distribution influence on scattering subgraphs

around the network. In other words, the subgraph agg-

regation around the high degree nodes (hubs) is higher

than around low degree nodes. We investigated the dis-

tribution of subgraphs around nodes for some real-world

networks (Supplementary I, http://LBB.ut.ac.ir/Download

/LBBsoft/MODA/) as evidence for this conjecture. Empir-

ical results have shown the number of subgraphs in which

a node participates is proportional to its degree. There-

fore, we utilized the node’s degree as selection criteria for

sampling throughout the network. Formally, the proba-

bility of selecting an arbitrary node with degree ki in the

network is given by

(1)

where j is an index over all nodes of the network. As a

result, this sampling leads to low fluctuation in results for

different runs, and hence reliable results (Fig. 4). Equa-

tion 1 is identical in probability distribution as the one in

the preferential attachment mechanism that was

employed in the Barabási-Albert model (Barabási and

Albert, 1999); this mechanism generates scale-free net-

works.

As a final point, the sampling method that we have dis-

cussed above would increase the efficiency of the algo-

rithm; however, to the detriment of accuracy.

RESULTS

Runtime analysis All runtime analyses were per-

formed on an IBM R50e laptop with Intel Pentium 1.8

GHz and 1 GB RAM, using the Windows XP Home Edi-

tion operating system. Source codes were compiled with

.NET 2.0. The loading time of the network was not

included. The network instance for testing our algo-

rithm was the E. coli transcription network (Shen-Orr et

al., 2002) that is taken from (http://www.weizmann. ac.il/

mcb/UriAlon/coliData.html). We considered only the fre-

quency of each subgraph without considering random net-

works as Null-models since we aimed to assess the

computational time of the algorithm in the enumeration

of subgraph appearances and not to determine occur-

rences of motifs.

Comparing the runtime of the pure method versus

sampling method The previous section has shown

that sampling increases the efficiency of the algorithm

since it prevents a complete search of the search space of

the problem instance. Both sampling and exact app-

roaches were implemented and their comparison is

depicted in Figs. 4 and 5. Although the number of k-size

 9: end for

10: return FG

Pr()v
k

k
i

i

j j∑

Fig. 4. Fluctuations of results in two approaches of sampling
for a particular query graph. The x-axis indicates different
runs and the y-axis frequency for each run. The blue line
shows the sampling method based on uniform sampling. The
red line stands for the sampling approach that relies on degree
distribution of nodes in the network; in other words, the proba-
bility of sampling each node is determined by Eq. 1 which is pro-
portional to the degree of each node. This approach shows little
fluctuation in results for different runs.

393Network motif discovery for biological networks

trees is negligible in comparison with k-size non-tree

graphs (Fig. 3), it takes an enormous amount of time to

compute the frequency of all k-size trees. For graphs

with more than nine nodes, this becomes computationally

difficult with state-of-the-art computer technology. We

solved this problem by a sampling approach; nonetheless,

for larger graph sizes even this approach will be infeasible

since the number of potential query graphs which must

be considered by the algorithm will increase exponentially

(Inokuchi et al., 2000; Kuramochi and Karypis, 2004).

These results demonstrate that the sampling approach is

unable to find motifs larger than ten nodes. It seems

that some new approaches must be considered to find

larger sized motifs, parallel computing may provide a

future solution to overcome this problem.

The effect of the enumerating module We captured

the runtime of the algorithm through different steps for

computing the frequencies for six unique undirected

graphs with four nodes (Fig. 6). After computing fre-

quencies for the first two graphs that are trees, the run-

time of MODA immediately falls for the remaining graphs.

In Fig. 6, the runtime of Grochow-Kellis decreases grad-

ually since the number of appearances of dense graphs

decreases. For instance, in the E.coli network there is no

complete graph of four nodes. For the MODA algorithm

without sampling the runtime rapidly falls close to zero for

different query graphs (not trees) because of the sophisti-

cated method for providing query graphs. Additionally,

in Fig. 6 the runtime for the first two query trees notice-

ably decreases when the algorithm utilizes the sampling

method (see “sampling throughout the network” section).

Runtime comparison between MODA and other

algorithms We compared MODA with the Grochow-

Kellis, mfinder, FANMOD, FPF algorithms (Fig. 7). In

this study, the frequencies of non-induced as well as

induced subgraphs were determined by MODA. We

would have liked to compare MODA with NeMoFinder,

but could not find an implementation of the NeMoFinder

algorithm. Note that all of the results consider only enu-

Fig. 5. Runtime comparison between two versions of MODA:

the sampling and the exact approach. 0.25 portions of nodes

were taken as samples in the sampling method.

Fig. 6. Comparison of running times for different methods.

indicates the runtime of the Grochow-Kellis algorithm.　 indi-

cates the runtime of our algorithm (MODA) without sampling.

indicates the runtime of MODA with sampling. The numeri-

cal labels in the x-axis of the query graphs are taken from the

breadth-first traverse of the expansion tree in Fig. 2.

Fig. 7. Runtimes of Grochow-Kellis, mfinder, FANMOD, FPF

and MODA for subgraphs from three nodes up to nine nodes.

394 S. OMIDI et al.

meration in the network, and computational time for

randomized networks is not included. The time for com-

puting frequencies in random networks is same as for the

input network. From Computational complexity point of

view, considering random networks multiply computa-

tional time by a constant coefficient.

DISCUSSION

There is a great deal of research activity in studying

different aspects of complex networks. Complex net-

works display diverse properties at different levels. High

clustering coefficients or degree distributions are some of

these features at the macroscopic level. On the other

hand, important microscopic (local) properties exist as

well as global ones. One of the important local proper-

ties of complex networks is frequent subgraphs that are

statistically over-represented in a network. Such sub-

graphs, which are more frequent in a real-world network

than in its randomized counterparts are called network

motifs. Despite the fact that the definition of network

motifs does not give priority to induced subgraphs over

non-induced subgraphs, the purpose of network motifs is

in practice often induced subgraphs.

Extracting motifs from a large real-world network

demands high computational effort to cope with NP-

complete problems. The problem of finding frequent pat-

terns in databases has been studied in the field of data

mining. Hence, implementing some ideas from data min-

ing in network motif discovery may be fruitful. In this

paper, we have suggested a method that relies on the pat-

tern growth approach. This approach leads to systematic

querying from the network and exploiting previous results

of preceding queries. These results helped us to deter-

mine the frequency of each non-tree graph without per-

forming the subgraph isomorphism that is NP-complete.

In addition, many of the real-world networks are very

large graphs and finding all of the mappings (matches) for

a relatively small query graph in these networks is

extremely difficult. For that reason, we should obtain

samples from the network and not exhaustively count the

appearances of each query graph. Nevertheless, the out-

comes of the sampling should not lead to strong fluctua-

tions in different runs. We used the degree of each node

as a yardstick to obtain samples from the network, result-

ing in similar results in any execution. Using these

methods, we were able to find relatively large motifs in

efficient time. The MODA source code is freely available

at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

We thank Joshua A. Grochow for critical reading of the man-

uscript and helpful suggestions. We also thank Farid Alagh-

mand for his support during this work. Part of this work was

supported by Iran National Science Foundation (http://

www.insf.org/).

REFERENCES

Agrawal, R., and Srikant, R. (1994) Fast Algorithms for Mining

Association Rules in Large Databases. In: Proceedings of

20th International Conference on Very Large Data Bases

(VLDB’94), pp. 487– 499. Morgan Kaufmann, Santiago de

Chile, Chile.

Alon, U. (2007) Network motifs: theory and experimental

approaches. Nature Review Genetics 8, 450–461.

Amaral, L. A., Scala, A., Barthelemy, M., and Stanley, H. E.

(2000) Classes of small-world networks. Proc. Natl. Acad.

Sci. USA 97, 11149–11152.

Barabási, A. L., and Albert, R. (1999) Emergence of scaling in

random networks. Science 286, 509–512.

Baskerville, K., and Paczuski, M. (2006) Subgraph Ensembles

and Motif Discovery Using a New Heuristic for Graph

Isomorphism. Phys. Rev. E. Stat. Nonlin. Soft Matter

Phys. 74, 051903.

Bornholdt, S. S., and Schuster, H. G. (2003) Handbook of Graphs

and Networks: From the Genome to the Internet. Wiley-

VCH, Weinheim.

Chen, J., Hsu, W., Lee, M.–L., and Ng, S. K. (2006) NeMoFinder:

dissecting genome-wide protein-protein interactions with

meso-scale network motifs. In: Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’06), pp. 106–115. ACM SIGKDD,

Philadelphia.

Ciriello, G., and Guerra, C. (2008) A review on models and algo-

rithms for motif discovery in protein-protein interaction net-

works. Brief. in Func. Genomics and Proteomic 7, 147–

156.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

(2004) Introduction to Algorithms. MIT Press, Massachu-

setts.

Diestel, R. (2005) Graph theory. Springer-Verlag, Heidelberg.

Dunne, J. A., Williams, R. J., and Martinez, N. D. (2002) Food-

web structure and network theory: The role of connectance

and size. Proc. Natl. Acad. Sci. USA 99, 12917-12922.

Erdös, P., and Rényi, A. (1960) The Evolution of Random

Graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5, 17–

61.

Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999) On power-

law relationships of the internet topology. In: Proceedings of

the Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communication (SIG-

COMM ’99), pp. 251–262. ACM SIGCOMM , Massachusetts.

Garey, M. R., and Johnson, D. S. (1979) Computers and Intrac-

tability: A Guide to the Theory of NP-Completeness. W. H.

Freeman, New York.

Grochow, J. A., and Kellis, M. (2007) Network Motif Discovery

Using Subgraph Enumeration and Symmetry-Breaking. In:

Proceedings of International Conference on Research in

Computational Molecular Biology (RECOMB’ 07), pp. 92–

106. Springer-Verlag, Heidelberg.

Huan, J., Wang, W., and Prins, J. (2004) SPIN: mining maximal

frequent subgraphs from graph databases. In: Proceedings

of the tenth SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD’04), pp. 581–586.

ACM SIGKDD, Seattle.

Inokuchi, A., Washio, T., and Motoda, H. (2000) An Apriori-

based algorithm for mining frequent substructures from

graphs. In: Proceedings of the 4th European Conference on

Principles of Data Mining and Knowledge Discovery

(PKDD), pp. 13–23. Lyon, France.

Itzkovitz, S., Milo, R., Kashtan, N., Ziv, G., and Alon, U. (2003)

395Network motif discovery for biological networks

Subgraphs in random networks. Phys. Rev. E 68, 026127.

Junker, B. H., and Schreiber, F. (2008) Analysis of biological

networks. Wiley Series on Bioinformatics, Computational

Techniques and Engineering. Wiley-VCH, Weinheim.

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M.,

Itoh, M., Katayama, T., Kawashima, S., Okuda, S., and

Tokimatsu, T., et al. (2008) KEGG for linking genomes to

life and the environment. Nucleic Acids Res. 36, 480–484.

Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. (2004) Efficient

sampling algorithm for estimating subgraph concentrations

and detecting network motifs. Bioinformatics 20, 1746–

1758.

Kuramochi, M., and Karypis, G. (2004) An efficient algorithm for

discovering frequent subgraphs. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 1038–1051.

Mangan, S., and Alon, U. (2003) Structure and function of the

feed-forward loop network motif. Proc. Natl. Acad. Sci.

USA 100, 11980–11985.

Masoudi-Nejad, A., Goto, S., Jauregui, R., Ito, M., Kawashima,

S., Moriya, Y., Endo, T., and Kanehisa, M. (2007) EGENES:

transcriptome-based plant database of genes with metabolic

pathway information and expressed sequence tag indices in

KEGG. Plant Physiol. 44, 857–866.

Middendorf, M., Ziv, E., and Wiggins, C. H. (2005) Inferring net-

work mechanisms: the Drosophila melanogaster protein

interaction network. Proc. Natl. Acad. Sci. USA 102,

3192–3197.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D.,

and Alon, U. (2002) Network motifs: Simple building blocks

of complex networks. Science 298, 824–827.

Ouzounis, C. A., and Karp, D. P. (2000) Global properties of the

metabolic map of Escherichia coli. Genome Res. 10, 568–

576.

Papadimitriou, C. H. (1994) Computational complexity. pp. 439–

447. Addison-Wesley, Massachusetts.

Przytycka, T. M. (2006) An important connection between net-

work motifs and parsimony models. Lecture Notes in

Computational Biology, pp. 321–335. Springer-Verlag,

Heidelberg.

Razaghi Moghadam Kashani, Z., Ahrabian, H., Elahi, E.,

Nowzari-Dalini, A., Saberi Ansari, E., Asadi, S., Moham-

madi, S., Schreiber, F., and Masoudi-Nejad, A. (2009)

Kavosh: a new algorithm for finding network motifs. BMC

Bioinformatics 10, 318.

Schreiber, F., and Schwöbbermeyer, H. (2005a) MAVisto: a tool

for the exploration of network motifs. Bioinformatics 21,

3572–3574.

Schreiber, F., and Schwöbbermeyer, H. (2005b) Frequency con-

cepts and pattern detection for the analysis of motifs in net-

works. In: Transactions on Computational Systems Biology

III, pp. 89–104. Springer-Verlag, Heidelberg.

Shen-Orr, S., Milo, R., Mangan, S., and Alon, U. (2002) Network

motifs in the transcriptional regulation network of

Escherichia coli. Nature Genetics 31, 64–68.

Tsang, J., Zhu, J., and van Oudenaarden, A. (2007) MicroRNA-

mediated feedback and feedforward loops are recurrent net-

work motifs in mammals. Mol. Cell 26, 753–767.

Vázquez, A. (2002) Degree correlations and clustering hierachy

in networks: measures, origin and consequences. PhD Dis-

sertation, La Scuola Internazionale Superiore di Studi

Avanzati / International School for Advanced Studies, Tri-

este, Italy.

Vázquez, A., Dobrin, R., Sergi, D., Eckmann, J. P., Oltvai, Z. N.,

and Barabási, A. L. (2004) The topological relationship

between the large-scale attributes and local interaction pat-

terns of complex networks. Proc. Natl. Acad. Sci. USA 101,

17940–17945.

Watts, D. J., and Strogatz, S. H. (1998) Collective dynamics of

‘small world’ networks. Nature 393, 409–410.

Wernicke, S. (2006) Efficient detection of network motifs. IEEE/

ACM Trans. Computational Biology and Bioinformatics 3,

347–359.

